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Abstract

Ultrafinitism postulates that we can only compute on relatively short objects, and num-
bers beyond certain value are not available. This approach would also forbid many forms
of infinitary reasoning and allow to remove certain paradoxes stemming from enumeration
theorems. For computational application of1 ultrafinitist logic, we need more than a proof
system, but a logical framework to express both proofs, programs, and theorems in a single
framework. In spirit of ultraconstructivism, the framework forbids use of empty datatypes
like falsum. We present its inference rules and propose facilities to make their use just as
simple as logical frameworks used in conventional theorem provers.

1 Introduction

Ultrafinitism(Kornai 2003; Podnieks 2005; Yessenin-Volpin 1970; Gefter 2013) postulates that
we can only reason and compute relatively short objects(Krauss and Starkman 2004; Sazonov
1995; Lloyd 2002; Gorelik 2010), and numbers beyond certain value are not available. This
approach would also forbid many forms of infinitary reasoning and allow to remove many from
paradoxes stemming from countable enumeration.

However, philosophers still disagree of whether such a finitist logic could be consis-
tent(Magidor 2007), while constructivist mathematicians claim that “no satisfactory devel-
opments exist”(Troelstra 1988). We present preliminary work on a proof system based on
Curry-Howard isomorphism(Howard 1980).

We believe that this approach may present certain impossibility results as logical paradoxes
stemming from a profligate use of transfinite reasoning.

2 Definitions

2.1 Variables, and polynomials

We assume a set of variables x ∈ X, polynomial variables v ∈ V , and integers i ∈ Z. We will
use polynomials:

ρ ::= v
∣∣ i ∣∣ ρ+ ρ

∣∣ ρ ∗ ρ ∣∣ ρρ ∣∣ ρ◦ρ[v]

Note that our polynomials will be ever used when they have a positive natural value.
Here ρρ is an ordinary exponentation, and ρ◦ρ[v] is an iterated function composition with

respect to argument variable v.
In case that we are not interested in the exact constants, we may replace each polynomial

with big-oh notation O(ρ1). In this case we just state that there is a judgement that has all
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polynomials O(ρ1), ...,O(ρ2) replaced by by some polynomial that is majorized by the c∗ρ1 for
small constant |c| < 1000.

The polynomials will be standing on one of two roles: as an upper bound on the proof
complexity, and there we will use symbol α as placeholder, or to state an upper bound on
the number of constructors in the proof indicated by symbol β. That is because number of
constructors may sometimes bound a recursive examination of the proof of a proposition.

Terms are given by:

p ::= v
∣∣λv.p ∣∣∀αv : p→ p

∣∣ ∃vβ .p
Environments of assumptions are given by a list of propositions with a constructor depth

attached to them.

Γ ::= ε
∣∣xv : A,Γ

Judgements are of the form: Γ `αβ A .
In theory we could attach a pair to each proposition and judgement A(α,β) that would de-

scribe both complexity α of computing the proof and a depth β of the resulting witness. However
in most cases one of these would be 1 or could be inferred from the remaining information.

2.2 Inference rules

Γ `αβ y : T v ∈ V w ∈ V x ∈ X A ∈ X
Γ, xv : A `1v x : A

polyvar
Γ `αβ y : A v ∈ V
Γ, xv : A `1v x : A

var

Γ `α1

β1
a1 : A1 Γ `α2

β2
a2 : A2

Γ `α1+α2

max (β1,β2)+1 (a1, a2) : A1 ∧A2
pair

Γ `αmax (β1,β2)
e : A1 ∧A2

Γ `α+1
β−1 prji e : Ai

prji

Γ `αβ e : Ai

Γ `α+1
β+1 inji e : A1 ∨A2

inji
Γ `α1

β1
e : A α1 ≤ α2 β1 ≤ β2

Γ `α2

β2
e : A

bound

Γ `α∨β∨ a : A1 ∨A2 Γ, x : A1
β∨−1 `α1

β1
b : B Γ, y : A2

β∨−1 `α2

β2
c : B

Γ `α∨+max(α1,α2)+1
max(β1,β2)

case a of inj1 x→ b; inj2 y → c : B
case

Γ, xv : A `α(v)β(v) e : B

Γ `α(1)+1
β(1)+1 λx.e : ∀av : A =⇒ α(v)

β(v)B
abs

Γ `α1

β1
e : ∀a : Av =⇒ α2(v)

β2(v)
B Γ `α3

β3
a : A

Γ `α1+α2(β3)+α3

β2(β3)
e a : B

app

Please note that notation ∀xv : A =⇒ α(v)
β(v)B has variable x declared as depth of A, and

then bound in polynomials α(v) and β(v)
With exception of bound these are all reinterpretations of rules for intuitionistic logic, en-

riched with bounds on the proof length α and normalized term depth β.
Please note that these rules all maintain bounded depth with no unbounded recursion. We

may add rule for recursive definitions (like definition of the closure):
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Γ `α1

β1
f : Av⇒α2(v))

β2(v)
A Γ `α3

β3
a : A v > β2(v)

Γ `α1+α
◦β3
2 [β3]+α3

β
◦β3
2 [β3]

rec f a : B

rec

2.3 Simplifying bound polynomials

Our inference rules rely on computing polynomial bounds and their inequality. Here we note a
few inequalities that simplify reasoning about these bounds, albeit at the cost of making them
somewhat looser.

