
Categorical Semantics of Digital Circuits
Dan R. Ghica

University of Birmingham, UK
Achim Jung

University of Birmingham, UK

Abstract—This paper proposes a categorical theory
of digital circuits based on monoidal categories and
graph rewriting. The main goal of this paper is con-
ceptual: to fill a foundational gap in reasoning about
digital circuits, which is currently almost exclusively
semantic (simulations). The level of abstraction we
target is circuits with discrete signal levels, discrete
time, and explicit delays, which is appropriate for
modelling a range of components such as boolean
gates or transistors working in saturation mode.

We start with an algebraic signature consisting of
the basic electronic components of a given class
of circuits and extend it gradually (and in a free
way) with further algebraic structure (representing
circuit combinations, delays, and feedback), while
quotienting it with a notion of equivalence corre-
sponding to input-output observability. Using well-
known results about the correspondence between free
monoidal categories and graph-like structures we can
develop, in a principled way, a graph rewriting system
which is shown to be useful in reasoning about such
circuits. We illustrate the power of our system by
reasoning equationally about a challenging class of
circuits: combinational circuits with feedback.

I. INTRODUCTION

A. Syntactic vs. semantic modelling

Theories of programming languages can be either
syntactic, formulated equationally, or semantic, for-
mulated via translation into a mathematical domain.
The former is commonly known as operational
semantics [1] and the latter as denotational se-
mantics [2]. Even though denotational models are
attractive conceptually, the difficulties of producing
precise (“fully abstract”) models of realistic pro-
gramming languages led to a prevalence of opera-
tional reasoning methods in practice, for example,
when proving compilers correct [3].

In contrast, formal models of digital circuits are1

virtually exclusively of a denotational nature, where
circuits are translated into an executable model
(e.g. automata [4]) so that their behaviour can
be simulated. As far as denotational models go,
such translations tend to obscure the structure of
the circuit and are more akin to compilation than

1As far as we are aware.

genuine modelling. This is not to say such models
are not effective in reasoning about circuits, in fact
they are the foundation of a thriving industry which
places a premium on correctness. However, the
contrast between hardware and software in terms
of reasoning techniques is striking.

Our primary motivation is to address a surprising
methodological and conceptual gap, the paucity of
syntactic models for digital circuits. Our method-
ology is heavily influenced by developments, in
the last decade, in diagrammatic reasoning for a
variety of computational models such as quantum
computing [5], signal flow [6] or asynchronous
circuits [7]. The basic insight of this approach
is that the same algebraic structures (“monoidal
categories”) which are very helpful in describing
the structure of systems in general [8] also occur in
certain diagrams [9]. This approach formalises the
intuitive connection between systems and diagrams,
also reflected in the rich diversity of graphical en-
vironments for circuits and systems (e.g. structural
HDLs, Simulink).

B. Methodology and contribution

In terms of level of abstraction we will simply
consider digital circuits as broadly construed, i.e.
processing a finite number of discrete input and
output levels, with explicit and discrete delays
down to a smallest observable delay (δ). This level
of abstraction applies to Boolean circuits but also to
transistor-level modelling, if the transistor operates
in non-linear mode.

We will start from a basic algebraic signature meant
to represent abstractly the basic components (e.g.
transistors) used in the construction of a circuit.
Then we will follow a sequence of free categorical
constructions and quotientings which will systemat-
ically lead to models of digital circuits with delays
and feedback. The free constructions represent step-
by-step expansions of the algebraic language with
new features, whereas the quotientings represent
cutting down the model by imposing a notion of
observability. The free constructions have well-
known diagrammatic equivalents which will facil-

Fig. 1. Combinational circuit with (false) feedback ([10, Fig. 1])

itate reasoning and calculations via diagrammatic
graph rewriting.

Our most important guiding principle is the use of
“small” axioms, i.e. axioms describing the local in-
teractions of components, rather than “coherences”
describing the interplay of complex sub-circuits.
We believe this approach to be more physically
realistic and more promising for a potential efficient
implementation. Coherences, wherever needed, will
need to be derived as theorems. The main technical
result of the paper is that diagrams of circuits with
feedback (trace, categorically) have products and
therefore feedback can be treated as iteration.

This work was inspired by Berry et. al.’s semantic
treatment of cyclic combinational circuits [10], a
class of circuits which straddles the combinational-
sequential boundary. We aim to provide an equa-
tional counterpart to their approach.

