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We explore the identification of the computational content, and implications of, having
constructive proofs of the important Gleason theorem in quantum logic [1] (1957). A con-
structive proof of a suitable classical reformulation of Gleason’s theorem appears in Richman
and Bridges [4] (1999).

Write En for the Hilbert space of dimension n over the reals and write Sn−1 for the unit
sphere in En .

In this case Gleason’s theorem states that, if p : Sn−1 → [0, 1] is such that if p is in fact a
function on the rays in H, (meaning that p(−x) = p(x), for all relevant x), and for for each
frame (orthonormal basis) f = (ei) ⊂ Sn−1, we have that

∑
α∈f p(α) = 1; then there is some

density matrix (a quantum state) ρ on H such that p(x) = (x, ρx), for all x ∈ Sn−1.
A (quantum) state ρ or a density matrix, is a Hermitian, positive operator on H of trace

1. Being positive means that (ρx, x) ≥ 0 for all x ∈ H.
We shall discuss the computational ramifications and physical implications of the following

statement. This statement is a consequence of the arguments in the paper HP [3].

Theorem 1 We can algorithmically and uniformly and construct for every natural number
n, a first-order statement Πn in the theory R of real closed fields which is classically

equivalent to Gleason’s theorem for En. An analogous result holds for the first order theory C
for the field C of complex numbers and the version of Gleason’s theorem for finite dimensional
Hilbert spaces over C.
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