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Abstract

We show that the first author’s QRB-domains coincide with Li and
Xu’s QFS-domains, and also with Lawson-compact quasi-continuous dc-
pos, with stably-compact locally finitary compact spaces, with sober QFS-
spaces, and with sober QRB-spaces. The first three coincidences were
discovered independently by Lawson and Xi. The equivalence with sober
QFS-spaces is then applied to give a novel, direct proof that the probabilis-
tic powerdomain of a QRB-domain is a QRB-domain. This improves upon
a previous, similar result, which was limited to pointed, second-countable
QRB-domains.

1 Introduction

An outstanding problem in denotational semantics is whether there is a full
subcategory of continuous dcpos that is both Cartesian-closed and closed under
the action of the probabilistic powerdomain monad V [17]. Indeed, there are
very few categories of dcpos that are known to be closed under V: the category
of all dcpos, that of all continuous dcpos [15], and that of all Lawson compact
continuous dcpos [17]. To that list, one must add the pointed, second-countable
QRB-domains [10]. While QRB-domains are only quasi-continuous and not
continuous domains, and do not form a Cartesian-closed category either, they
have attracted considerable attention recently.
∗goubault@lsv.ens-cachan.fr
†A.Jung@cs.bham.ac.uk
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QRB-domains are defined by imitating RB-domains. Independently, Li and
Xu used a similar process to define QFS-domains [23], imitating the construction
of FS-domains [16]. Rather surprisingly, QRB and QFS-domains are the same
thing (RB and FS-domains are not known to coincide), and are also exactly the
Lawson-compact quasi-continuous domains. This was shown independently by
the present authors and J. Lawson and X. Xi. We present our proof in Section 5
below; Lawson’s and Xi’s proof will appear as [21].

One of our characterizations of QRB is as so-called sober QFS-spaces, and
this will turn out to be instrumental in proving that the category of all QRB-
domains, and not just the second-countable ones, is closed under the action of
the probabilistic powerdomain, as we shall see in Section 6. This improves upon
[10], and relies on a rather different proof argument.

Outline. After some brief preliminaries (Section 2), we discuss the notion
of functional approximation in Section 3. This is a central concept in domain
theory, at the heart of RB-, FS-, QRB-, and QFS-domains. Another domain-
theoretic leitmotiv is that one should always topologize (paraphrasing M. Stone),
and we introduce QFS-spaces in Section 4 as the natural topological counter-
part of QFS-domains. We give our proof that QRB-domains and QFS-domains
are the same thing (and coincide with four other natural notions, including
sober QFS-spaces) in Section 5. We apply this to the promised result that the
probabilistic powerdomain of a QRB-domain is a QRB-domain in Section 6.

2 Preliminaries

We refer to the classic texts [6, 1] for the required domain-theoretic background,
and to [11] for topology.

We agree that a subset of a space is compact if and only if every open
cover has a finite subcover, that is, we do not require separation. We take
coherence to mean that the intersection of any two compact saturated subsets
is compact. (A saturated subset is one that is equal to the intersection of
its open neighborhoods.) A space is stably compact if it is sober, compact,
locally compact and coherent. As is well-known, the patch topology of a stably
compact space is compact Hausdorff, see [11, Section 9] or [6, Section VI-6] for
more details.

Any sober space is well-filtered, meaning that if an open subset U contains
a filtered intersection

⋂
i∈I Qi of compact saturated subsets, then U contains

Qi for some i ∈ I. In a well-filtered space, every such filtered intersection is
compact.

Given a T0 topological space (X; τ), we will make heavy use of its speciali-
sation order defined as x ≤ y if x ∈ {y}. We write ↑E for the upward closure
(w.r.t. ≤) of a subset E. Subsets equal to their upward closure are exactly the
saturated one. If E is finite, then ↑E is compact, and we call such sets the
finitary compacts of X.

The set of compact saturated subsets of a topological space (X; τ) may be
equipped with an order by setting A ≤ B iff A ⊇ B, and we write Q(X) for
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the resulting poset. It may also be equipped with the upper Vietoris topology,
which has a base of opens of the form 2U , U ∈ τ , where 2U denotes the
collection of compact saturated subsets contained in U . This yields the upper
space QV(X) of X. Happily, the specialisation order of the upper space is
precisely reverse inclusion. Analogously, We write Fin(X) for the collection of
finitary compacts of X, and topologize it with the subspace topology, yielding
a space that we write FinV(X). When X is well-filtered (e.g., sober), Q(X) is
a dcpo and directed suprema are computed as intersections.

For a finite subset E of a poset (X,≤) and x ∈ X, write E � x iff every
directed family (xi)i∈I whose supremum supi∈I xi is above x in X contains an
element xi that is above some element z of E. We also write ↑E � x instead
of E � x, stressing the fact that this is a property of the finitary compact ↑E,
not just of the finite set E. The dcpo X is a quasi-continuous domain (see [7]
or [6, Definition III-3.2]) if and only if for every x ∈ X, the collection of all
↑E ∈ Fin(X) that approximate x (↑E � x) is directed (w.r.t. ⊇) and their
least upper bound in Q(X) is ↑x.

3 Functional approximation

We are concerned with spaces in which points are “systematically” approxi-
mated, by which we mean that we are given functions which produce approxi-
mants for each element. In domain theory, the idea goes back to Plotkin’s
characterization of SFP-domains, [24], as those dcpos X for which there is a
chain of Scott-continuous functions (ϕn)n∈N from X to X, satisfying the follow-
ing properties

1. for each n ∈ N, ϕn ≤ idX ;

2. for each n ∈ N, ϕn ◦ ϕn = ϕn;

3. for each n ∈ N, ϕn has finite image;

4. idX =
∨↑
n∈N ϕn.

Plotkin also showed that the retracts of SFP-domains can be characterised sim-
ilarly, by dropping the idempotency requirement (ii). If instead of a chain, only
a directed family of such functions is present, then one obtains RB-domains.
The concept was further generalized in the work of the second author, [16],
where instead of requiring finite image, finite separation is stipulated: A func-
tion ϕ : X → X is finitely separated from idX if there exists a finite set M ⊆ X
such that

∀x ∈ X. ∃m ∈M. ϕ(x) ≤ m ≤ x.

