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Abstract

We present a Stone duality for bitopological spaces in analogy to the duality
between topological spaces and frames, and discuss the resulting notions of so-
briety and spatiality. Under the additional assumption of regularity, we prove a
characterisation theorem for subsets of a bisober space that are compact in one and
closed in the other topology. This is in analogy to the celebrated Hofmann-Mislove
theorem for sober spaces. We link the characterisation to Taylor’s and Escard́o’s
reading of the Hofmann-Mislove theorem as continuous quantification over a sub-
space. As an application, we define locally compact d-frames and showthat these
are always spatial.
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1 Introduction

The Hofmann-Mislove theorem, first published as [10], states that in a sober space
the open neighbourhood filters of compact saturated sets areprecisely the Scott-open
filters in the corresponding frame of opens. Mathematically, it has some remarkable
consequences, such as the fact that the set of compact saturated subsets of a sober space
form a dcpo when ordered by reverse inclusion, and it links Lawson duality (applied
to the frame of opens) to the idea of the co-compact topology on the space, [16]. Its
significance in Computer Science took some time to emerge, and credit in this respect is
due to Plotkin, [17, 18], Smyth, [19], and Vickers, [21], whopointed out that it is at the
core of the proof that the upper powerdomain (defined as a freealgebraic theory) has a
concrete representation as a set of subsets of the given domain. Quite unexpectedly, it
was also required in the classification of cartesian closed categories of domains, [12].
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More recently, Taylor, [20], and Escardó, [6], have interpreted the theorem as ex-
pressing the idea that the compact saturated sets are precisely those for which there is
a continuous universal quantifier. To this end, they read “open set” as “predicate” and
“Scott-open filter of opens” as a map from predicates to Sierpiński space that is Scott-
continuous and finite meet preserving, that is, as a “quantifier” which tells us whether
a predicate is true for all elements of the corresponding compact set.

Below we present a Stone duality for bitopological spaces motivated by the idea
that a predicate may not only be true for some states, but in general will be false for
others, and that the mechanisms for establishing falsehoodwill in general be different
from those that establish truth. As Smyth has stressed, the positive extents ofobserv-
ablepredicates form a topology, and so all we do is to add a second topology for the
negative extents. However, in semantics we are already quite familiar with dealing with
two topologies: Early on in the study of continuous latticesit was discovered by Law-
son that the “weak lower topology” is a natural partner for the Scott-topology, their join
being the (compact Hausdorff) Lawson topology. On hyperspacesY ⊆ PX one natu-
rally has the upper topology generated by sets of the form�O := {A ∈ Y | A ⊆ O}
(O an open in the original space), and the lower topology generated by sets of the form
♦O := {A ∈ Y | A ∩ O 6= ∅}. Abramsky, [1], showed that the three powerdomains
can be obtained systematically from this (bi-)topologicalpoint of view.

Our interest in bitopological spaces was driven by these examples and also by a
desire to analyse various Stone dualities, but there is no room here to expand on this
latter aspect; instead we refer the reader to the report [13].

2 Stone duality and the Hofmann-Mislove theorem

We briefly review the duality between topological spaces andframes. For more details
see [2, Chapter 7], and [11, 8].

Definition 2.1 A frameis a complete lattice in which finite meets distribute over arbi-
trary joins. We denote with⊑, ⊓,

⊔
, 0, and1 the order, finite meets, arbitrary joins,

least and largest element, respectively.
A frame homomorphismpreserves finite meets and arbitrary joins; thus we have

the categoryFrm .

For (X; τ) a topological space,(τ ;⊆) is a frame; forf : (X; τ) → (X ′; τ ′) a con-
tinuous function,f−1 : τ ′ → τ is a frame homomorphism. These are the constituents
of the contravariant functorΩ: Top → Frm . It is represented byTop(−, S) whereS

is Sierpínski space.
The collectionN (a) of open neighbourhoods of a pointa in a topological

space(X; τ) forms acompletely prime filterin the frameΩX, that is, it is an upper set,
closed under finite intersections, and whenever

⋃
O ∈ N (a) thenO∩N (a) 6= ∅. This

leads one to consider the set ofpoints(sometimes called “abstract points” for empha-
sis) of a frameL to be the collectionspec L of completely prime filters. Abstract points
are exactly the pre-images of{1} under homomorphisms fromL to 2 = {0 < 1}.

A frame L induces a topology onspec L whose opens are of the formΦ(x) =
{F ∈ spec L | x ∈ F} with x ∈ L. A frame homomorphismh : L → L′ induces a
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continuous functionspec h : spec L′ → spec L by letting spec h(F ) := h−1(F ) for
F ∈ spec L′. These are the components of the contravariant functorspec from Frm
to Top, represented byFrm(−, 2) .

Theorem 2.2 The functorsΩ and spec constitute a dual adjunction betweenTop
andFrm .

The unit and co-unit of this adjunction are simplyN andΦ. That is, for any space
(X; τ) the mapηX : X → spec ΩX, given bya 7→ N (a), is continuous; it is also
open onto its image. Likewise, for any frameL the mapǫL : L → Ω spec L, given by
x 7→ Φ(x) is a frame homomorphism; it is also surjective.

