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Introduction. Formal proofs are traditionally seen as finite mathematical objects modelling logical or
mathematical reasoning. Non-wellfounded (but finitely branching) proofs represent a generalization of
the notion of formal proof to an infinitary setting. The proof theory of non-wellfounded proofs originates
in the context of the modal µ-calculus [NW96] and has been subject to growing interest in recent years.

In this framework, a special attention is devoted to circular proofs, i.e. those non-wellfounded proofs
having only finitely many distinct sub-prooftrees. Circular proofs can be turned into finite structures
called cycle normal forms, usually defined as finite trees with additional ‘backpointers’. As circular
proofs admit fallacious reasoning, a standard solution to prevent inconsistency is to introduce non-local
correctness criteria, typically checked by Büchi automata on infinite words.

Circular proofs, and their corresponding cycle normal forms, have been employed to reason about
modal µ-calculus and fixed-point logics [DHL06], induction and coinduction [BS11], Kleene alge-
bra [DP17], linear logic [BDS16], arithmetic [Das18], and continuous cut-elimination [Min78, FS13].
However, little is known about their complexity-theoretic aspects. The present paper aims at bridging the
gap between circular proofs and Implicit Computational Complexity (ICC), a branch of computational
complexity studying machine-free languages and calculi able to capture a given complexity class without
relying on explicit resource bounds.

A proof system for B. Our starting point is the Bellantoni and Cook’s function algebra B capturing the
polynomial time computable functions (FPTIME) in the spirit of ICC using safe recursion. Functions of
B have shape f (x1, ...,xn;y1, ...,ym), where the semicolon separates the normal arguments x1, ...,xn from
the safe arguments y1, ...,ym. The idea behind safe recursion is that only normal arguments can be used as
recursive parameters, while recursive calls can only appear in safe position. This prevents recursive calls
to become recursive parameters of other previously defined functions. B can be alternatively designed as
a proof-system deriving sequents with shape

n︷ ︸︸ ︷
�N, . . . ,�N,

m︷ ︸︸ ︷
N . . . ,N⇒ N

where N is the ground type for natural numbers and �N is its modal version. In this system, safe recur-
sion is introduced by a specific inference rule srec. Intuitively, a proof of the above sequent represents a
Bellantoni and Cook’s function with n normal arguments and m safe arguments.

NCB and nesting. Starting from B, we obtain the circular proof system NCB in three steps:

• we consider the non-wellfounded proofs generated by the rules of the subsystem B− := B \ srec,
which are able to subsume various forms of recursion;

• we consider the circular proofs of B− that satisfy a termination criterion, so that only total com-
putable functions are representable;
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• we introduce a ‘safety’ criterion in order to prevent non-safe recursion schemes to be represented
in this infinitary setting.

Despite NCB having only ground types, it is able to define safe recursion schemes that nest the
recursive calls, a property that typically arises in higher-order recursion. As an example, NCB is able to
represent the exponential function exp(x) = λy.2x + y defined as follows:

exp(0) = λy.y+1
exp(x+1) = λy.exp(x)(exp(x)(y))

This is in fact a peculiar feature of circular proofs which has been extensively studied by Das in [Das21],
who has shown that the number-theoretic functions definable by type level n proofs of a circular version
of system T are exactly those ones definable by type level n+ 1 proofs of T. To make this point more
apparent, consider the following higher-order recursion operator:

recA : �N→ (�N→ A→ A)→ A→ A

with A = N → N, and f (x) = recA(x,h,g) is defined as f (0) = g and f (x+ 1) = h(x, f (x)) for x > 0.
By setting g := λy : N.y+ 1 and h := λx : �N.λu : N → N.(λy : N.(u(u(y))) we can easily check that
exp(x;y) = recA(x,h,g)(y). The fact that higher-order safe recursion can be used to define the class of
the elementary time functions (FELEMENTARY) has already been noticed by Hofmann in [Hof97],
where the type system SLR (Safe Linear Recursion) is introduced to lift B to a higher-order setting. The
system uses a variant of the operator recA with a linearity restriction preventing the recursive calls to be
duplicated, and hence nested.

CB and characterizations. Following [Hof97], we impose a linearity criterion to rule out the nesting
of recursive calls by controlling the interplay between loops and the cut rule. The resulting circular proof
system is called CB. Intuitively, CB can be seen as a circular version of B, while NCB generalizes CB
allowing nested versions of the safe recursion scheme. The main results of our paper are the following:

Theorem.
• A function is representable in NCB iff it is in FELEMENTARY.

• A function is representable in CB iff it is in FPTIME.

Completeness is easily achieved by showing how to represent a given class of functions in the circular
proof system. By contrast, soundness is subtler, as it relies on a translation of circular proofs, which
are essentially coinductive objects, into the functions of an inductively defined function algebra. In
particular, in order to define the nesting of recursive calls, the function algebra for NCB crucially requires
the introduction of ‘auxiliary functions’ (or oracles).

Conclusions. The widespread approach to ICC is based on the introduction of inductively defined lan-
guages or calculi endowed with recursion mechanisms whose strength is carefully calibrated in order to
increase in complexity while not overstepping a given bound on computation. The circular proof sys-
tems CB and NCB pave the way to a radically different, top-down approach, where coinductive reasoning
plays a central role. Circular proofs are able to subsume various forms of recursion, and in some cases are
even able to express non-terminating computation. Therefore, the characterization results are achieved
by imposing global proof-theoretical conditions weakening the computational content of the system.

As a future direction, we are planning to design higher-order versions of NCB and CB to reformulate
the above results into a more general setting.
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