C. A motivating class of examples

A particularly intriguing class of circuits are com-
binational circuits with feedback, as identified by
Malik [11]. The presence of feedback suggests
that these circuits are not combinational yet their
behaviour does not lead to any latching effects.
Moreover, the feedback loop in purely combina-
tional circuits is banned by the usual synchronous
design methodology and cannot be handled by
conventional tools. A semantic characterisation of
such circuits is given in [10]. Our aim is provide
an equational method to complement the designer’s
toolkit of reasoning methodologies.

A simple such circuit is presented in Fig. 1, where
a (false) feedback loop is used to create shared
data-path resources. The circuit computes z =
if c then F (G(x)) else G(F (x)), which could
also be implemented in a cycle-free fashion by
duplicating the sub-circuits F and G. Being able to
handle such circuits with zero-delay cycles directly

has many benefits, as explained in loc. cit., but we
target them not particularly for their benefit but for
the technical challenge they pose to conventional
modelling frameworks.

II. COMBINATIONAL DIGITAL CIRCUITS

Our formal language of circuits is based on cat-
egory theory, and in general requires two sorts of
variables: object variables for labelling (collections
of) wires and morphism variables for labelling
boxes (e.g., gates and circuits). Since we use only
one kind of wire we can do away with wire labels
and, instead, use just natural numbers to indicate
the width of the wire collection (bus). We obtain
what is usually called a category of PROducts and
Permutations, or PROP for short [12].

Definition 1. Let Circ be a categorical signature
with objects the natural numbers N and a (typically
finite) set of morphisms which may be grouped into
the following three classes:

• levels v : 0 → 1;
• gates k : m → 1; and
• the special morphisms join j : 2 → 1, fork
f : 1 → 2, and stub w : 1 → 0.

We further assume that there are only finitely many
levels and that they form a lattice (V,⊑). Instead
of “level” we will also use “value”.

All circuit signatures include combinators for join-
ing two outputs (join) and duplicating an input
(fork), as well as the ability to discard an output
(stub). What varies from signature to signature is
the number of signal levels we consider, as well as
the sets of gates we want to model. Since they form
a lattice, the levels must always include a smallest
element (⊥), corresponding to a disconnected input,
and a top element (⊤) corresponding to an illegal
output (“short circuit”). In the simplest and most
common instance, the set of level has two other el-
ements, high and low, but it can go beyond that. For
example, in the case of metal-oxide-semiconductor
field-effect transistors (MOSFET) it makes sense,
in certain designs, to model the diode properties
of the transistor by taking into account four levels
(strong and weak high and low voltage).

Circuits, in the sense of this paper, are the mor-
phisms of a free categorical construction over their
signature. Beginning with combinational circuits,
the free construction is as follows:

Definition 2. Let CCirc be the free symmetric

monoidal category over Circ, subject to the fol-
lowing additional equations:

Input-output characterisation of gates (extensional
completeness): For any gate k : m → 1, for any
values vi, 1 ≤ i ≤ m, there exists a unique value
v′ such that k ◦

⊗
i=1,m vi = v′.

Monotonicity: For any gate k : m → 1, for
any values vi, v

′
i, 1 ≤ i ≤ m, if vi ⊒ v′i then

k ◦
⊗

i=1,m vi ⊒ k ◦
⊗

i=1,m v′i.

We also require the following equations:

Fork: f ◦ v = v ⊗ v.
Join: j ◦ (v ⊗ v′) = v ⊔ v′.
Stub: w ◦ v = 0.

The last three encapsulate the understanding that a
fork duplicates a value, a join coalesces two values,
and a stub discards anything it receives (0 being the
identity on the object 0, representing an absence of
a wire).

It is known that, in a formal sense, the equality of
morphisms in a free symmetric monoidal category
(SMC) corresponds to graph isomorphisms in the
diagrammatic language [13], where diagrams are
created by the operations of sequential composition
(◦), parallel composition (⊗) and symmetry (xm,n,
the swapping of two buses with m and n wires,
respectively), governed by coherence equations. We
will usually write composition in diagrammatical
order f · g = g ◦ f . We write the identity (bus of
width m) idm : m → m as simply m. For simplic-
ity we also write

⊗
i=1,m f = fm,

⊗
i=1,m fi = f

and
⊗

i=1,m vi = v.