We can ask when a frameL is spatial in the sense that it is isomorphic toΩX
for some spaceX. The adjunction transfers isomorphisms:L ∼= ΩX if and only
if X ∼= spec L. So L is spatial if and only ifL ∼= Ω spec L, that is,ǫL is a frame
isomorphism. BecauseǫL is already a surjective frame homomorphism, this holds if
and only ifǫL is injective.

Similarly, we can ask when a spaceX is soberin the sense that it is homeomorphic
to spec L for some frameL. By the same reasoning as in frames, this holds if and only
if ηX is a homeomorphism. BecauseηX is already continuous and open onto its image,
it suffices forηX to be a bijection. Injectivity is precisely theT0 axiom and surjectivity
says that every completely prime filter of opens is the neighbourhood filter of a point.

Theorem 2.3 The functorsΩ and spec restrict to a dual equivalence between sober
spaces and spatial frames.

This is the setting for theHofmann-Mislove theorem, [10], which we are now ready
to state.

Theorem 2.4 In a sober space(X, τ), there is a bijection between the set of compact
saturated subsets ofX and the set of Scott-open filters inτ .

Although a direct proof is possible, [15], it more useful forus to refer to Stone
duality, as in the original paper [10]:

Lemma 2.5 A Scott-open filter in a frameL is equal to the intersection of the collec-
tion of completely prime filters containing it.

Proof. (Sketch) LetS be the Scott-open filter anda an element not inS. Extenda
to a maximal chain outsideS and take its supremumv, which by Scott openness is a
maximal element ofL \ S. BecauseS is a filter, v is irreducible, and becauseL is
distributive, it is furthermore prime. The setL \ ↓v is completely prime and separates
a from S.

Proof. (of 2.4) Clearly, the neighbourhoods of a compact subset form a Scott-open
filter. For the converse, letA be the intersection of a Scott-open filterS of opens. By
the lemma, every open neighbourhood ofA belongs toS. BecauseS is assumed to be
Scott-open,A is compact (and obviously saturated).

A saturated set is the intersection of its open neighbourhoods by definition, and a
Scott-open filter is the intersection of the completely prime filters containing it by the
lemma, so the two translations are inverses of each other.
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3 Stone duality for bitopological spaces

Without spending too much time on motivation, we now sketch aStone duality for
bitopological spaces; for the full picture we refer to [13].

A bitopological spaceis a setX together with two topologiesτ+ and τ−. No
connection between the two topologies is assumed. Morphisms between bitopological
spaces are required to be continuous with respect to each of the two topologies; this
gives rise to the categorybiTop.

For a Stone dual it is natural to consider pairs(L+, L−) of frames (and pairs of
frame homomorphisms) but for some purposes it is more convenient to axiomatise the
productτ+×τ−, that is, to have a single-sorted algebraic structure. In fact, the two
views are completely equivalent:

Proposition 3.1 The categoryFrm×Frm is equivalent to the category whose objects
are frames which contain a pair of complemented elementstt and ff , and whose mor-
phisms are frame homomorphisms that preservett andff .

Proof. In one direction, one assigns to a pair(L+, L−) the productL+×L− and
the constantstt := (1, 0) and ff := (0, 1). In the other direction, one assigns to
(L; tt , ff ) the two framesL+ := [0, tt ] andL− := [0, ff ]. The isomorphism fromL to
[0, tt ]×[0, ff ] is given byα 7→ 〈α+, α−〉 := 〈α ⊓ tt , α ⊓ ff 〉. The isomorphism from
L+×L− to L is given by〈x, y〉 7→ x ⊔ y.

In addition to the notation〈α+, α−〉 introduced in the proof above we will also use
α ⊑+ β in caseα+ ⊑ β+, and similarly⊑−. One hasα ⊑ β if and only if α ⊑+ β
andα ⊑− β.

Having two frames is not enough, however, as we also need to express the fact
that they represent topologieson the same set. One approach for achieving this was
introduced by Banaschewski, Brümmer, and Hardie in [3]; theirbiframesaxiomatise
the two topologies and the joint refinementτ+ ∨ τ−. Our proposal is different; we only
record when two open setsO+ ∈ τ+ andO− ∈ τ− are disjoint from each other, and
when they cover the whole spaceX. In the first case we say that they areconsistent, in
the second that they aretotal.

Definition 3.2 A d-frameconsists of a frameL, a pair of complemented elementstt

and ff , and two unary predicatescon and tot. Morphisms between d-frames are re-
quired to preserve all of this structure. The resulting category is denoted bydFrm .

As we have already explained informally, the contravariantfunctor Ω from
bitopological spaces to d-frames assigns to a space(X; τ+, τ−) the d-frame
(τ+×τ−; (X, ∅), (∅,X), con, tot) where(U, V ) ∈ con if and only if U ∩ V = ∅ and
(U, V ) ∈ tot if and only if U ∪ V = X. The functor associates with a bicontinu-
ous functionf the map(U, V ) 7→ (f−1(U), f−1(V )). A trivial bit of set theory will
convince the reader that the consistency and totality predicates are preserved. Figure 1
shows some small examples. The bitopological spaceS.S, which looks like a product of
two copies of Sierpinski space, allows us to represent the functorΩ asbiTop(−, S.S).
Note how the four elements ofS.S correspond to the four ways in which an element of
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3.3:S.S:

(O+, O−)

O+

O−

O+

O−

O+

O−

O−

O+

2.2:

Figure 1: Some bitopological spaces and their concrete d-frames. (D-frame elements
in thecon-predicate are indicated by an additional circle, those in thetot-predicate are
filled in.)
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the space can be related to an open fromτ+ and an open fromτ−: it can be in one of
the two but not the other, it can be in both, or it can be in neither.

