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Abstract

In the talk we present axiomatic of fix-point computer arithmetics that we use in our
platform-independent incremental combined approach to specification and verification of
the standard functions sqrt, cos and sin that implement mathematical functions

√
, cos

and sin. The talk will be an updated version of the talk presented (without formal pub-
lication) at Logical Perspectives 2021: Summer School and Workshop (June 14–19, 2021,
Steklov Mathematical Institute, Moscow, Russia, https://lp2021.mi-ras.ru/workshop.
html).

1 Introduction

One who has a look at verification research and practice may observe that there exist verification
in large (scale) and verification in small (scale): verification in large deals (usually) behavioral
properties of large-scale complex critical systems like the Curiosity Mars mission [4], while
verification in small addresses (usually) functional properties of small programs like computing
the standard trigonometry functions [3, 2].

Our research “Platform-independent approach to formal specification and verification of
standard mathematical functions” deals with verification in small. It may look like that it is
about the same topic as [3, 2] i.e. formal verification of the standard computer functions that
implement mathematical functions. But there are serious differences between [3, 2] and our
research project.

Our research project is aimed onto a development of an incremental combined approach
to the specification and verification of the standard mathematical functions. Platform-
independence means that we attempt to design a relatively simple axiomatization of the com-
puter arithmetic in terms of real, rational, and integer arithmetic (i.e. the fields R and Q of real
and rational numbers, the ring Z of integers) but don’t specify neither base of the computer
arithmetic, nor a format of numbers’ representation. Incrementality means that we start with
the most straightforward specification of the simplest easy to verify algorithm in real numbers
and finish with a realistic specification and a verification of an algorithm in computer arithmetic.
We call our approach combined because we start with a manual (pen-and-paper) verification of
some selected algorithm in real numbers, then use these algorithm and verification as a draft
and proof-outlines for the algorithm in computer arithmetic and its manual verification, and
finish with a computer-aided validation of our manual proofs with some proof-assistant system
(to avoid appeals to “obviousness” that are very common in human-carried proofs).
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2 A Brief of the Approach Results

In our approach we start with easy-to-verify Hoare total correctness assertions [1] for logical
specification of imperative algorithms that implements the computer functions in “ideal” real
arithmetic, and finish with computer-aided verification of the computer functions in computer
fix-point arithmetic. Full details of our approach can be found in [6, 5].

In a journal (Russian) paper [6] an adaptive imperative algorithm implementing the Newton-
Raphson method for a square root function

√
has been specified by total correctness asser-

tions and verified manually using Floyd-Hoare approach in both fix-point and floating-point
arithmetics; the post-condition of the total correctness assertion states that the final overall
truncation error is not greater that 2ulp where ulp is Unit in the Last Place — the unit of the
last meaningful digit.

The paper [6] has reported also two steps towards computer-aided validation and verification
of the used adaptive algorithm. In particular, an implementation of a fix-point data type accord-
ing to the axiomatization can be found at https://bitbucket.org/ainoneko/lib_verify/

src/; ACL2 computer-carried proofs of (i) the consistency of the computer fix-point arith-
metic axiomatization, and (ii) the existence of a look-up table with initial approximations for
√

are available at https://github.com/apple2-66/c-light/tree/master/experiments/

square-root.
In a work-in-progress electronic preprint [5] platform-independent and incremental approach

is applied for manual (pen-and-paper) verification (using Floyd-Hoare approach) of the com-
puter functions cos and sin (that implement mathematical trigonometric functions cos and
sin) for fix-point argument values in the rage [−1, 1] (in radian measure); the post-condition
of the total correctness assertion states that the final overall truncation error is not greater
that 3n×ulp

2(1−ulp) where n = O (| ln ε|) and ε > 0 is user-defined computational error (in ideal real

arithmetic).

3 Fix-point Arithmetic

Below we present version axiomatization (modulo “ideal” arithmetic of real, rational and in-
teger numbers) of a computer (platform-independent) fix-point arithmetic data type as in [6].
(Please remark that we explicitly admit that there may be several different fix-point data types
simultaneously.)

A fix-point data-type (with Gaussian rounding) D satisfies the following axioms.

• The set of values V alD is a finite set of rational numbers Q (and reals R) such that

– it contains the least infD < 0 and the largest supD > 0 elements,

– altogether with

∗ all rational numbers in [infD, supD] with a step δD > 0,

∗ all integers IntD in the range [− infD, supD].

• Admissible operations include machine addition ⊕, subtraction 	, multiplication ⊗, di-
vision �, integer rounding up d e and down b c.

Machine addition and subtraction. If the exact result of the standard mathematical
addition (subtraction) of two fix-point values falls within the interval [infD, supD],
then machine addition (subtraction respectively) of these arguments equals to the
result of the mathematical operation (and notation + and − is used in this case).

2
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Machine multiplication and division. These operations return values that are near-
est in V alD to the exact result of the corresponding standard mathematical operation:
for any x, y ∈ V alD
– if x× y ∈ V alD then x⊗ y = x× y;

– if x/y ∈ V alD then x� y = x/y;

– if x× y ∈ [infD, supD] then |x⊗ y − x× y| ≤ δD/2;

– if x/y ∈ [infD, supD] then |x� y − x/y| ≤ δD/2;

Integer rounding up and down are defined for all values in V alD.

• Admissible binary relations include all standard equalities and inequalities (within
[infD, supD]) denoted in the standard way =, 6=, ≤, ≥, <, >.

Finally let us mention that we implement (prototype) our (platform-independent) fix-point
(an floating-point) arithmetic data type. Of course, currently, tools to increase the precision
of fix/floating-point computations are available in many industrial platforms (C / C ++, Java,
Python), but in the above languages, data of a non-standard numeric type are represented by
objects, and it takes effort to link them with standard numeric types. Instead, we design and
implement a simple programming language with the following built-in numeric types — fixed-
point numbers (parameterized by user-specified rational δD > 0 — Unit in the Last Place ulp
— and the least infD < 0 and the largest supD > 0 elements), rational numbers, floating-point
numbers with a definable mantissa size [7].
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