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PARTHA PRATIM GHOSH

Abstract. This paper develops further on internal preneighbourhood spaces [see 3,
5] in presenting the notion of internal Hausdorff spaces and the Hausdorff reflection.

The development depends on the notions of proper morphisms, separated morphisms

and separated objects, which are also developed in this paper. The Hausdorff reflec-
tion is described in three different ways: firstly as the largest subobject of the binary

product whose components are indistinguishable by any internal Hausdorff space val-

ued preneighbourhood morphism, secondly as the smallest effective equivalence relation
whose quotient is an internal Hausdorff space and thirdly in admissibly well powered

categories by transfinite induction on quotients by the diagonal.

1. Preliminaries. An internal preneighbourhood space in a context A = (A,E,M) is a

pair (X,µ), where X is an object of A and SubM(X)
op µ−→ FilX is an order reversing map

from the complete lattice SubM(X) of admissible subobjects of X to the complete lattice
FilX of filters in the lattice SubM(X), such that p ≥ m whenever p ∈ µ(m). If further, for
every p ∈ µ(m) there exists a q ∈ µ(m) with p ∈ µ(q) then µ is a weak neighbourhood system
and (X,µ) is an internal weak neighbourhood space. Further if µ preserve arbitrary meets
then it is a neighbourhood system and (X,µ) is an internal neighbourhood space. Given

the internal preneighbourhood spaces (X,µ) and (Y, φ), a morphism X
f−→ Y is a prenei-

ghbourhood morphism if p ∈ φ(m) implies f−1p ∈ µ(f−1m), denoted (X,µ)
f−→ (Y, φ). A

preneighbourhood morphism between internal neighbourhood spaces which further satis-
fies f−1(

∨
T ) =

∨
t∈T f

−1t for every T ⊆ SubM(Y ) is a neighbourhood morphism. The
internal preneighbourhood spaces along with preneighbourhood morphisms make the cate-
gory pNbd[A] of internal preneighbourhood spaces; wNbd[A]is the full subcategory of internal
weak neighbourhood spaces and Nbd[A] is the subcategory of internal neighbourhood spaces
and neighbourhood morphisms. Contexts abound and so does internal preneighbourhood
spaces, [see 3, for details].

The forgetful functor pNbd[A]
U−→ A is topological [see 3, Theorem 4.8(a)]. Hence every

limit (respectively, colimit) object is equipped with the smallest (respectively, largest) pre-
neighbourhood system which makes each component of the limiting cone (respectively,
colimiting cone) preneighbourhood morphisms. In particular, the terminal object 1 (re-
spectively, initial object ∅) is provided with the smallest preneighbourhood system ∇1
(respectively, largest preneighbourhood system ↑∅), where for any object X:

∇X(m) =

{
SubM(X), if m = σX

{1X}, if m 6= σX
, and ↑X (m) =

{
x ∈ SubM(X) : m ≤ x

}
, (1)

are the smallest and the largest preneighbourhood systems on any object X. The set
pnbd[X] of all preneighbourhood systems on X is a complete lattice [see 3, for details].

Given an internal preneighbourhood space (X,µ), a closure operator SubM(X)
clµ−−→ SubM(X)

is defined by:

clµx =
∨{

p ∈ SubM(X) 6=1 : u ∈ µ(p)⇒ u ∧ x 6= σX
}
, (2)

[see 4, §3 for details]. It is shown that clµ is grounded, extensional, transitive closure
operator, additive if every filter of admissible subobjects is contained in a prime filter [see 4,

Theorem 3.1]. An admissible subobject M // m // X is closed if clµm = m, and Cµ denotes
the (possibly large) set of closed admissible subobjects (also called closed embeddings) of
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(X,µ). Furthermore, the closed embeddings are stable under pullbacks along continuous
preneighbourhood morphisms [see 4, Definition 3.1 & Theorem 3.1(f)].