For a functor in the reverse direction, we continue to followthe theory of frames
by considering d-frame morphisms fromL = (L; tt , ff ; con, tot) to 2.2, depicted in
the upper right corner of Figure 1. Such morphisms are determined by pairs of frame
homomorphismsp+ : L+ → 2 andp− : L− → 2 that together preservecon andtot.
So they correspond to pairs of completely prime filtersF+ ⊂ L+, F− ⊂ L− such that

(dpcon) α ∈ con =⇒ α+ 6∈ F+ or α− 6∈ F−;
(dptot) α ∈ tot =⇒ α+ ∈ F+ or α− ∈ F−.

The reader should pause at this point to assure himself that the pair of neighbourhood
filters(N+(x),N−(x)) of a pointx in a bitopological space satisfies these two axioms.

OnL itself, a point manifests itself as a pair(F ∗
+, F ∗

−) of completely prime filters
that satisfy the analogue of (dpcon) and (dptot), plus

(dp+) tt ∈ F ∗
+;

(dp−) ff ∈ F ∗
−;

Figure 2 illustrates the idea that(F ∗
+, F ∗

−) determines four “quadrants” so thatcon

does not intersect with the “upper quadrant” andtot does not intersect with the ‘lower.”

1

0

fftt

tot

con

F
∗
−

F−
F+

F
∗
+

Figure 2: An abstract point in a d-frame.

The set of d-points becomes a bitopological space by considering the collection of
Φ+(x) := {(F+, F−) | x ∈ F+}, x ∈ L, as the first topologyT+, and the collection
of Φ−(x) := {(F+, F−) | x ∈ F−}, x ∈ L, as the second topologyT−. Together,
this is thespectrumof the d-frameL, which we denote asspecL, following the no-
tation for frames. The construction for objects is extendedto a (contravariant) func-
tor spec : dFrm → biTop in the usual way, that is, by noting that the inverse image of
a point under a d-frame morphism is again a point.

Theorem 3.3 The functorsΩ and spec establish a dual adjunction betweenbiTop
anddFrm .
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We say that a bitopological spaceX is (d-) soberif it is bihomeomorphic tospecL
for some d-frameL. As with frames and topological spaces, d-sobriety is equivalent to
the unitx 7→ (N+(x),N−(x)) being a bijection.

Example 3.4 All the bitopological spaces in Figure 1 are d-sober. For theone-point
space this is clear, as the associated d-frame admits only one point. For the other four
spaces one argues as follows: The underlying frame is the same in each case and it
admits four completely prime filters:

F 1
+ := ↑tt F 1

− := ↑ff
F 2

+ := ↑(O+, ∅) F 2
− := ↑(∅, O−)

The notation already indicates which of these can be used as the first, respectively sec-
ond, component of a point. From this we get four possible combinations, and these are
indeed all available in the last example. In the other three examples, thecon/tot la-
belling of the element(O+, O−) in the centre of the d-frame excludes certain combi-
nations: if it belongs tocon, thenF 2

+ cannot be paired withF 2
−, and if it belongs totot

thenF 1
+ cannot be paired withF 1

−.

For an exploration into the concept of d-sobriety we refer to[13]; here we confine
ourselves to one particular class of examples.

Definition 3.5 A bitopological space(X; τ+, τ−) is called order-separatedif
≤ = ≤+ ∩ ≥− is a partial order andx 6≤ y implies that there are disjoint open sets
O+ ∈ τ+ andO− ∈ τ− such thatx ∈ O+ andy ∈ O−. (The relations≤+ and≤−

refer to the specialisation orders onX with respect toτ+ andτ−, respectively.)

Lemma 3.6 In an order-separated bitopological space the following are true:

(1) ≤+ = ≥−;

(2) ≤+ ∩ ≤− = ‘=’.

Proof. For the first claim assumex 6≤+ y. This impliesx 6≤ y and we get a separating
consistent pair(O+, O−). Sincey ∈ O− but x 6∈ O− we concludex 6≥− y. So
6≤+ = 6≥− and this is equivalent to the first claim.

The second claim follows immediately from (1) and anti-symmetry of≤.

Theorem 3.7 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical mapη : X → spec ΩX
is injective; the real issue is surjectivity. So assume that(F+, F−) is a point ofΩX.
Consider the two sets

V+ :=
⋃

{O+ ∈ τ+ | O+ 6∈ F+} V− :=
⋃

{O− ∈ τ− | O− 6∈ F−}

and their complementsV c
+, V c

−. Because of condition (dptot), V+ ∪ V− cannot be the
whole space, in other words, the intersectionV c

+ ∩ V c
− is non-empty.
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Next we show that every element ofV c
+ is below every element ofV c

− in the spe-
cialisation order≤ = ≤+ ∩ ≥−. Indeed, ifx ∈ V c

+, y ∈ V c
−, andx 6≤ y, then by

order separation there is a partial predicate(O+, O−) with x ∈ O+ andy ∈ O−. By
definition ofV+, V− we haveO+ ∈ F+ andO− ∈ F−, contradicting condition (dpcon)
of d-points.