An FS-domain, then, is a dcpo which contains a directed family (ϕi)i∈I of
continuous functions finitely separated from identity such that idX =

∨↑
i∈I ϕi.

In 2010 the first author, [9] realised that the concept of functional approx-
imation could usefully be further generalized by allowing the approximating
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functions to produce compact neighborhoods rather than points, that is, the ϕi
now take values in QV(X) rather than X. With this generalization there are
then two choices to be made about their finiteness character :

Choice 1 One can require the ϕi to have finite image in QV(X) or not make
any such restriction.

Choice 2 One can require the ϕi to only produce finitary compacts or allow
general compact saturated sets.

Together this means that there are four variants that one might consider and
it may come as a relief to the reader that they will in fact all turn out to lead
to the same structures. Specifically, we will show that the most liberal notion,
arbitrary image of general compact saturated sets, and the most restrictive one,
finite image of finitary compacts, coincide. This will be true with and without
assuming sobriety.

Definition 3.1 A continuous function ϕ : X → QV(X) is called a quasi-deflation
if it is has finite image and for each x ∈ X, x ∈ ϕ(x) ∈ FinX. It is called quasi-
finitely separated (or qfs for short) if there exists a finite set M ⊆ X such that
for every x ∈ X there is m ∈M such that x ∈ ↑m ⊆ ϕ(x). In this case, we say
that ϕ is separated by M , or that M is a separating set for ϕ.

We shall agree to order continuous maps from X to QV(X) in the pointwise
extension of ⊇. Accordingly, a family (ϕi)i∈I of continuous functions from X
to QV(X) is directed if and only if it is non-empty and for all i, j ∈ I, there
is a k ∈ I such that, for every x ∈ X, ϕk(x) ⊆ ϕi(x), ϕj(x). We call it
approximating if it is directed and furthermore, ↑x =

⋂
i∈I ϕi(x) holds for all

x ∈ X.
We call a T0 topological space (X; τ) a QRB-space if there is an approxi-

mating family of quasi-deflations for it. It is called a QFS-space if there is an
approximating family of quasi-finitely separated maps.

A QFS- (or QRB-) space (X; τ ; (ϕi)i∈I) is called topological if for all U ∈ τ
and x ∈ U there is i ∈ I such that ϕi(x) ⊆ U .

Clearly, every quasi-deflation ϕ is also qfs because we can take the finitely
many minimal elements of the finitely many possible images of ϕ as the separat-
ing set. Therefore, every QRB-space is also QFS. To explain the last part of the
definition, we give an example to show that not every QFS-space is topological:

Example 3.2 Consider the poset P1 in Figure 1 consisting of the natural num-
bers in their usual order plus an extra element a not related to any of the others.
Equip this set with the Alexandroff topology (of all upper sets) and consider the
map ϕm which maps each n ∈ N to ↑min{m,n} and a to ↑m ∪ {a}. Clearly,
each ϕm is a quasi-deflation. Furthermore, the family (ϕm)m∈N is approximat-
ing and thus P1 is a QRB-space. However, for no m ∈ N do we have that
ϕm(a) ⊆ ↑ a = {a}.
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Figure 1: Two example spaces

4 QFS-spaces

Proposition 4.1 QFS-spaces are compact.

Proof. Let X be a QFS-space and ϕ be any qfs map on X with separating
set M . Then X = ↑M since every x ∈ X is above some m ∈ M by definition.
Since M is finite, we have compactness.

For local compactness we start with a useful lemma:

Lemma 4.2 Let ϕ be a qfs map on a topological space X, separated by the finite
set M . Then for every x ∈ X, x is in the interior of ↑(M ∩ ϕ(x)).

Proof. Fix x ∈ X and let U = X r ↓(M r ϕ(x)). Because of the finiteness
of M , U is an open set and a neighborhood of ϕ(x). Let V = ϕ−1(2U), which
is an open set since ϕ is continuous. By construction, x is a member of V
and, furthermore, we claim that V ⊆ ↑(M ∩ ϕ(x)). Indeed, let y ∈ V . Then
ϕ(y) ⊆ U and hence the separating element m ∈ M with m ∈ ϕ(y) and m ≤ y
also belongs to U . Hence m ∈M ∩ ϕ(x) and y ∈ ↑(M ∩ ϕ(x)) follows.

A topological space X is locally finitary compact if every open neighborhood
U of an arbitrary point x contains a locally finitary neighborhood ↑E of x:
U ⊇ ↑E ⊇ int(↑E) 3 x. The notion originates with Isbell [14], and the T0 such
spaces are called qc-spaces in [21]. Every quasi-continuous domain is locally
finitary compact, since in this case int(↑E) = {x ∈ X | E � x} [6, III-3.6(ii)].
The following is immediate from the definitions and the preceding lemma:

Lemma 4.3 Every topological QFS-space is locally finitary compact.

It would be nice if one could also show coherence for QFS-spaces but without
further assumptions this is not possible, even for QRB-spaces:

5



Example 4.4 Consider the poset P2 in Figure 1 together with the Scott topology
(note that the only non-trivial directed suprema are a =

∨↑
n∈N an and b =∨↑

n∈N bn). The QRB property is established by maps fm, m ∈ N, which map

a 7→ am b 7→ bm cn 7→ cmin{m,n} dn 7→ cm for n > m
an 7→ amin{m,n} bn 7→ bmin{m,n} dn 7→ dn for n ≤ m

and by setting ϕm(x) = ↑ fm(x). The resulting QRB-space is topological because
every Scott neighborhood of a (resp. b) must contain some final segment of an’s
(resp. bn’s). It is not coherent, though, because ↑ a ∩ ↑ b = {dn | n ∈ N} is not
compact.