A preneighbourhood morphism (X,µ)
f−→ (Y, φ) is a closed morphism if m ∈ Cµ implies

∃
f
m ∈ Cφ [see 4, Definition 4.1]; evidently, for any m ∈ M, m is a closed morphism if

and only if m ∈ Cµ. Stably closed morphisms are proper morphisms [see 4, Definition
6.1] and an internal preneighbourhood space (X,µ) is compact if the unique morphism

(X,µ)
tX−−→ (1,∇1) is proper [see 4, Definition 6.2]. The following results are established

for proper morphisms and the full subcategory K[A] of compact spaces.

(A) [see 4, Theorem 6.1 (a)] A preneighbourhood morphism (X,µ)
f−→ (Y, φ) is a proper

morphism if and only if for any internal preneighbourhood space (Z,ψ) every core-

striction of X × Z f×1Z−−−−→ Y × Z is a closed morphism.
(B) [see 4, Theorem 6.1(b)] The (possibly large) set Apr of proper morphisms is a

pullback stable set, is closed under compositions and has the following properties:
(a) If every preneighbourhood morphism is continuous then every closed embed-

ding is a proper morphism.
(b) If the composite g◦f is a proper morphism and g is a monomorphism then f

is a proper morphism.
(c) If the composite g◦f is a proper morphism and f is stably continuous and

stably in E then g is a proper morphism.
(C) [see 4, Remark (K)] An internal preneighbourhood space (X,µ) is compact if and

only if for each internal preneighbourhood space (Z,ψ) the product projection

X × Z p2−→ Z is a closed morphism.

(D) [see 4, Theorem 6.2(a)] If (X,µ)
f−→ (Y, φ) is a proper morphism to a compact

preneighbourhood space (Y, φ) then (X,µ) is compact.

(E) [see 4, Theorem 6.2(a)] If (X,µ)
f−→ (Y, φ) is a preneighbourhood morphism with f

stably in E and (X,µ) is compact then (Y, φ) is compact.
(F) [see 4, Theorem 6.2(c)] If every preneighbourhood morphism is continuous then the

full subcategory K[A] of compact preneighbourhood spaces is finitely productive and
closed hereditary (i.e., if (X,µ) is a compact preneighbourhood space and m ∈ Cµ

with M the domain of m then
(
M, (µ

∣∣
M

)
)

is compact, where (µ
∣∣
M

) is the smallest

preneighbourhood system on M making m a preneighbourhood morphism).
(G) [see 5, Theorem 9.1] In an extensive context in which finite sum of closed morphisms

is closed, a finite sum of proper morphisms is proper and K[A] is closed under
finite sums if and only if for each internal preneighbourhood space (X,µ) both

the morphisms
(
∅, ↑∅

)
iX−−→ (X,µ) and (X +X,µ+ µ)

J1X ,1XK
−−−−−−−→ (X,µ) are both

proper.

2. The Kuratowski-Mrówka Theorem. Recall: a set A of closed embeddings of
an internal preneighbourhood space (X,µ) has finite meet property if 1X ∈ A and for
every natural number n ≥ 1, a1, a2, . . . , an ∈ A, a1 ∧ a2 ∧ · · · ∧ an 6= σX ; B ⊆ SubM(X)
has nonzero meet if

∧
B 6= σX . In this section it is shown in a lextensive context A =

(A,E,M) with finite product projections in E and admissible subobjects closed under finite
sums compactness of an internal preneighbourhood space is equivalent to every set of
closed embeddings with finite meet property has nonzero meet. The following lemma
encapusulates some computations required for the proof of this statement. The statement
of Lemma 2.1(b) is proved in [4], [see 4, Lemma 3.3(c) for details].
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Lemma 2.1. (a) Given the objects X and Y , in the diagram below

W // q //
��

p

��

U ′
a′Y //

��

aY
−1u
��

U
��

u

��
V ′ // aX

−1v //

a′X

��

A

aX

��

aY
// Y

V //
v

// X

where all the squares are pullback squares:
(v × u) ∧ a = a◦(aX

−1v ∧ aY −1u), (3)
whenever a = (aX , aY ) ∈ SubM(X × Y ).