Finally, let a be an element in the intersectionV c
+ ∩ V c

−. We show thatF+ is the
neighbourhood filter ofa in τ+. Assumea ∈ O+; this impliesO+ 6⊆ V+ and the latter
is equivalent toO+ ∈ F+. For the converse we start atO+ 6⊆ V+, which gives us an
elementb ∈ V c

+ ∩O+ about which we already know thatb ≤ a. It follows thatb ≤+ a
and hencea ∈ O+.

From this result it follows immediately that the real line together with the usual
upper and lower topology is d-sober. Likewise, one sees thatthepunctured unit interval
[0, 1]\{ 1

2} is d-sober with respect to the same two topologies. Note thatneither is sober
in the traditional sense when equipped with only one of the topologies.

4 The logical structure of d-frames

Before we consider spatiality for d-frames let us have a lookat the duality from the
point of view of logic. For this we interpret the elements of ad-frameL as logical
propositions. An abstract point(F+, F−) is then amodel, andF+ consists of those
propositions which are true in the model,F− of those that are false. If a proposition
belongs tocon then for no model is it both true and false (and may be neither); if it
belongs totot then in every model it is either true or false (or indeed both). The set of
all models (i.e.,specL) becomes a bitopological space by collecting into one topology
all sets of models in which some proposition is true (the “positive extents”) and in the
other the sets of models where some proposition is false (the“negative extents”).

From this perspective it is natural to consider an order between propositions which
increases the positive extent and shrinks the negative one.As it turns out, this additional
relation is always present in a d-frame, and in fact it follows from the distributive
lattice structure and the two complemented elements alone.The earliest reference to
this appears to be [5], but the proof is entirely straightforward and can be left as an
exercise.

Proposition 4.1 Let (L;⊓,⊔, 1, 0) be a bounded distributive lattice, and(t, f) a com-
plemented pair inL, that is,t ⊓ f = 0 andt ⊔ f = 1. Then by defining

x ∧ y := (x ⊓ f) ⊔ (y ⊓ f) ⊔ (x ⊓ y) = (x ⊔ f) ⊓ (y ⊔ f) ⊓ (x ⊔ y)
x ∨ y := (x ⊔ t) ⊓ (y ⊔ t) ⊓ (x ⊔ y) = (x ⊓ t) ⊔ (y ⊓ t) ⊔ (x ⊓ y)

one obtains another bounded distributive lattice(L;∧,∨, t, f), in which (1, 0) is a
complemented pair. The original operations are recovered from it as

x ⊓ y = (x ∧ 0) ∨ (y ∧ 0) ∨ (x ∧ y) = (x ∨ 0) ∧ (y ∨ 0) ∧ (x ∨ y)
x ⊔ y = (x ∨ 1) ∧ (y ∨ 1) ∧ (x ∨ y) = (x ∧ 1) ∨ (y ∧ 1) ∨ (x ∧ y)

Furthermore, any two of the operations⊓, ⊔, ∧, and∨ distribute over each other. IfL
is a frame, then∧ and∨ are also Scott continuous.
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This justifies our choice of symbolstt and ff in a d-frame, and suggests that we
regard(L;∧,∨, tt , ff ) as thelogical structureof a d-frame. Altogether, then, we see
that d-frames are special “bilattices,” which were introduced by Ginsberg, [9], as a
generalisation of Belnap’s four-valued logic [4].

Exploiting Proposition 3.1 we can easily compute conjunction and disjunction in
terms of the representation of a d-frame asL+×L−:

〈x, y〉 ∧ 〈x′, y′〉 := 〈x ⊓ x′, y ⊔ y′〉
〈x, y〉 ∨ 〈x′, y′〉 := 〈x ⊔ x′, y ⊓ y′〉

Note the reversal of order in the second component. This makes sense, as we think of
the second frame as providing negative answers.

5 Reasonable d-frames and spatiality

We say that a d-frameL is spatial if it is isomorphic toΩX for some bitopological
spaceX. As with d-sobriety, this is equivalent to the co-unitǫ : α 7→ (Φ+(α),Φ−(α))
being an isomorphism of d-frames. As it is always surjectiveby definition, the con-
dition boils down toǫ being injective and reflectingcon and tot. If this is spelt out
concretely, one arrives at the following:

Proposition 5.1 A d-frameL is spatial if and only if the following four conditions are
satisfied:

(s+) ∀α 6⊑+ β ∃(F+, F−) ∈ specL. α ∈ F+, β 6∈ F+;
(s−) ∀α 6⊑− β ∃(F+, F−) ∈ specL. α ∈ F−, β 6∈ F−;

(scon) ∀α 6∈ con ∃(F+, F−) ∈ specL. α+ ∈ F+, α− ∈ F−;
(stot) ∀α 6∈ tot ∃(F+, F−) ∈ specL. α+ 6∈ F+, α− 6∈ F−;

The following lemma is very easy to prove for concrete d-frames that arise from a
bitopological space, and it confirms the intuition ofcon as the set of pairs of open sets
that do not intersect, andtot as those pairs that cover the whole space.