First we note that all variables are positive naturals because they represent the data of
non-zero size: x ≥ 1.

That means that the following laws are true, assuming that x, y, ... ≥ 1 are data size variables
in the environment, e ≤ f ≤ 1 and g ≤ h ≤ 1 are arbitrary positive expressions, and a, b, c... ≥ 1
are constants. For easier use the rules are presented in left-to-right order, just like conventional
rewrite rules.

(1) xe ≤ xf

(2) a ∗ xe + b ∗ xf ≤ (a+ b) ∗ xf
(3) xe ≤ xf

(4) a ∗ xe + b ∗ xf ≤ (a+ b) ∗ xf
(5) a ∗ xe ∗ yg ≤ a ∗ xf ∗ yh
(6) e◦g[x] ≤ f◦h[x]
(7) (a ∗ x)◦e[x] = ae ∗ x
(8) (x+ a)◦e[x] = x+ a ∗ e
(9) (xe)◦g[x] = xe

g

We may thus use these identities to loosen the bound in such way as to reduce the size of
polynomial and make it a sum of a single term in all variables and additional constant term.
This reduction may be delayed until we have bound to verify.

Note that all the inference rules can be used leaving polynomials as the holes to be filled by
the framework interpreter.

3 Sketching the proofs

3.1 Strong normalization

Please note that all rules increase polynomial bound on computation effort: α. Thus if we are
able to infer a judgement with a valid bound, we get a bounded judgement.

The depth bound β is used for delimiting recursion depth, since it has to decrease at each
stage of loop application rec.

Please note that after elision of bounds the exposure follows the intuitionistic logic. Thus
the consistency

4 Facilities

Here we discuss possible extensions that will make it easier to use the framework.
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4.1 Inductive types

Inductive types can be encoded with finite pairs and sums above, but we can also have mutually
recursive declarations of the form:

I ::= data t τ∗ = [c a∗]+

Where:

� t ∈ T is a type identfier,
� τ = V is a type variable,
� c ∈ C is a constructor identifier,
� a ::= τ

∣∣ t a∗ which means that argument to a constructor is either a type variable, or a
type constructor and a list of arguments.

For each type constructor we have a fixed arity of type arguments, and ditto for any construc-
tor c for this type. We also need to compute a minimum depth of the type, which a minimum
of minimal depths for each constructor. Minimal depth for each constructor is a maximum of
all its arguments, or 1 if there are no arguments. For a set of datatypes to be valid, they have
to all possess a minimum depth that is finite number.

Please note that this definition explicitly forbids inductive types that are empty, or do not
have a finite construction.

For each inductive type I with constructors C1, ...Cn with arities k1, ..., kn we can apply a
case rule:

Γ `α∨β∨ a : I a1 ... an Γ, r1,1v : A1, ..., r1,k1v : An `α1(v)
β1(v)

e1 : B ... Γ, rn,1v : A1, ..., rn,knv : An `αn(v)βn(v)
en : B

Γ `α∨+maxk(α1(β∨−1),...,αn(β∨−1))
max(β1(β∨−1),...,βn(β∨−1))

case a of C1 r
1,1 ...r1,k1 → e1; ...;Cn r

n,1 ...rn,kn → en : B
case

4.2 Metareasoning

We may now decode the type constructors:

JA ∨BK = inj1(pairJAKJBK)

JA ∧BK = inj2(pairJAKJBK)

J∀x : A.BK = λx : A.JBK

This decoding allows us to make operations on types akin to generic programming in
Haskell(generic?)

5 Discussion

We have shown a possible consistent logic for inference with strictly bounded number of steps.
This allows us to limit our statements by the length of acceptable proof, and thus define
statements that are not just true, but computable within Bremermann-Gorelik limit1(Gorelik
2010).

This in turn allows us to conduct a reasonable ultrafinitist discourse without inconsistency.
The underlying proof system is also much strong than weak subtheories like Bounded Arith-
metic(Krajicek 1995).

1Computation run by computer the size of Earth within the lifespan of Earth so far. Of the order of 1093.
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In future work we will attempt to characterize the realm of ultrafinitist theorems. For
example the famous undecidability example that refers to arbitrary program seems impossible
to define in this framework. In particular any program bounded by α(x) for any input β(x)
might be checked for termination within a significantly larger but still bounded limit of αβ(x)(x).
Another avenue of future work would be to define full type theory, dependently typed language
and automatic prover for this inference rules. Since polynomials α(x) are monotonic, it is likely
that the proof strategy will be also bounded in this case. A penultimate application would be
defining automated inference system for upper bounds of (eager) functional programs and thus
warn user about possible non-termination of the program in absence of infinite input.
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