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Abstract

We present a Stone duality for bitopological spaces in analogy

to the duality between topological spaces and frames, and discuss

the resulting notions of sobriety and spatiality. Under the additional

assumption of regularity, we prove a characterisation theorem for

subsets of a bisober space that are compact in one and closed in the

other topology. This is in analogy to the celebrated Hofmann-Mislove

theorem for sober spaces. We link the characterisation to Taylor’s

and Escardó’s reading of the Hofmann-Mislove theorem as continuous

quantification over a subspace.
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Introduction

The Hofmann-Mislove theorem states that in a sober space the open neigh-
bourhood filters of compact saturated sets are precisely the Scott-open filters
in the corresponding frame of opens. Mathematically, it has some remarkable
consequences, such as the fact that the set of compact saturated subsets of
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a sober space form a dcpo when ordered by reverse inclusion, and it links
Lawson duality (applied to the frame of opens) to the idea of the co-compact
topology on the space, [19]. A modern and comprehensive presentation by
the original authors can be found in section II-1 of [11].

The significance of the Hofmann-Mislove theorem in computer science
took some time to emerge, and credit in this respect is due to Plotkin,
[20, 21], Smyth, [22], and Vickers, [24], who pointed out that it is at the
core of the proof that the upper powerdomain (defined as a free algebraic
theory) has a concrete representation as a set of subsets of the given domain.
Quite unexpectedly, it was also required in the classification of cartesian
closed categories of domains, [15]. More recently, Taylor, [23], and Escardó,
[8], have interpreted the theorem as expressing the idea that the compact
saturated sets are precisely those for which there is a continuous universal
quantifier. To this end, they read “open set” as “predicate” and “Scott-open
filter of opens” as a map from predicates to Sierpiński space that is Scott-
continuous and finite meet preserving, that is, as a “quantifier” which tells
us whether a predicate is true for all elements of the corresponding compact
set. Amazingly, such a quantifier exists not only in the mathematical model
but can in fact be implemented in a sequential programming language, see
[5, 10, 9].

Below we present a Stone duality for bitopological spaces motivated by the
idea that a predicate may not only be true for some states, but in general will
be false for others, and that the mechanisms for establishing falsehood will in
general be different from those that establish truth. As Smyth has stressed,
the positive extents of observable predicates form a topology, and so all we do
is to add a second topology for the negative extents. However, in semantics
we are already quite familiar with dealing with two topologies: Early on
in the study of continuous lattices it was discovered by Lawson that the
“weak lower topology” is a natural partner for the Scott-topology, their join
being the (compact Hausdorff) Lawson topology. On hyperspaces Y ⊆ PX
one naturally has the upper topology generated by sets of the form ¤O :=
{A ∈ Y | A ⊆ O} (O an open in the original space), and the lower topology
generated by sets of the form ♦O := {A ∈ Y | A ∩ O 6= ∅}. Abramsky, [1],
showed that the three powerdomains can be obtained systematically from
this (bi-)topological point of view.

Our interest in bitopological spaces was driven by these examples and
also by a desire to analyse various Stone dualities, but there is no room here
to expand on this latter aspect; instead we refer the reader to the report [16].
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The goal of the present paper is to exhibit a Hofmann-Mislove type theo-
rem that, like its classical counterpart, admits a computational reading as a
statement about quantifiers. The predicates to be quantified refer to Belnap’s
four-valued logic, [4], that is, in any state they can be true, false, unknown,
or contradictory. To explain the effect of quantification let these four truth
values be represented by {true}, {false}, {}, and {true, false}. Given a set A
of states (which is a subset of a state space X) and a four-valued predicate ϕ,
the result of quantification (i.e., ∀x ∈ A.ϕ(x)) will contain true if ϕ(x) con-
tains true for all x ∈ A; it will contain false if ϕ(x) contains false for some
x ∈ A. We note that ∀x ∈ A.ϕ(x) could be false (and not contradictory)
even if ϕ is contradictory for some x ∈ A. However, if ϕ is not contradictory
for any state x ∈ X then ∀x ∈ A.ϕ(x) will also not be contradictory. Like-
wise, if ϕ is not unknown for any state x then ∀x ∈ A.ϕ(x) will also not be
unknown.

Before we can state and prove our Hofmann-Mislove Theorem, we must
develop the necessary bitopological background of four-valued logic. We be-
lieve our approach to be novel, so the presentation is quite detailed. For com-
parison and reference we present the classical Hofmann-Mislove Theorem and
its Stone duality context in Section 1, then introduce d-frames as a bitopo-
logical analogue of frames in Section 2. In Section 3 we demonstrate that in
this setting Belnap’s distinction between logical order and information order
emerges naturally, and that there is an algebraic connection between the two.
By analysing the spatial case, we postulate some “reasonable” requirements
for d-frames in Section 4. Up to this point, most proofs are straightfor-
ward and mostly omitted. The theory of d-frames comes into its own once
regularity is assumed, and Section 5, where we prove our Hofmann-Mislove
Theorem, constitutes the mathematical core of the paper. In Section 6 we
consider the dual concept of a continuous existential quantifier, and link the
presence of continuous quantifiers to bitopological compactness.

There is only room to review classical Stone duality, so we have to assume
that the reader is familiar with basic notions from topology, ordered sets,
category theory, and Stone duality. For background reading on the first two
topics we recommend [7], for the latter, [14]. Alternatively, either of the texts
[11] and [2] also covers the necessary prerequisites.

A preliminary version of this paper appeared as [17].
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1 Stone duality and the Hofmann-Mislove

theorem

We briefly review the duality between topological spaces and frames. For
more details see [2, Chapter 7], and [14, 11].

Definition 1.1 A frame is a complete lattice in which finite meets distribute
over arbitrary joins. We denote with ⊑, ⊓,

⊔

, 0, and 1 the order, finite
meets, arbitrary joins, least and largest element, respectively.1

A frame homomorphism preserves finite meets and arbitrary joins; thus
we have the category Frm.