(b) If (X,µ) and (Y, µ) are internal preneighbourhood spaces in the context A =

(A,E,M) with finite product projections in E, X × Y p2−→ Y be the product projection
to Y and a = (aX , aY ) ∈ Cµ×φ then for any y ∈ SubM(Y ):

a ∧ p2−1y = σX×Y ⇔ y ∧ ∃p2a = σY ⇔ y � clφ∃p2a. (4)

Theorem 2.2. In a reflecting zero context A = (A,E,M) with finite product projections in
E if in an internal preneighbourhood space every set of closed embeddings with finite meet
property has a nonzero meet then the preneighbourhood space is compact.
Further, if the context is lextensive and admissible subobjects are closed under finite sums
then the converse holds too.

Proof. For the first statement, let (X,µ) be an internal preneighbourhood space such that
every set of admissible closed subobjects of X with finite meet property has a nonzero meet.
Choose and fix an a ∈ Cµ×φ and σY 6= y ≤ clφ∃p2a. Consequently using Lemma 2.1(b)

the set A =
{

clµ∃p1 (a ∧ p2−1u) : u ∈ φ(y)
}

is a set of closed subobjects of X with finite

meet property. By assumption x =
∧
A 6= σX . Since x =

∧
u∈φ(y) clµ∃p1 (a ∧ p2−1u) ≥

clµ
(∧

u∈φ(y) ∃p1 (a ∧ p2−1u)
)
, and the product projections are continuous:

a ∧ p1−1x ≥ a ∧ p1−1clµ
(∧

u∈φ(y) ∃p1 (a ∧ p2−1u)
)

≥ a ∧ clµ×φp1
−1(∧

u∈φ(y) ∃p1 (a ∧ p2−1u)
)

(continuity of p1)

= a ∧ clµ×φ
∧
u∈φ(y)

(
p1
−1∃p1 (a ∧ p2−1u)

)
≥ a ∧ clµ×φ(a ∧ p2−1y)

≥ a ∧ p2−1y 6= σX×Y (equation (4)).

Hence, for each v ∈ µ(x) and u ∈ φ(y):
(v × u) ∧ a = a◦(aX

−1v ∧ aY −1u) (equation (3))

= a◦
(
a−1(a ∧ p1−1v) ∧ a−1(a ∧ p2−1u)

)
(equation (3))

≥ a◦
(
a−1(a ∧ p1−1x) ∧ a−1(a ∧ p2−1y)

)
≥ a◦a−1(a ∧ p2−1y) 6= σX×Y .

Hence x×y ≤ clµ×φa = a implying y ≤ ∃
p2
a, using p2 ∈ E. Thus: y ≤ clφ∃p2a⇒ y ≤ ∃

p2
a

implies ∃
p2
a is closed, proving p2 is a closed morphism.

Towards a proof of the second statement, first some facts regarding an extensive context
needs to be recalled [see 5, §2]. In a lextensive context, the initial object ∅ is strict [see 1,

§2]. Moreover in the coproduct 1 // ι1 // 1 + 1 1oo
ι2oo the coproduct injections are split

monomorphisms and hence are admissible monomorphisms. For any two objects X and

Y , if X
ιX // X + Y oo

ιY
Y be their coproduct, then since in the diagram:

X
ιX //

tX

��

X + Y oo
ιY

tX+tY

��

Y

tY

��
1 // ι1 // 1 + 1 1oo

ι2oo

both the squares are pullback squares from extensivity, the coproduct injections are al-
ways admissible monomorphisms. Therefore every lextensive context is a quasi admissible
context and hence every morphism reflects zero, or equivalently every preneighbourhood
morphism is continuous [see 4, §9]. Hence, for each object Y , ∅Y ≈ ∅ so that iY is
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the smallest admissible subobject of Y . Further, given any u ∈ SubM(X + Y ) from the
diagram:

