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When working over infinite data, such as real numbers, one frequently encounters compu-
tational problems that fail to be solvable exactly (in the sense of Exact Real Computation) for
continuity reasons. A common remedy is to replace such problems with approximate formula-
tions where a slightly perturbed problem instance is solved exactly. More precisely, let f : X → Y
be a function between computable metric spaces. Let Q>0 denote the space of strictly positive
rational numbers with the discrete topology. Consider the backward approximation

† f : X ×Q>0 Y , † f (x,ε)= { f (x̃) ∈Y | x̃ ∈ B(x,ε)} . (1)

This relaxation underlies for instance the non-deterministic inequality test for real numbers, the
notion of “approximate solutions” of fixed point equations [Bro52, Sca67], and backwards stable
algorithms in numerical analysis [TB97, Chapter III].

Observe that the function † f is always continuous. Further, if f has a computable left inverse,
then † f is computable. The latter situation occurs frequently in practice, since discontinuous
functions often arise as “inverse problems”.

Backward approximations can be useful for computing quantities that depend continuously
on the input data. For instance, the standard algorithms for computing the eigenvalues of a
matrix proceed by first diagonalising the matrix using a backwards stable algorithm, and then
reading the eigenvalues off the diagonal [TB97, Chapter V]. This yields good approximations
of the eigenvalues, despite the base change matrices not depending continuously on the input
matrix.

More generally, one can ask when it is possible to make an exact “idealised” algorithm that
employs discontinuous functions as subroutines into a rigorous one by replacing the subroutines
in question by backward approximations. We will give necessary and sufficient criteria with the
help of continuous envelopes [Neu19].

Let us first consider the following question: Given functions f i : X i → X i+1 between com-
putable metric spaces X1, . . . , Xn+1 and x ∈ X1, when do we have convergence

† fn(·,δ)◦ · · · ◦ † f1(·,δ)(x)→ fn ◦ · · · ◦ f1(x) as δ→ 0 ? (2)

Here, † f i(·,δ) : X i X i+1 is the function which is obtained by binding the second parameter of † f
to δ.

For a computable metric space Y , let K⊥(Y ) denote the lattice of compact subsets of Y , ordered
by reverse inclusion, with a bottom element added. Any function f : X →Y has a best continuous
approximation F : X → K⊥(Y ) in the following sense: For all x ∈ X we have f (x) ∈ F(x), and if
G : X → K⊥(Y ) satisfies f (x) ∈ G(x) for all x ∈ X then F(x) ⊆ G(x) for all x ∈ X . We obtain the
following convergence criterion:

Theorem 1. Let X1, . . . , Xn+1 be computable metric spaces. Let f i : X i → X i+1, i = 1, . . . ,n be a
family of functions. Let Fi : X i → K⊥(X i+1) be the best continuous approximation of f i. Assume
that Fi(x) 6= ⊥ for all x ∈ X i. Then the following are equivalent:

1. There exists a total continuous multi-valued function ω : X1 ×Q>0 Q>0 such that for all
x ∈ X1, all ε> 0, all δ ∈ω(x,ε), and all y ∈ † fn(·,δ)◦· · ·◦† f1(·,δ)(x) we have d (y, fn ◦ · · · ◦ f1(x))<
ε.
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2. We have Fn ◦ · · · ◦F1(x) = { fn ◦ · · · ◦ f1(x)} for all x ∈ X1. Here, the composition of the Fi ’s is
taken in the Kleisli category of the monad K⊥.

In (2) we have chosen the same δ in each f i depending only on ε and x. The notion of con-
vergence can be weakened by allowing a different δi for each † f i that is allowed to depend on the
value of † f i−1(xi−1,δi−1).

Convergence in this sense can be characterised with the help of primary co-envelopes, intro-
duced in [Neu21]. We will not give a full definition, see [Neu21, Section 5] for details. The primary
co-envelope of f i : X i → X i+1 consists of a Σ-split injective space A f i together with two continuous
maps E?f i

: A f i → O (X i) and πA f i
: A f i → O (X i+1) satisfying E?f i

≤ f ◦i ◦πA f i
where f ◦ : O (X i+1) →

O (X i) sends U ∈O (X i−1) to the interior of the set f −1(U). The map πA f i
preserves arbitrary joins

and hence has an upper adjoint. This adjoint is continuous if and only if A f i is isomorphic to
O (X i+1). In this case E?f i

can be identified with the greatest continuous approximation of f i with
values in K⊥(X i+1).

Theorem 2. Let X1, . . . , Xn+1 be computable metric spaces. Let f i : X i → X i+1, i = 1, . . . ,n be a
family of functions. For i = 1, . . . ,n, let E?i : A f i → O (X i) be the primary co-envelope of f i. Let
ρ i : O (X i+1) →A f i denote the upper adjoint of the projection πA f i

: A f i → O (X i+1). The following
are equivalent:

1. There exist continuous multi-valued functions ωi : X i ×Q>0 Q>0, with ω1 total and

(xi,ε) ∈ dom(ωi)∧ xi+1 ∈ † f i(xi,ε) → (xi+1,ε) ∈ dom(ωi+1),

such that for all sequences x1, . . . , xn+1, δ1 > 0, . . . ,δn > 0 satisfying δi ∈ ωi(xi,ε) and xi+1 ∈
† f i(xi,δi) we have d(xn+1, fn ◦ · · · ◦ f1(x))< ε.

2. We have
E?1 ◦ρ1 ◦ · · · ◦E?n−1 ◦ρn−1 ◦E?n ◦ρn(U)= ( fn ◦ · · · ◦ f1)−1(U)

for all U ∈O (Xn+1).

When the envelopes of all functions f1, . . . , fn are known, checking, say, the equality

Fn ◦ · · · ◦F1(x)= { fn ◦ · · · ◦ f1(x)}

is arguably much simpler than proving convergence directly. It is worth mentioning that the
proofs of Theorem 1 and 2 yield a method for calculating the moduli ω or ωi with the help of the
respective envelopes.
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