For (X; τ) a topological space, (τ ;⊆) is a frame; for f : (X; τ) → (X ′; τ ′)
a continuous function, f−1 : τ ′ → τ is a frame homomorphism. These are the
constituents of the contravariant functor Ω: Top → Frm. It is represented
by Top(−, S) where S is Sierpiński space.2

The collection N (a) of open neighbourhoods of a point a in a topological
space (X; τ) forms a completely prime filter in the frame Ω X, that is, it is an
upper set, closed under finite intersections, and whenever

⋃

O ∈ N (a) then
O∩N (a) 6= ∅. This leads one to consider the set of points (sometimes called
“abstract points” for emphasis) of a frame L to be the collection spec L of
completely prime filters. Abstract points are exactly the pre-images of {1}
under homomorphisms from L to 2 = {0 < 1}.

A frame L induces a topology on spec L whose opens are of the
form Φ(x) = {F ∈ spec L | x ∈ F} with x ∈ L. A frame homomor-
phism h : L → L′ induces a continuous function spec h : spec L′ → spec L
by letting spec h(F ) := h−1(F ) for F ∈ spec L′. These are the components of
the contravariant functor spec from Frm to Top, represented by Frm(−, 2).

Theorem 1.2 The functors Ω and spec constitute a dual adjunction between
Top and Frm.

The unit and co-unit of this adjunction are simply N and Φ. That is,
for any space (X; τ) the map ηX : X → spec Ω X, given by a 7→ N (a), is
continuous; it is also open onto its image. Likewise, for any frame L the map

1We use “square” symbols for the operations of a frame to distinguish them from the

“logical” operations of a d-frame, to be introduced in Section 3.
2Sierpiński space has two points and precisely one non-trivial open set.
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ǫL : L → Ω spec L, given by x 7→ Φ(x), is a frame homomorphism; it is also
surjective.

We can ask when a frame L is spatial in the sense that it is isomorphic
to Ω X for some space X. As it turns out, there is a canonical candidate
for X, namely, spec L; more precisely, L is spatial if and only if ǫL is a frame
isomorphism. Because ǫL is already a surjective frame homomorphism, this
holds if and only if ǫL is injective.

Similarly, we can ask when a space X is sober in the sense that it is home-
omorphic to spec L for some frame L. By the same reasoning as in frames,
this holds if and only if ηX is a homeomorphism. Because ηX is already
continuous and open onto its image, it suffices for ηX to be a bijection. In-
jectivity is precisely the T0 axiom and surjectivity says that every completely
prime filter of opens is the neighbourhood filter of a point.

Theorem 1.3 The functors Ω and spec restrict to a dual equivalence between
sober spaces and spatial frames.

This is the setting for the Hofmann-Mislove theorem, [13], which we are
now ready to state.

Theorem 1.4 In a sober space (X, τ), there is a bijection between the set of
compact saturated subsets of X and the set of Scott-open filters in τ .

Although a direct proof is possible, [18], it is more useful for us to refer
to Stone duality, as in the original paper [13]:

Lemma 1.5 A Scott-open filter in a frame L is equal to the intersection of
the collection of completely prime filters containing it.

Proof. (Sketch) Let S be the Scott-open filter and a an element not in S.
Extend a to a maximal chain outside S and take its supremum v, which by
Scott openness is a maximal element of L \ S. Because S is a filter, v is
meet irreducible, and because L is distributive, it is furthermore meet prime.
It follows that the set L \ ↓v is a completely prime filter that separates a
from S.

Proof. (of 1.4) Clearly, the open neighbourhoods of a compact subset form
a Scott-open filter in the lattice of open sets. For the converse, let A be
the intersection of a Scott-open filter S of opens. By the lemma, every open
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neighbourhood of A belongs to S. Because S is assumed to be Scott-open,
A is compact (and obviously saturated).

A saturated set is the intersection of its open neighbourhoods by defini-
tion, and a Scott-open filter is the intersection of the completely prime filters
containing it by the lemma, so the two assignments are inverses of each other.

2 Stone duality for bitopological spaces

Without spending too much time on motivation, we now sketch a Stone
duality for bitopological spaces; for the full picture we refer to [16].

A bitopological space is a set X together with two topologies τ+ and τ−.
No connection between the two topologies is assumed. Morphisms between
bitopological spaces are required to be continuous with respect to each of the
two topologies; this gives rise to the category biTop.

For a Stone dual it is natural to consider pairs (L+, L−) of frames (and
pairs of frame homomorphisms) but for some purposes it is more convenient
to axiomatise the product τ+×τ−, that is, to have a single-sorted algebraic
structure. In fact, the two views are entirely equivalent:

Proposition 2.1 The category Frm×Frm is equivalent to the category
whose objects are frames which contain a pair of complemented elements
tt and ff , and whose morphisms are frame homomorphisms that preserve tt
and ff .

Proof. In one direction, one assigns to a pair (L+, L−) the product L+×L−

and the constants tt := (1, 0) and ff := (0, 1). In the other direction, one
assigns to (L; tt , ff ) the two frames L+ := [0, tt ] and L− := [0, ff ]. The isomor-
phism from L to [0, tt ]×[0, ff ] is given by α 7→ 〈α+, α−〉 := 〈α ⊓ tt , α ⊓ ff 〉.
The isomorphism from L+×L− to L is given by 〈x, y〉 7→ x ⊔ y.

In addition to the notation 〈α+, α−〉 introduced in the proof above we
will also use α ⊑+ β in case α+ ⊑ β+, and similarly ⊑−. One has α ⊑ β if
and only if α ⊑+ β and α ⊑− β.

Having two frames is not enough, however, as we also need to express
the fact that they represent topologies on the same set. One approach for
achieving this was introduced by Banaschewski, Brümmer, and Hardie in [3];
their biframes axiomatise the two topologies and the joint refinement τ+∨τ−.
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Our proposal is different; we only record when two open sets O+ ∈ τ+ and
O− ∈ τ− are disjoint from each other, and when they cover the whole space X.
In the first case we say that they are consistent, in the second that they are
total.

Definition 2.2 A d-frame consists of a frame L, a pair of complemented
elements tt and ff , and two unary predicates con and tot. Morphisms between
d-frames are required to preserve all of this structure. The resulting category
is denoted by dFrm.

As we have already explained informally, the contravariant functor Ω from
bitopological spaces to d-frames assigns to a space (X; τ+, τ−) the d-frame
(τ+×τ−; (X, ∅), (∅, X), con, tot) where (U, V ) ∈ con if and only if U ∩ V = ∅
and (U, V ) ∈ tot if and only if U ∪ V = X. The functor associates with a
bicontinuous function f the map (U, V ) 7→ (f−1(U), f−1(V )). A trivial bit of
set theory will convince the reader that the consistency and totality predi-
cates are preserved. Figure 1 shows some small examples. The bitopological
space S.S, which looks like a product of two copies of Sierpiński space, allows
us to represent the functor Ω as biTop(−, S.S). Note how the four elements
of S.S correspond to the four ways in which an element of the space can be
related to an open from τ+ and an open from τ−: it can be in one of the two
but not the other, it can be in both, or it can be in neither.

