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Abstract

We present a Stone duality for bitopological spaces in analogy
to the duality between topological spaces and frames, and discuss
the resulting notions of sobriety and spatiality. Under the additional
assumption of regularity, we prove a characterisation theorem for
subsets of a bisober space that are compact in one and closed in the
other topology. This is in analogy to the celebrated Hofmann-Mislove
theorem for sober spaces. We link the characterisation to Taylor’s
and Escardé’s reading of the Hofmann-Mislove theorem as continuous
quantification over a subspace.

Keywords: Bitopological spaces, d-frames, Stone duality, sober spaces,
Hofmann-Mislove theorem

Introduction

The Hofmann-Mislove theorem, first published as [HM81], states that in a
sober space the open neighbourhood filters of compact saturated sets are
precisely the Scott-open filters in the corresponding frame of opens. Mathe-
matically, it has some remarkable consequences, such as the fact that the set
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of compact saturated subsets of a sober space form a decpo when ordered by
reverse inclusion, and it links Lawson duality (applied to the frame of opens)
to the idea of the co-compact topology on the space, [Law79]. Its significance
in computer science took some time to emerge, and credit in this respect is
due to Plotkin, [Plo80, Plo81], Smyth, [Smy83], and Vickers, [Vic89], who
pointed out that it is at the core of the proof that the upper powerdomain
(defined as a free algebraic theory) has a concrete representation as a set of
subsets of the given domain. Quite unexpectedly, it was also required in the
classification of cartesian closed categories of domains, [Jun89].

More recently, Taylor, [Tay00], and Escardé, [Esc04], have interpreted the
theorem as expressing the idea that the compact saturated sets are precisely
those for which there is a continuous universal quantifier. To this end, they
read “open set” as “predicate” and “Scott-open filter of opens” as a map
from predicates to Sierpinski space that is Scott-continuous and finite meet
preserving, that is, as a “quantifier” which tells us whether a predicate is true
for all elements of the corresponding compact set. Amazingly, such a quanti-
fier exists not only in the mathematical model but can in fact be implemented
in a sequential programming language, see [Ber90, EHO05, Esc07].

Below we present a Stone duality for bitopological spaces motivated by
the idea that a predicate may not only be true for some states, but in general
will be false for others, and that the mechanisms for establishing falsehood
will in general be different from those that establish truth. As Smyth has
stressed, the positive extents of observable predicates form a topology, and
so all we do is to add a second topology for the negative extents. However,
in semantics we are already quite familiar with dealing with two topologies:
Early on in the study of continuous lattices it was discovered by Lawson
that the “weak lower topology” is a natural partner for the Scott-topology,
their join being the (compact Hausdorfl) Lawson topology. On hyperspaces
Y C PX one naturally has the upper topology generated by sets of the
form 0O := {A€Y | AC O} (O an open in the original space), and the
lower topology generated by sets of the form 0O := {A €Y | ANO # 0}.
Abramsky, [Abr91], showed that the three powerdomains can be obtained
systematically from this (bi-)topological point of view.

Our interest in bitopological spaces was driven by these examples and
also by a desire to analyse various Stone dualities, but there is no room
here to expand on this latter aspect; instead we refer the reader to the re-
port [JM06]. The goal of the present paper is to exhibit a Hofmann-Mislove
type theorem that, like its classical counterpart, admits a computational



reading as a statement about quantifiers. The predicates to be quantified
refer to Belnap’s four-valued logic, [Bel77], that is, in any state they can be
true, false, unknown, or contradictory. To explain the effect of quantifica-
tion let these four truth values be represented by {true}, {false}, {}, and
{true, false}. Given a set A of states (which is a subset of a state space X)
and a four-valued predicate ¢, the result of quantification (i.e., Vx € A. p(x))
will contain true if p(z) contains true for all x € A; it will contain false if
©(x) contains false for some x € A. We note that Vo € A. ¢(x) could be false
(and not contradictory) even if ¢ is contradictory for some x € A. However,
if ¢ is not contradictory for any state € X then Vo € A.p(x) will also
not be contradictory. Likewise, if ¢ is not unknown for any state x then
Vr € A.p(x) will also not be unknown.

Before we can state and prove our Hofmann-Mislove Theorem, we must
develop the necessary bitopological background of four-valued logic. We be-
lieve our approach to be novel, so the presentation is quite detailed. For com-
parison and reference we present the classical Hofmann-Mislove Theorem and
its Stone duality context in Section 1, then introduce d-frames as a bitopo-
logical analogue of frames in Section 2. In Section 3 we demonstrate that in
this setting Belnap’s distinction between logical order and information order
emerges naturally, and that there is an algebraic connection between the two.
By analysing the spatial case, we postulate some “reasonable” requirements
for d-frames in Section 4. Up to this point, most proofs are straightfor-
ward and mostly omitted. The theory of d-frames comes into its own once
regularity is assumed, and Section 5, where we prove our Hofmann-Mislove
Theorem, constitutes the mathematical core of the paper. In Section 6 we
consider the dual concept of a continuous existential quantifier, and link the
presence of continuous quantifiers to bitopological compactness.