Without enumerating them, the equations of SMCs
reflect either the fact that the same diagram can be
described in two ways or the fact that two diagrams
are graph isomorphic. An example of the first case
is the functoriality of ⊗, which gives two equal
ways of describing the diagram below.

g

f

g'

f'

(f · f ′)⊗ (g · g′) = (f ⊗ g) · (f ′ ⊗ g′).

An example of the second kind is the fact that bus-
swapping is involutive:

=

xm,m · xm,m = 2m

The extensional completeness principle states that
in a circuit the behaviour of a gate must be deter-
mined by its input values only. This means that we
will deliberately ignore global interactions between
components such as electromagnetic interference or
quantum tunnelling. Monotonicity says that gates
must behave monotonically with respect to the
ordering of the levels.2

We shall see later the importance of these equa-
tions. Finally, the last equation represents our
commitment to an input-output based notion of
equivalence: no matter what value we plug into an
unobserved output (stub) we get equivalent circuits,
so that all circuits with no inputs and no outputs
end up being equal.

By simple inductive arguments on the structure of
morphisms we can establish that all circuits are
extensionally complete, i.e. for any circuit (not just
gates) f : m → n, for any values vi, 1 ≤ i ≤ m,
there exists unique values v′j , 1 ≤ j ≤ n such
that f ◦

⊗
i=1,m vi =

⊗
i=1,n v

′
i. We can further

say that two circuits with the same input-output
behaviour are extensionally equivalent, and we can
easily prove, also by structural induction, that this
is a congruence, i.e. it is an equivalence preserved
by sequential and parallel composition. Therefore it
makes sense to quotient our category CCirc and
create a new category ECCirc in which equivalent
circuits are made equal.

ECCirc has interesting additional categorical
properties which aid reasoning, but two are of
particular importance. The first one is that ECCirc
is Cartesian, i.e. it has a notion of product. The
diagonal circuit is defined by ∆0 = 0 and ∆n+1 =
(∆n⊗f)·(n⊗x(1,n)⊗1) and it represents the forking
of a bus of width n. The diagonal has two important
coherences represented by the following diagram
equalities valid for any diagram f : n → m.

f

f
f= f =

⟨f, f⟩ = ∆n · (f ⊗ f) = f ·∆m f ·wm = wm.

2Regarding the earlier example of the four values
{⊥, low,high,⊤}, note that we would not order low below
high; both are valid levels on an equal footing.

These coherences are immediate by structural in-
duction over f using extensionality. Also using
extensionality we can easily show that (f, j,w,⊥)
forms what is known as a Frobenius monoid, i.e. an
algebraic structure in which (j,⊥) is a commutative
monoid, (f,w) is a co-commutative co-monoid,
interacting subject to the following law:

=

j · f = f2 · (1⊗ x1,1 ⊗ 1) · j2.

In a special context, which will prove to be useful,
join and fork behave as if they are inverses.

Proposition 1. For any f : m → n+ 1.

f

f
=

f

f

∆m · f2 · (n⊗ (j · f)⊗ n) = ∆m · f2 · (n⊗ 1)2.

Of course, composed the other way round, fork and
join are always inverses of each other:

=
f · j = 1.

Finally, it will be useful to use a co-diagonal which
is the joining of two buses of width n, defined as
∇0 = 0 and ∇n+1 = (n⊗x1,n⊗1) ·(∇n⊗ j). Note
that ∇1 = j.

III. CIRCUITS WITH DISCRETE DELAYS

The next step is the free introduction of delays
which we represent diagrammatically as an elon-
gated oval.

Definition 3. Let CCircδ be the category obtained
by freely extending ECCirc with a Z-indexed
family of morphisms δt : 1 → 1 such that δ0 = 1,
δt+t′ = δt · δt′ and:

Timelessness: For any gate or structural morphism
k : m → n and delay t ∈ Z, δt · k = k · δt:

k k=t t

Streaming: For any levels v = v ⊗ v′ and gate k,
(δ2 ⊗ v) · ∇2 · k = ((δ2 · k)⊗ (v · k)) · ∇1.

k
v

v'

k

k

=
v

v'

Disconnect: ⊥ · δ = ⊥.
Unobservable delay: δ · w = w.