For a functor in the reverse direction, we continue to follow the theory of
frames by employing 2.2, depicted in the upper right corner of Figure 1, as
the dualising object. More precisely:

Definition 2.3 The d-frame 2.2 is based on the frame 2 × 2 where 2 is the
two-element frame with elements 0 < 1. Its smallest element is (0, 0), denoted
again by 0, and the largest element is (1, 1) and denoted by 1. The other two
elements are tt = (1, 0) and ff = (0, 1). The consistency predicate contains
0, tt , and ff , the totality predicate 1, tt , and ff .

Note that 2.2 is isomorphic to Ω(∗) where ∗ is the bitopological space with
one point.

Definition 2.4 A d-point of a d-frame L is a dFrm morphism from L
to 2.2. When it is clear that we are within the context of d-frames we usually
drop the prefix “d-” from “d-point.”

7
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(O+, O
−

)

O+

O−

O+

O
−

O+

O
−

O
−

O+

2.2:

Figure 1: Some bitopological spaces and their concrete d-frames. (D-frame
elements in the con-predicate are indicated by an additional circle, those in
the tot-predicate are filled in.)
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A point p : L → 2.2 is completely determined by the pre-images F ∗
+ :=

p−1({tt , 1}) and F ∗
− := p−1({ff , 1}). These two subsets of L have the following

properties:

• F ∗
+ and F ∗

− are completely prime filters;

• tt ∈ F ∗
+ and ff ∈ F ∗

−;

• α ∈ con ⇒ α 6∈ F ∗
+ or α 6∈ F ∗

−;

• α ∈ tot ⇒ α ∈ F ∗
+ or α ∈ F ∗

−.

It is easy to see that a pair of subsets with these characteristics gives rise to
a point, in other words, this is an alternative description of the concept of a
point for a d-frame.

Yet another formulation is obtained by employing Proposition 2.1 and
viewing L as a product of two frames L+ and L−, 2.2 as the product of two
copies of 2, and p as a pair of homomorphisms p+ : L+ → 2, p− : L− → 2. By
taking pre-images, we obtain subsets F+ := p−1

+ (1) andF− := p−1
− (1). which

satisfy:

• F+ and F− are completely prime filters of L+ and L−, respectively;

• (dpcon) α ∈ con ⇒ α+ 6∈ F+ or α− 6∈ F−;

• (dptot) α ∈ tot ⇒ α+ ∈ F+ or α− ∈ F−.

The connection between con, tot, F ∗
+, F ∗

−, F+, and F− is illustrated in Fig-
ure 2.

For the purposes of the present paper we found the last formulation to
be the most appropriate one.

The set of points of a d-frame becomes a bitopological space by consider-
ing the collection of Φ+(x) := {(F+, F−) | x ∈ F+}, x ∈ L+, as the first topol-
ogy T+, and the collection of Φ−(y) := {(F+, F−) | y ∈ F−}, y ∈ L−, as the
second topology T−. Together, this is the spectrum of the d-frame L, which
we denote as specL, mirroring the notation for frames. The construction for
objects is extended to a (contravariant) functor spec : dFrm → biTop in the
usual way. The proof of the following is now completely analogous to the
single frame case.

Theorem 2.5 The functors Ω and spec establish a dual adjunction between
biTop and dFrm.
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1

0

fftt

tot

con

F ∗
−

F−
F+

F ∗
+

Figure 2: An abstract point in a d-frame.

We say that a bitopological space X is (d-) sober if it is bihome-
omorphic to specL for some d-frame L; this is equivalent to the unit
x 7→ (N+(x),N−(x)) being a bijection.

Example 2.6 All the bitopological spaces in Figure 1 are d-sober. For the
one-point space this is clear, as the associated d-frame admits only one point.
For the other four spaces one argues as follows: The underlying frame is the
same in each case and it admits four completely prime filters:

F 1
+ := ↑tt F 1

− := ↑ff
F 2

+ := ↑(O+, ∅) F 2
− := ↑(∅, O−)

The notation already indicates which of these can be used as the first, re-
spectively second, component of a point (as prescribed by the requirements
tt ∈ F ∗

+, ff ∈ F ∗
−). From this we get four possible combinations, and these

are indeed all available in the last example. In the other three examples, the
con/tot labelling of the element (O+, O−) in the centre of the d-frame excludes
certain combinations: if it belongs to con, then F 2

+ cannot be paired with F 2
−,

and if it belongs to tot then F 1
+ cannot be paired with F 1

−.

For an exploration into the concept of d-sobriety we refer to [16]; here we
confine ourselves to one particular class of examples.

Definition 2.7 A bitopological space (X; τ+, τ−) is called order-separated if
≤ = ≤+ ∩ ≥− is a partial order and x 6≤ y implies that there are disjoint
open sets O+ ∈ τ+ and O− ∈ τ− such that x ∈ O+ and y ∈ O−. (The
relations ≤+ and ≤− refer to the specialisation orders on X with respect to
τ+ and τ−, respectively.)
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Lemma 2.8 In an order-separated bitopological space the following are true:

1. ≤+ = ≥− = ≤;

2. ≤+ ∩ ≤− = ‘=’.

Proof. (1) For the first equality assume x 6≤+ y. This implies x 6≤ y and
we get a separating consistent pair (O+, O−). Since y ∈ O− but x 6∈ O− we
conclude x 6≥− y. So 6≤+ = 6≥− and this is equivalent to ≤+ = ≥−. The
second equality follows by the definition of ≤.

(2) From the first part we get ≤+ ∩ ≤− = ≤ ∩≥ and the claim then
follows from anti-symmetry of ≤.

Theorem 2.9 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical map η : X →
spec Ω X is injective; the real issue is surjectivity. So assume that (F+, F−)
is a point of Ω X. Consider the two sets

V+ :=
⋃

{O+ ∈ τ+ | O+ 6∈ F+} V− :=
⋃

{O− ∈ τ− | O− 6∈ F−}

and their complements V c
+, V c

−. Because of condition (dptot), V+ ∪ V− cannot
be the whole space, in other words, the intersection V c

+ ∩ V c
− is non-empty.