There is only room to review classical Stone duality, so we have to assume
that the reader is familiar with basic notions from topology, ordered sets,
category theory, and Stone duality. For background reading on the first two
topics we recommend [DP02], for the latter, [Joh82]. Alternatively, either of
the texts [GHK™03] and [AJ94] also covers the necessary prerequisites.

A preliminary version of this paper appeared as [Mos07].



1 Stone duality and the Hofmann-Mislove
theorem

We briefly review the duality between topological spaces and frames. For
more details see [AJ94, Chapter 7], and [Joh82, GHK™03].

Definition 1.1 A frame is a complete lattice in which finite meets distribute
over arbitrary joins. We denote with =, M, | |, 0, and 1 the order, finite
meets, arbitrary joins, least and largest element, respectively.

A frame homomorphism preserves finite meets and arbitrary joins; thus
we have the category Frm.

For (X;7) a topological space, (7; C) is a frame; for f: (X;7) — (X';7')
a continuous function, f~': 7/ — 7 is a frame homomorphism. These are the
constituents of the contravariant functor 2: Top — Frm. It is represented
by Top(—,S) where S is Sierpinski space.”

The collection N (a) of open neighbourhoods of a point a in a topological
space (X; 7) forms a completely prime filter in the frame Q X | that is, it is an
upper set, closed under finite intersections, and whenever | JO € N (a) then
ONN(a) # (. This leads one to consider the set of points (sometimes called
“abstract points” for emphasis) of a frame L to be the collection spec L of
completely prime filters. Abstract points are exactly the pre-images of {1}
under homomorphisms from L to 2 = {0 < 1}.

A frame L induces a topology on spec L whose opens are of the
form ®(x) = {F especL |z € F} with + € L. A frame homomor-
phism h: L — L’ induces a continuous function spech: spec L' — spec L
by letting spec h(F') := h™}(F) for F' € spec L'. These are the components of
the contravariant functor spec from Frm to Top, represented by Frm(—, 2).

Theorem 1.2 The functors €2 and spec constitute a dual adjunction between
Top and Frm.

The unit and co-unit of this adjunction are simply A/ and ®. That is,
for any space (X;7) the map nx: X — specQ X, given by a — N(a), is
continuous; it is also open onto its image. Likewise, for any frame L the map

"'We use “square” symbols for the operations of a frame to distinguish them from the
“logical” operations of a d-frame, to be introduced in Section 3.
2Sierpiniski space has two points and precisely one non-trivial open set.
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er: L — QspecL, given by x +— ®(x), is a frame homomorphism; it is also
surjective.

We can ask when a frame L is spatial in the sense that it is isomorphic
to 2 X for some space X. As it turns out, there is a canonical candidate
for X, namely, spec L; more precisely, L is spatial if and only if €, is a frame
isomorphism. Because €, is already a surjective frame homomorphism, this
holds if and only if €, is injective.

Similarly, we can ask when a space X is sober in the sense that it is home-
omorphic to spec L for some frame L. By the same reasoning as in frames,
this holds if and only if nx is a homeomorphism. Because nx is already
continuous and open onto its image, it suffices for nx to be a bijection. In-
jectivity is precisely the Ty axiom and surjectivity says that every completely
prime filter of opens is the neighbourhood filter of a point.

Theorem 1.3 The functors () and spec restrict to a dual equivalence between
sober spaces and spatial frames.

This is the setting for the Hofmann-Mislove theorem, [HM81], which we
are now ready to state.

Theorem 1.4 In a sober space (X, 1), there is a bijection between the set of
compact saturated subsets of X and the set of Scott-open filters in 7.

Although a direct proof is possible, [KP94], it more useful for us to refer
to Stone duality, as in the original paper [HMS81]:

Lemma 1.5 A Scott-open filter in a frame L is equal to the intersection of
the collection of completely prime filters containing it.

Proof. (Sketch) Let S be the Scott-open filter and @ an element not in S.
Extend a to a maximal chain outside S and take its supremum v, which by
Scott openness is a maximal element of L\ S. Because S is a filter, v is meet
irreducible, and because L is distributive, it is furthermore meet prime. The
set L\ |v is completely prime and separates a from S. |

Proof. (of 1.4) Clearly, the open neighbourhoods of a compact subset form
a Scott-open filter in the lattice of open sets. For the converse, let A be
the intersection of a Scott-open filter S of opens. By the lemma, every open
neighbourhood of A belongs to S. Because S is assumed to be Scott-open,
A is compact (and obviously saturated).

>



A saturated set is the intersection of its open neighbourhoods by defini-
tion, and a Scott-open filter is the intersection of the completely prime filters
containing it by the lemma, so the two translations are inverses of each other.