Timelessness means that for any idealised, instanta-
neous gate or structural morphism (i.e. wire, fork,
join, swap, etc.) delaying the inputs by some value t
can be compensated by “anti-delaying” the output,
by −t [14]. An immediate consequence is that
delays can be propagated through combinational
circuits, akin to retiming [15]. For simplicity we
write δ1 = δ. Note that any circuit with negative
delays, which are not realistic, can be retimed into
a realistic circuit by delaying the output:

Theorem 2. For any circuit f : m → n, there exists
t ∈ Z such that f · δnt has no negative delays.

The proof is immediate by induction on the struc-
ture of f and using retiming. We will call the
sub-category of circuits without negative delays
CCirc+

Streaming is used to handle waveforms equation-
ally. A waveform of length n is a sequence of n
levels vn :: vn−1 :: · · · :: v1 created using delays
and joins, so they always have the form s1 = v1,
sn+1 = (sn · δ ⊗ vn) · j. The streaming axiom
states that to process a waveform we can create two
separate instances of a gate, to process the “head”
and the “tail” separately, then join the outputs. As
far as we know this is a new axiom.

The final two axioms describe the (trivial) interac-
tion between delays and dangling inputs or outputs.

Circuits with delays can also be described exten-
sionally in terms of their input-output behaviour.
Because of the presence of delays, now we must
use finite waveforms, described above and ranged
over by s. As before, we write

⊗
i=i,m s = sm and⊗

i=i,m si = s.

Theorem 3 (Extensionality of waveforms). For any
morphism f in CCirc+ we have that for any input
waveform s there exists a unique output waveform
s′ such that s · f = s′.

The proof is by induction on the structure of f and

uses routine calculations and the following lemma.

Lemma 4. For any waveform s of size n and for
any m ≥ n there exists a waveform s′ of size m
such that s = s′.

The larger waveform s′ is constructed by adding
delayed ⊥ values wherever required. sn+1 = (sn⊗
(⊥ · δn)) · j = sn from monoid axioms and the
disconnect axiom.

As in the case of circuits without delays, we can
show that extensionality is a congruence and we
can quotient by it, creating an extensional category
of circuits with delays, ECCirc+.

It is a routine exercise to show ECCirc+ is
Cartesian, with the diagonal and terminal object
defined the same as in ECCirc, imitating the proof
from the previous section.

IV. CIRCUITS WITH FEEDBACK

We can now introduce feedback.

Definition 4. Let CCirc∗δ (and CCirc∗+, respec-
tively) be the category obtained from ECCircδ
(ECCirc+, respectively) by freely adding a trace
operator.

Diagrammatically, the trace operator applied to a
diagram f : m + k → n + k corresponds to a
feedback loop of width k, written Trk(f) : m →
n. Symmetric traced monoidal categories (STMC)
satisfy a number of equations (coherences) which
we will not enumerate for lack of space [16]. As
before, their interpretation coincides with equality
of diagrams (with feedbacks) up to graph isomor-
phism. For example, of particular interest is the
axiom “yanking” a loop into a straight line:

=

Trm(xm,m) = m.

This is indeed an axiom that indicates that, con-
ceptually, we are on the right track. The swapping
of two wires is a trivial combinational circuit, and
applying a trace creates a (false) feedback loop
which can be simply eliminated.

As before, we are committed to an extensional view
of circuits where the only observable is the input-
output behaviour. In combinational circuits, with or

without delays, the only way we can create a circuit
with 0 outputs is by explicitly composing a circuit
f : m → n with wn. However, 0-output circuits can
arise in more complicated ways in the presence of
feedback, whenever all the outputs are fed back. For
example, the diagram on the left can be reduced to
just three unobserved inputs:

k"

k'
k =

Such equalities cannot be proved out of local inter-
actions, so we will simply impose the equivalence
of all 0-output circuits, an equivalence which is
trivially a congruence. The new quotient category
is called OCirc∗δ . In this category all diagrams of
shape f : m → 0 are therefore equal which, cate-
gorically speaking, makes 0 a “terminal object”.

We are now approaching the main result of our
paper: reasoning equationally about circuits with
feedback. In general, in programs feedback cor-
responds to recursion and iteration, and syntactic
models (operational semantics) of such programs
involve creating two copies of the code recursed
over. For example, the operational semantics of
the Y-combinator as applied to some G is Y G =
G(Y G).