Next we show that every element of V c
+ is below every element of V c

− in
the specialisation order ≤ = ≤+ = ≥−. Indeed, if x ∈ V c

+, y ∈ V c
−, and x 6≤ y,

then by order separation there is a pair (O+, O−) with O+∩O− = ∅, x ∈ O+,
and y ∈ O−. By definition of V+, V− we have O+ ∈ F+ and O− ∈ F−,
contradicting condition (dpcon) of d-points.

Finally, let a be an element in the intersection V c
+ ∩ V c

−. We show that
F+ is the neighbourhood filter of a in τ+. Assume a ∈ O+; this implies
O+ 6⊆ V+ and the latter is equivalent to O+ ∈ F+. For the converse we start
at O+ 6⊆ V+, which gives us an element b ∈ V c

+ ∩O+ about which we already
know that b ≤ a. It follows that b ≤+ a and hence a ∈ O+.

From this result it follows immediately that the real line together with
the usual upper and lower topology is d-sober. Likewise, one sees that the
punctured unit interval [0, 1] \ {1

2
} is d-sober with respect to the same two

topologies. Note that neither is sober in the traditional sense when equipped
with only one of the topologies.
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3 The logical structure of d-frames

Before we consider spatiality for d-frames let us have a look at the duality
from the point of view of logic. For this we interpret the elements of a d-
frame L as logical propositions. An abstract point (F ∗

+, F ∗
−) is then a model,

and F ∗
+ consists of those propositions which are true in the model, F ∗

− of
those that are false. If a proposition belongs to con then for no model is it
both true and false (and may be neither); if it belongs to tot then in every
model it is either true or false (or indeed both). The set of all models (i.e.,
specL) becomes a bitopological space by collecting into one topology all sets
of models in which some proposition is true (the “positive extents”) and in
the other the sets of models where some proposition is false (the “negative
extents”).

From this perspective it is natural to consider an order between proposi-
tions which increases the positive extent and shrinks the negative one. As it
turns out, this additional relation is always present in a d-frame, and in fact
it follows from the distributive lattice structure and the two complemented
elements alone. The earliest reference to this appears to be [6], but the proof
is entirely straightforward and can be left as an exercise.

Proposition 3.1 Let (L;⊓,⊔, 1, 0) be a bounded distributive lattice, and
(t, f) a complemented pair in L, that is, t ⊓ f = 0 and t ⊔ f = 1. Then
by defining

x ∧ y := (x ⊓ f) ⊔ (y ⊓ f) ⊔ (x ⊓ y) = (x ⊔ f) ⊓ (y ⊔ f) ⊓ (x ⊔ y)
x ∨ y := (x ⊔ t) ⊓ (y ⊔ t) ⊓ (x ⊔ y) = (x ⊓ t) ⊔ (y ⊓ t) ⊔ (x ⊓ y)

one obtains another bounded distributive lattice (L;∧,∨, t, f), in which (1, 0)
is a complemented pair. The original operations are recovered from it as

x ⊓ y = (x ∧ 0) ∨ (y ∧ 0) ∨ (x ∧ y) = (x ∨ 0) ∧ (y ∨ 0) ∧ (x ∨ y)
x ⊔ y = (x ∨ 1) ∧ (y ∨ 1) ∧ (x ∨ y) = (x ∧ 1) ∨ (y ∧ 1) ∨ (x ∧ y)

Furthermore, any two of the operations ⊓, ⊔, ∧, and ∨ distribute over each
other. If L is a frame, then ∧ and ∨ are also Scott continuous.

This justifies our choice of symbols tt and ff in a d-frame, and suggests
that we regard (L;∧,∨, tt , ff ) as the logical structure of a d-frame. Alto-
gether, then, we see that d-frames are special “bilattices,” which were intro-
duced by Ginsberg, [12], as a generalisation of Belnap’s four-valued logic [4].
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Indeed, the four-element d-frame 2.2, which we introduced in Definition 2.4
and used as the dualising object in dFrm, is exactly Belnap’s lattice of truth
values, except that we added the consistency and totality predicates.

Exploiting Proposition 2.1 we can easily compute conjunction and dis-
junction in terms of the representation of a d-frame as L+×L−:

〈x, y〉 ∧ 〈x′, y′〉 := 〈x ⊓ x′, y ⊔ y′〉
〈x, y〉 ∨ 〈x′, y′〉 := 〈x ⊔ x′, y ⊓ y′〉

Note the reversal of order in the second component. This makes sense, as we
think of the second frame as providing negative answers.

4 Reasonable d-frames and spatiality

We say that a d-frame L is spatial if it is isomorphic to Ω X for some bitopo-
logical space X. This is equivalent to the co-unit ǫ : α 7→ (Φ+(α), Φ−(α))
being an isomorphism of d-frames. As it is always surjective by definition,
the condition boils down to ǫ being injective and reflecting con and tot. If
this is spelt out concretely, one arrives at the following:

Proposition 4.1 A d-frame L is spatial if and only if the following four
conditions are satisfied:

(s+) ∀α 6⊑+ β ∃(F+, F−) ∈ specL. α+ ∈ F+, β+ 6∈ F+;
(s−) ∀α 6⊑− β ∃(F+, F−) ∈ specL. α− ∈ F−, β− 6∈ F−;

(scon) ∀α 6∈ con ∃(F+, F−) ∈ specL. α+ ∈ F+, α− ∈ F−;
(stot) ∀α 6∈ tot ∃(F+, F−) ∈ specL. α+ 6∈ F+, α− 6∈ F−;

The following lemma is very easy to prove for concrete d-frames that arise
from a bitopological space, and it confirms the intuition of con as the set of
pairs of open sets that do not intersect, and tot as those pairs that cover the
whole space.