Lemma 5.2 Let (L; tt , ff ; con, tot) be a spatial d-frame. The following properties
hold:

(con–↓) α ⊑ β & β ∈ con =⇒ α ∈ con

(tot–↑) α ⊑ β & α ∈ tot =⇒ β ∈ tot

(con–tt) tt ∈ con

(con–ff ) ff ∈ con

(con–∧) α ∈ con & β ∈ con =⇒ (α ∧ β) ∈ con

(con–∨) α ∈ con & β ∈ con =⇒ (α ∨ β) ∈ con

(tot–tt) tt ∈ tot

(tot–ff ) ff ∈ tot

(tot–∧) α ∈ tot & β ∈ tot =⇒ (α ∧ β) ∈ tot
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(tot–∨) α ∈ tot & β ∈ tot =⇒ (α ∨ β) ∈ tot

(con–
⊔

↑) A ⊆ con directed w.r.t.⊑ =⇒
⊔

↑A ∈ con

(con–tot) α ∈ con, β ∈ tot, (α =+ β or α =− β) =⇒ α ⊑ β

Definition 5.3 A d-frame which satisfies the properties stated in Lemma 5.2 is called
reasonable. The category of reasonable d-frames is denoted byrdFrm .

Note that the converse of Lemma 5.2 does not hold, i.e., a reasonable d-
frame need not be spatial: take a frameL without any points and consider
(L×L; (1, 0), (0, 1), con, tot) where〈x, y〉 ∈ con if x ⊓ y = 0, and〈x, y〉 ∈ tot if
x ⊔ y = 1. It is a trivial exercise to prove that the resulting d-frameis reasonable, but
it obviously can’t have any points.

Proposition 5.4 The forgetful functor fromrdFrm to Sethas a left adjoint.

Proof. The free reasonable d-frame over a setA is (FA×FA; (1, 0), (0, 1), con, tot)
whereFA is the free frame overA. Generators are the pairs(a, a), a ∈ A. The two
relations are chosen minimally:〈x, y〉 ∈ con if and only ifx = 0 or y = 0; 〈x, y〉 ∈ tot

if and only if x = 1 or y = 1. The conditions for a reasonable d-frame are proved by
case analysis.

As an example, the structure labelled3.3 in Figure 1 is the free reasonable d-frame
generated by a one-element set.

The following additional property of spatial d-frames willalso play a part in our
presentation of a Hofmann-Mislove theorem for sober bitopological spaces, but we do
not consider it elementary enough to be included in the definition of “reasonable.” The
proof-theoretic terminology used in its label refers to a presentation of d-frames that
places more emphasis on the logical structure, see [13, Section 7].

Proposition 5.5 Every spatial d-frame satisfies the following property:

(CUTr) 〈x, y ⊔
⊔

i∈I

bi〉 ∈ tot & ∀i ∈ I. 〈x⊔ai, y〉 ∈ tot & 〈ai, bi〉 ∈ con ⇒ 〈x, y〉 ∈ tot

6 Regularity and the Hofmann-Mislove theorem

A major practical problem with d-frames is that it is very difficult to construct abstract
points for them. For example, consider the proof of the Hofmann-Mislove lemma 2.5,
where we exploited the fact that in a frame there is a one-to-one correspondence be-
tween completely prime filtersF and⊓-prime elementsv (given by the translations
v 7→ L \ ↓v andF 7→

⊔
L \ F ). The analogue for d-frames is not very helpful. The

situation improves if we also require regularity.

Definition 6.1 Let (L; tt , ff ; con, tot) be a reasonable d-frame. For two elements
x, x′ ∈ L+ we say thatx′ is well-insidex (and writex′ ⊳ x) if there isy ∈ L−

such that〈x′, y〉 ∈ con and 〈x, y〉 ∈ tot. To avoid lengthy verbiage, we will usually
write rx′⊳ x for the “witnessing” elementy (although it is not uniquely determined).
OnL− the well-inside relation is defined analogously.
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A d-frame is calledregularif everyx ∈ L+ is the supremum of elements well-inside
it, and similarly for elements ofL−.

For a bitopological space to be regular we require that at least one of the two
topologies isT0 and that the corresponding d-frame is regular.

We note that the elements well-inside a fixed elementx of a reasonable d-frame
form a directed set; this follows from (con–∨) and (tot–∨). That they are all belowx
is a consequence of (con–tot). 1 ⊳ 1 is always true as 0 can be chosen as the witness
in the other frame. It is an easy exercise to show that a regular bitopological space is
order-separated (and hence d-sober), but a regular d-frameneed not be spatial.

Lemma 6.2 LetL be a reasonable d-frame andx ∈ L+. Define

P(x) := {b ∈ L− | ∃a 6⊑ x. 〈a, b〉 ∈ con} and C(x) := {b ∈ L− | 〈x, b〉 6∈ tot}

(1) P(x) ⊆ C(x);

(2) If L is regular then
⊔

P(x) =
⊔

C(x).

Proof. (1) is a direct consequence of (con–tot): if we have〈a, b〉 ∈ con and〈x, b〉 ∈
tot thena ⊑ x follows.

For (2) letb′ ⊳ b ∈ C(x). The witnessrb′⊳ b cannot be belowx as otherwise we
could conclude〈x, b〉 ∈ tot from 〈rb′⊳ b, b〉 ∈ tot. We also have〈rb′⊳ b, b

′〉 ∈ con

and so find thatb′ ∈ P(x). By regularity,
⊔

P(x) is aboveb itself. It follows that⊔
P(x) ⊒

⊔
C(x), and by (1) the two suprema are in fact the same.