The situation is much nicer if we assume our spaces to be sober. First, since
sobriety implies well-filteredness, we immediately have the following:

Lemma 4.5 Sober QFS-spaces are topological.

Combining the last two lemmas we get that sober QFS-spaces are locally fini-
tary compact, and it is known from [3], or the equivalence between (6) and (11)
in [22, Theorem 2], or [21, Corollary 3.6], or [11, Exercise 8.3.39], that the sober,
locally finitary compact spaces are exactly the quasi-continuous dcpos in their
Scott topology. Thus we have:

Proposition 4.6 Sober QFS-spaces are quasi-continuous domains, and their
given topology coincides with the Scott topology derived from the specialisation
order.

Thus it is appropriate to call sober QFS-spaces, QFS-domains, and similarly
for sober QRB-spaces. A little amount of work should convince the reader that
these QFS-domains are exactly the same of those defined by Li and Xu [23].

How far are (topological) QFS-spaces from QFS-domains? As it turns out,
not very far as we will now show that sobrification leads from one to the other.

The sobrification X̂ of a topological space (X; τ) can be described in a
number of ways; the most convenient for our purposes is to realise it concretely
as the set of closed irreducible1 subsets of X, together with the topology τ̂ which
consists of open sets Û = {A ∈ X̂ | A ∩ U 6= ∅}, where U ranges over the open
sets in τ . Note that X and X̂ have isomorphic frames of opens.

Given a qfs map ϕ : X → QV(X) we replace ϕ(x) with its set of open
neighborhoods, defined as {U ∈ τ | ϕ(x) ⊆ U}. This is always a Scott-open
filter in the frame τ , and the Hofmann-Mislove Theorem tells us that, conversely,
every Scott-open filter F of τ corresponds to a unique compact saturated set QF
of the sobrification X̂ of X. Indeed, F consists precisely of the opens U such that
Û is a neighborhood of QF , that is, a closed irreducible set belongs to QF if and
only if it meets every member of F . For the upper Vietoris topology on QV(X̂),
the basic open set 2Û consists of those compacts QF where F ranges over the

1A set is irreducible if it meets every member of a finite family of open sets precisely if it
meets their intersection (from which it follows that irreducible sets are non-empty).
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Scott-open filters which contain U . Using this setup, we define ϕ̃ : X̂ → QV(X̂)
by mapping A ∈ X̂ to Qψ(A) where ψ(A) = {U ∈ τ | ∃a ∈ A. ϕ(a) ⊆ U} =
{U ∈ τ | A ∩ ϕ−1(2U) 6= ∅}.

Lemma 4.7 For ϕ : X → QV(X) qfs, ϕ̃ is a qfs map.

Proof. The function ϕ̃, equivalently ψ, is well-defined: if a directed union
of opens belongs to ψ(A) then it covers ϕ(a) for some a ∈ A. Because ϕ(a)
is compact, one of them does so already. Filteredness follows from ϕ−1(2U ∩
2V ) = ϕ−1(2(U ∩ V )) = ϕ−1(2U) ∩ ϕ−1(2V ) and the assumption that A is
irreducible.

For continuity, observe that ϕ̃−1(2Û) = ψ−1({F | U ∈ F}) = {A ∈ X̂ | A ∩
ϕ−1(2U) 6= ∅} = ̂ϕ−1(2U).

For finite separation, we assume that M is a separating set for ϕ. We show
that the set M̂ = {↓m | m ∈M} is separating for ϕ̃. Let A be a closed
irreducible set. For every U ∈ ψ(A) we have by definition that there is a ∈ A
such that ϕ(a) ⊆ U . It follows that U ∩(M ∩A) is non-empty. Hence the family
of these sets, indexed by U ∈ ψ(A), is a proper filter on the finite set M ∩A and
so there is mA ∈ M belonging to all of them. We clearly have that ↓mA ⊆ A
and because mA is in every U ∈ ψ(A), ↓mA meets every element of ψ(A),
whence ↓mA ∈ Qψ(A) = ϕ̃(A).

The above construction has been chosen for its brevity but we may point
out that the underlying idea relies on a natural transformation T (a “dis-
tributive law”) from ˆ[−] ◦ QV to QV ◦ ˆ[−]. Our map ϕ̃ is the composition

X̂
bϕ−→Q̂V(X) T−→QV(X̂). An even more explicit construction is also possible,

and it demonstrates nicely the usefulness of the “Topological Rudin Lemma”
presented in [13]: We invite the reader to use the latter to show that T (C) =
{A ∈ X̂ | ∀Q ∈ C. Q ∩A 6= ∅}, and to also use it to reprove Lemma 4.7 with
that definition.

Finally, we would like to show that the lifted family (ϕ̃i)i∈I is approximating
for X̂. It is here where we need the condition that the original QFS space be
topological, as without this condition this would not be the case. Consider again
Example 3.2: The sobrification of the space P1 consists of the sets ↓x, x ∈ X
plus one more, the chain A = N. By definition, A belongs to each ϕ̃m(↓ a):
check that, for every a′ ≤ a, A meets every open neighborhood U of ϕm(a′).
Hence A is also in the intersection of all ϕ̃m(↓ a), but it does not belong to
↑(↓ a) = {{a}}.

We come to the main result of this section:

Theorem 4.8 The sobrification of a topological QFS space is a QFS domain.

Proof. All that remains is to show that the family (ϕ̃i)i∈I is approximating
for X̂. Let A ∈ X̂ be a closed irreducible subset of X and let B be another
such, not above A. This means that B does not contain A (as subsets of X),
and so let a ∈ A r B. By the definition of topological QFS spaces we obtain
an index i ∈ I such that ϕi(a) is contained in the open set X r B. Writing
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ψi(A) for {U ∈ τ | ∃a ∈ A. ϕi(a) ⊆ U}, so that ϕ̃i(A) = Qψi(A), we obtain that
U ∈ ψi(A) for U = X rB. Since U does not meet B, B is not in ϕ̃i(A).