A similar rule does not exist in general for SMTCs
unless the category is also Cartesian. Such cat-
egories, also called control-flow categories [17],
admit an iterator defined for any f : m+ n → n:

f
itern(f) = Trn(f · (∆n ⊗ n)) : m → n

which satisfies the following equations:

Iteration: iter(f) = ⟨m, iter(f)⟩ · f

f ff =

Diagonal: itern(itern(f)) = itern((⟨n, n⟩⊗m)·f).

f = f

To use this essential axiom we need to first establish
that the SMTC of circuits with feedback is Carte-
sian. This will be the main technical result of this

paper. Before we do that we will establish the fol-
lowing result which holds in general about SMTCs
and can be proved by diagrammatic reasoning. Each
diagram with feedbacks can be constructed from a
feedback-free diagram and one single global trace.

Lemma 5 (Global trace). For any morphism f in
a SMTC PROP there exists a trace-free morphisms
f̂ such that f = TrA(f̂) for some object A.

In the case of a PROP the object A = m ∈ N.
The diagram f̂ is constructing by “pulling out” any
internal feedback loop and applying to the whole
diagram in a process similar to lambda-lifting.
Pictorially, this construction looks as follows:

g f' h = g f' h

Theorem 6. The category OCirc∗+ is Cartesian
with diagonal ∆n.

Proof. We need to prove the naturality of the diag-
onal, i.e. for all f : m → n, f ·∆n = ∆m · (f⊗f).
We use induction on the structure of the diagram f .
For all gates and structural morphisms the equation
holds because it holds in the category of combina-
tional circuits with delays ECCircδ . Tensor and
composition are immediate by induction and simple
algebraic calculations.

The most interesting case is that of the trace, where
we need to show that assuming f ·∆m = ∆n · (f⊗
f) we have that Tr(f)·∆m = ∆n ·(Tr(f)⊗Tr(f)):

f
f

f
=

Using the Global Trace Lemma, we can assume that
f is trace-free otherwise we can simply incorporate
all the internal traces into the global trace. Since
f ·j = 1 we have the following equality of diagrams:

f f=

Using coherences (graph isomorphisms) of the
SMTC we can rearrange the diagram as follows:

f=f

Note that now in the greyed diagram we have the
trace-free morphism f ·∆n = ∆m · (f ⊗ f), so by
induction hypothesis:

f

f
=f

We note the following circuits are graph-isomorphic
so they represent equal diagrams in the SMTC:

f

f

f

f
=

Noting that the grey sub-diagram is still trace-free
we can apply Prop. 1 and obtain the following equal
diagram:

f

f
=

f

f

The final step is again purely diagrammatic, involv-
ing two graph-isomorphic circuits:

f

f

f

f
=

V. EQUATIONAL REASONING

We have established a comprehensive equational
theory which allows us to reason purely syntac-
tically about digital circuits with feedback and dis-
crete delays. We will now apply it to reason about
circuits such as the one in Fig. 1. Since that circuit
is built using only multiplexers as constants (gates,
as broadly construed) we are going to consider a
categorical signature consisting of one gate (m)
and two levels, high (h) and low (l) in addition
to the low-impedance (⊥) and illegal (⊤) values.
This is for the sake of simplicity, as we could go
down to standard boolean gates or even transistors.

The equations describing the multiplexer are the
standard ones.

In our categorical notation, the circuit diagram
is represented by the following term: M =
Tr1

(
(x1,1⊗f)·(f⊗x1,1⊗1)·(f⊗(m·G·f)⊗1)·(3⊗

x1,1) ·(1⊗(m ·F)⊗i) ·(x1,1⊗1)
)
·(x1,1⊗1) ·m. We

will also consider that each wire segment has some
delay δt. By applying retiming we can reduce the
number of required delays and obtain the following
diagram (the delays may all be different):

MUX G
MUX F

MUX
c
1
o

c
1
o c

1
o

We will prove that if we apply high or low to the
input that connects to the control port of the MUX,
the resulting circuit is combinational. Given a value
v let us define the constant waveform vω = Tr((1⊗
f) · (δ ⊗ 1)).

Example 1. If s ∈ {hω, lω}, and F , G are combi-
national circuits then (v⊗ 1) ·M is combinational.