UX
��

uX

��

//
ιUX // U

��

u

��

UYoo
ιUYoo

��

uY

��
X //

ιX
// X + Y Yoo

ιY
oo

where uX and uY are pullbacks of u along the coproduct injections ιX and ιY respectively,
extensivity ensures the top row is a coproduct too and hence u = uX +uY . Thus, u ≤ ιX if
and only if there exists a unique p such that u = ιX◦p and hence uX = ιX

−1u = p implying
UX ≈ U and hence from the coproduct in the top row, uY = ∅. Hence, if sum of admissible
subobjects is an admissible subobject then for each uY ∈ SubM(Y ), uX ∈ SubM(X), if
uy 6= iY then uX + uY � ιX .
Now assume (X,µ) is a compact preneighbourhood space in a lextensive context where
sum of admissible subobjects is an admissible subobject. Let A ⊆ Cµ be a set of closed

subobjects of X with finite meet property, Â be the set of all finite meets of elements of

A. Evidently, A ⊆ Â ⊆ Cµ. Choose and fix any object Z of A and let their coproduct be

X // ιX // X + Z Zoo
ιZoo . Define for each y ∈ SubM(X + Z):

φ(y) =

{
↑(ιX◦x), if (∃x ∈ SubM(X))(y = ιX◦x)

(↑y) ∩
−→
Â , otherwise

, (5)

where
−→
Â=

{
u ∈ SubM(X + Z) : (∃k ∈ Â)

(
ιX
−1u ≥ k

)
} ∈ Fil(X + Z) is the smallest filter

containing each ιX◦k, k ∈ A and ↑ y =
{
z ∈ SubM(X + Z) : z ≥ y

}
. Evidently (5) defines

an internal preneighbourhood system SubM(X + Z)
op φ−→ Fil(X + Z) on X +Z. Now, for

any y ∈ SubM(X + Z), either y ≤ ιX or else u ∈ φ(y) implies u ≥ y and there exists a k ∈ Â
such that k ≤ ιX−1u⇔ ιX◦k ≤ u, implying u ∧ ιX ≥ ιX ∧ ιX◦k = ιX◦k 6= σX+Z . Thus in
either case y ∈ clφιX . Hence clφιX = 1X+Z . Let a = (aX , aX+Z) = clµ×φ(1X , ιX) ∈ Cµ×φ;

since the projection X × (X + Z)
p2−→ X + Z is a closed morphism, ∃p2a ∈ Cφ. On the

other hand since p2 is a closed morphism and is continuous, ∃
p2
a = ∃

p2
clµ×φ(1X , ιX) =

clφ∃p2 (1X , ιX) = clφιX = 1X+Z . Hence aX+Z ∈ E. Since (1X , ιX) ≤ a, there exists a
morphism p such that aX◦p = 1X and aY ◦p = ιX . Hence aX is a split epimorphism, i.e.,
aX ∈ E, as a consequence of which ∃p1a = 1X . Now choose and fix a y ∈ SubM(X + Z) such

that ιX
−1y 6= σX and y � ιX — the conditions on the context ensure the existence of such

an admissible subobject. For such a y, firstly: v ∈ µ(ιX
−1y), u ∈ φ(y) implies from (3),

