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Infinite Gray code has been introduced by Tsuiki [Ts02] as a redundancy-free representation
of the reals. In applications the signed digit representation is mostly used which has maximal
redundancy. Tsuiki presented a functional program converting signed digit code into infinite
Gray code. Moreover, he showed that infinite Gray code can effectively be converted into
signed digit code, but the program needs to have some non-deterministic features (see also
[TS05]). Berger and Tsuiki [BT21, BT?] reproved the result in a system of formal first-order
intuitionistic logic (IFP) extended by inductive and co-inductive definitions, as well as some
new logical connectives capturing possibly non-terminating and concurrent behaviour. The
programs extracted from the proofs are exactly the ones given by Tsuiki. The main aim of the
present paper is to do something similar for the non-empty compact subsets of the reals.

We restrict our consideration to the real interval II
Def
= [−1, 1]. Tsuiki’s infinite Gray code

for real numbers encodes a real number x ∈ II by the itinerary of x along the tent map

t : II → II, t(x)
Def
= 1− 2|x|.

More precisely, x is encoded by the stream a0 : a1 : a2 : . . ., where the head of the stream, a0,
equals 0, 1 or ? (= undefined) depending on whether x is less, greater, or equal to 0, and the
tail of the stream, a1 : a2 : . . ., encodes t(x). Since t(0) = 1 and t(1) = t(−1) = −1, at most
one ai can be undefined, and in that case ai+1 = 1 and ak = 0 for all k > i+ 1.

A signed digit representation of x ∈ II is any stream d0 : d1 : d2 : . . . of signed digits

di ∈ SD
Def
= {−1, 0, 1} such that x ∈ IId0

Def
= [d0/2−1/2, d0/2+1/2] and d1 : d2 : . . . is a signed

digit representation of 2x− d0.
Let S and G, respectively, be the coinductively largest subset of II so that

S(x) → (∃d ∈ SD)x ∈ IId ∧ S(2x− d)

and

G(x) → (x ̸= 0 → x ≤ 0 ∨ x ≥ 0) ∧G(t(x)).

By interpreting existential quantifiers and disjunctions constructively it follows that the signed
digit representations of x ∈ II are exactly the realisers of S(x). Similarly, the infinite Gray code
of x realises G(x), and vice versa. Berger and Tsuiki [BT21] show in IFP that S ⊆ G. For the
converse inclusion the logic needs to be extended by an additional logical connective ∥ , called
restriction, and a concurrency modality ⇊. The extension thus obtained is called Concurrent
Fixed Point Logic (CFP).

Let S2 be the coinductively largest subset of II such that

S2(x) → ⇊((∃d ∈ SD)x ∈ IId ∧ S2(2x− d)).

Then Berger and Tsuiki [BT?] show in CFP that G ⊆ S2.

∗This project has received funding from the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sk lodowska-Curie grant agreement No 731143.

1



In [BS16], the present authors studied computability on the hyperspace K(X) of the non-
empty compact subsets of an IFS (X,D) where X is a compact metric space. The hyperspace
is endowed with the Hausdorff metric. A coinductive characterisation of the hyperspace was
given and it was shown that the realisers obtained from the definition are the finitely branching
labelled trees with only infinite paths and elements of D as labels

For d ∈ SD, let avd(x)
Def
= (x− d)/2. Moreover, let SK be the coinductively largest subset

of K(II) such that

SK(K) → (∃E ∈ Pfin(SD))K ⊆
⋃

d∈E
IId ∧ (∀d ∈ E)(K ∩ IId ̸= ∅ ∧ SK(av−1

d [K])).

Then SK = K(II), classically.
A central requirement in [BS16] is that the IFS under investigation is well-covering, that

is X =
⋃

e∈D int(range(e)). In the case of (II, {avd | d ∈ SD }) this condition is obviously
satisfied. There is, however, no such IFS generating infinite Gray code. Thus, from [BS16] no
recipe is obtained for a coinductive characterisation of K(II) so that the realisers derived from
the characterisation give us a redundancy-free representation of K(II).

Let GC
Def
= {−1, 1} and GK be the largest subset of K(II) such that

GK(K) → G(minK) ∧G(maxK) ∧ (∀d ∈ GC) (K ∩ IId ̸= ∅ → GK(t[K ∩ IId])).

Proposition 1. SK ⊆ GK is derivable in IFP.

In order to derive the converse, again a concurrent version of the predicate SK is needed.
Note that in general, the concurrency modality ⇊ is not a monad. We now have to turn it into

a monad by considering its finite iterative closure
∗
⇊, that is,

∗
⇊(A)

µ
= ⇊(A ∨

∗
⇊(A)).

Let S∗
K be the coinductively largest subset of K(II) such that

S∗
K(K) →

∗
⇊((∃E ∈ Pfin(SD))K ⊆

⋃
d∈E

IId ∧ (∀d ∈ E)(K ∩ IId ̸= ∅ ∧ S∗
K(av−1

d [K]))).

Proposition 2. GK ⊆ S∗
K is derivable in CFP.

So, we have that SK ⊆ GK ⊆ S∗
K, which is quite unsatisfying as we want to compare the

computational strength of both representations. Let G∗ be the largest subset of II so that

G∗(x) → (x ̸= 0 →
∗
⇊(x ≤ 0 ∨ x ≥ 0)) ∧G∗(t(x))

and G∗
K be the largest subset of K(II) so that

G∗
K(K) → G∗(minK) ∧G∗(maxK) ∧ (∀d ∈ GC) (K ∩ IId ̸= ∅ → G∗

K(t[K ∩ IId])).

Theorem 1. S∗
K = G∗

K is derivable in CFP.
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