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Abstract

We present a Stone duality for bitopological spaces in analogy to the duality
between topological spaces and frames, and discuss the resultingsnofiso-
briety and spatiality. Under the additional assumption of regularity, weepeov
characterisation theorem for subsets of a bisober space that aractompne and
closed in the other topology. This is in analogy to the celebrated Hofmaniowdis
theorem for sober spaces. We link the characterisation to Taylor's scatd's
reading of the Hofmann-Mislove theorem as continuous quantificationaoseb-
space. As an application, we define locally compact d-frames and thiadthese
are always spatial.

Keywords: Bitopological spaces, d-frames, Stone duality, sober spaces,
Hofmann-Mislove theorem

1 Introduction

The Hofmann-Mislove theorem, first published as [10], Stdtet in a sober space
the open neighbourhood filters of compact saturated setsracisely the Scott-open
filters in the corresponding frame of opens. Mathematicillifas some remarkable
consequences, such as the fact that the set of compactedtsuasets of a sober space
form a dcpo when ordered by reverse inclusion, and it linkedan duality (applied
to the frame of opens) to the idea of the co-compact topolaegthe space, [16]. Its
significance in Computer Science took some time to emergi;radlit in this respect is
due to Plotkin, [17, 18], Smyth, [19], and Vickers, [21], whointed out that it is at the
core of the proof that the upper powerdomain (defined as afgebraic theory) has a
concrete representation as a set of subsets of the givenimlo@ate unexpectedly, it
was also required in the classification of cartesian clos¢ehories of domains, [12].
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More recently, Taylor, [20], and Escard[6], have interpreted the theorem as ex-
pressing the idea that the compact saturated sets aregdydtigse for which there is
a continuous universal quantifier. To this end, they reaetoget” as “predicate” and
“Scott-open filter of opens” as a map from predicates to $isip space that is Scott-
continuous and finite meet preserving, that is, as a “quaritifihich tells us whether
a predicate is true for all elements of the correspondingpamnset.

Below we present a Stone duality for bitopological spacesivaited by the idea
that a predicate may not only be true for some states, butnergéwill be false for
others, and that the mechanisms for establishing falseWwibih general be different
from those that establish truth. As Smyth has stressed,dabiéye extents obbserv-
able predicates form a topology, and so all we do is to add a seapualdgy for the
negative extents. However, in semantics we are alreadyg fguntiliar with dealing with
two topologies: Early on in the study of continuous lattitesas discovered by Law-
son that the “weak lower topology” is a natural partner fa $tott-topology, their join
being the (compact Hausdorff) Lawson topology. On hyparspe C P X one natu-
rally has the upper topology generated by sets of the fath:= {A €Y | A C O}
(O an open in the original space), and the lower topology g¢eétay sets of the form
00 :={A €Y | AnO # 0}. Abramsky, [1], showed that the three powerdomains
can be obtained systematically from this (bi-)topologmaiht of view.

Our interest in bitopological spaces was driven by thesengi@s and also by a
desire to analyse various Stone dualities, but there is amfeere to expand on this
latter aspect; instead we refer the reader to the report [13]

2 Stone duality and the Hofmann-Mislove theorem

We briefly review the duality between topological spacesfeaties. For more details
see [2, Chapter 7], and [11, 8].

Definition 2.1 A frameis a complete lattice in which finite meets distribute overiar
trary joins. We denote with, 1, | |, 0, and1 the order, finite meets, arbitrary joins,
least and largest element, respectively.

A frame homomorphismpreserves finite meets and arbitrary joins; thus we have
the categoryFrm.

For (X; 7) a topological spacés; C) is a frame; forf: (X;7) — (X’;7') acon-
tinuous functionf~*: 7/ — 7 is a frame homomorphism. These are the constituents
of the contravariant functd®: Top — Frm. It is represented byop(—,S) whereS
is Sierpihski space

The collection V(a) of open neighbourhoods of a poiat in a topological
space X; 7) forms acompletely prime filtein the frame2 X, that is, it is an upper set,
closed under finite intersections, and whenéye? € N (a) thenO NN (a) # 0. This
leads one to consider the setpiints(sometimes called “abstract points” for empha-
sis) of a framel to be the collectionpec L of completely prime filters. Abstract points
are exactly the pre-images ¢f} under homomorphisms frotto 2 = {0 < 1}.

A frame L induces a topology ompec L whose opens are of the fori(z) =
{F € specL |z € F} with z € L. A frame homomorphisnk: L — L’ induces a



continuous functiorspec h: spec L’ — spec L by lettingspec h(F) := h=1(F) for
F € spec L’. These are the components of the contravariant fursgiar from Frm
to Top, represented blfrm (—, 2) .

