Embeddability of graphs and Weihrauch degrees

Vittorio Cipriani¹ and Arno Pauly²

¹ Dipartimento di Scienze Matematiche, Informatiche e Fisiche Università Degli Studi di Udine, Udine, Italy cipriani.vittorio@spes.uniud.it
² Department of Computer Science Swansea University, Swansea, UK

Arno.Pauly@cl.cam.ac.uk

Abstract. In this talk, using the framework of Weihrauch reducibility, we aim to characterize the complexity of the problem S_H that asks whether a fixed graph H is isomorphic or not to an input graph G. The recursion and proof theoretic strength of this problem was considered in [HL96], where the authors analyzed the infinite versions of several problems coming from finite complexity theory. Recently, in [BHW21] the authors extended the work in [HL96] using the framework of Weihrauch reducibility. They considered H as either finite or as the linear graph with countably many vertices $(v_i)_{i \in \mathbb{N}}$ and edges $E = \{(v_i, v_{i+1} : i \in \mathbb{N}\}.$ In the first case they showed that S_H is strongly Weihrauch equivalent to LPO (the problem that given in input $p \in 2^{\mathbb{N}}$ outputs 1 if p is not constantly zero) while in the second one they showed its equivalence with WF (the problem that given in input a tree $T \subseteq \mathbb{N}^{<\mathbb{N}}$ outputs 1 if T has no infinite branch). The second principle is actually much stronger than the first one, and the authors left open whether there is a graph H such that LPO $<_W S_H <_W WF$: we provide an answer to this problem and we also consider the variant where subgraph isomorphism is substituted with subgraph embedding.

Keywords: Computable Analysis \cdot Weihrauch Reducibility \cdot Graph Embedding.

References

- [BHW21] Zack BeMent, Jeffry Hirst, and Asuka Wallace. Reverse mathematics and weihrauch analysis motivated by finite complexity theory, 2021.
- [HL96] Jeffry Hirst and Steffen Lempp. Infinite versions of some problems from finite complexity theory. Notre Dame Journal of Formal Logic, 37, 10 1996.