Lemma 6.3 Let L be a reasonable d-frame andv+ ∈ L+, v− ∈ L−. Consider the
following statements:

1. v− = max C(v+) andv+ = max C(v−);

2. (L+ \ ↓v+, L− \ ↓v−) is a d-point;

3. 〈v+, v−〉 6∈ tot andv− ⊒
⊔

↑P(v+);

4. 〈v+, v−〉 is a maximal element of(L+×L−) \ tot.

The following are true:

(1) (i) ⇒ (ii) ⇒ (iii), and (i) ⇒ (iv).

(2) If L is regular then (iii)⇒ (i).

(3) If L satisfies the(CUTr) rule then (iv)⇒ (ii).

Proof. Part (1), (i) ⇒ (ii): If 〈x, y〉 ∈ tot then eitherx 6⊑ v+ or y 6⊑ v− as
otherwise we would have〈v+, v−〉 ∈ tot by (tot–↑). If 〈x, y〉 ∈ con andx 6⊑ v+ then
y ∈ P(v+) ⊆ C(v+) by the previous lemma; hencey ⊑ v−. Thus we have shown
that the pair(L+ \ ↓v+, L− \ ↓v−) satisfies conditions (dptot) and (dpcon) for d-points
and it remains to show that we have two completely prime filters. This will hold if
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v+ andv− are⊓-irreducible. So letv− = y ⊓ y′; by (tot–∨) either〈v+, y〉 /∈ tot

or 〈v+, y′〉 /∈ tot, which means that eithery = v− or y′ = v−.
(ii) ⇒ (iii): If x 6⊑ v+ and〈x, y〉 ∈ con theny ⊑ v− by (dpcon). So we have

v− ⊒
⊔

P(v+). 〈v+, v−〉 6∈ tot follows from (dptot). The setP(v+) is directed
becauseL+ \ ↓v+ is a filter and (con–∧) is assumed for reasonable d-frames.

(i) ⇒ (iv) is trivial.
Part (2), (iii) ⇒ (i): On the side ofL− we already havev− ⊒

⊔
C(v+) by the

previous lemma. For the other direction, assumex 6⊑ v+. By regularity there isx′ ⊳ x
with x′ 6⊑ v+. Because of〈x′, rx′⊳ x〉 ∈ con we haverx′⊳ x ⊑ v− by assumption,
and then from〈x, rx′⊳ x〉 ∈ tot we infer 〈x, v−〉 ∈ tot by (tot–↑). It follows that
C(v−) ⊆ ↓v+. Together with〈v+, v−〉 6∈ tot this is exactly (i).

Part (3), (iv)⇒ (ii): As in (i) ⇒ (ii) we get thatv+ andv− are⊓-prime, and that
condition (dptot) is satisfied for(L+ \↓v+, L− \↓v−). In order to show (dpcon) assume
〈x, y〉 ∈ con. If we hadx 6⊑ v+ andy 6⊑ v− then by (the contrapositive of) the (cuttot)
rule we would have either〈v+, v− ⊔ y〉 6∈ tot or 〈v+ ⊔ x, v−〉 6∈ tot, contradicting the
maximality of〈v+, v−〉.

We are ready to formulate and prove the d-frame analogue to the Hofmann-Mislove
lemma 2.5:

Lemma 6.4 Let L be a regular d-frame that satisfies(CUTr). Assume thatS+ is a
Scott-open filter inL+ andU− = L− \ ↓u− is a completely prime upper set inL−

such that:
(hmcon) α ∈ con =⇒ α+ /∈ S+ or α− /∈ U−

(hmtot) α ∈ tot =⇒ α+ ∈ S+ or α− ∈ U−

Then the following are true:

(1) u− =
⊔

↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}, that is,U− is uniquely determined byS+.

(2) S+ = {a | 〈a, u−〉 ∈ tot}, that is,S+ is uniquely determined byU−.

(3) x ⊑ S+ ⇔ (x, u−) ∈ con.

(4) For any point(F+, F−) ∈ specL, S+ ⊆ F+ ⇔ F− ⊆ U−.

(5) S+ is the intersection of allF+ where(F+, F−) is a point andS+ ⊆ F+.

(6) U− is the union of allF− where(F+, F−) is a point andF− ⊆ U−.

(7) The setA := {(F+, F−) | S+ ⊆ F+} = {(F+, F−) | F− ⊆ U−} is T+-compact
saturated andT−-closed in the bitopological space(specL; T+, T−).

Proof. (1) The elementu− can not be any smaller because of (hmcon). For
the converse assumey ⊳ u−. The corresponding witnessry⊳ u−

belongs toS+

by (hmtot) and soy ∈ {b | ∃a ∈ S+. 〈a, b〉 ∈ con}. By regularity, then,u− ⊑⊔
↑{b | ∃a ∈ S+. 〈a, b〉 ∈ con}.

(2) Because of (hmtot) it is clear thatS+ must contain alla ∈ L+ with 〈a, u−〉 ∈
tot. For the converse letx ∈ S+. By regularity and Scott-openness ofS+ there
is x′ ⊳ x still in S+. The corresponding witnessrx′⊳ x must be belowu− because
of (hmcon), but then〈x, u−〉 ∈ tot by (tot–↑).
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(3) Assumex ⊑ a for all a ∈ S+. By (con–↓) we have(x, b) ∈ con for all
b ∈ {b | ∃a ∈ S+. (a, b) ∈ con}, so(x, u−) ∈ con by (con–

⊔
↑) and part (1). For the

converse, remember that(a, u−) ∈ tot for all a ∈ S+ by (2), so(x, u−) ∈ con implies
x ⊑ a by (con–tot).