2 Stone duality for bitopological spaces

Without spending too much time on motivation, we now sketch a Stone
duality for bitopological spaces; for the full picture we refer to [JMO06].

A bitopological space is a set X together with two topologies 7, and 7_.
No connection between the two topologies is assumed. Morphisms between
bitopological spaces are required to be continuous with respect to each of the
two topologies; this gives rise to the category biTop.

For a Stone dual it is natural to consider pairs (L, L_) of frames (and
pairs of frame homomorphisms) but for some purposes it is more convenient
to axiomatise the product 7, x7_, that is, to have a single-sorted algebraic
structure. In fact, the two views are completely equivalent:

Proposition 2.1 The category FrmxFrm is equivalent to the category
whose objects are frames which contain a pair of complemented elements

tt and ff, and whose morphisms are frame homomorphisms that preserve tt
and ff.

Proof. In one direction, one assigns to a pair (L, L_) the product Ly xL_
and the constants # := (1,0) and ff := (0,1). In the other direction, one

assigns to (L;#, ff) the two frames L, := [0,#] and L_ := [0, ff]. The
isomorphism from L to [0, #]x[0, ff] is given by a — (o, a_) = (aM#,al
Jf). The isomorphism from L, xL_ to L is given by (z,y) — x Uy. |

In addition to the notation (a,a_) introduced in the proof above we
will also use a £, (3 in case o, C [y, and similarly C_. One has o C 3 if
and only if a C, fand o« C_ f3.

Having two frames is not enough, however, as we also need to express
the fact that they represent topologies on the same set. One approach for
achieving this was introduced by Banaschewski, Briimmer, and Hardie in
[BBHS83]J; their biframes axiomatise the two topologies and the joint refine-
ment 7, V 7_. Our proposal is different; we only record when two open sets
O; € 74 and O_ € 7_ are disjoint from each other, and when they cover



the whole space X. In the first case we say that they are consistent, in the
second that they are total.

Definition 2.2 A d-frame consists of a frame L, a pair of complemented
elements tt and ff, and two unary predicates con and tot. Morphisms between
d-frames are required to preserve all of this structure. The resulting category
1s denoted by dFrm.

As we have already explained informally, the contravariant functor {2
from bitopological spaces to d-frames assigns to a space (X;7,,7_) the d-
frame (7, x7_; (X, 0), (0, X), con, tot) where (U, V') € con if and only if U N
V =0 and (U,V) € tot if and only if U UV = X. The functor associates
with a bicontinuous function f the map (U, V) — (f~YU), f~1(V)). A
trivial bit of set theory will convince the reader that the consistency and
totality predicates are preserved. Figure 1 shows some small examples. The
bitopological space S.S, which looks like a product of two copies of Sierpinski
space, allows us to represent the functor Q2 as biTop(—,S.S). Note how the
four elements of S.S correspond to the four ways in which an element of the
space can be related to an open from 7, and an open from 7_: it can be in
one of the two but not the other, it can be in both, or it can be in neither.

For a functor in the reverse direction, we continue to follow the theory
of frames by considering d-frame morphisms from £ = (L; #, ff; con, tot) to
2.2, depicted in the upper right corner of Figure 1. Such morphisms are
determined by pairs of frame homomorphisms p,: L, — 2 and p_: L_ — 2
that together preserve con and tot. So they correspond to pairs of completely
prime filters F'y C Ly, F.. C L_ such that

(dpeon) ac€con — o ¢F,ora ¢F;
(dprot) a€tot = a,€F ora_€F_.

The reader should pause at this point to assure himself that the pair of
neighbourhood filters (N (z), N_(x)) of a point x in a bitopological space
satisfies these two axioms.

On L itself, a point manifests itself as a pair (£, F*) of completely prime
filters that satisfy the analogue of (dpeon) and (dpiot), plus

(dp+) e Fy;
(dp-)  ffeFy
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Figure 1: Some bitopological spaces and their concrete d-frames. (D-frame
elements in the con-predicate are indicated by an additional circle, those in
the tot-predicate are filled in.)



Figure 2: An abstract point in a d-frame.

Figure 2 illustrates the idea that (F7, F*) determines four “quadrants”
so that con does not intersect with the “upper quadrant” and tot does not
intersect with the “lower.”

For the purposes of this paper we have found it easier to think of points
as pairs (Fy, F_) where Fy C Ly, F_ C L_, rather than as pairs (F7, F*)
of subsets of the d-frame L, so this is the representation we will use in what
follows.

The set of d-points becomes a bitopological space by considering the
collection of @, (x) := {(F4, F_) | x € F.}, x € L., as the first topology 7,
and the collection of ®_(y) := {(F,F_)|y€ F_}, y € L_, as the second
topology 7_. Together, this is the spectrum of the d-frame £, which we
denote as spec L, following the notation for frames. The construction for
objects is extended to a (contravariant) functor spec: dFrm — biTop in
the usual way, that is, by noting that the inverse image of a point under
a d-frame morphism is again a point. The proof of the following is now
completely analogous to the single frame case.