5 QFS-domains

We have already seen that the addition of sobriety to the conditions for a QFS-
space results in much nicer structures. The best is still to come, however. We
begin by giving a short argument to show that QFS-domains are coherent, a
result which appears as Corollary 3.9 in [21]. First a lemma, also from [21]:

Lemma 5.1 If X is a QFS-domain then QV(X) is an FS-domain.

Proof. If ϕ is a qfs map on X separated by M , then Φ: QV(X) → QV(X),
defined by Φ(K) = ↑ϕ[K], is finitely separated: For the separating set consider
all sets ↑E, E ⊆M .

Proposition 5.2 The topology of a QFS-domain is coherent.

Proof. Let K,L be compact saturated sets of X. They are points in QV(X)
and generate principal upper, hence compact, sets ↑QV(X)K and ↑QV(X) L. Since
QV(X) is an FS-domain, it is coherent, hence the set K = ↑QV(X)K ∩ ↑QV(X) L
is a compact saturated set. The claim follows from the observation that K∩L =⋃
K and the fact that

⋃
, as the multiplication of the upper powerspace monad

([25, Chapter 7]), is a continuous map from QV(QV(X)) to QV(X).
For quasi-continuous domains, compactness plus coherence is the same as

compactness in the Lawson topology. This follows, for example, from the fact
that the Lawson and patch topologies coincide on quasi-continuous dcpos [6,
Lemma V-5.15], and that every patch-compact space is coherent and compact
[11, Proposition 9.1.27], while conversely quasi-continuous domains are locally
compact and sober [11, Exercise 8.2.15]. We thus have the following refinement
of Proposition 4.6:

Corollary 5.3 QFS-domains are Lawson-compact quasi-continuous domains
equipped with their Scott topology.

We now work towards the converse of this:

Proposition 5.4 Every compact, locally compact, coherent space X has an ap-
proximating family of maps ϕM : X → QV(X) with finite image. Precisely, M
ranges over the finite ∨-semi-lattices M of compact saturated sets of X, and
ϕM maps each x ∈ X to the smallest element of M whose interior contains x.

Note that ϕM takes values in Q(X), not in Fin(X). Smallest is taken with
respect to inclusion. A ∨-semi-lattice of compact saturated sets is a family of
sets that is closed under finite intersections (in particular, contains X).

Proof. Define ϕM(x) as the intersection of all the elements Q of M that
are neighborhoods of x. Using the fact that M is finite, ϕM(x) is the smallest
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neighborhood of x in M, so ϕM(x) is well defined, and in Q(X) by coherence
and compactness.

For continuity, let U be open and consider x ∈ ϕ−1
M (2U). Let Q = ϕM(x).

For every y ∈ int(Q), ϕM(y) ⊆ Q ⊆ U , so y is in ϕ−1
M (2U). Hence int(Q) is an

open neighborhood of x included in ϕ−1
M (2U), so ϕ−1

M (2U) is open.
Clearly, if M⊆M′, then ϕM(x) ⊇ ϕM′(x) for every x ∈ X. The family of

all ϕM is directed: given M and M′, there is a smallest semi-lattice MtM′
of compact saturated sets containingM andM′, consisting of the intersections
Q ∩Q′ with Q ∈ M and Q′ ∈ M′; coherence implies that each such Q ∩Q′ is
compact saturated, and ϕMtM′ is above both ϕM and ϕM′ (w.r.t. ⊇).

All that remains to show is that the maps ϕM form an approximating fam-
ily. Given x ∈ X, ↑x ⊆

⋂
M ϕM(x) is by definition. For the reverse in-

clusion, we show that every open neighborhood U of x contains
⋂
M ϕM(x).

By local compactness, U contains a compact saturated neighborhood Q of x.
M = {Q,X} qualifies as a semi-lattice of compact saturated sets, and we have
ϕM(x) = Q ⊆ U .

The following is standard:

Lemma 5.5 Let X be a locally finitary compact space. For every compact sat-
urated subset Q of X, and every open neighborhood U of Q, there is a further,
finitary compact neighborhood ↑E of Q contained in U .

Proposition 5.6 Every compact, locally finitary compact, coherent space X
has an approximating family of quasi-deflations.

Proof. Applying Proposition 5.4, we obtain an approximating family of maps
ϕM. We need to replace each compact saturated subset Q ∈ imϕM by a finitary
compact.

Assume first that we are given an open neighborhood UQ around each of
them. Lemma 5.5 allows us to find finitary compact neighborhoods ↑EQ be-
tween Q and UQ. We seek to find ↑EQ so that, additionally, Q ⊆ Q′ implies
↑EQ ⊆ ↑EQ′ . To ensure this, we define ↑EQ step by step, always working on
the largest Q ∈ M that is still to be considered (so we start with X itself, the
largest element of M). Given any Q ∈ M such that ↑EQ′ is already defined
for every strictly larger Q′ ∈M, we apply Lemma 5.5 and define ↑EQ′ as some
finitary compact neighborhood of Q contained in UQ ∩

⋂
Q′∈M
Q′)Q

int(↑EQ).

We now replace each Q ∈ imϕM by the so chosen ↑EQ, resulting in a
function ψM,E,U , where U is the collection of open neighborhoods UQ we started
with, and E is the collection of finitary compacts ↑EQ. We need to check that
ψM,E,U is continuous, and for that we check that ψ−1

M,E,U (2U) is open for every
open subset U of X. Let x be an element of ψ−1

M,E,U (2U), and Q = ϕM(x); in
particular, ↑EQ ⊆ U . As in the proof of Proposition 5.4, every element y of
int(Q) is such that ϕM(y) ⊆ Q; for Q′ = ϕM(y), Q′ ⊆ Q implies ↑EQ′ ⊆ ↑EQ,
so ψM,E,U (y) ⊆ ↑EQ ⊆ U . Therefore int(Q) is an open neighborhood of x
included in ψ−1