(4) Letv+ =
⊔

(L+\F+). FromS+ ⊆ F+ and (hmcon) we getP(v+) ⊇ (L−\U−),
sov− =

⊔
P(v+) ⊒ u− and henceF− ⊆ U−.

Starting with the right hand side,F− ⊆ U−, we let v− =
⊔

(L− \ F−). From
(hmcon) we getP(v−) ∩ S+ = ∅. Sov+ =

⊔
↑P(v−) 6∈ S+ and henceS+ ⊆ F+.

(5) Assume thatx 6∈ S+. BecauseS+ is assumed to be Scott-open, we can apply
Zorn’s Lemma to obtain a maximal elementv+ abovex that does not belong toS+.
The setF+ := L+ \ ↓v+ is a completely prime filter that separatesx from S+, and it
remains to show that it is the first component of a d-point. According to Lemma 6.3
the right candidate isF− = L− \ ↓v− wherev− =

⊔
↑P(v+) =

⊔
C(v+). Note that

u− ⊑ v− asu− ∈ C(v+) by (hmtot). Using Lemma 6.3(iii) we only need to show that
〈v+, v−〉 6∈ tot. For this we employ (CUTr): for all 〈a, b〉 ∈ con with a ∈ F+ we have
〈v+⊔a, v−〉 ∈ tot by (2); if it was the case that〈v+, v−〉 = 〈v+, u−⊔

⊔
↑P(v+)〉 ∈ tot,

then〈v+, u−〉 ∈ tot would follow, contradicting (hmtot).
For part (6) lety ∈ U−. By regularity and the assumption thatU− is completely

prime, somey′ ⊳ y also belongs toU−. The witnessry′⊳ y is not in S+ because
of 〈ry′⊳ y, y′〉 ∈ con and assumption (hmcon). By part (5) there is a point(F+, F−) that
separatesry′⊳ y fromS+. By (4) we have thatF− ⊆ U− and because of〈ry′⊳ y, y〉 ∈ tot

it must also be the case thaty ∈ F−.
Finally, consider the last claim; the two descriptions ofA are equal because of (4).

Any T+-open neighbourhood ofA has the formΦ+(x) with x ∈ S+ by (5). It follows
thatA is T+-compact. Only the maximality ofu− in L− \ U− is required to see thatA
is the complement ofΦ−(u−).

Theorem 6.5 For a regular d-frameL that satisfies(CUTr) there is a one-to-one cor-
respondence between

1. mapsq from L to the four-element d-frame2.2 which preservett ,
⊔

↑, con, tot,
and the logical operation∧, and

2. subsetsA of specL which are compact saturated in the positive and closed in
the negative topology.

Proof. Given a mapq as described in part (i), considerS+ = q−1(tt) ∩ L+ and
U− = q−1(ff ) ∩ L−. It is straightforward to show that the pair(S+,U−) satisfies the
assumptions of Lemma 6.4. The translation in the opposite direction is equally easy.

A few comments on this result are in order: Given aconsistent predicateϕ, that is,
ϕ ∈ con, the value ofq at ϕ can only bett , ff , or 0. The first outcome indicates that
all elements ofA satisfyϕ, the second thatsomeelement ofA fails ϕ, and the last that
neither holds (which is a possibility because a consistent predicate does not need to be
Boolean). This means thatq acts like auniversal quantifierfor partial predicates.

Generally, one would expect a universal quantifier to preserve tt but not neces-
sarily ff , becauseA could be the empty set. Also, one would expect it to preserve
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conjunction (∧) but not disjunction (∨), and certainly one would not want it to be in-
consistent (returning1) for a consistent predicate, or to be undecided (returning0) for
a total predicate, that is, one expects it to preservecon andtot.

The preservation of
⊔

↑ can be seen as acomputabilitycondition on the universal
quantifier: If a (partial) predicateϕ is the directed supremum of (partial) predicatesϕi,
and if the universal quantifier applied toϕ returns a definite answer, that is, eithertt

or ff , then computability requires the same answer be obtained from an approximantϕi

already.
All in all, then, Theorem 6.5 is a generalisation of the theory of continuous quan-

tification on topological spaces, discovered by Taylor [20]and Escard́o [6], to a logic
in which predicates are allowed to have valueff as well astt .

For a version of Theorem 6.5 on the side of bitopological spaces we first observe
that regularity implies that the space is order-separated,so by Theorem 3.7 it is au-
tomatically d-sober. In an order-separated space aτ+-compact saturated set is also
τ−-closed. Furthermore, the corresponding d-frameΩX satisfies (CUTr) by Proposi-
tion 5.5, and so 6.5 applies:

Theorem 6.6 If (X; τ+, τ−) is a regular bitopological space then there is a one-to-one
correspondence between

1. maps fromΩX to 2.2 which preservett ,
⊔

↑, con, tot and∧, and

2. subsetsA of X which are compact saturated with respect toτ+.

7 An application: local compactness

We use the machinery of the previous section to define a notionof local compactness
for regular bitopological spaces.