Theorem 2.3 The functors 2 and spec establish a dual adjunction between
biTop and dFrm.

We say that a bitopological space X is (d-) sober if it is bihomeomorphic
to spec L for some d-frame £; it is equivalent to the unit « — (N, (x), N_(z))
being a bijection.

Example 2.4 All the bitopological spaces in Figure 1 are d-sober. For the
one-point space this is clear, as the associated d-frame admits only one point.



For the other four spaces one argues as follows: The underlying frame is the
same in each case and it admits four completely prime filters:

Fl = 1t F'' = 1ff
FJ2r = T(O-HQ)) FE = T(®7O—)

The notation already indicates which of these can be used as the first, respec-
tively second, component of a point (as prescribed by (dp,.) and (dp_)). From
this we get four possible combinations, and these are indeed all available in
the last example. In the other three examples, the con/tot labelling of the
element (O, O_) in the centre of the d-frame excludes certain combinations:
if it belongs to con, then F? cannot be paired with F?, and if it belongs to tot
then F}r cannot be paired with F!.

For an exploration into the concept of d-sobriety we refer to [JMO06]; here
we confine ourselves to one particular class of examples.

Definition 2.5 A bitopological space (X; 7., 7_) is called order-separated if
< =<, N>_1s a partial order and x £ y implies that there are disjoint
open sets Oy € 1, and O_ € 7_ such that x € O, andy € O_. (The
relations <, and <_ refer to the specialisation orders on X with respect to
Ty and T_, respectively.)

Lemma 2.6 In an order-separated bitopological space the following are true:

1. <;i=2>_

)

2. < N<_="="
Proof. For the first claim assume x £, y. This implies £ y and we get a
separating consistent pair (O, 0_). Since y € O_ but x € O_ we conclude
x Z#_y. So £, = Z#_ and this is equivalent to the first claim.

The second claim follows immediately from (1) and anti-symmetry of <.
|

Theorem 2.7 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical map n: X —
spec 2 X is injective; the real issue is surjectivity. So assume that (F, F_)
is a point of 2 X. Consider the two sets

Vi=|J{oser O ¢r} Vo=|J{Oo_er|O_¢F}
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and their complements V¢, V. Because of condition (dpet), V4 U V- cannot
be the whole space, in other words, the intersection Vi N V¢ is non-empty.

Next we show that every element of V{ is below every element of V¢ in
the specialisation order < =<, N >_. Indeed, ifz € V¥, y € VS, and z £ y,
then by order separation there is a partial predicate (O,,O0_) with x € O,
and y € O_. By definition of V,,V_ we have O, € F, and O_ € F_,
contradicting condition (dpeen) of d-points.

Finally, let a be an element in the intersection Vi N V¢ We show that
F is the neighbourhood filter of a in 7,. Assume a € O.; this implies
O, € V. and the latter is equivalent to O, € F';. For the converse we start
at O € V.., which gives us an element b € VN O, about which we already
know that b < a. It follows that b <, a and hence a € O,. |

From this result it follows immediately that the real line together with
the usual upper and lower topology is d-sober. Likewise, one sees that the
punctured unit interval [0,1] \ {3} is d-sober with respect to the same two
topologies. Note that neither is sober in the traditional sense when equipped
with only one of the topologies.

3 The logical structure of d-frames

Before we consider spatiality for d-frames let us have a look at the duality
from the point of view of logic. For this we interpret the elements of a d-
frame L as logical propositions. An abstract point (F, F_) is then a model,
and F, consists of those propositions which are true in the model, F_ of
those that are false. If a proposition belongs to con then for no model is it
both true and false (and may be neither); if it belongs to tot then in every
model it is either true or false (or indeed both). The set of all models (i.e.,
spec L) becomes a bitopological space by collecting into one topology all sets
of models in which some proposition is true (the “positive extents”) and in
the other the sets of models where some proposition is false (the “negative
extents” ).

From this perspective it is natural to consider an order between proposi-
tions which increases the positive extent and shrinks the negative one. As it
turns out, this additional relation is always present in a d-frame, and in fact
it follows from the distributive lattice structure and the two complemented
elements alone. The earliest reference to this appears to be [BK47], but the
proof is entirely straightforward and can be left as an exercise.
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Proposition 3.1 Let (L;M,U,1,0) be a bounded distributive lattice, and
(t, f) a complemented pair in L, that is, t1 f = 0 and t U f = 1. Then
by defining

zAy = (z0f)unfiu(zny) = (uf)n(yuf)n(zdy)
xVy = (zUt)NyU)N(zUy)=(xnt)U(yNt)U (zMNy)

one obtains another bounded distributive lattice (L; A, V, t, f), in which (1,0)
15 a complemented pair. The original operations are recovered from it as

xNy = @A)V YA V(zAy)=(xVO)A(yVO)A(zVy)
zUy = (@VI)AYVHA(zVYy)=(@Al)V(yAl)V(zAy)

Furthermore, any two of the operations N, U, A, and \V distribute over each
other. If L is a frame, then A and V are also Scott continuous.