(v×u)∧(1X , ιX) ≥
(
(ιX
−1y)×y

)
∧(1X , ιX) = (1X , ιX)◦(ιX

−1y) =
(
ιX
−1y, ιX◦(ιX

−1y)
)
6=

σX×(X+Z), and hence (ιX
−1y) × y ≤ a. Since y � ιX , for each k ∈ A, v ∈ µ(ιX

−1y),

(v× (ιX◦k))∧ (1X , ιX) = (1X , ιX)◦(v ∧ k) 6= σX×(X+Z) implying v∧k 6= σX , i.e., ιX
−1y ≤

clµk = k. Hence ιX
−1y ≤

∧
A, i.e., A has a nonzero meet. A concrete choice for such a y

is y = 1X + u for any u ∈ SubM(Z), u 6= σZ , completing the proof. �

Remark 2.3. In particular, in the proof of Theorem 2.7, one could consider Z = 1. The
construction of the preneighbourhood system φ in (5) compares with the ones in topology
or locales [see 2, Theorem 3.4], [see 6, Proposition VII.3.5].

Remark 2.4. Analysing the proof of Theorem 2.2, compactness of an internal preneigh-
bourhood space implies every set of closed embeddings with finite meet property has a
nonzero meet holds in any lextensive context in which the sum of admissible subobjects is
an admissible subobject. The restriction on finite product projections is not required.

2.1. In presence of complements. Recall: a pseudocomplement x∗ of an element x in a
complete lattice L is the largest element disjoint from x, i.e., x∗ =

∨{
y ∈ L : x∧y = 0

}
and

x∧x∗ = 0. A complement of x is an element x′ such that x∧x′ = 0 and x∨x′ = 1. In general,
a complement need not be unique and x′ ≤ x∗. As for example, in the complete lattice of
all subspaces of the real vector space R2, any two non-collinear lines passing through the
origin are complements of each other, although the psudocomplement of any such line is
R2. However, in a distributive lattice, a complement is the pseudocomplement, and hence
unique. Furthermore, it is easy to see: if each element of L is pseudocomplemented then
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i∈I xi

)∗
=
∧
i∈I x

∗
i . A lattice in which every element has a pseudocomplement is called

a pseudocomplemented lattice.

Lemma 2.5. For any internal preneighbourhood space (X,µ), if p ∈ Cµ (respectively,
p ∈ Oµ) has a pseudocomplement p∗ in the lattice SubM(X), then p∗ ∈ Oµ (respectively,
p∗ ∈ Cµ).

Proof. Assume p ∈ SubM(X) has a pseudocomplement p∗ in SubM(X). Then
m � clµp⇔ (∃u ∈ µ(m))(u ∧ p = σX)

⇔ (∃u ∈ µ(m))(u ≤ p∗)
⇔ p∗ ∈ µ(m).

Hence, if p ∈ Cµ then m � p⇔ p∗ ∈ µ(m). If p∗ 6= σX then p∗ � p, and hence p∗ ∈ µ(p∗),
i.e., p∗ ∈ Oµ. On the other hand, if p ∈ Oµ, then m � clµp

∗ ⇔ p∗∗ ∈ µ(m). Thus, for any
σX 6= m ≤ p, p∗∗ ∈ µ(m), and such an m � clµp

∗. Consequently, p ∧ clµp
∗ = σX . Hence

clµp
∗ ≤ p∗, i.e., p∗ ∈ Cµ. �

Proposition 2.6. Let (X,µ) be an internal preneighbourhood space such that the lattice
SubM(X) is a distributive pseudocomplemented complete lattice such that each p ∈ Cµ
(respectively, p ∈ Oµ) is complemented and for any A ⊆ Cµ:(∧

A
)∗

=
∨{

a∗ : a ∈ A
}
. (6)

Then, for every B ⊆ Oµ with
∨
B = 1X there exists a finite subset C ⊆ B with

∨
C = 1X

if and only if every set of closed embeddings with finite meet property has a nonzero meet.