Definition 7.1 Let S be a Scott-open filter ofL+ andU− a completely prime upper
set ofL−. We say that(S+,U−) is an HM-pair if it satisfies the conditions(hmcon)
and(hmtot) of Lemma 6.4.

For x′, x ∈ L+ we setx′ ◭ x if there is an HM-pair(S+,U−) such thatx′ ⊑ S+ ∋
x.

A d–frame is calledlocally compactif it is regular, satisfies(CUTr), and the fol-
lowing two conditions hold:

(lc+) ∀x ∈ L+. x =
⊔
{x′ | x′ ◭ x}

(lctot) ∀α. (∀(S+,U−). α+ ∈ S+ or α− ∈ U−) ⇒ α ∈ tot

We note that (lctot) is just the converse of (hmtot).

Proposition 7.2 Locally compact d-frames are spatial.

Proof. We check the conditions of Proposition 5.1. For (s+) assumex 6⊑ a ∈ L+;
by local compactness there isx′ ◭ x with x′ 6⊑ a. Let (S+,U−) be the correspond-
ing HM-pair with x′ ⊑ S+ ∋ x. The elementa can not be contained inS+, so by
Lemma 6.4(5) there exists a point(F+, F−) such thatS+ ⊆ F+ anda 6∈ F+.
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Next we tackle (stot), so assumeα 6∈ tot. By the contrapositive of (lc−) there
exists an HM-pair(S+,U−) such thatα− 6∈ U− andα+ 6∈ S+. By 6.4(5) we obtain a
point (F+, F−) with S+ ⊆ F+ 6∋ α+ and from 6.4(4) we get thatα− 6∈ F− ⊆ U−.

For (s−) assumey 6⊑ b ∈ L−. By regularity, there existsy′ ∈ L− with y′ ⊳ y
andy′ 6⊑ b. The witnessry′⊳ y satisfies〈ry′⊳ y, b〉 6∈ tot by (con–tot). From (stot) we
obtain a point(F+, F−) such thatry′⊳ y 6∈ F+, b 6∈ F−. Because〈ry′⊳ y, y〉 ∈ tot, we
must havey ∈ F−.

For (scon) assume〈x, y〉 6∈ con. Because of local compactness and Lemma 5.4
(together with (con–∨)) there existsx′ ◭ x such that〈x′, y〉 6∈ con. Let (S+,U−) be
the corresponding HM-pair. By Lemma 6.4(3),x′ ⊑ S+ forces〈x′, u−〉 ∈ con, hence
y must belong toU−. Using 6.4(6) we obtain a point(F+, F−) such thaty ∈ F− ⊆ U−

and by 6.4(4) we also havex ∈ S+ ⊆ F+.

Note that we did not need that the sets{x′ | x′ ◭ x} are directed, but this is in fact
the case: Ifx′

1, x
′
2 ◭ x with witnessing HM-pairs(S1

+,U1
−), (S2

+,U2
−), then(S1

+ ∩
S2

+,U1
− ∪ U2

−) witnessesx′
1 ⊔ x′

2 ◭ x.

Definition 7.3 A bitopological space(X; τ+, τ−) is calledlocally compactif it is reg-
ular andτ+ is locally compact in the usualT0 sense.

Proposition 7.4 For (X; τ+, τ−) a locally compact bitopological space, the d–frame
ΩX is locally compact.

Proof. Obviously, an HM-set onX gives rise to an HM-pair inΩX, and only (lctot)
needs checking. For this assume that the union ofO+ ∈ τ+ andO− ∈ τ− does not
coverX, that is, there isp ∈ X \O+∪O−. Then by order-separation↑p is τ+-compact
andτ−-closed, that is, an HM-set. Neither isO+ a neighbourhood of it, nor doesO−

intersect with it, so we conclude the contrapositive of (lctot).

Theorem 7.5 The functorsΩ and spec restrict to a dual equivalence between locally
compact bitopological spaces and locally compact d-frames.

8 Discussion

As we pointed out in the introduction, a corollary of the classical Hofmann-Mislove
theorem is that the collection of compact saturated sets forms a dcpo under reverse
inclusion. The analogue for bitopological spaces need not be true:

Example 8.1 The punctured unit interval[0, 1]\{ 1
2} is locally compact when equipped

with the usualτ+ andτ−. Each set of the form[r, 1] \ { 1
2}, 0 ≤ r < 1

2 is HM but their
intersection is( 1

2 , 1] which is not.

However, our motivation for studying this problem was basedon the view of HM-
sets as the continuously “quantifiable” ones, as explained in the text after Theorem 6.5
above, and this part of the story works out in a most satisfying way.

Another motivation was the desire to extend the duality between stably compact
spaces and strong proximity lattices, [14]. There, it is thecase that the two topologies
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determine each other (each being the co-compact topology with respect to the other),
but this is no longer true in the locally compact case:

Example 8.2 Let (X; τ) be a locally compact Hausdorff space. Then(X; τ, τ) is a
locally compact bispace in the sense of Definition 7.3. However, this is also true of
(X; τ, τcc) whereτcc is the co-compact topology with respect toτ . In general,τ andτcc

are different; for a concrete example considerR with its usual metric topology.

Still, we believe that our definition of “locally compact bispace” is very promising as a
generalisation of “stably compact” and that it warrants further investigation.
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