Lemma 4.2 Let (L; tt , ff ; con, tot) be a spatial d-frame. The following prop-
erties hold:

(con–↓) α ⊑ β & β ∈ con =⇒ α ∈ con

(tot–↑) α ⊑ β & α ∈ tot =⇒ β ∈ tot
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(con–tt) tt ∈ con

(con– ff ) ff ∈ con

(con–∧) α ∈ con & β ∈ con =⇒ (α ∧ β) ∈ con

(con–∨) α ∈ con & β ∈ con =⇒ (α ∨ β) ∈ con

(tot–tt) tt ∈ tot

(tot– ff ) ff ∈ tot

(tot–∧) α ∈ tot & β ∈ tot =⇒ (α ∧ β) ∈ tot

(tot–∨) α ∈ tot & β ∈ tot =⇒ (α ∨ β) ∈ tot

(con–
⊔

↑) A ⊆ con directed w.r.t. ⊑ =⇒
⊔

↑A ∈ con

(con–tot) α ∈ con, β ∈ tot, (α =+ β or α =− β) =⇒ α ⊑ β

Definition 4.3 A d-frame which satisfies the properties stated in Lemma 4.2
is called reasonable. The category of reasonable d-frames is denoted
by rdFrm.

Note that the converse of Lemma 4.2 does not hold, i.e., a reasonable
d-frame need not be spatial: take a frame L without any points and consider
(L×L; (1, 0), (0, 1), con, tot) where 〈x, y〉 ∈ con if x ⊓ y = 0, and 〈x, y〉 ∈ tot

if x ⊔ y = 1. It is a trivial exercise to prove that the resulting d-frame is
reasonable, but it obviously can’t have any points.

Proposition 4.4 The forgetful functor from rdFrm to Set has a left ad-
joint.

Proof. The free reasonable d-frame over a set A is
(FA×FA; (1, 0), (0, 1), con, tot) where FA is the free frame over A.
Generators are the pairs (a, a), a ∈ A. The two relations are chosen
minimally: 〈x, y〉 ∈ con if and only if x = 0 or y = 0; 〈x, y〉 ∈ tot if and only
if x = 1 or y = 1. The conditions for a reasonable d-frame are proved by
case analysis.

As an example, the structure labelled 3.3 in Figure 1 is the free reasonable
d-frame generated by a one-element set.

The following additional property of spatial d-frames will also play a part
in our presentation of a Hofmann-Mislove theorem for sober bitopological
spaces, but we do not consider it elementary enough to be included in the
definition of “reasonable.” The proof-theoretic terminology used in its label
refers to a presentation of d-frames that places more emphasis on the logical
structure, see [16, Section 7].
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Proposition 4.5 Every spatial d-frame satisfies the following property:

(CUT)

∀i ∈ I. 〈ai, bi〉 ∈ con

∀i ∈ I. 〈x ⊔ ai, y〉 ∈ tot

〈x, y ⊔
⊔

i∈I bi〉 ∈ tot











=⇒ 〈x, y〉 ∈ tot

5 Regularity and the Hofmann-Mislove the-

orem

A major practical problem with d-frames is that it is very difficult to con-
struct points for them. For example, consider the proof of the Hofmann-
Mislove Lemma 1.5, where we exploited the fact that in a frame there is a
one-to-one correspondence between completely prime filters F and ⊓-prime
elements v (given by the assignments v 7→ L\↓v and F 7→

⊔

L\F ). The ana-
logue for d-frames is not very helpful. The situation improves considerably
if we also require regularity.

Definition 5.1 Let (L; tt , ff ; con, tot) be a reasonable d-frame. For two ele-
ments x, x′ ∈ L+ we say that x′ is well-inside x (and write x′ ⊳ x) if there is
y ∈ L− such that 〈x′, y〉 ∈ con and 〈x, y〉 ∈ tot. To avoid lengthy verbiage,
we will usually write rx′⊳ x for the “witnessing” element y (although it is not
uniquely determined). On L− the well-inside relation is defined analogously.

A d-frame is called regular if every x ∈ L+ is the supremum of elements
well-inside it, and similarly for elements of L−.

For a bitopological space to be regular we require that at least one of the
two topologies is T0 and that the corresponding d-frame is regular.3

We note that the elements well-inside a fixed element x of a reasonable
d-frame form a directed set; this follows from (con–∨) and (tot–∨). That
they are all below x is a consequence of (con–tot). 1 ⊳ 1 is always true as 0
can be chosen as the witness in the other frame. It is an easy exercise to show
that a regular bitopological space is order-separated (and hence d-sober), but
a regular d-frame need not be spatial.

Lemma 5.2 Let L be a reasonable d-frame and x ∈ L+. Define

P(x) := {b ∈ L− | ∃a 6⊑ x. 〈a, b〉 ∈ con} and C(x) := {b ∈ L− | 〈x, b〉 6∈ tot}

3It then follows that the other topology is T0 as well.
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1. P(x) ⊆ C(x);

2. If L is regular then
⊔

P(x) =
⊔

C(x).

Proof. (1) is a direct consequence of (con–tot): if we have 〈a, b〉 ∈ con

and 〈x, b〉 ∈ tot then a ⊑ x follows.
For (2) let b′ ⊳ b ∈ C(x). The witness rb′⊳ b cannot be below x as otherwise

we could conclude 〈x, b〉 ∈ tot from 〈rb′⊳ b, b〉 ∈ tot. We also have 〈rb′⊳ b, b
′〉 ∈

con and so find that b′ ∈ P(x). By regularity,
⊔

P(x) is above b itself. It
follows that

⊔

P(x) ⊒
⊔

C(x), and by (1) the two suprema are in fact the
same.

Lemma 5.3 Let L be a reasonable d-frame and v+ ∈ L+, v− ∈ L−. Consider
the following statements:

(i) v− = max C(v+) and v+ = max C(v−);

(ii) (L+ \ ↓v+, L− \ ↓v−) is a d-point;

(iii) 〈v+, v−〉 6∈ tot and v− ⊒
⊔

↑P(v+);

(iv) 〈v+, v−〉 is a maximal element of (L+×L−) \ tot.

The following are true:

1. (i) ⇒ (ii) ⇒ (iii), and (i) ⇒ (iv).

2. If L is regular then (iii) ⇒ (i).

3. If L satisfies the (CUT) rule then (iv) ⇒ (ii).

Proof. Part (1), (i) ⇒ (ii): If 〈x, y〉 ∈ tot then either x 6⊑ v+ or y 6⊑ v−
as otherwise we would have 〈v+, v−〉 ∈ tot by (tot–↑). If 〈x, y〉 ∈ con and
x 6⊑ v+ then y ∈ P(v+) ⊆ C(v+) by the previous lemma; hence y ⊑ v−.
Thus we have shown that the pair (L+ \ ↓v+, L− \ ↓v−) satisfies conditions
(dptot) and (dpcon) for d-points and it remains to show that we have two
completely prime filters. This will hold if v+ and v− are ⊓-irreducible. So
let v− = y ⊓ y′; by (tot–∨) either 〈v+, y〉 /∈ tot or 〈v+, y′〉 /∈ tot, which means
that either y = v− or y′ = v−.