Theorem 2.2 The functorsQ) and spec constitute a dual adjunction betwediop
andFrm.

The unit and co-unit of this adjunction are simglyand®. That is, for any space
(X;7) the mapnx: X — specQ X, given bya — N (a), is continuous; it is also
open onto its image. Likewise, for any franmiethe maper, : L — Qspec L, given by
x — ®(x) is a frame homomorphism; it is also surjective.

We can ask when a framg is spatial in the sense that it is isomorphic o X
for some spaceX. The adjunction transfers isomorphisms: = Q X if and only
if X = specL. SolL is spatial if and only ifL. = Qspec L, that is, ¢y, is a frame
isomorphism. Becausg, is already a surjective frame homomorphism, this holds if
and only ifey, is injective.

Similarly, we can ask when a spageis soberin the sense that it is homeomorphic
to spec L for some framd.. By the same reasoning as in frames, this holds if and only
if nx is a homeomorphism. Becausgeg is already continuous and open onto its image,
it suffices fornx to be a bijection. Injectivity is precisely tti& axiom and surjectivity
says that every completely prime filter of opens is the neighirood filter of a point.

Theorem 2.3 The functors2 and spec restrict to a dual equivalence between sober
spaces and spatial frames.

This is the setting for thelofmann-Mislove theorenfiL0], which we are now ready
to state.

Theorem 2.4 In a sober spacéX, 7), there is a bijection between the set of compact
saturated subsets of and the set of Scott-open filtersn

Although a direct proof is possible, [15], it more useful fos to refer to Stone
duality, as in the original paper [10]:

Lemma 2.5 A Scott-open filter in a framé is equal to the intersection of the collec-
tion of completely prime filters containing it.

Proof. (Sketch) LetS be the Scott-open filter andan element not it5. Extenda
to a maximal chain outsid§ and take its supremum, which by Scott openness is a
maximal element ofL \ S. BecauseS is a filter, v is irreducible, and becaude is
distributive, it is furthermore prime. The sBt\ |v is completely prime and separates
afrom S. I

Proof. (of 2.4) Clearly, the neighbourhoods of a compact subset f@iScott-open
filter. For the converse, led be the intersection of a Scott-open filtgof opens. By
the lemma, every open neighbourhood4belongs taS. BecauseS is assumed to be
Scott-openA is compact (and obviously saturated).

A saturated set is the intersection of its open neighbouthidyy definition, and a
Scott-open filter is the intersection of the completely m@rifiters containing it by the
lemma, so the two translations are inverses of each other. |



3 Stone duality for bitopological spaces

Without spending too much time on motivation, we now sketcBt@ene duality for
bitopological spaces; for the full picture we refer to [13].

A bitopological spacds a setX together with two topologies, andr_. No
connection between the two topologies is assumed. Morghitween bitopological
spaces are required to be continuous with respect to eadte afvb topologies; this
gives rise to the categohjiTop.

For a Stone dual it is natural to consider pdifs;, L_) of frames (and pairs of
frame homomorphisms) but for some purposes it is more céeneto axiomatise the
productry x7_, that is, to have a single-sorted algebraic structure. ¢t the two
views are completely equivalent:

Proposition 3.1 The categoryrrm xFrm is equivalent to the category whose objects
are frames which contain a pair of complemented elem#&raad ff, and whose mor-
phisms are frame homomorphisms that presetand ff .

Proof. In one direction, one assigns to a péalr,, L_) the productL, xL_ and
the constantgt := (1,0) andff := (0,1). In the other direction, one assigns to
(L; t, ff ) the two framed ;. := [0, #] andL_ := [0, ff]. The isomorphism fronL to

[0, t] [0, ff] is given bya — (a4, a_) := (a M t,a N ff). The isomorphism from
L, xL_to Lisgivenby(z,y) — z Uy. |

In addition to the notatiokiay, a— ) introduced in the proof above we will also use
a Ty Bincaseay C [y, and similarlyC_. One hasy C gifandonlyifa C, 3
anda C_ (.

Having two frames is not enough, however, as we also needpresx the fact
that they represent topologies the same setOne approach for achieving this was
introduced by Banaschewski, Bnmer, and Hardie in [3]; thebiframesaxiomatise
the two topologies and the joint refinementV 7_. Our proposal is different; we only
record when two open sef$; € 7 andO_ € 7_ are disjoint from each other, and
when they cover the whole spa&e In the first case we say that they aensistentin
the second that they atetal.

Definition 3.2 A d-frameconsists of a framd., a pair of complemented elemerits
and ff, and two unary predicateson andtot. Morphisms between d-frames are re-
quired to preserve all of this structure. The resulting gatgy is denoted bgFrm.

