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Abstract. We present and empirically evaluate the (arguably first) C++ pro-
gram computing the Mandelbrot Set reliably, namely using the iRRAM library
to implement the abstract proof [doi:10.1002/malq.200310124] of its Turing-
computability subject to the Hyperbolicity Conjecture.

Since the 80ies, computers have helped popularize fractals [5,1], enabling a
hands-on experience and experimental approach to their otherwise highly ab-
stract mathematics. The Mandelbrot Set for example is commonly ”computed”
by iterating, for each screen pixel c in the complex plane, the quadratic sequence
Mc,n+1 = c+M2

c,n it induces: c does not belong to the Mandelbrot Set iff Mc,n

diverges iff it exceeds 2 in magnitude for some n.

This approach however constitutes a mere heuristic, for two reasons: First
the iteration is usually conducted in floating-point arithmetic with rounding
and truncation errors that propagate and make the computed sequence differ
unreliably from the mathematical one. Secondly, the number n of iterations
after which Mc,n is considered to not diverge is usually some fixed ‘sufficiently’
large integer, such as 100 or 1000, lacking rigorous justification.

We present what seems to be the first program computing the Mandelbrot
Set reliably, namely avoiding both the aforementioned deficiencies. The first
one is conveniently taken care of using the iRRAM C++ library [3] with the
Exact Real Computation Paradigm [4]. Regarding the second deficiency, we
have implemented in C++ the abstract proof from [2] that the Mandelbrot Set
is Turing-computable—subject to the Hyperbolicity Conjecture.

Full reliability naturally comes at a penalty in efficiency: We empirically ex-
plore the asymptotic dependence of running time up to resolution 50× 50. The
source code is available at http://github.com/realcomputation/MANDELBROT.
Future work will explore possibilities for further optimization.
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Fig. 1. Logarithm of CPU time in dependence on the resolution
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