(ii) ⇒ (iii): 〈v+, v−〉 6∈ tot follows from (dptot). For the second statement,
if x 6⊑ v+ and 〈x, y〉 ∈ con then y ⊑ v− by (dpcon). So we have v− ⊒

⊔

P(v+).
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The set P(v+) is directed because L+ \↓v+ is a filter and (con–∧) is assumed
for reasonable d-frames.

(i) ⇒ (iv) is trivial.
Part (2), (iii) ⇒ (i): On the side of L− we already have v− ⊒

⊔

C(v+) by
the previous lemma. For L+, assume x 6⊑ v+. By regularity there is x′ ⊳ x
with x′ 6⊑ v+. Because of 〈x′, rx′⊳ x〉 ∈ con we have rx′⊳ x ⊑ v− by assumption,
and then from 〈x, rx′⊳ x〉 ∈ tot we infer 〈x, v−〉 ∈ tot by (tot–↑). It follows
that C(v−) ⊆ ↓v+. Together with 〈v+, v−〉 6∈ tot this is exactly (i).

Part (3), (iv) ⇒ (ii): As in (i) ⇒ (ii) we get that v+ and v− are ⊓-prime,
and that condition (dptot) is satisfied for (L+ \ ↓v+, L− \ ↓v−). In order to
show (dpcon) assume 〈x, y〉 ∈ con. If we had x 6⊑ v+ and y 6⊑ v− then by (the
contrapositive of) the (CUT) rule we would have either 〈v+, v− ⊔ y〉 6∈ tot or
〈v+ ⊔ x, v−〉 6∈ tot, contradicting the maximality of 〈v+, v−〉.

We are ready to formulate and prove the d-frame analogue to the
Hofmann-Mislove Lemma 1.5:

Lemma 5.4 Let L be a regular d-frame. Assume that S+ is a Scott-open
filter in L+ and U− = L− \ ↓u− is a completely prime upper set in L− such
that:

(hmcon) α ∈ con =⇒ α+ /∈ S+ or α− /∈ U−

(hmtot) α ∈ tot =⇒ α+ ∈ S+ or α− ∈ U−

Then the following are true:

1. u− =
⊔

↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}, that is, U− is uniquely determined
by S+.

2. S+ = {a | 〈a, u−〉 ∈ tot}, that is, S+ is uniquely determined by U−.

3. x ⊑ S+ ⇔ (x, u−) ∈ con.

4. For any point (F+, F−) ∈ specL, S+ ⊆ F+ ⇔ F− ⊆ U−.

If L satisfies (CUT), then furthermore the following are true:

5. S+ is the intersection of all F+ where (F+, F−) is a point and S+ ⊆ F+.

6. U− is the union of all F− where (F+, F−) is a point and F− ⊆ U−.

7. The set A := {(F+, F−) | S+ ⊆ F+} = {(F+, F−) | F− ⊆ U−}
is T+-compact saturated and T−-closed in the bitopological space
(specL; T+, T−).
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Proof. (1) The element u− can not be any smaller because of (hmcon).
For the converse assume y ⊳ u−. The corresponding witness ry⊳ u−

belongs
to S+ by (hmtot) and so y ∈ {b | ∃a ∈ S+. 〈a, b〉 ∈ con}. By regularity, then,
u− ⊑

⊔

↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}.
(2) Because of (hmtot) it is clear that S+ must contain all a ∈ L+ with

〈a, u−〉 ∈ tot. For the converse let x ∈ S+. By regularity and Scott-openness
of S+ there is x′ ⊳ x still in S+. The corresponding witness rx′⊳ x must be
below u− because of (hmcon), but then 〈x, u−〉 ∈ tot by (tot–↑).

(3) Assume x ⊑ a for all a ∈ S+. By (con–↓) we have (x, b) ∈ con for
all b ∈ {b | ∃a ∈ S+. (a, b) ∈ con}, so (x, u−) ∈ con by (con–

⊔

↑) and part (1).
For the converse, remember that (a, u−) ∈ tot for all a ∈ S+ by (2), so
(x, u−) ∈ con implies x ⊑ a by (con–tot).

(4) We use v+ :=
⊔

(L+ \ F+) and v− :=
⊔

(L− \ F−) to synchronise
notation with Lemma 5.3. Note that S+ ⊆ F+ is equivalent to v+ 6∈ S+,
and F− ⊆ U− is equivalent to u− ⊑ v−.

From S+ ⊆ F+, 5.3(iii), and (1) we get u− ⊑ v− and hence F− ⊆ U−.
Starting with the right hand side, F− ⊆ U−, we get P(v−)∩S+ = ∅ by (hmcon).
So v+ =

⊔

↑P(v−) 6∈ S+ and hence S+ ⊆ F+.
(5) Assume that x 6∈ S+. Because S+ is assumed to be Scott-open, we

can apply Zorn’s Lemma to obtain a maximal element v+ above x that does
not belong to S+. The set F+ := L+ \ ↓v+ is a completely prime filter that
separates x from S+, and it remains to show that it is the first component of a
d-point. According to Lemma 5.3 the right candidate is F− = L−\↓v− where
v− =

⊔

↑P(v+) =
⊔

C(v+). Note that u− ⊑ v− as u− ∈ C(v+) by (hmtot).
Using Lemma 5.3(iii) we only need to show that 〈v+, v−〉 6∈ tot. For this
we employ (CUT): for all 〈a, b〉 ∈ con with a ∈ F+ we have v+ ⊔ a ∈ S+

by maximality of v+ and so 〈v+ ⊔ a, v−〉 ∈ tot by (2); if it was the case
that 〈v+, v−〉 = 〈v+, u− ⊔

⊔

↑P(v+)〉 ∈ tot, then 〈v+, u−〉 ∈ tot would follow,
contradicting (hmtot).

For part (6) let y ∈ U−. By regularity and the assumption that U−

is completely prime, some y′ ⊳ y also belongs to U−. The witness ry′⊳ y is
not in S+ because of 〈ry′⊳ y, y

′〉 ∈ con and assumption (hmcon). By part (5)
there is a point (F+, F−) that separates ry′⊳ y from S+. By (4) we have that
F− ⊆ U− and because of 〈ry′⊳ y, y〉 ∈ tot it must also be the case that y ∈ F−.