Proof. The two cases to consider are all similar.
We only show v = l, which is more interesting.
We will not show the detailed algebraic calculations
but emphasise the diagrammatic reasoning, which
is mathematically equivalent and more intuitive.
Diagrammatically, we write the constant low (lω)
as a small diamond.

First we use the axioms for fork and swap several
times, so the diagram reduces to:

MUX G
MUX F

MUX
c
1
o

c
1
o c

1
o

At this stage we would like to reason extensionally
about the MUXs which receive a low (lω) waveform
on the control port, but the presence of the delay
stops us. We need to use the timelessness of the
MUX, and reason as follows:

(lω ⊗ 2) · (δt ⊗ δt′ ⊗ δt′′) ·m
=(lω ⊗ 2) · (δt−t ⊗ δt′−t ⊗ δt′′−t) ·m · δt
=(1⊗ δt′−t ⊗ δt′′−t) · (lω ⊗ 2) ·m · δt

The second step is by functoriality. (lω ⊗ 2) ·m =
w2 ⊗ 1 by extensional reasoning about trace-free
circuits (ECCirc+). So the above is further equal

to

=(1⊗ δt′−t ⊗ δt′′−t) · (w2 ⊗ 1) · δt
=δt′′−t · δt = δt′′ .

Note that above we may have strayed temporarily
outside the safe confines of circuits without nega-
tive delays as t′ − t and t′′ − t may be negative!
This is not a problem so long as we carefully avoid
using properties which only apply to circuits with
no negative delays.

Applying this equation for all the MUXs, the dia-
gram becomes:

G
F

From here on, using the unobservability of delays
on blocked outputs, the fact that (f,w) is a co-
monoid, and combining delays we get the diagram
on the left which can be “yanked” using the STMC
coherences:

FG F G=

This is a combinational circuit. The fact that the
feedback loop was false is confirmed by the fact
that we yanked rather than iterate the trace.

A stronger version of this result is possible, where
the input waveforms are arbitrary, but the proof is
more complex.

VI. RELATED AND FURTHER WORK

The structured style of presenting digital cir-
cuits and some of the equations (e.g. re-timing)
have been prefigured by the pioneering work of
Sheeran [18], further developed by Luk [19]. Our
work represents a categorical systematisation of
their approach. Otherwise, there is a dearth of
syntactic reasoning methods for digital circuits,
but semantic or simulation-based reasoning is ex-
tremely broadly studied and very useful.

One interesting point of contrast between our ap-
proach and more standard approaches is that we
introduce the joining of two wires j : 2 → 1 as an
explicit combinator, which is unusual in Boolean
designs but technically essential for us in proving
the fact that circuits with feedback have a product
and therefore satisfy the iteration equation. Joins
are also used in formalising waveforms. The natural
interpretation of the wire-join is the value-join in

the lattice of logical levels. Thus, for interesting
circuits we require at least four values: ⊥ (discon-
nected), h (logical high), l (logical low), ⊤ (illegal).
Combining high and low produces an illegal value:
(h⊗ l) · j = ⊤. Models of digital circuits requiring
ternary logic (unknown, true, false) have been used
for a long time [20], but we need the full lattice
of values. Having a join combinator offers the
additional benefit that it allows the representation of
sub-logical circuits such as pass-through gates, or
even transistors operating in saturation mode. This
will be developed in forthcoming papers.

The ternary logic approach is also used by Mendler
et. al. [10]. It would be interesting to study whether
their semantic model is in fact an alternative
(syntax-independent) concrete category of digital
circuits, satisfying the same axiom and coherences
as ours.

From a mathematical point of view our work is
inspired by the deep connections between monoidal
categories and diagrams [9] which have been also
used in the modelling of quantum protocols [5] and
signal-flow graphs [6]. Some contrasts are quite
interesting. Unlike in quantum protocols, all digital
circuits with no inputs and no outputs are equal
whereas in quantum computing they correspond
to scalars, which allow quantitative aspects to be
expressed. Should we have taken a similar direction
we could have included quantitative aspects such as
power consumption in our formalism, but we would
have lost the diagonal property. Obviously, two
copies of a circuit will at least sometimes consume
more power than one copy!