As we have already explained informally, the contravarifumictor Q2 from
bitopological spaces to d-frames assigns to a sp@gker,,7_) the d-frame
(T x7—; (X, 0), (0, X), con, tot) where(U, V) € conifand only if U NV = § and
(U, V) e totifand only if U UV = X. The functor associates with a bicontinu-
ous functionf the map(U, V) — (f~1(U), f~1(V)). A trivial bit of set theory will
convince the reader that the consistency and totality patels are preserved. Figure 1
shows some small examples. The bitopological sfagewvhich looks like a product of
two copies of Sierpinski space, allows us to represent thetfu(2 asbiTop(—, S.S).
Note how the four elements 8fS correspond to the four ways in which an element of
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Figure 1: Some bitopological spaces and their concretamids. (D-frame elements
in the con-predicate are indicated by an additional circle, thoséétdt-predicate are
filled in.)



the space can be related to an open framand an open from_: it can be in one of
the two but not the other, it can be in both, or it can be in regith

For a functor in the reverse direction, we continue to folkbw theory of frames
by considering d-frame morphisms froth = (L; t, ff; con, tot) to 2.2, depicted in
the upper right corner of Figure 1. Such morphisms are déteahrby pairs of frame
homomorphism®,: Ly — 2 andp_: L_ — 2 that together preserwan andtot.
So they correspond to pairs of completely prime filtetsC L., F~ C L_ such that

(dpeon) ac€con = aygFora_gF_;
(dpot) actot = oape€Fora_cF_.

The reader should pause at this point to assure himselfhibaidir of neighbourhood
filters (V4 (z), N_(x)) of a pointz in a bitopological space satisfies these two axioms.
On £ itself, a point manifests itself as a p&iF’;, /') of completely prime filters

that satisfy the analogue of (dp) and (dp.t), plus

(dp,) it Fy;
(dp.)  ffeF;

Figure 2 illustrates the idea th@k'; , F* ) determines four “quadrants” so thain
does not intersect with the “upper quadrant” asddoes not intersect with the ‘lower.”

Figure 2: An abstract point in a d-frame.

The set of d-points becomes a bitopological space by comisgdthe collection of
O, (x) .= {(Fy,F_) |z € Fi}, 2 € L, as the first topology,, and the collection
of ®_(z) := {(Fy,F_) |z € F_}, x € L, as the second topolodg§._. Together,
this is thespectrumof the d-frame£, which we denote aspec L, following the no-
tation for frames. The construction for objects is extentted (contravariant) func-
tor spec: dFrm — biTop in the usual way, that is, by noting that the inverse image of
a point under a d-frame morphism is again a point.

Theorem 3.3 The functors2 and spec establish a dual adjunction betwediTop
anddFrm.



We say that a bitopological spaééis (d-) soberif it is bihomeomorphic tepec £
for some d-frame. As with frames and topological spaces, d-sobriety is edeit to
the unitz — (N, (x), N_(z)) being a bijection.

Example 3.4 All the bitopological spaces in Figure 1 are d-sober. For tivee-point
space this is clear, as the associated d-frame admits ordypoint. For the other four
spaces one argues as follows: The underlying frame is the sareach case and it
admits four completely prime filters:

FL = 1t F'' = 1ff
F—|2- = T(O-i-a Q)) Fz = T(®7 O—)

The notation already indicates which of these can be useldesfirst, respectively sec-
ond, component of a point. From this we get four possible doatilons, and these are
indeed all available in the last example. In the other thrgareples, theon/tot la-
belling of the elementO_, O_) in the centre of the d-frame excludes certain combi-
nations: if it belongs taon, thenF? cannot be paired witti"?, and if it belongs taot
thenF} cannot be paired with.

For an exploration into the concept of d-sobriety we refdi]; here we confine
ourselves to one particular class of examples.

Definition 3.5 A bitopological space(X;7.,7—) is called order-separatedf

< =<, N>_is apartial order andr £ y implies that there are disjoint open sets
O; € 7y andO_ € 7_ such thatr € O, andy € O_. (The relations<, and <_
refer to the specialisation orders oXi with respect tory andr_, respectively.)

Lemma 3.6 In an order-separated bitopological space the following &ue:
1) <4 =>4
(2) <4yn<_="=.

Proof. For the first claim assume £, y. This impliesz £ y and we get a separating
consistent paifO,,0_). Sincey € O_ butx ¢ O_ we concludex %_ y. So
£, = #_ and this is equivalent to the first claim.