Finally, consider the last claim; the two descriptions of A are equal be-
cause of (4). Any T+-open neighbourhood of A has the form Φ+(x) with
x ∈ S+ by (5). It follows that A is T+-compact. Only the maximality of u−

in L− \ U− is required to see that A is the complement of Φ−(u−).
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Note that the infinitary rule (CUT) and the Axiom of Choice are only
required to establish the link between the d-frame and its spectrum.

Theorem 5.5 In any d-frame L there is a one-to-one correspondence be-
tween

(i) pairs (S+,U−) satisfying (hmcon) and (hmtot), and

(ii) maps q from L to the four-element d-frame 2.2 which preserve tt,
⊔

↑,
con, tot, and the logical operation ∧.

If furthermore the d-frame is regular and satisfies (CUT), then these are in
one-to-one correspondence with

(iii) subsets K of specL which are compact saturated in the positive and
closed in the negative topology.

Proof. Given a map q as described in part (ii), consider S+ = q−1({tt , 1})∩
L+ and U− = q−1({ff , 1}) ∩ L−. It is straightforward to show that the
pair (S+,U−) satisfies (hmcon) and (hmtot). For the translation in the opposite
direction let q(α) =

⊔

({tt | α+ ∈ S+} ∪ {ff | α ∈ U−}).
The translation from (i) to (iii) was given in the preceding lemma; for the

reverse let K ⊆ specL as described in (iii) and set S+ = {x | K ⊆ Φ+(x)}
and U− = {y | K ∩ Φ−(y) 6= ∅}. Showing that these translations are inverses
of each other requires nothing more than an unwinding of the definitions.

In reference to this result, we call the pair (S+,U−) an HM-pair, the
corresponding map q an HM-map, and (if applicable) the corresponding set K
an HM-set.

Let us discuss Theorem 5.5 in terms of HM-maps. Given a consistent
predicate ϕ, that is, ϕ ∈ con, the value of q at ϕ can only be tt , ff , or 0. The
first outcome indicates that all elements of K satisfy ϕ, the second that some
element of K fails ϕ, and the last that neither holds (which is a possibility
because a consistent predicate does not need to be Boolean). This means that
HM-maps act like universal quantifiers for (consistent) predicates: q : ϕ 7→
∀x ∈ K.ϕ(x).

Generally, one would expect a universal quantifier to preserve tt (because
∀x ∈ K. tt is valid); on the other hand, ∀x ∈ K. ff is false only if K is
non-empty, so q need not preserve ff . Also, one would expect it to preserve
conjunction (∧) but not disjunction (∨), and certainly one would not want it
to be inconsistent (returning 1) for a consistent predicate, or to be undecided
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(returning 0) for a total predicate, that is, one expects it to preserve con

and tot.
The preservation of

⊔

↑ can be seen as a computability condition on the
universal quantifier: If a (consistent) predicate ϕ is the directed supremum of
(consistent) predicates ϕi, and if the universal quantifier applied to ϕ returns
a definite answer, that is, either tt or ff , then computability requires the same
answer be obtained from an approximant ϕi already.

All in all, then, Theorem 5.5 is a generalisation of the theory of con-
tinuous quantification on topological spaces, discovered by Taylor [23] and
Escardó [8], to a logic in which predicates are allowed to have value ff as well
as tt .

For a version of Theorem 5.5 on the side of bitopological spaces we first
observe that regularity implies that the space is order-separated, so by Theo-
rem 2.9 it is automatically d-sober. In an order-separated space a τ+-compact
saturated set is also τ−-closed. Furthermore, the corresponding d-frame ΩX
satisfies (CUT) by Proposition 4.5, and so 5.5 applies:

Theorem 5.6 If (X; τ+, τ−) is a regular bitopological space then there is a
one-to-one correspondence between

(i) maps from Ω X to 2.2 which preserve tt,
⊔

↑, con, tot and ∧, and

(ii) subsets K of X which are compact saturated with respect to τ+.

6 Existential quantification and compactness

The construction of the previous section also provides us with a notion of
an existential quantifier for four-valued predicates. The idea is to adapt the
classical translation ∃x.ϕ ↔ ¬∀x.¬ϕ to the present setting. This is achieved
by reversing the roles of L+ and L−, and similarly by exchanging tt and ff
in 2.2. So we consider pairs (U+,S−) consisting of a completely prime upper
set in L+ and a Scott-open filter in L− satisfying the analogues of (hmcon)
and (hmtot). The corresponding quantifier q maps a predicate ϕ = 〈ϕ+, ϕ−〉
to tt if ϕ+ ∈ U+, to ff if ϕ− ∈ S−, and to 1 if both hold. This can be
written as q(ϕ) =

⊔

({tt | ϕ+ ∈ U+}∪{ff | ϕ− ∈ S−}) as we did for universal
quantification before. One now checks without difficulties that q preserves ff ,
⊔

↑, con, tot, and ∨, that is, it behaves like a continuous existential quantifier.
If the d-frame L is regular and satisfies the analogue of (CUT) (with the roles
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of L+ and L− exchanged) then q corresponds to a uniquely determined set G
of specL that is closed with respect to τ+ and compact saturated with respect
to τ−. In other words, we can interpret q(ϕ) as ∃x ∈ G.ϕ(x).

For (X; τ+, τ−) a regular bitopological space, Theorem 5.6 gives us a com-
plete overview of the sets which admit universal, respectively, existential
quantification. To repeat, the former are exactly the τ+-compact saturated
ones while the latter are those subsets that are compact saturated with re-
spect to τ−. Since a regular bitopological space is order separated, the spe-
cialisation order ≤+ equals ≥− (as shown in Lemma 2.8) and it follows that
universally quantifiable sets are upwards closed whereas existentially quan-
tifiable ones are downward closed. Consequently, it is rare for a set to have
both qualities.

In the absence of spatiality we consider quantifiers rather than quantifi-
able subsets. To begin with, we have the following observation:

Proposition 6.1 Let L be a reasonable d-frame. Then ε∀ : L → 2.2, ε∀(ϕ) =
tt for all ϕ ∈ L, is a continuous universal quantifier. Its associated HM-pair
is (L+, ∅).