This justifies our choice of symbols # and ff in a d-frame, and suggests
that we regard (L;A,V, i, ff) as the logical structure of a d-frame. Alto-
gether, then, we see that d-frames are special “bilattices,” which were intro-
duced by Ginsberg, [Gin92|, as a generalisation of Belnap’s four-valued logic
[Bel77].

Exploiting Proposition 2.1 we can easily compute conjunction and dis-
junction in terms of the representation of a d-frame as L, xL_:

(x,y) N2 y) = (@na,yuy)
(x,y) v{'y) = (zua,yny)

Note the reversal of order in the second component. This makes sense, as we
think of the second frame as providing negative answers.

4 Reasonable d-frames and spatiality

We say that a d-frame L is spatial if it is isomorphic to €2 X for some bitopo-
logical space X. This is equivalent to the co-unit e¢: a — (P, (), P_(«))
being an isomorphism of d-frames. As it is always surjective by definition,
the condition boils down to € being injective and reflecting con and tot. If
this is spelt out concretely, one arrives at the following:

12



Proposition 4.1 A d-frame L is spatial if and only if the following four
conditions are satisfied:

(s+) Va Ly B 3(Fy, F-) €specL. ay € Fy, B ¢ Fy;
(s-) ValZ_ 3 I(Fy,F_)€specl. a_ € F_,3_¢ F_;
(Scon) Va & con I(Fy,F ) especL. ay € Fy,a_ € F_;
(Stot) Va gtot I(F,,F ) €especl. ay € Fr,a_ ¢ F_;

The following lemma is very easy to prove for concrete d-frames that arise
from a bitopological space, and it confirms the intuition of con as the set of
pairs of open sets that do not intersect, and tot as those pairs that cover the
whole space.

Lemma 4.2 Let (L; &, ff; con, tot) be a spatial d-frame. The following prop-
erties hold:

(con—|) aCp&BEcon = «€con
(tot-1) aC & actot — € tot

(con—1t) 1 € con

(con—ff) ff € con

(con-A) a€con& fecon = (aAf)Econ
(con-V) a€con& fecon = (aVf)Econ

(tot—t) tt € tot

(tot—ff) ff € tot

(tot-A) actot& fetot = (aAf)E tot

(tot-V) actot& fetot = (aV[f)E tot
(con—| |") A C con directed w.r.t. T = |]'A € con

)

(con—tot) a€con,fetot, (a=, 0 or a=_0F) = alp

Definition 4.3 A d-frame which satisfies the properties stated in Lemma 4.2
1s called reasonable.  The category of reasonable d-frames is denoted
by rdFrm.

Note that the converse of Lemma 4.2 does not hold, i.e., a reasonable
d-frame need not be spatial: take a frame L without any points and consider
(LxL;(1,0),(0,1),con, tot) where (x,y) € con if z My = 0, and (z,y) € tot
if x Uy = 1. It is a trivial exercise to prove that the resulting d-frame is
reasonable, but it obviously can’t have any points.

Proposition 4.4 The forgetful functor from rdFrm to Set has a left ad-
joint.

13



Proof. The free reasonable d-frame over a set A s
(FAXFA;(1,0),(0,1),con, tot) where FA is the free frame over A.
Generators are the pairs (a,a), a € A. The two relations are chosen
minimally: (x,y) € con if and only if x = 0 or y = 0; (z,y) € tot if and only
if x =1 or y = 1. The conditions for a reasonable d-frame are proved by
case analysis. |

As an example, the structure labelled 3.3 in Figure 1 is the free reasonable
d-frame generated by a one-element set.

The following additional property of spatial d-frames will also play a part
in our presentation of a Hofmann-Mislove theorem for sober bitopological
spaces, but we do not consider it elementary enough to be included in the
definition of “reasonable.” The proof-theoretic terminology used in its label
refers to a presentation of d-frames that places more emphasis on the logical
structure, see [JMO06, Section 7).

Proposition 4.5 Fvery spatial d-frame satisfies the following property:

Vi € I. {a;,b;) € con
(CUT,) Vie Il (xUa;,y) € tot = (z,y) € tot
(r,yU|,c; bi) € tot

5 Regularity and the Hofmann-Mislove the-
orem

A major practical problem with d-frames is that it is very difficult to con-
struct points for them. For example, consider the proof of the Hofmann-
Mislove Lemma 1.5, where we exploited the fact that in a frame there is a
one-to-one correspondence between completely prime filters ' and M-prime
elements v (given by the translations v — L\ |vand F' +— | | L\ F'). The ana-
logue for d-frames is not very helpful. The situation improves considerably
if we also require regularity.