The second claim follows immediately from (1) and anti-syetiy of <. |

Theorem 3.7 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical mafX — specQ X
is injective; the real issue is surjectivity. So assume (l#at, F_) is a point of2 X.
Consider the two sets

Vi=|J{Oser |0y ¢F} Vo= J{O_er |O_¢F_}

and their complementg’¢, V<. Because of condition (dg), V,. U V_ cannot be the
whole space, in other words, the intersectighn V¢ is non-empty.



Next we show that every element BT’ is below every element df ¢ in the spe-
cialisation order< = <, N >_. Indeed, ifx € V{, y € V¢, andz £ y, then by
order separation there is a partial predid@ds., O_) with z € O; andy € O_. By
definition of V., V_ we haveO, € F, andO_ € F_, contradicting condition (dg,)
of d-points.

Finally, leta be an element in the intersectidff N V<. We show thatr’, is the
neighbourhood filter of in 7. Assumen € O ; this impliesO4 ¢ V. and the latter
is equivalent taD, € F... For the converse we start@t, Z V., which gives us an
element € V{ N O, about which we already know that< a. It follows thatb <, a
and hence: € O, |

From this result it follows immediately that the real lineg&ther with the usual
upper and lower topology is d-sober. Likewise, one seeslieaunctured unitinterval
[0,1]\ {3} is d-sober with respect to the same two topologies. Noteitter is sober
in the traditional sense when equipped with only one of tipelagies.

4 The logical structure of d-frames

Before we consider spatiality for d-frames let us have a labthe duality from the
point of view of logic. For this we interpret the elements ofi-frame £ aslogical
propositions An abstract poin{F';, F_) is then amode| and F'; consists of those
propositions which are true in the modél, of those that are false. If a proposition
belongs tocon then for no model is it both true and false (and may be neitlifeif)
belongs taot then in every model it is either true or false (or indeed hotthje set of
all models (i.e.spec £) becomes a bitopological space by collecting into one gl
all sets of models in which some proposition is true (the ifpasextents”) and in the
other the sets of models where some proposition is false'ifggmtive extents”).

From this perspective it is natural to consider an order betwpropositions which
increases the positive extent and shrinks the negativeAmigturns out, this additional
relation is always present in a d-frame, and in fact it fodofkom the distributive
lattice structure and the two complemented elements aldhe.earliest reference to
this appears to be [5], but the proof is entirely straightfard and can be left as an
exercise.

Proposition 4.1 Let(L;M,U, 1,0) be a bounded distributive lattice, arid f) a com-
plemented pair in’, thatis,t M f = 0 and¢ U f = 1. Then by defining

eNy = (nfHUnHueny) =@Uf)nuf)nziy)
zVy = (zUt)N(yuU)N(zUy)=(xNt)U(yNt)U (zMNy)

one obtains another bounded distributive latticg; A, V, ¢, f), in which (1,0) is a
complemented pair. The original operations are recovereahfit as

(AO)V(yAO)V(zAy)=(xzVO)A(yVO)A(zVy)
VDAV A(zVy)=(@Al)V(yAL)V(zAy)

rlly
r Uy

Furthermore, any two of the operations Li, A, andV distribute over each other. It
is a frame, them andV are also Scott continuous.



This justifies our choice of symbolg¢ and ff in a d-frame, and suggests that we
regard(L; A, V, tt, ff) as thelogical structureof a d-frame. Altogether, then, we see
that d-frames are special “bilattices,” which were introéld by Ginsberg, [9], as a
generalisation of Belnap’s four-valued logic [4].

Exploiting Proposition 3.1 we can easily compute conjuntind disjunction in
terms of the representation of a d-framelasx L_:

(y) A @' y) = (zna,yuy’)
)V y') = (zuz,yny’)

Note the reversal of order in the second component. This snsdeese, as we think of
the second frame as providing negative answers.

5 Reasonable d-frames and spatiality

We say that a d-framé is spatial if it is isomorphic toQ2 X for some bitopological
spaceX. As with d-sobriety, this is equivalent to the co-uaita — (P (o), P_(«))
being an isomorphism of d-frames. As it is always surjectiyedefinition, the con-
dition boils down toe being injective and reflectingon andtot. If this is spelt out
concretely, one arrives at the following:

Proposition 5.1 A d-framec is spatial if and only if the following four conditions are
satisfied:

(s4) ValZy B I(FL,F_)€specl. a€ Fy,B¢ Fy;
(s2) ValZ_ 3 I(Fy,F_)€specL. a € F_,f& F_;
(Scon) Vo & con I(FL,F_)especl. ay € Fy,a_ € F_;
(St) Vagtot I(Fy,F_)especl. ay € Fy,a_ ¢ F_;

The following lemma is very easy to prove for concrete d-fearthat arise from a
bitopological space, and it confirms the intuitioncoh as the set of pairs of open sets
that do not intersect, andt as those pairs that cover the whole space.