Proof. Towards the proof of if part, let B ⊆ Oµ with
∨
B = 1X . Without any loss of

generality assume σX 6∈ B. If B has no finite subcover then since for u, v ∈ B, u∗ ∧ v∗ ≥
(u∨ v)∗, using Lemma 2.5, A =

{
b∗ : b ∈ B

}
is a set of closed embeddings with finite meet

property. Hence σX 6=
∧{

b∗ : b ∈ B
}

= (
∨
B)∗ = 1X

∗ = σX , a contradiction. Hence B
must have a finite subcover. For the only if part, if A be a set of closed embeddings then
B =

{
a∗ : a ∈ A

}
⊆ Oµ using Lemma 2.5. If

∧
A = σX then from equation (6),

∨
B = 1X

and hence there exists a finite subcover, implying by (6) the existence of a finite subset of
A with a zero meet. Hence, if A has finite meet property then it has nonzero meet. �

As an immediate consequence of Proposition 2.6 and Theorem 2.7:

Theorem 2.7 (Kuratowski-Mrówka Theorem). In any lextensive context with finite prod-
uct projections in E and admissible subobjects closed under finite sums, for any internal
preneighbourhood space (X,µ) such that each p ∈ Cµ (respectively, p ∈ Oµ) is comple-
mented and for any A ⊆ Cµ the condition in (6) is true the following three statements are
equivalent:

(a) (X,µ) is compact.
(b) Every set of closed embeddings with finite meet property has a nonzero meet.
(c) Every Oµ-open cover of 1X has a finite subcover.

3. On Vermeulen’s Theorem on proper maps. If (X,µ)
f−→ (Y, φ) is a preneigh-

bourhood morphism, then given the (E,M)-factorisation X
fE

// // If //
fM

// Y of f in the

context A there is the factorisation (X,µ)
fE

// //
(
If , (φ

∣∣
If

)
)
// f

M

// (Y, φ) of the preneigh-

bourhood morphism f in pNbd[A]. The topologicity of the forgetful functor pNbd[A]
U−→ A

[see 3, Theorem 4.8(a)] ensures fE is an epimorphism and fM a monomorphism in pNbd[A].
The category (pNbd[A] ↓ (Y, φ)) has objects (X,µ, f), where X is an object of A, µ k
←−
f φ(∃

f
) is a preneighbourhood system on X, (X,µ)

f−→ (Y, φ) is a preneighbourhood mor-

phism, and its morphisms are (X,µ, f)
h−→ (Z,ψ, g), where (X,µ)

h−→ (Z,ψ) is a preneigh-
bourhood morphism such that f = g◦h. Thus, the pair:

E =
{

(X,µ, f)
e−→ (Z,ψ, g) : e ∈ E, µ ⊇ ←−e ψ(∃

e
)
}
,

M =
{

(X,µ, f)
m−→ (Z,ψ, g) : m ∈ M, µ =←−mψ(∃

m
) = (ψ

∣∣
X

)
} (7)

provides a proper (E ,M)-factorisation system on (pNbd[A] ↓ (Y, φ)), SubM((X,µ, f)) is
a complete lattice and (A ↓ (Y, φ)) = ((pNbd[A] ↓ (Y, φ)), E ,M) is a context. An inter-

nal preneighbourhood system on the object (X,µ, f) is SubM((X,µ, f))
op µ′

−→ Fil(X,µ, f)
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an order preserving map such that p ∈ µ′(m) ⇒ p ≥ m. Essentially this is given by

a preneighbourhood system µ′ on X such that µ′ ∨
←−
f φ(∃

f
) 6= 1. An internal prenei-

ghbourhood space of (A ↓ (Y, φ)) is denoted by (X,µ, f, µ′), and a preneighbourhood

morphism (X,µ, f, µ′)
h−→ (Z,ψ, g, ψ′) is a morphism X

h−→ Z of A such that f = g◦h

and (X,µ)
h−→ (Z,ψ), (X,µ′)

h−→ (Z,ψ′) are both preneighbourhood morphisms. Hence the
complete lattice pnbd[(X,µ, f)] of all internal preneighbourhood systems on (X,µ, f) has
←−
f φ(∃

f
) as its smallest element, i.e., ∇(X,µ,f) =

←−
f φ(∃

f
).