Definition 5.1 Let (L; i, ff; con, tot) be a reasonable d-frame. For two ele-
ments x,x’ € Ly we say that x’ is well-inside = (and write 2’ < x) if there is
y € L_ such that (2',y) € con and (z,y) € tot. To avoid lengthy verbiage,
we will usually write ryq, for the “witnessing” element y (although it is not
uniquely determined). On L_ the well-inside relation is defined analogously.
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A d-frame is called regular if every x € L is the supremum of elements
well-inside it, and similarly for elements of L_.

For a bitopological space to be reqular we require that at least one of the
two topologies is Ty and that the corresponding d-frame is reqular.’

We note that the elements well-inside a fixed element = of a reasonable
d-frame form a directed set; this follows from (con—V) and (tot—V). That
they are all below z is a consequence of (con—tot). 1 <1 is always true as 0
can be chosen as the witness in the other frame. It is an easy exercise to show
that a regular bitopological space is order-separated (and hence d-sober), but
a regular d-frame need not be spatial.

Lemma 5.2 Let L be a reasonable d-frame and x € L. Define
P(z):={be L_|3JaZx. {(a,b) € con} and C(z):={be L_ | (x,b) & tot}
1. P(z) C C(x);

2. If L is reqular then | |P(x) = | | C(x).

Proof. (1) is a direct consequence of (con—tot): if we have (a,b) € con
and (x,b) € tot then a C z follows.

For (2) let b’ < b € C(x). The witness 45, cannot be below z as otherwise
we could conclude (x,b) € tot from (ry4p,b) € tot. We also have (ryqp, b') €
con and so find that &' € P(x). By regularity, | |P(z) is above b itself. It
follows that | |[P(z) 3 | |C(x), and by (1) the two suprema are in fact the
same. 1

Lemma 5.3 Let L be a reasonable d-frame andvy € Ly, v_ € L_. Consider
the following statements:

(i) v_ = maxC(v,) and vy = maxC(v_);
(ii) (Ly \ lvg, L_\ |v_) is a d-point;
(iii) (vs,v_) & tot and v_ 3| [IP(vs);

(iv) (vs,v_) is a mazimal element of (L4 xL_) \ tot.

The following are true:

3Tt then follows that the other topology is Ty as well.
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1. (i) = (i1) = (i), and (i) = (iv).
2. If L is regular then (iii) = (i).

3. If L satisfies the (CUT,.) rule then (iv) = (ii).

Proof. Part (1), (i) = (ii): If (z,y) € tot then either z Z vy or y £ v_
as otherwise we would have (v;,v_) € tot by (tot-7). If (z,y) € con and
x Z vy then y € P(vy) € C(v4) by the previous lemma; hence y C v_.
Thus we have shown that the pair (L \ Jvy, L_\ [v_) satisfies conditions
(dpiot) and (dpeon) for d-points and it remains to show that we have two
completely prime filters. This will hold if v, and v_ are IM-irreducible. So
let v_ = yMy’; by (tot—V) either (vy,y) ¢ tot or (vy,y’) ¢ tot, which means
that either y = v_ or ¢y = v_.

(ii) = (ili): (vy,v_) & tot follows from (dpiet). For the second statement,
if z [Z vy and (x,y) € con then y C v_ by (dpeon). So we have v_ J | |P(vy).
The set P(v, ) is directed because L, \ [vy is a filter and (con—A) is assumed
for reasonable d-frames.

(i) = (iv) is trivial.

Part (2), (iii) = (i): On the side of L_ we already have v_ J| | C(vy) by
the previous lemma. For L., assume z [Z v,. By regularity there is 2’ < x
with 2/ [Z v,. Because of (2, r,4,) € con we have r,,, T v_ by assumption,
and then from (z,7,.,) € tot we infer (z,v_) € tot by (tot-1). It follows
that C(v_) C |vy. Together with (v, ,v_) & tot this is exactly (i).

Part (3), (iv) = (ii): Asin (i) = (ii) we get that v, and v_ are M-prime,
and that condition (dpie) is satisfied for (Ly \ |vy, L\ |v_). In order to
show (dpeon) assume (z,y) € con. If we had = [Z vy and y Z v_ then by (the
contrapositive of) the (CUT,) rule we would have either (v,,v_ U y) ¢ tot
or (vy Ux,v_) ¢ tot, contradicting the maximality of (v, ,v_). I

We are ready to formulate and prove the d-frame analogue to the
Hofmann-Mislove Lemma 1.5:

Lemma 5.4 Let L be a regular d-frame. Assume that Sy is a Scott-open
filter in Ly and U_ = L_\ |u_ is a completely prime upper set in L_ such

that:
(hmeon) a€con = a; ¢S4 or a_ ¢U_

(hmyy) a€tot = ap €8y or a_ €eU-

Then the following are true:
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1. u_=||{b|Ja € S;.{a,b) € con}, that is, U_ is uniquely determined
by S_|_.