Lemma5.2 Let (L; #, ff; con, tot) be a spatial d-frame. The following properties
hold:

(con—]) aCp&pBEcon = «a€con
(tot—T) aCB&actot = [ctot

(con—tt) # € con

(con—ff) ff € con

(con-A) a€con& fecon = (aAp)Econ
(con-V) ac€con& feccon = (aVp)Econ
(tot—tt) ¢t € tot

(tot—ff) ff € tot
(tot—A) a€tot& fectot = (aApf)E€E tot



(tot—V) a€tot& fetot = (aVp) € tot
(con—||l) A C condirectedw.rtC = | |4 € con
(con—tot) a€con,fetot, (a=L 08 or a=_fF) = aLCp

Definition 5.3 A d-frame which satisfies the properties stated in Lemmassc2lied
reasonableThe category of reasonable d-frames is denoteibym .

Note that the converse of Lemma 5.2 does not hold, i.e., aonahde d-
frame need not be spatial: take a franie without any points and consider
(LxL;(1,0),(0,1),con, tot) where(z,y) € conif xt My = 0, and(z,y) € tot if
x Uy = 1. Itis a trivial exercise to prove that the resulting d-fraimeeasonable, but
it obviously can't have any points.

Proposition 5.4 The forgetful functor frommdFrm to Sethas a left adjoint.

Proof. The free reasonable d-frame over adas (FAxF A;(1,0), (0, 1), con, tot)
whereF' A is the free frame oveA. Generators are the paifg,a), a € A. The two
relations are chosen minimallyz, y) € conifandonlyifz = 0 ory = 0; (x,y) € tot
if and only if z = 1 ory = 1. The conditions for a reasonable d-frame are proved by
case analysis. |

As an example, the structure labell&d in Figure 1 is the free reasonable d-frame
generated by a one-element set.

The following additional property of spatial d-frames walso play a part in our
presentation of a Hofmann-Mislove theorem for sober bitogical spaces, but we do
not consider it elementary enough to be included in the difimof “reasonable.” The
proof-theoretic terminology used in its label refers to agantation of d-frames that
places more emphasis on the logical structure, see [13p8é&dt

Proposition 5.5 Every spatial d-frame satisfies the following property:

(CUT,) (z,yU |_| b;) € tot & Vi € I. (zUa;,y) € tot & (a;,b;) € con = (z,y) € tot
iel

6 Regularity and the Hofmann-Mislove theorem

A major practical problem with d-frames is that it is veryfidifilt to construct abstract
points for them. For example, consider the proof of the HofmMlislove lemma 2.5,
where we exploited the fact that in a frame there is a oneamanrrespondence be-
tween completely prime filterg’ andn-prime elements (given by the translations
vi— L\ |vandF — | |L\ F). The analogue for d-frames is not very helpful. The
situation improves if we also require regularity.

Definition 6.1 Let (L; t, ff; con, tot) be a reasonable d-frame. For two elements
x,2’ € L, we say that’ is well-inside z (and writez’ < z) if there isy € L_
such that(z’,y) € con and(z,y) € tot. To avoid lengthy verbiage, we will usually
write r,/ 4, for the “witnessing” elemeny (although it is not uniquely determined).
On L_ the well-inside relation is defined analogously.

10



A d-frame is calledegularif everyz € L is the supremum of elements well-inside
it, and similarly for elements af _.

For a bitopological space to be regular we require that atdeane of the two
topologies isTy and that the corresponding d-frame is regular.

We note that the elements well-inside a fixed elemenf a reasonable d-frame
form a directed set; this follows fromd¢n—V) and tot—V). That they are all below
is a consequence ofdn—tot). 1 < 1 is always true as 0 can be chosen as the witness
in the other frame. It is an easy exercise to show that a rediti@pological space is
order-separated (and hence d-sober), but a regular d-fiaeg:not be spatial.

Lemma 6.2 Let £ be a reasonable d-frame ande L. . Define
P(z):={beL_|3aZz. (a,by € con} and C(z) :={be L_| (z,b) ¢ tot}
(1) P(z) C C(a);

(2) If Lisregularthen |P(z) = | | C(x).

Proof. (1) is a direct consequence @bg—tot): if we have(a,b) € con and(x,b) €
tot thena C z follows.