Lemma 3.1. A preneighbourhood morphism (X,µ)
f−→ (Y, φ) is proper if and only if the

internal preneighbourhood space (X,µ, f, µ) in the context (A ↓ (Y, φ)) is compact.

Proof. The preneighbourhood morphism (X,µ)
f−→ (Y, φ) is proper if and only if for every

preneighbourhood morphism (Z,ψ)
g−→ (Y, φ) the pullback (X ×Y Z, µ×φ ψ)

fg−→ (Z,ψ) of
f along g is a closed morphism. Since in (pNbd[A] ↓ (Y, φ)), (X,µ, f)× (Z,ψ, g) = (X ×Y
Z, µ×φψ, g◦fg) with projections (X ×Y Z, µ×φ ψ)

fg−→ (Z,ψ), (X ×Y Z, µ×φ ψ)
gf−→ (X,µ)

the pullbacks of f along g, g along f respectively, the first statement is equivalent to the pro-

jection (X ×Y Z, µ×φ ψ, g◦fg, µ×φ ψ)
fg−→ (Z,ψ, g, ψ) is closed in the context (A ↓ (Y, φ)),

and hence equivalent to compactness of (X,µ, f, µ) in (A ↓ (Y, φ)). �

Theorem 3.2. In a lextensive context with finite product projections in E a preneigh-

bourhood morphism (X,µ)
f−→ (Y, φ) with f stably in E is proper if and only if the order

preserving map Cµ
∃

f−−→ Cφ preserves filtered meets.

Proof. Firstly, for an internal preneighbourhood space (X,µ) with (X,µ)
tX−−→ (1,∇1)

closed, the order preserving map Cµ
∃tX−−−→ C∇1

preserve filtered meets if and only if every

filtered set of closed embeddings of (X,µ) has a zero meet if and only if σX is a member
of the filtered set.

Let (X,µ)
f−→ (Y, φ) be a preneighbourhood morphism with f stably in E. Using Lemma

3.1, the preneighbourhood morphism f is proper if and only if (X,µ, f, µ) is compact in the
context (A ↓ (Y, φ)). Since every lextensive category is locally lextensive [see 1, Proposition
4.8], from Theorem 2.2, (X,µ, f, µ) is compact in (A ↓ (Y, φ)) if and only if every set of
closed embeddings of (X,µ, f, µ) with finite intersection property has a non-zero meet.
Since closed embeddings of (X,µ, f, µ) are none else than elements of Cµ, ∇(Y,φ,1Y ) = φ

and t(X,µ,f) = f , it follows that (X,µ, f, µ) is compact in (A ↓ (Y, φ)) if and only if ∃
f

preserves filtered meet. This completes the proof. �
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Lemma 3.3. Assume (X,µ)
f−→ (Y, φ) is a closed preneighbourhood morphism in a reflect-

ing zero context, a ∈ SubM(Y ) and d ∈ Cµ.

(a) If ∃
f
(d ∧ f−1a) = a∧∃

f
d then the corestriction fa of f along a is a closed prenei-

ghbourhood morphism.
(b) If the corestriction fa of f along a is a closed preneighbourhood morphism and

d ∧ f−1a 6= σX then ∃
f
(d ∧ f−1a) = a ∧ ∃

f
d.

Proof. Consider the diagram

D ∧ f−1A ! t //
��

d−1f−1a

��

))

(f−1a)
−1
d
))

A ∧ ∃
f
D
((

a−1∃
f
d

((

��

(∃
f
d)
−1
a

��

f−1A
��

f−1a

��

fa // A
��

a

��

D
))

d
))

(f
∣∣
d
) // // ∃

f
D
((

∃
f
d

((
X

f
// Y

, (8)

in which the vertical front and the extreme squares are pullbacks and the base square

is the (E,M)-factorisation of f◦d. Since a◦fa◦((f
−1a)

−1
d) = f◦(f−1a)◦((f−1a)

−1
d) =

f◦d◦(d−1f−1a) = (∃
f
d)◦(f

∣∣
d
)◦(d−1f−1a), there exists the unique morphism t such that all

the squares commute; in particular, (f
∣∣
d
)
−1

((∃
f
d)
−1
a) = d−1f−1a, ((f

∣∣
d
))

(∃
f
d)
−1
a

= t.