The signal-flow graph model in [6] is essentially
linear and reversible, which is not the case for
sequential circuits. Without elaborating the math-
ematics too much, a key difference between their
model and ours can be illustrated by the following
equality, involving the interaction between fork,
join, and disconnected wires, as a trace can be
created out of a fork and a join:

f f=

Of course, by comparison, in our setting the direc-
tionality of the wires never changes, so the correct
equality is:

f = f

Acknowledgements: This work was motivated by
initial discussions with Michael Mendler. Alex

Smith and George Constantinides provided useful
comments on preliminary work. Ross Duncan and
Peter Selinger helped with technical advice on
monoidal categories.

REFERENCES

[1] G. D. Plotkin, “A structural approach to operational se-
mantics,” J. Log. Algebr. Program., vol. 60-61, pp. 17–139,
2004.

[2] M. Hennessy, The Semantics of Programming Languages.
Wiley, 1990.

[3] R. Krebbers, X. Leroy, and F. Wiedijk, “Formal C seman-
tics: Compcert and the C standard,” in 5th Int. Conf. Thm.
Prov., 2014, pp. 543–548.

[4] R. P. Kurshan and K. L. McMillan, “Analysis of digital
circuits through symbolic reduction,” IEEE Trans. on CAD
of Integrated Circuits and Systems, vol. 10, no. 11, pp.
1356–1371, 1991.

[5] S. Abramsky and B. Coecke, “A categorical semantics of
quantum protocols,” in 19th IEEE Symp. Logic in Comp.
Sci., 2004, pp. 415–425.

[6] F. Bonchi, P. Sobocinski, and F. Zanasi, “Full abstraction
for signal flow graphs,” in 42nd Ann. ACM Symp. on Princ.
of Prog. Lang., 2015, pp. 515–526.

[7] D. R. Ghica, “Diagrammatic reasoning for delay-
insensitive asynchronous circuits,” in Computation, Logic,
Games, and Quantum Foundations. The Many Facets of
Samson Abramsky, 2013, pp. 52–68.

[8] J. Baez and M. Stay, Physics, topology, logic and compu-
tation: a Rosetta Stone. Springer, 2010.

[9] P. Selinger, “A survey of graphical languages for monoidal
categories,” in New structures for physics. Springer, 2010,
pp. 289–355.

[10] M. Mendler, T. R. Shiple, and G. Berry, “Constructive
boolean circuits and the exactness of timed ternary simula-
tion,” Form. Meth. Syst. Des., vol. 40, no. 3, pp. 283–329,
2012.

[11] S. Malik, “Analysis of cyclic combinational circuits,” in
Proc. IEEE/ACM Int. Conf. on Comp. Aided Design, 1993,
pp. 618–625.

[12] S. Lack, “Composing PROPs,” Theory and App. of Cate-
gories, vol. 13, no. 9, pp. 147–163, 2004.

[13] A. Joyal and R. Street, “The geometry of tensor calculus,
i,” Adv. in Math., vol. 88, no. 1, pp. 55–112, 1991.

[14] G. Jones and M. Sheeran, “Timeless truths about sequential
circuits,” in Concurrent Computations. Springer, 1988,
pp. 245–259.

[15] C. E. Leiserson and J. B. Saxe, “Retiming synchronous
circuitry,” Algorithmica, vol. 6, no. 1-6, pp. 5–35, 1991.

[16] A. Joyal, R. Street, and D. Verity, “Traced monoidal
categories,” in Math. Proc. of the Cambridge Phil. Soc.,
vol. 119, no. 03. Cambridge Univ. Press, 1996, pp. 447–
468.

[17] V. E. Căzănescu and G. Ştefănescu, “Towards a new
algebraic foundation of flowchart scheme theory,” Fund.
Inf., vol. 13, no. 2, pp. 171–210, 1990.

[18] M. Sheeran, “muFP, A language for VLSI design,” in LISP
and Func. Prog., 1984, pp. 104–112.

[19] W. Luk, “Pipelining and transposing heterogeneous array
designs,” J. of VLSI Sig. Proc. Sys., vol. 5, no. 1, pp. 7–20,
1993.

[20] M. A. Breuer, “A note on three-valued logic simulation,”
IEEE Trans. Comp., vol. 21, no. 4, pp. 399–402, 1972.

	Introduction
	Syntactic vs. semantic modelling
	Methodology and contribution
	A motivating class of examples

	Combinational digital circuits
	Circuits with discrete delays
	Circuits with feedback
	Equational reasoning
	Related and further work
	References