For (2) lett’ <« b € C(x). The witness 4, cannot be below: as otherwise we
could conclude(z,b) € tot from (ry 4, b) € tot. We also havery 4, b)) € con
and so find that' € P(x). By regularity,| |P(x) is aboveb itself. It follows that
LJP(z) 2 | C(x), and by (1) the two suprema are in fact the same. |

Lemma 6.3 Let £ be a reasonable d-frame and. € L, v_ € L_. Consider the
following statements:
1. v = max C(v;) andvy = max C(v_);
2. (Ly\ vy, L\ Jv_)is ad-point;
3. (vy,v_) gtotandv_ I | |TP(vy);
4. (vy,v_)isamaximal elementdfL; xL_) \ tot.
The following are true:
(1) (i) = (i) = (iii), and (i) = (iv).
(2) If Lis regular then (iii)= (i).
(3) If £ satisfies th€CUT,.) rule then (iv)=- (ii).

Proof. Part (1), (i) = (ii): If (z,y) € tot then eitherx £ vy ory IZ v_ as
otherwise we would havé,,v_) € tot by (tot—1). If (z,y) € con andz £ v, then
y € P(vy) € C(vy) by the previous lemma; hengeC v_. Thus we have shown
that the pair( L, \ Jvy, L_ \ |v_) satisfies conditions (dp) and (dp.,) for d-points
and it remains to show that we have two completely prime §lterhis will hold if

11



vy andv_ arefl-irreducible. So lewv_ = y M y’; by (tot—V) either (vy,y) ¢ tot
or (vy,y’) ¢ tot, which means that either=v_ory’ = v_.

(i) = (iii): If  Z vy and{x,y) € contheny C v_ by (dp.on). SO we have
v_ 3 [ |P(vy). (vy,v-) & tot follows from (dpot). The setP(v) is directed
becausd. ., \ |v, is afilter and {on—A) is assumed for reasonable d-frames.

(i) = (iv) is trivial.

Part (2), (iii) = (i): On the side ofL_ we already have_ 1 | |C(vy) by the
previous lemma. For the other direction, assumg v . By regularity there is’ < x
with 2’ IZ vy. Because ofa’,r,4,) € con we haver,.,, C v_ by assumption,
and then from{(z,r,.4,) € tot we infer (x,v_) € tot by (tot—1). It follows that
C(v-) C |vy. Together with{v,, v_) ¢ tot this is exactly (i).

Part (3), (iv)=- (ii): Asin (i) = (ii) we get thatv, andv_ arer-prime, and that
condition (dp.) is satisfied fo{ L4 \ vy, L_\ |v_). In order to show (dg,) assume
(x,y) € con. If we hadz IZ v, andy IZ v_ then by (the contrapositive of) the (g4}
rule we would have eithew,,v_ U y) & tot or (vy Ux,v_) ¢ tot, contradicting the
maximality of (v, v_). |

We are ready to formulate and prove the d-frame analoguetd@fmann-Mislove
lemma 2.5:

Lemma 6.4 Let £ be a regular d-frame that satisfi¢€UT,). Assume thaf, is a
Scott-open filter inL, and/_ = L_ \ |u_ is a completely prime upper set i

such that:
(hMen) a€con = a4 €8y or a_ ¢U_

(hmy) a€tot = ap €85y or a_ €U
Then the following are true:
(1) u— =|"{b| Ja € S;. {a,b) € con}, thatis,i4_ is uniquely determined by, .
(2) S+ ={a| {(a,u_) € tot}, thatis,S, is uniquely determined kiy_.
B)zCS+ & (zr,u_) € con.
(4) Forany point(F'y,F_) especL, S CF, & F_CU_.
(5) S; istheintersection of alF, where(F,, F_) is a pointandS, C F.,.
(6) U_ is the union of allF’_ where(Fy, F_) is a pointandF_ C U/_.
(7) Thesed := {(F,F_) | Sy C Fy}={(F},F-) | F- CU_}isT,-compact
saturated and/_-closed in the bitopological spadepec £; 7., 7_).

Proof. (1) The elementu_ can not be any smaller because of (fyh For
the converse assumg < u—_. The corresponding witness,,._ belongs toS,
by (hme) and soy € {b|3a € S;.(a,b) € con}. By regularity, then,u_ C
LI"{b | Ja € Sy.(a,b) € con}.

(2) Because of (hig,) it is clear thatS; must contain alb € L with (a,u_) €
tot. For the converse let € S.. By regularity and Scott-openness 81 there
is 2’ < z still in S.. The corresponding witness ., must be below:_ because
of (hMmen), but then(z, u_) € tot by (tot—1).
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(3) Assumex C a for all a € S4. By (con—]) we have(x,b) € con for all
be {b|JaecS,;.(a,b) € con}, so(z,u_) € con by (con—| |) and part (1). For the
converse, remember that, u_) € tot for all a € S by (2), so(z, u_) € conimplies
x C a by (con—tot).