If fa◦((f
−1a)

−1
d) = (∃

fa
((f−1a)

−1
d))◦(fa

∣∣
(f−1a)

−1
d
) be its (E,M)-factorisation, then there ex-

ists a unique morphism ∃
fa
D ∧ f−1A u−→ A ∧ ∃

f
D such that ∃

fa
((f−1a)

−1
d) = (a−1∃

f
d)◦u

and t = u◦(fa
∣∣

(f−1a)
−1
d
). Hence a◦(∃

fa
((f−1a)

−1
d))◦(fa

∣∣
(f−1a)

−1
d
) = a◦(a−1∃

f
d)◦t = (a ∧ ∃

f
d)◦t =

f◦(d ∧ f−1a) = (∃
f
(d ∧ f−1a))◦(f

∣∣
d∧f−1a

), the last one being the (E,M)-factorisation of

∃
f
(d ∧ f−1a). Consequently from the uniqueness of (E,M)-factorisation, ∃

f
(d ∧ f−1a) =

a◦(∃
fa

((f−1a)
−1
d)) and (fa

∣∣
(f−1a)

−1
d
) = (f

∣∣
d∧f−1a

). Thus: ∃
f
(d ∧ f−1a) = a ∧ ∃

f
d if and only

if u is an isomorphism, which in turn is equivalent to t ∈ E.
Towards the proof of (a), consider p ∈ C

(µ
∣∣
d∧f−1a

)
. Hence, taking d = clµ(f−1a)◦p ∈ Cµ,

p = cl
(µ
∣∣
d∧f−1a

)
p = (f−1a)

−1
clµ(f−1a)◦p = (f−1a)

−1
d. Then a◦(∃

fa
p) = ∃

f
((f−1a)◦p) =

∃
f
(d ∧ f−1a) = a ∧ ∃

f
d = a ∧ ∃

f
clµ(f−1a)◦p = a ∧ clφ∃f ((f−1a)◦p) = a ∧ clφ(a◦(∃

fa
p)) =

a◦cl
(φ
∣∣
a
)
∃

fa
p, implying ∃

fa
p = cl

(φ
∣∣
a
)
∃

fa
p, i.e., fa is closed.

Towards the proof of (b), if 1Y 6= x ∈ φ(a∧∃
f
d) then since f−1x∧ d∧ f−1a ≥ d∧ f−1a 6=

σX and f reflects zero, x ∧ ∃
f
(d ∧ f−1a) 6= σY . Hence a ∧ ∃

f
d ≤ clφ∃f (d ∧ f−1a) =

∃
f
clµ(d ∧ f−1a). Since d ∈ Cµ and for each u ∈ µ(d), u ∧ d ∧ f−1a ≥ d ∧ f−1a 6= σX ,

d ≤ clµ(d ∧ f−1a); consequently, d = clµ(d ∧ f−1a). Since fa is closed and (f−1a)
−1
d ∈

(µ
∣∣
f−1a

), ∃
fa

(f−1a)
−1
d ∈ (φ

∣∣
a
). Hence

∃
f
(d ∧ f−1a) = a◦(∃

fa
((f−1a)

−1
d))

= a ∧ clφ(a◦(∃
fa

((f−1a)
−1
d)))

= a ∧ clφ∃f (d ∧ f−1a)

= a ∧ clφ∃f (d ∧ f−1a)

= a ∧ ∃
f
clµ(d ∧ f−1a)

= a ∧ ∃
f
d.
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