M,E,U (2U).
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The family of all maps ψM,E,U (namely, with E = (↑EQ)Q∈M monotone,
U = (UQ)Q∈M, and Q ⊆ int(↑EQ) ⊆ ↑EQ ⊆ UQ for each Q ∈ M) is ap-
proximating, since we can choose the initial neighborhoods UQ as close to each
Q ∈ M as we like, and it remains to show that it is directed. It is non-empty:
choose M = {X} and U = M, and define ↑EX as X itself, which is fini-
tary compact as a consequence of Lemma 5.5 with Q = U = X. We find
an upper bound of ψM,E,U and ψM′,E′,U ′ by defining N = MtM′, and for
the open neighborhood system V we let VN =

⋂
{int(↑EQ) | N ⊆ Q ∈M} ∩⋂

{int(↑E′Q′) | N ⊆ Q′ ∈M′} for each N ∈ N . (We write E = (↑EQ)Q∈M,
E ′ = (↑E′Q′)

Q′∈M′ .) It is clear that ψN ,F,V is above ψM,E,U and ψM′,E′,U ′ .

Theorem 5.7 Let X be a topological space. The following are equivalent:

1. X is a stably compact, locally finitary compact space.

2. X is a sober QRB-space.

3. X is a sober QFS-space.

4. X is a QRB-domain with its Scott topology.

5. X is a QFS-domain with its Scott topology.

6. X is a Lawson-compact quasi-continuous dcpo in its Scott topology.

7. X is a compact, coherent, quasi-continuous dcpo in its Scott topology.

Proof. (i)⇒ (ii): X is a QRB-space by Proposition 5.6, and sober since stably-
compact. (ii)⇒ (iii) and (iv)⇒ (v) are obvious. (iii)⇒ (v) is Proposition 4.6,
which also implies (ii)⇒ (iv) since QRB-spaces are instances of QFS-spaces.

(v) ⇒ (vi). Every QFS-domain is quasi-continuous [23, Proposition 3.8],
and Lawson-compact [23, Theorem 4.9].

(vi) ⇒ (vii). For quasi-continuous domains, compactness plus coherence is
the same as compactness in the Lawson topology.

(vii) ⇒ (i). Every quasi-continuous dcpo is sober [11, Exercise 8.2.15] and
locally finitary compact [11, Exercise 5.2.31]. With compactness and coherence,
this implies that X is stably-compact.

Lawson and Xi’s result mentioned in the introduction [21] is the equiva-
lence (iv) ⇔ (v) ⇔ (vi) above. Items (i)–(iii) offer other, purely topological
characterizations of QRB-domains.

Returning to the topological beginnings of our paper, we note the following:

Theorem 5.8 Topological QFS-spaces are QRB.

Proof. Let (X; τ ; (ϕi)i∈I) be a topological QFS-space. Then its sobrification X̂
is a QFS-domain and so by the preceding theorem, a QRB-domain. Looking at
the proof of Proposition 5.6 we find that we constructed the finitary compacts
by invoking Lemma 5.5, so we should have a closer look at that in the case that
we are dealing with a locally finitary compact space that is a sobrification. In
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that case, every element e of E is a closed irreducible set A that meets the open
set U ∈ τ . We may therefore replace e with the irreducible set ↓ a where a is an
arbitrarily chosen element of A ∩ U . In summary, then, we can make sure that
the elements employed in the proof of Proposition 5.6 all stem from the image
of the embedding x 7→ ↓x of X into its sobrification.

6 The Probabilistic Powerdomain over QRB-Domains

Let us turn to the probabilistic powerdomain V(X) over a space X. This was
introduced by Jones in her PhD thesis [15] to give semantics to higher-order
programs with probabilistic choice. Jones proved that V(X) was a continuous
dcpo for every continuous dcpo X, but also that V(X) was not a continuous
lattice, or even a bc-domain even for very simple continuous lattices or bc-
domains X. We still do not know whether V(X) is an FS-domain, resp. an
RB-domain whenever X is one, except in very specific cases [17]. However, the
notion of functional approximation offered by QRB-domains is relaxed enough
that the probabilistic powerdomain of a QRB-domain is again a QRB-domain.
The first author proved this [10], for probability valuations (with total mass 1),
and assuming second-countability.

Using Theorem 5.7, we shall see that the latter is an irrelevant assumption.
We shall also prove it for spaces of continuous subprobability valuations, and
of general, unbounded, continuous valuations. The nature of the proof is very
different from [10]: we build an approximating family of qfs maps on V(X),
directly2.

The elements of V(X) are a slight variation on the idea of a measure, and
are called continuous valuations. A continuous valuation ν on a space X is a
Scott-continuous, strict, modular map from the complete lattice O(X) of open
subsets of X to R+ = R ∪ {+∞}. Strictness means that ν(∅) = 0, modularity
states that ν(U ∪ V ) + ν(U ∩ V ) = ν(U) + ν(V ) for all U, V ∈ O(X).

Let V(X), the probabilistic powerdomain over X, denote the space of all
continuous valuations on X, with the weak topology. We also write V1(X) for
the subspace of continuous probability valuations (ν(X) = 1) and V≤1(X) for
the subspace of continuous subprobability valuations (ν(X) ≤ 1). We shall
write V•(X) for V(X), V1(X), or V≤1(X). The weak topology on V•(X) has
subbasic open sets of the form [U > r], defined as {ν ∈ V•(X) | ν(U) > r} [19,
Satz 8.5] (see also [12, Theorem 8.3]). Whatever • is, V• is a functor on the
category of topological spaces, and its action Vf on continuous maps f : X → Y
is defined by Vf(ν)(V ) = ν(f−1(V )).