(4) Letvy = | |(L+\Fy). FromS,; C Fy and (hmo,) we getP(vy) D (L_\U-),
sov_ =| |P(v+) Ju_ and henceg_ C U_.

Starting with the right hand sidéi_ C ¢/_, we letv_ = | |(L_ \ F_). From
(hMeon) We getP(v_) NS, = 0. Sov, = | |'P(v_) ¢ Sy and hences, C F,.

(5) Assume that ¢ S, . BecauseS, is assumed to be Scott-open, we can apply
Zorn’s Lemma to obtain a maximal element abovez that does not belong t§, .
The setFy := L, \ |v; is a completely prime filter that separatefrom S, and it
remains to show that it is the first component of a d-point. gkding to Lemma 6.3
the right candidate i$"_ = L_ \ |v_ wherev_ = | |IP(v;) = | |C(v4). Note that
u_ Cv_ asu_ € C(vy) by (hmg:). Using Lemma 6.3(iii) we only need to show that
(v4,v_) & tot. For this we employ (CU]): for all (a,b) € con with a € F'; we have
(vyUa,v_) € tot by (2); ifit was the case thdb, ,v_) = (v, u_U| |IP(vy)) € tot,
then({v,,u_) € tot would follow, contradicting (hm.).

For part (6) lety € U_. By regularity and the assumption tHdt is completely
prime, somey’ < y also belongs td/_. The witnessr, ., is not in S because
of (ryay,y’) € con and assumption (hag). By part (5) there is a poir(tF;., F._) that
separates, ,, fromS,.. By (4) we have thaF_ C /_ and because g4, y) € tot
it must also be the case thate F_.

Finally, consider the last claim; the two descriptionsdoéire equal because of (4).
Any 7 -open neighbourhood o has the formb (z) with € S; by (5). It follows
that A is 7, -compact. Only the maximality af__ in L_ \ ¢/_ is required to see that
is the complement ob_ (u_). |

Theorem 6.5 For a regular d-frame’ that satisfiegCUT,.) there is a one-to-one cor-
respondence between

1. mapsg from L to the four-element d-fran2 which preservet, | |1, con, tot,
and the logical operatiom\, and

2. subsetsA of spec £ which are compact saturated in the positive and closed in
the negative topology.

Proof. Given a mapg as described in part (i), considér. = ¢~(#) N L, and
U_ = q Y(ff) N L_. Itis straightforward to show that the pdi$. ,/_) satisfies the
assumptions of Lemma 6.4. The translation in the oppositetidn is equally easy

A few comments on this result are in order: Givecamsistent predicate, that is,
@ € con, the value ofg at ¢ can only bett, ff, or 0. The first outcome indicates that
all elements of4 satisfy, the second thadomeelement ofA fails , and the last that
neither holds (which is a possibility because a consistadipate does not need to be
Boolean). This means thatacts like auniversal quantifiefor partial predicates.
Generally, one would expect a universal quantifier to presérbut not neces-
sarily ff, becauseA could be the empty set. Also, one would expect it to preserve
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conjunction Q) but not disjunction ), and certainly one would not want it to be in-
consistent (returning) for a consistent predicate, or to be undecided (retur@)rfgr
a total predicate, that is, one expects it to presesveandtot.

The preservation of | can be seen as@mputabilitycondition on the universal
quantifier: If a (partial) predicatg is the directed supremum of (partial) predicates
and if the universal quantifier applied ¢oreturns a definite answer, that is, eithier
or ff, then computability requires the same answer be obtaioaddn approximang;
already.

All'in all, then, Theorem 6.5 is a generalisation of the tlyeofr continuous quan-
tification on topological spaces, discovered by Taylor [20§ Escard [6], to a logic
in which predicates are allowed to have vaffi@s well asit.

For a version of Theorem 6.5 on the side of bitopological epage first observe
that regularity implies that the space is order-separaedyy Theorem 3.7 it is au-
tomatically d-sober. In an order-separated spaeg-aompact saturated set is also
7_-closed. Furthermore, the corresponding d-frdin¥ satisfies (CUT) by Proposi-
tion 5.5, and so 6.5 applies:

Theorem 6.6 If (X; 7., 7_) is aregular bitopological space then there is a one-to-one
correspondence between

1. maps fron2 X to 2.2 which preservet, | |, con, tot and A, and

2. subsetsi of X which are compact saturated with respectria

7 An application: local compactness

We use the machinery of the previous section to define a nofitscal compactness
for regular bitopological spaces.