If q, q′ are continuous universal quantifiers then q ∧ q′, defined by
q ∧ q′(ϕ) := q(ϕ) ∧ q′(ϕ) is also one. If (S+,U−) and (S ′

+,U ′
−) are the HM-

pairs associated with q and q′, respectively, then (S+ ∩ S ′
+,U− ∪ U ′

−) is the
HM-pair associated with q ∧ q′.

It follows that the set of continuous universal quantifiers univ(L) carries
the structure of a unital semilattice. An analogous result holds for the set
exist(L) of continuous existential quantifiers, where the unit is ε∃ : ϕ 7→ ff
and the binary operation is given by q ∨ q′(ϕ) := q(ϕ) ∨ q′(ϕ). Next, recall
that a completely prime set U in a complete lattice L can alternately be
described by u =

⊔

(L \ U), the largest element not in U . The preceding
proposition then yields:

Proposition 6.2 The assignment A : q 7→
⊔

(L− \ U−), where (S+,U−) is
the HM-pair associated with q, is a unital semilattice homomorphism from
(univ(L);∧, ε∀) to (L−;⊓, 1). Likewise, E : q 7→

⊔

(L+ \ U+) is a homomor-
phism from (exist(L);∨, εexist) to (L+;⊓, 1).

(Note that E reverses the natural order associated with ∨ on exist(L).)
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For a map in the reverse direction of A let u− ∈ L− and consider

U−(u−) := L− \ ↓u−

S+(u−) := {x ∈ L+ | 〈x, u−〉 ∈ tot}

Clearly, U−(u−) is a completely prime upper set in L−, and as long as L is
reasonable, S+(u−) is a filter. Furthermore, the conditions (hmtot) (by con-
struction) and (hmcon) (because of (con–tot)) are satisfied. The only property
missing is Scott-openness of S+(u−), or equivalently, Scott-continuity of the
associated quantifier. This motivates the following definition:

Definition 6.3 Say that a reasonable d-frame L supports continuous quan-
tification if for every u− ∈ L−, the set S+(u−) = {x ∈ L+ | 〈x, u−〉 ∈ tot} is
Scott-open, and the same is true for S−(u+) = {y ∈ L− | 〈u+, y〉 ∈ tot} for
every u+ ∈ L+.

Proposition 6.4 If L supports continuous quantification then the assign-
ment

a : u− 7→ qu−

where qu−
is the universal quantifier associated with the HM-pair

(S+(u−),U−(u−)) is a unital semilattice homomorphism from (L−;⊓, 1) to
(univ(L);∧, ε∀). When univ(L) is equipped with the natural order derived
from the semilattice operation then one has a◦A ≤ iduniv(L) and A◦a = idL−

,
that is, a is adjoint to the map A of Proposition 6.2.

Likewise, the assignment

e : u+ 7→ qu+

where qu+
is the existential quantifier associated with the HM-pair

(U+(u+),S−(u+)) is a homomorphism from (L+;⊓, 1) to (exist(L);∨, ε∃).
Like the map E of Proposition 6.2 it is order-reversing when exist(L) is
equipped with the natural order, and one has e◦E ≤ idexist(L) and E◦e = idL+

.
If L is also regular, then A and E are isomorphisms with inverses a and e,

respectively.

Proof. We check that the map a is a homomorphism. Regarding the unit,
this boils down to showing that S+(1) = {x ∈ L+ | 〈x, 1〉 ∈ tot} equals L+,
which is indeed true because (tot– ff ) and (tot–↑) hold in a reasonable d-
frame. To show that a preserves the semilattice operation, we must compare
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S1
+ := {x ∈ L+ | 〈x, u− ⊓ u′

−〉 ∈ tot} with S2
+ := {x ∈ L+ | 〈x, u−〉 ∈ tot} ∩

{x ∈ L+ | 〈x, u′
−〉 ∈ tot}. We have S1

+ ⊆ S2
+ because of (tot–↑) and S2

+ ⊆ S1
+

because of (tot–∨). The equality L− \ ↓(u− ⊓ u′
−) = (L− \ ↓u−)∪ (L− \ ↓u′

−)
is trivial.

For the adjointness property observe that S+(u−) is indeed the smallest
set that together with U−(u−) satisfies (hmtot), which shows a ◦A ≤ iduniv(L);
the equality A ◦ a = idL−

is trivial.
Finally, in Lemma 5.4(2) it was shown that in the presence of regularity

at most one Scott-open filter can be paired with a given completely prime
upper set U ; this proves that a ◦ A = iduniv(L) holds in this case.

As it turns out, there is a simple and topologically meaningful character-
isation of the d-frames that support continuous quantification.

Definition 6.5 A reasonable d-frame is called compact if tot, viewed as a
subset of L+ × L−, is Scott-open.

For bitopological spaces compactness means that any cover with open
sets from both topologies has a finite subcover.

Theorem 6.6 A d-frame L supports continuous quantification if and only
if it is compact.

Proof. “if” Since tot is a Scott-open set, the filter S+(u−) =
{x ∈ L+ | 〈x, u−〉 ∈ tot} is clearly Scott-open as well.

“only if” In a product lattice, Scott-openness can be checked in each
coordinate separately, [2, Lemma 3.2.6], so assume (xi)i∈I is a directed set
in L+ such that 〈

⊔

↑xi, y〉 ∈ tot. This is tantamount to saying that
⊔

↑xi ∈
S+(y) and since it is assumed that the latter is Scott-open, some xi0 will
belong to S+(y) already. In other words, 〈xi0 , y〉 ∈ tot.

Somewhat to our surprise, the preceding statement does not rely on reg-
ularity, though it has to be said that in the absence of regularity the in-
tuitions about quantification, as developed in the previous section, are not
valid. This is because in a non-regular d-frame (or a non-regular bitopologi-
cal space) the connection between the two frames (resp., topologies) is very
loose. For example, a τ−-closed set need not even be τ+-saturated, etc. In
contrast, compact regular d-frames are extremely well-behaved and play a
central role in the construction and analysis of semantic spaces. There is
no room here to expand on this connection; instead we refer the interested
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reader to [16], sections 6 and 8.1, and the references given there. For the
present paper we combine Proposition 6.4 and Theorem 6.6 to conclude that
for compact regular d-frames there is an isomorphism between the elements
of L− and continuous universal quantifiers, and between the elements of L+

and continuous existential quantifiers.
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