We again introduce a “distributivity law” θ, this time from V•QV to QVV•.
Given µ ∈ V•QV(X), one may define θ(µ) as the set of all ν ∈ V•(X) such
that ν(U) ≥ µ(2U) for every open U . It is not completely trivial that θ(µ) is

2This means proving the result using characterization 3 of QRB-domains given in Theo-
rem 5.7. Characterization 1 may seem a better route, since V is already known to preserve
stable compactness: only local finitary compactness remains to be proved. However, that
seems quite a formidable effort by itself.
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non-empty and compact, or that θ is continuous, but let us accept it for the
moment. We may use θ to produce maps V•(X)

Vϕi−→V•QV(X) θ−→QVV•(X) for
an approximating family of quasi-deflations ϕi on X. It will be fairly easy to
see that the resulting maps are approximating, but they certainly do not have
finite image, and even the image of a single ν ∈ V•(X) is in general not finitary.
However, and up to a minor variation on the theme of θ (θf , see below), we will
manage to show that these maps are qfs. Hence V•(X) will be a QFS space, and
the equivalence between (iii) and (iv) of Theorem 5.7 will allow us to conclude.

Lemma 6.1 Let (X; τ) be a stably compact space. If • is “1”, assume X
pointed, too. For every Scott-continuous map f : R+ → R+ such that f ≤ idR+ ,
the map θf defined by θf (µ) = {ν ∈ V•(X) | ∀U ∈ τ. ν(U) ≥ f(µ(2U))} is a
continuous and Scott-continuous map from V•(QV(X)) to QV(V•(X)).

Proof. Let [X → R+] denote the dcpo of Scott-continuous maps from X to
R+, in the pointwise ordering. For any monotonic set function ξ on the open
subsets of X with values in R+, and every h ∈ [X → R+], one can define∫
x∈X h(x)dξ by the Choquet formula

∫ +∞
0

ξ(h−1(t,+∞])dt, where the latter is
a Riemann integral. For ξ = ν ∈ V•(X), the functional h 7→

∫
x∈X h(x)dν is

Scott-continuous and linear [26, Section 4]. Scott-continuity follows from the
fact that Riemann integration of antitonic maps is itself Scott-continuous.

For ξ(U) = µ(2U), notice that h∗(Q) = minx∈Q h(x) defines a continuous
function of Q ∈ QV(X), since h−1

∗ (t,+∞] = 2h−1(t,+∞] (by compactness, the
inf of h is attained on Q), so that

∫
x∈X h(x)dξ =

∫ +∞
0

µ(2h−1(t,+∞])dt =∫ +∞
0

µ(h−1
∗ (t,+∞])dt =

∫
Q∈QV(X)

h∗(Q)dµ. Since (h1 + h2)∗ ≥ h1∗ + h2∗, the

functional p : [X → R+]→ R+ that maps h to
∫
Q∈QV(X)

h∗(Q)dµ is superlinear,
meaning that p(h1 + h2) ≥ p(h1) + p(h2) and p(ah) = ap(h) for every a ∈ R+.
Since p(h) =

∫
x∈X h(x)dξ =

∫ +∞
0

ξ(h−1(t,+∞])dt, p is also Scott-continuous in
h.

θf (µ) is non-empty. Define q : [X → R+] → R+ by: q(h) = supx∈X h(x)
if • is “1” or “≤ 1”, and q(h) = +∞. supx∈X h(x) otherwise, agreeing that
+∞.0 = 0. In each case, q is sublinear (q(h1 + h2) ≤ q(h1) + q(h2), and
q(ah) = aq(h) for every a ∈ R+), and p ≤ q. The space [X → R+] is a
continuous dcpo, because X is locally compact hence core-compact, and using
Proposition 2 of [5], for example. Together with the obvious, pointwise addition
and scalar multiplication by non-negative reals, [X → R+] is therefore a so-
called continuous d-cone [27]. The Sandwich Theorem given there (Theorem 3.2)
implies that there is a Scott-continuous linear map Λ: [X → R+] → R+ such
that p ≤ Λ ≤ q. Defining ν(U) as Λ(χU ), where χU is the characteristic map
of U , yields a continuous valuation ν in V•(X) such that µ(2U) = p(χU ) ≤
Λ(χU ) = ν(U) for every open subset U of X.

Since f ≤ idR+ , in particular θf (µ) is non-empty.
θf (µ) is compact saturated. To show this, we use the following results. Define

ν†(Q), for Q ∈ Q(X), as inf{ν(U) | Q ⊆ U}, and 〈Q ≥ r〉• as {ν ∈ V•(X) |
ν†(Q) ≥ r}. The latter sets are compact saturated subsets of V•(X): this is a
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consequence of [8, Lemma 6.6] if • is “≤ 1” or “1”, and of [18, Theorem 6.5 (3)]
otherwise.

We now notice that:

θf (µ) = {ν ∈ V•(X) | ∀Q ∈ Q(X) · ν†(Q) ≥ a∗Q}, (1)

where a∗Q = infU open⊇Q f(µ(2U)). Before we prove this, observe that θf (µ)
is therefore the intersection of the compact saturated subsets 〈Q ≥ a∗Q〉, Q ∈
Q(X), and is therefore itself compact, since V•(X) is stably compact. (The
latter holds because X is stably compact, see [17, 2]. Technically, this is proved
there for V1(X) and V≤1(X), but the proof is similar for V(X).)

To prove (1), let aU = f(µ(2U)). Every ν ∈ θf (µ) trivially satisfies ν†(Q) ≥
a∗Q. Conversely, assume the latter holds for every Q ∈ Q(X). For every open
subset U of X, by local compactness U is the directed union of all int(Q), where
Q ranges over the compact saturated subsets of U . Since 2 commutes with
directed unions, and µ and f are Scott-continuous, aU = supQ⊆U f(µ(2int(Q))).
Since int(Q) ⊆ U for every open neighborhood U of Q, this is less than or equal
to supQ⊆U a∗Q, and the latter is less than or equal to aU because a∗Q ≤ aU
whenever Q ⊆ U . Therefore aU = supQ⊆U a∗Q. A similar argument shows that
ν(U) = supQ⊆U ν†(Q) (or see Tix [26, Satz 3.4 (1)]). It follows that ν(U) ≥ aU .
As U is arbitrary, ν is in θf (µ).

θf is Scott-continuous. Monotonicity is clear, while for a directed fam-
ily (µi)i∈I in V•(X), θf (supi∈I µi) = {ν ∈ V•(X) | ∀U open in X · ν(U) ≥
supi∈I f(µi(2U))} (since f is Scott-continuous) =

⋂
i∈I θf (µi).