Definition 7.1 Let S be a Scott-open filter af  andl/_ a completely prime upper
set of L_. We say tha{S,,U_) is an HM-pair if it satisfies the conditionfhmc,,)
and(hm,) of Lemma 6.4.

Forz',z € L, we sett’ « « if there is an HM-pair(S,U_) suchthatt’ C S, >
Z.

A d—frame is calledocally compacif it is regular, satisfieCUT,.), and the fol-
lowing two conditions hold:

(lcx) VzeLi.x=]{z'|2 ax}
(Iciot) Va. (V(S4,U-). ap €Spora_ eU-) = «€tot

We note that (lg,) is just the converse of (hg).

Proposition 7.2 Locally compact d-frames are spatial.

Proof. We check the conditions of Proposition 5.1. ForXsssumer £ a € L;
by local compactness therei$ « = with 2’ IZ a. Let (S;,U_) be the correspond-
ing HM-pair withz’ C S, > z. The element: can not be contained if,, so by
Lemma 6.4(5) there exists a poifff;, F_) such thatS, C F; anda & F.
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Next we tackle (s:), SO assumer ¢ tot. By the contrapositive of (Ic) there
exists an HM-paifS,U_) such thatv_ € U_ anda, ¢ S.. By 6.4(5) we obtain a
point(F, F_) with Sy C F'y # oy and from 6.4(4) we getthat_ ¢ F_ CU_.

For (s.) assumey Z b € L_. By regularity, there existy’ € L_ with ¢y’ < ¢
andy’ Z b. The witness-,,, satisfies(r,.4,,b) ¢ tot by (con—tot). From (s.:) we
obtain a point(F, F_) such that,.o, & F, b ¢ F_. Becaus€r, ,,,y) € tot, we
must havey € F_.

For (son) assume(z,y) ¢ con. Because of local compactness and Lemma 5.4
(together with on—V)) there exists’ < 2 such that(z’, y) & con. Let (S,,U_) be
the corresponding HM-pair. By Lemma 6.4(3),C S, forces(z’,u_) € con, hence
y must belong té/_. Using 6.4(6) we obtain a poiff’, , F_) suchthay € F_ CU_
and by 6.4(4) we also havee S, C F,. |

Note that we did not need that the séi$ | =’ « =} are directed, but this is in fact
the case: Iz}, z, < x with witnessing HM-pairgSt,u!), (8%,u4?2), then(S} N
S2,UL UU?) witnessesr] Ll oy < .

Definition 7.3 A bitopological spac€X; 7, 7_) is calledlocally compacif it is reg-
ular and 7 is locally compact in the usudl, sense.

Proposition 7.4 For (X;7,,7_) a locally compact bitopological space, the d—frame
QX is locally compact.

Proof. Obviously, an HM-set otk gives rise to an HM-pair if2.X, and only (I.:)
needs checking. For this assume that the unio@ ofc 7, andO_ € 7_ does not
coverX, thatis, there ip € X\ O UO_. Then by order-separatidm is 7;.-compact
andr_-closed, that is, an HM-set. Neitherd, a neighbourhood of it, nor do&s_
intersect with it, so we conclude the contrapositive of,{)c |

Theorem 7.5 The functors) andspec restrict to a dual equivalence between locally
compact bitopological spaces and locally compact d-frames

8 Discussion

As we pointed out in the introduction, a corollary of the slaal Hofmann-Mislove
theorem is that the collection of compact saturated setada dcpo under reverse
inclusion. The analogue for bitopological spaces need adiue:

Example 8.1 The punctured unitinterval, 1]\{%} is locally compact when equipped
with the usual-,. andr_. Each set of the forrfr, 1] \ {3}, 0 < r < 1 is HM but their
intersection ig(%, 1] which is not.

However, our motivation for studying this problem was basedthe view of HM-
sets as the continuously “quantifiable” ones, as explaindkd text after Theorem 6.5
above, and this part of the story works out in a most satigfyay.

Another motivation was the desire to extend the duality leetwstably compact
spaces and strong proximity lattices, [14]. There, it isdhse that the two topologies
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determine each other (each being the co-compact topolotyrespect to the other),
but this is no longer true in the locally compact case:

Example 8.2 Let (X; 7) be a locally compact Hausdorff space. TheXi;,7) is a
locally compact bispace in the sense of Definition 7.3. Hewadhis is also true of
(X; 7, 7ec) Wherer,.. is the co-compact topology with respecttdn general,r andr..
are different; for a concrete example considewith its usual metric topology.

Still,

we believe that our definition of “locally compact pece” is very promising as a

generalisation of “stably compact” and that it warrantsHar investigation.
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