2. 8§y ={a| (a,u_) € tot}, that is, Sy is uniquely determined by U-_.
3. 2C Sy & (z,u_) € con.
4. For any point (Fy,F_) €specL, S, CF, & F CU_.
If L satisfies (CUT,.), then furthermore the following are true:
5. S, is the intersection of all F'y where (Fy, F_) is a point and S, C F,.
6. U_ is the union of all F_ where (F, F_) is a point and F~ CU_.

7. The set A = {(Fy,F.)|S; CF.} = {(Fy,Fo)|F-CU-}
is T, -compact saturated and T_-closed in the bitopological space
(spec £;7,,7_).

Proof. (1) The element u_ can not be any smaller because of (hmey).
For the converse assume y < u_. The corresponding witness r,4,_ belongs
to 84 by (hmye) and so y € {b | Ja € S;. (a,b) € con}. By regularity, then,
u_ C|"{b|Ja € Sy.(a,b) € con}.

(2) Because of (hmye) it is clear that S, must contain all a € L, with
(a,u_) € tot. For the converse let x € S, . By regularity and Scott-openness
of S, there is 2/ < x still in S;. The corresponding witness r,.,, must be
below u_ because of (hmee,), but then (x,u_) € tot by (tot—1).

(3) Assume x C a for all a € S§;. By (con—|) we have (z,b) € con for
allb € {b|Ja € S;.(a,b) € con}, so (x,u_) € con by (con—| |) and part (1).
For the converse, remember that (a,u_) € tot for all a € S; by (2), so
(x,u_) € con implies  C a by (con—tot).

(4) We use vy = | (L4 \ Fy) and v_ := [ |(L- \ F_) to synchronise
notation with Lemma 5.3. Note that S, C F is equivalent to v, ¢ S,
and I CU_ is equivalent to u_ C v_.

From §; C F,, 5.3(iii), and (1) we get u— C v_ and hence F_ C U_.
Starting with the right hand side, F~ C U_, we get P(v_)NSy = 0 by (hmeon)-
Sowv, =||P(v_) €S, and hence S, C F,.

(5) Assume that z ¢ S;. Because Sy is assumed to be Scott-open, we
can apply Zorn’s Lemma to obtain a maximal element v, above x that does
not belong to S,. The set Fy := L, \ Jv; is a completely prime filter that
separates x from Sy, and it remains to show that it is the first component of a

17



d-point. According to Lemma 5.3 the right candidate is F~ = L_\ |v_ where
v = ||'"P(vy) = | |C(vy). Note that u_ C v_ as u_ € C(vy) by (hmye).
Using Lemma 5.3(iii) we only need to show that (v,,v_) & tot. For this
we employ (CUT,): for all (a,b) € con with a € F; we have v, Ua € Sy
by maximality of v, and so (vy Ua,v_) € tot by (2); if it was the case
that (vy,v_) = (vy,u_ U |'P(vy)) € tot, then (v,,u_) € tot would follow,
contradicting (hmye).

For part (6) let y € U_. By regularity and the assumption that U_
is completely prime, some y’ < y also belongs to ¢/_. The witness 7,4, is
not in Sy because of (r,,,y’) € con and assumption (hme,). By part (5)
there is a point (Fly, F_) that separates r,, from S;. By (4) we have that
F_ CU_ and because of (r,,,y) € tot it must also be the case that y € F_.

Finally, consider the last claim; the two descriptions of A are equal be-
cause of (4). Any 7,-open neighbourhood of A has the form &, (x) with
x € 84 by (5). It follows that A is 7,-compact. Only the maximality of u_
in L_ \ U_ is required to see that A is the complement of ®_(u_). [

Note that the infinitary rule (CUT,) and the Axiom of Choice are only
required to establish the link between the d-frame and its spectrum.

Theorem 5.5 In any d-frame L there is a one-to-one correspondence be-
tween

(i) pairs (S;,U_) satisfying (hmeo,) and (hmy), and

(ii) maps q from L to the four-element d-frame 2.2 which preserve tt, | |,
con, tot, and the logical operation .

If furthermore the d-frame is reqular and satisfies (CUT,.), then these are in
one-to-one correspondence with

(7ii) subsets A of spec L which are compact saturated in the positive and
closed in the negative topology.

Proof. Given a map q as described in part (ii), consider S, = ¢~ *(#)N L,
and U_ = ¢ ' (ff) N L_. Tt is straightforward to show that the pair (S,,U_)
satisfies (hmeo,) and (hmyy). For the translation in the opposite direction
let g(a) =[J({#t [ ar € Se} UL{ff | o Zu}).

The translation from (i) to (iii) was given in the preceding lemma; for the
reverse let A C spec L as described in (iii) and set Sy = {x | A C &, (2)}
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and U_ = {y| ANP_(y) # 0}. Showing that these translations are inverses
of each other requires nothing more than an unwinding of the definitions. |

In reference to this result, we call the pair (Sy,U_) an HM-pair, the
corresponding map g an HM-map, and (if applicable) the corresponding set A
an HM-set.