θf is continuous. Since X is T0, well-filtered, and locally compact, Q(X)
is a continuous dcpo, and the Scott and upper Vietoris topologies coincide [25,
Section 7.3.4], i.e., Q(X) = QV(X). The Kirch-Tix Theorem states that given
a continuous dcpo Y , the Scott and weak topologies coincide on V(Y ) [26,
Satz 4.10], and on V≤1(Y ) [19, Satz 8.6]; the same happens for V1(Y ) if addi-
tionally Y is pointed, by a trick due to Edalat [4, Section 3]: Y ′ = Y r {⊥}
is again a continuous dcpo, and V1(Y ) is isomorphic to V≤1(Y ′). Taking
Y = Q(X) = QV(X) (and noticing that this is pointed, as X is compact),
we obtain that V•(QV(X)) has the Scott topology of the pointwise ordering.
To show that θf is continuous, it is therefore enough to show that θ−1

f (2U) is
open in the Scott topology for every open subset U of V•(X). Since 2U is itself
Scott-open by well-filteredness, this amounts to the Scott-continuity of θf .

Theorem 6.2 For every QRB-domain X, V(X), V≤1(X), and also V1(X) if
X is pointed, are QRB-domains.

Proof. Let X be a QRB-domain, and (ϕi)i∈I be an approximating family of
quasi-deflations on X. By Theorem 5.7 (iii), we only need to show that V•(X)
is a QFS-space. It is sober since stably compact, as we have noted earlier.
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For ε ∈ (0, 1], and t ∈ R+, let fε(t) =
max(0,min(t, 1/ε) − ε). This is a chain of Scott-
continuous maps, as ε ≥ ε′ implies fε ≤ fε′ .
Also, fε ≤ idR+ . For short, write θε for the
map θfε given in Lemma 6.1, and define ψiε as
θε ◦ Vϕi : V•(X) → QV(V•(X)). The family
(ψiε)i∈I,ε∈(0,1] is directed, and for every ν ∈ V•(X),
we claim that

⋂
i∈I,ε∈(0,1] ψiε(ν) = ↑ ν.

ε

fε

1
ε

1
ε
− ε

Figure 2: The function fε

To this end, we notice that:

(a)
⋂
ε∈(0,1] θε(µ) = θid(µ). Indeed,

⋂
ε∈(0,1] θε(µ) = {ν′ ∈ V•(X) | ∀U open in X·

ν′(U) ≥ supε∈(0,1] fε(µ(2U))} = {ν′ ∈ V•(X) | ∀U open in X · ν′(U) ≥
µ(2U)} = θid(µ).

(b)
⋂
i∈I θid(Vϕi(ν)) = ↑ ν. This is proved as follows. For every open subset

U of X,
⋃
i∈I ϕ

−1
i (2U) = U : the elements x of U are those such that ↑x ∈

2U , and we obtain the desired equality by the defining property of quasi-
deflations, plus well-filteredness. It follows that supi∈I ν(ϕ−1

i (2U)) =
ν(

⋃
i∈I ϕ

−1
i (2U)) = ν(U). The elements ν′ of

⋂
i∈I θid(Vϕi(ν)) are those

elements of V•(X) such that, for every i ∈ I, for every open subset U of X,
ν′(U) ≥ Vϕi(ν)(2U); equivalently, such that ν′(U) ≥ supi∈I Vϕi(ν)(2U) =
ν(U), and we conclude.

Using these,
⋂
i∈I,ε∈(0,1] ψiε(ν) =

⋂
i∈I

⋂
ε∈(0,1] θε(Vϕi(ν)) =

⋂
i∈I θid(Vϕi(ν)) =

↑ ν, as announced.
It remains to show that ψiε is qfs. Write δx for the Dirac mass at x, namely,

the continuous valuation such that δx(U) = χU (x) for every open U . Let E
be the finite set of all elements that are minimal in some finitary compact in
the image of ϕi, n be its cardinality, and let M be the finite set of continuous
valuations of the form

∑
x∈E axδx, where each ax is an integer multiple of ε/n

between 0 and 1/ε (and with
∑
x∈E ax ≤ 1 if • is “≤ 1”,

∑
x∈E ax = 1 if • is

“1”). This will be our separating set.
Fix ν ∈ V•(X). We first simplify the expression of ψiε(ν). For Q ∈

Q(X), let a∗Q = infU open⊇Q fε(Vϕi(ν)(2U)) = infU open⊇Q fε(ν(ϕ−1
i (2U))).

Let Q1, · · · , Qm be the finitely many finitary compacts in the image of ϕi. For
J ⊆ {1, · · · ,m}, writeQJ for

⋃
j∈J Qj . We claim that ψiε(ν) =

⋂
J⊆{1,··· ,m}〈QJ ≥

a∗QJ 〉. To this end, recall equality (1), which we have used in the course of prov-
ing Lemma 6.1: θf (µ) = {ν′ ∈ V•(X) | ∀Q ∈ Q(X)·ν′†(Q) ≥ infU open⊇Q f(µ(2U))}.
So ψiε(ν) = {ν′ ∈ V•(X) | ∀Q ∈ Q(X) · ν′†(Q) ≥ a∗Q} =

⋂
Q∈Q(X)〈Q ≥ a∗Q〉.

