IFP style proofs in the Coq proof assistant

Sewon Park!, Holger Thies?, and Hideki Tsuiki?

'KAIST, Republic of Korea
2Kyoto University, Japan

IFP (Intuitionistic Fixed Point Logic) is an extension of intuitionistic first-
order logic by strictly positive inductive and coinductive definitions. Program
extraction is based on a uniform realizability interpretation which ignores realiz-
ers of non-computational statements (Harrop formulas) (see [BT21] for details).
An interactive proof system based on IFP [BPT20] has recently been imple-
mented.

The well-known Coq proof assistant, on the other hand, is based on con-
structive dependent type theory. Coq also provides an extraction mechanism
that automatically translates proofs to functional programs [Let02] but different
from IFP, a user has to explicitly distinguish between computationally relevant
and computationally irrelevant statements by assigning different sorts to the
respective terms.

With IFP, it is possible to extract programs from abstract proofs based on
axioms, and it is particularly well suited for the extraction of certified pro-
grams for exact real number computation (see e.g. [Ber09]). With Coq, it is
also possible to write an abstract proof based on axioms, but they are treated
as computationally irrelevant statements and are not subject to program ex-
traction. However, Coq is already equipped with a rich theory of mathematics
and a well-developed software environment, which facilitates simple and elegant
proofs. It is therefore desirable to establish a connection between the formal
systems IFP and Coq, study how IFP-style proofs can be performed in Coq,
and investigate the possibility of extraction from such proofs.

As a first step towards this goal we provide an automatic translation from
an [FP instance to Coq types. An instance of IFP is a language £ consisting of
sorts, terms and predicate constants and a set of axioms A. For each language £
and axiom set A of £ of IFP, we define the set of Coq axioms as IFP-Coq(L, .A)
by the steps (i-v).

(i) For each sort ¢ in £, define ¢ as a term constant (axiom) of Prop.

(ii) For each constant c of sort ¢, define ¢ as a term constant (axiom) of type
L.

(iii) For each function symbol f of arity ¢1 X «-+ X ¢, — ¢, define f as a term
constant (axiom) of type ¢y — -+ = 1y, —> L.



(iv) For each predicate symbol P of arity (¢1,--ty,), define P as a term con-
stant (axiom) of type ¢y — -+ — 1, — Prop.

(v) For each operator symbol Q of arity (¢1, - - t,,), define @ as a term constant
(axiom) of type (¢ — -+ — ¢, = Prop) — (11 — - -+ — t,, — Prop).

To add the axioms from an IFP instance we further need to translate from IFP
expressions to Coq types. We describe a recursive procedure for this translation.
The procedure is mostly straight forward with the exception of inductive and
coinductive definitions. In IFP, the expressions p(®) and v(®) can be used to
inductively and coinductively define predicates for any strictly positive operator
®. TFP contains the following proof rules for induction and coinduction:

CL(®) PIEP 1\pa, p)
(u(®)) € () u(®) C P
______cocn@) PEP) oinp(a, )
/(@) C 5((@)) PC (@)

We translate each inductive definition p(®) to a new inductive type in Coq and
generate the corresponding induction principle. This principle then has to be
proven in Coq. In the case where ® does not contain any further inductive or
coinductive defintition, the proof is straight-forward and we have written a Coq
tactic to automatically prove such statements. We apply the same technique to
coinductive definitions.

The resulting environment can be used to prove IFP statements inside the
Coq proof assistant. We could successfully convert all the IFP-proofs from
[BT21] to formal proofs in Coq, except for those in RIFP.

Currently, our implementation only maps to non-computational types and
thus does not provide any mechanism to generate programs from Coq proofs.
However, in a later step we plan to add such functionality by implementing a
realizability interpretation similar to that of IFP for IFP-Coq proof terms.

References

[Ber09] Ulrich Berger. From coinductive proofs to exact real arithmetic. In
International Workshop on Computer Science Logic, pages 132—146.
Springer, 2009.

[BPT20] Ulrich Berger, Olga Petrovska, and Hideki Tsuiki. Prawf: An inter-
active proof system for program extraction. In Conference on Com-
putability in Furope, pages 137-148. Springer, 2020.

[BT21] Ulrich Berger and Hideki Tsuiki. Intuitionistic fixed point logic. An-
nals of Pure and Applied Logic, 172(3):102903, 2021.

[Let02] Pierre Letouzey. A new extraction for Coq. In International Workshop
on Types for Proofs and Programs, pages 200-219. Springer, 2002.