Let us discuss Theorem 5.5 in terms of HM-maps. Given a consistent
predicate ¢, that is, ¢ € con, the value of ¢ at ¢ can only be #, ff, or 0. The
first outcome indicates that all elements of A satisfy ¢, the second that some
element of A fails ¢, and the last that neither holds (which is a possibility
because a consistent predicate does not need to be Boolean). This means
that HM-maps act like universal quantifiers for partial predicates.

Generally, one would expect a universal quantifier to preserve # but not
necessarily ff, because A could be the empty set. Also, one would expect it
to preserve conjunction (A) but not disjunction (V), and certainly one would
not want it to be inconsistent (returning 1) for a consistent predicate, or to
be undecided (returning 0) for a total predicate, that is, one expects it to
preserve con and tot.

The preservation of | |' can be seen as a computability condition on the
universal quantifier: If a (partial) predicate ¢ is the directed supremum of
(partial) predicates ;, and if the universal quantifier applied to ¢ returns a
definite answer, that is, either # or ff, then computability requires the same
answer be obtained from an approximant ¢, already.

All in all, then, Theorem 5.5 is a generalisation of the theory of contin-
uous quantification on topological spaces, discovered by Taylor [Tay00] and
Escardé [Esc04], to a logic in which predicates are allowed to have value ff
as well as .

For a version of Theorem 5.5 on the side of bitopological spaces we first
observe that regularity implies that the space is order-separated, so by Theo-
rem 2.7 it is automatically d-sober. In an order-separated space a 7 -compact
saturated set is also 7_-closed. Furthermore, the corresponding d-frame Q2 X
satisfies (CUT,) by Proposition 4.5, and so 5.5 applies:

Theorem 5.6 If (X;7.,7_) is a regular bitopological space then there is a
one-to-one correspondence between

(i) maps from QX to 2.2 which preserve tt, | |', con, tot and A, and

(i1) subsets A of X which are compact saturated with respect to 7.
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6 Existential quantification and compactness

The construction of the previous section also provides us with a notion of an
existential quantifier for partial predicates. The idea is to adapt the classical
translation dx.p < —Vx.—p to the present setting, that is, we consider HM-
pairs (S_,U,) is the symmetric d-frame L, := L_xL, (i.e., the roles of
L, and L_ are exchanged) and likewise swap # and ff in the truth value
object 2.2. In other words, an element a@ = (a4, a_) (in the original d-
frame!) is mapped to the truth value | |{ff |a- € S_} U {tt | ay L ui}).
If the conditions of Lemma 1.5 are satisfied for (U, S_) then this map will
preserve ff, |||, con, tot, and V, that is, it will behave like a continuous
existential quantifier.
Given an element u_ of L_, we can consider

Si(u_):={xe€Ly| (z,u_) € tot}
and, symmetrically, for u, € L,

S_(uy) :={y € L | (uy,y) € tot} .

In a reasonable d-frame the sets so constructed are guaranteed to be filters.
Furthermore, the conditions (hmy) (by construction) and (hme,,) (because
of (con—tot)) are true for the pairs (S, (u_),u_), resp. (uy,S_(uy)). This
means that the construction almost yields HM-pairs, and the real issue is
continuity. Let us say that a d-frame supports continuous quantification if the
sets S (u_) and S_(uy) are always Scott-open. From a spatial perspective
this amounts to saying that lower-closed sets are universally quantifiable and
upper-closed sets are existentially quantifiable. The goal of the remainder
of this section, then, is to make the link between continuous quantification
and compactness. To this end we define a d-frame to be compact if tot, as
a subset of L, xL_, is Scott-open. For bitopological spaces this means that
any cover with open sets from both topologies has a finite subcover.

Theorem 6.1 A d-frame L supports continuous quantification if and only
iof it is compact.
Proof. “if” Since tot is a Scott-open set, the filter S;(u_) =
{z € Ly | (z,u_) € tot} is clearly Scott-open as well.

“only if” In a product lattice, Scott-openness can be checked in each
coordinate separately, [AJ94, Lemma 3.2.6], so assume (z;);c; is a directed
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set in L, such that (| |lx;,y) € tot. This is tantamount to saying that
| I's; € Si(y) and since it is assumed that the latter is Scott-open, some x;,
will belong to Sy (y) already. In other words, (x;,,y) € tot. |

Somewhat to our surprise, the preceding statement did not rely on regu-
larity, though it has to be said that in the absence of regularity the intuitions
about quantification, as developed in the previous section, are not valid. This
is because in a non-regular d-frame (or a non-regular bitopological space) the
connection between the two frames (resp., topologies) is very loose. For ex-
ample, a 7_-closed set need not even be 7,-saturated, etc. Compact reqular
d-frames, however, are extremely well-behaved and play a central role in the
construction and analysis of semantic spaces. There is no room here to ex-
pand on this connection; instead we refer the interested reader to [JMO06],
sections 6 and 8.1, and the references given there.
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