Looking back at the definition of a∗Q, we see that, since ϕi has finite image,
ϕ−1
i (2U) can only take finitely many values when U varies. The family of these

values forms a (finite) filtered family of open sets, which therefore has a least el-
ement, which happens to be ϕ−1

i (2Q) (extending the 2 notation in the obvious
way). Hence a∗Q = fε(ν(ϕ−1

i (2Q))). For every ν′ ∈
⋂
J⊆{1,··· ,m}〈QJ ≥ a∗QJ 〉,

and every Q ∈ Q(X), let J be the set of indices j ∈ {1, · · · ,m} such that
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Qj ⊆ Q. Since ϕi takes its values among Q1, . . . , Qm, ϕ−1
i (2Q) = ϕ−1

i (2QJ),
so a∗Q = a∗QJ . It follows that ν′†(Q) ≥ ν†(QJ) ≥ a∗QJ = a∗Q, and as Q is ar-
bitrary, ν′ ∈

⋂
Q∈Q(X)〈Q ≥ a∗Q〉 = ψiε(ν). The converse inclusion ψiε(ν) ⊆⋂

J⊆{1,··· ,m}〈QJ ≥ a∗QJ 〉 is obvious.
To show that ψiε is qfs, it will therefore be enough to find an element∑
x∈E axδx of M below ν and in ψiε(ν) =

⋂
J⊆{1,··· ,m}〈QJ ≥ a∗QJ 〉.

Let L be the finite lattice of all intersections of sets of the form ↑A, A ⊆ E.
Tix observed that ν† defined a valuation on the compact saturated subsets of
X [26, Satz 3.4 (2–4)]. In particular ν† restricts to a valuation on L. Using
the Smiley-Horn-Tarski Theorem (see, e.g., [20, Theorem 3.4]), ν† extends to
an additive measure on the algebra ρL of subsets generated by L. The algebra
ρL is the smallest collection of subsets containing L and closed under unions,
intersections, and complements. Its elements are the finite disjoint unions of
sets of the form CA =

⋂
x∈A ↑xr

⋃
x∈ErA ↑x, A ⊆ E.

For each x ∈ E, let bx = ν†(CAx) where Ax is the unique subset of E such
that CAx contains x (that is, Ax = ↓x∩E). This definition ensures that ν†(B) =∑
x∈B∩E bx = (

∑
x∈E bxδx)(B) for every B ∈ L. For every open subset U of X,

and every x ∈ E∩U , CAx ⊆ ↑x ⊆ U , so (
∑
x∈E bxδx)(U) =

∑
x∈E∩U ν

†(CAx) =
ν†(

⋃
x∈E∩U CAx) (since the sum is disjoint) ≤ ν†(↑(E ∩ U)) ≤ ν(U).

When • is “≤ 1”, we define the desired element
∑
x∈E axδx ofM by letting ax

be the nearest multiple of ε/n below bx, namely ε
nb

n
ε bxc. Clearly,

∑
x∈E axδx ≤∑

x∈E bxδx ≤ ν. Moreover, for every J ⊆ {1, · · · ,m}, (
∑
x∈E axδx)†(QJ) + ε =∑

x∈E∩QJ ax + ε ≥
∑
x∈E∩QJ (ax + ε

n ) ≥
∑
x∈E∩QJ bx = ν†(QJ), since QJ be-

longs to ρL. Since ϕi(x) ⊇ ↑x for every x ∈ X, ϕ−1(2QJ) ⊆ QJ . For every Q ∈
Q(X), recall that ϕ−1

i (2Q) is the least element of some finite filtered family of
open sets, hence is open. It follows that the notation ν(ϕ−1

i (2QJ)) makes sense.
From ϕ−1

i (2QJ) ⊆ QJ , we obtain ν†(QJ) ≥ ν(ϕ−1
i (2QJ)). We have just shown

that (
∑
x∈E axδx)†(QJ) + ε ≥ ν(ϕ−1

i (2QJ)), whence (
∑
x∈E axδx)†(QJ) ≥

max(0, ν(ϕ−1
i (2QJ)) − ε) = fε(ν(ϕ−1

i (2QJ))) = a∗QJ . (We are silently using
the fact that fε(t) = max(0, t− ε) for every t ∈ [0, 1].) Therefore

∑
x∈E axδx is

in 〈QJ ≥ a∗QJ 〉, and as J is arbitrary, it is in ψiε(ν).
When • is “1” instead, we use the standard trick of putting all the missing

mass on the bottom element ⊥. In other words, we define ax as above for x 6= ⊥,
and as 1−

∑
x∈E,x6=⊥ ax otherwise. (Note that E contains ⊥. Indeed, it appears

as the minimal element of ϕi(⊥) = X.) We check that (
∑
x∈E axδx)(U) ≤ ν(U)

as above when U does not contain ⊥, while the same inequality reduces to the
trivial 1 ≤ 1 when U contains ⊥, namely when U = X. Since we are using
larger coefficients ax than in the “≤ 1” case, the fact that (

∑
x∈E axδx)†(QJ) ≥

a∗QJ follows by the same arguments. It follows, again, that
∑
x∈E axδx is in⋂

J⊆{1,··· ,m}〈QJ ≥ a∗QJ 〉 = ψiε(ν).
Finally, when • is neither “≤ 1” not “1”, we argue as in the “≤ 1” case,

except we now define ax as ε
nb

n
ε min( 1

ε , bx)c. To check that (
∑
x∈E axδx)†(QJ) ≥

a∗QJ , we compute (
∑
x∈E axδx)†(QJ) + ε =

∑
x∈E∩QJ ax + ε ≥

∑
x∈E∩QJ (ax +

ε
n ) ≥

∑
x∈E∩QJ min( 1

ε , bx). If every bx is less than or equal to 1
ε , the latter is
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equal to ν†(QJ), hence greater than or equal to min( 1
ε , ν
†(QJ)). If bx > 1

ε for
some x ∈ E ∩QJ , then ν†(QJ) ≥ ν†(CAx) = bx >

1
ε , so

∑
x∈E∩QJ min( 1

ε , bx) ≥
1
ε = min( 1

ε , ν
†(QJ)). In any case, (

∑
x∈E axδx)†(QJ) + ε ≥ min( 1

ε , ν
†(QJ)). As

in the “≤ 1” case, this implies (
∑
x∈E axδx)†(QJ) + ε ≥ min( 1

ε , ν(ϕ−1
i (2QJ))),

so (
∑
x∈E axδx)†(QJ) ≥ fε(ν(ϕ−1

i (2QJ))) = a∗QJ .
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