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We study ontinuous latties with maps whih preserve all suprema rather than only

direted ones. We introdue the (full) subategory of FS-latties whih turns out to be

�-autonomous, and in fat maximal with this property. FS-latties are studied in the

presene of distributivity and algebraiity. The theory is extremely rih with numerous

onnetions to lassial Domain Theory, omplete distributivity, Topology, and models of

Linear Logi.

1. Introdution

The work reported in this paper derives its motivation from at least three di�erent

diretions. Firstly, there is the theory of autonomous (or symmetri monoidal losed)

ategories as desribed extensively in (Eilenberg and Kelly 1966). These are abstra-

tions of the frequent phenomenon in algebra of the set of homomorphisms between two

strutures being a struture of the same kind again without the internal hom funtor

interating with the produt in the usual way. The orrespondene as it is expressed in

Linear Algebra, then, is between bilinear maps and tensor produts rather than between

linear maps and produts. In (Barr 1979), the abstrat theory of symmetri monoidal

losed ategories is extended with a duality derived from a dualizing objet ?. Again,

algebra provides a number of motivating examples. One of these is the ategory SUP

of omplete latties and sup-preserving funtions.

y

In the present paper we augment the

objets of this ategory with a notion of \approximation" in the sense of Domain Theory

(Abramsky and Jung 1994). We show that the full subategory CL of ontinuous latties

is not losed and one of our main results haraterizes the largest losed full subategory

of CL (under one extra ondition). The result is reminisent of similar theorems for

artesian losed ategories (Smyth 1983; Jung 1990); it would be very interesting to �nd

a deeper reason for this similarity.

From a di�erent perspetive, this paper introdues a new model for Classial Linear

y

In fat, Barr works with in�ma rather than suprema but this di�erene is immaterial.
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Logi (Girard 1987). On the surfae, this onstrution seems fairly straightforward, given

the general theory of �-autonomous ategories as expliated in (Barr 1991). We hoose

the modality ! to be that of all Sott-losed subsets of the lattie with the goal in mind to

get Sott-ontinuous maps in the orresponding o-Kleisli ategory. Rather pleasingly, the

dual modality ? has a meaningful interpretation in its own right, rather than just being

the de Morgan dual of !; it yields preisely the so-alled Smyth-powerdomain (Smyth

1978). One may see this as a vindiation of the move to approximated latties, as suh

a haraterization is not available in the bigger ategory SUP. ((Abramsky and Jung

1994) ontains other instanes of this phenomenon.)

Finally, one may see this paper as an attempt to ahieve a linear deomposition of

Sott-ontinuous funtions along the lines of Girard's original onstrution of oherene

spaes and stable maps. It is then interesting to see that ertain onepts of Domain

Theory still apply, ertifying their robustness and generality.

The struture of the paper is as follows. We reall the algebrai tradition whih led

to the theory of �-autonomous ategories in Setion 2. In Setion 3 we give some details

of Barr's example SUP for a �-autonomous ategory onsisting of omplete latties and

suprema preserving funtions. It is the ambient ategory for the remainder of the paper.

Setion 4 introdues the main objets of study, linear FS-latties. They are de�ned in

analogy to FS-domains, (Jung 1990), and, as in the Sott-ontinuous setting, they provide

a losed ategory of approximated objets. In fat, we are able to show that they are

a maximal hoie when a ertain further ondition (alled \leanness") is assumed. FS-

latties are subsequently augmented with two (independent) properties: distributivity

(Setion 5) and algebraiity (Setion 7). In both ases, we obtain additional information:

distributive FS-latties turn out to be ompletely distributive and they form not only a �-

autonomous but a ompat losed ategory. Algebrai FS-latties are shown to be exatly

the bi�nite ones (in the linear sense), and a fairly involved argument in Subsetion 7.3

shows that algebrai FS-latties are the maximal �-autonomous full subategory of SUP

whose objets are algebrai. A number of parallels between the Sott-ontinuous and the

linear setting are pointed out in the remainder of Setion 7.

In between, in Setion 6, we show how to build a Benton-model of Linear Logi with the

ingredients of Domain Theory. The development is extremely smooth and we would like

to laim that the model is a natural yet non-trivial one. We were partiularly pleased to

�nd the onnetion between modalities and powerdomains mentioned before. Although

Setion 6 refers to distributivity at some point, it an be read diretly after Setion 4.

Setion 8 indiates how the theory ould be extended from latties to Sott-domains.

For the sake of brevity, we have refrained from a detailed exposition. Setion 9 refers to

further interesting disoveries about FS-latties, whih were made more reently.

In our notation for domain-theoreti onepts we follow (Abramsky and Jung 1994);

relevant bakground information on ontinuous latties an be found there as well as in

(Gierz et al. 1980).
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2. Categorial preliminaries

If K is a lass of algebrai strutures and A;B;C are objets in K, the one alls a map

�:A�B ! C a bihomomorphism if for every a 2 A, b 2 B the funtions

�(a; ): y 7! �(a; y); and

�( ; b):x 7! �(x; b)

are homomorphisms of K. The prime example is vetor spaes and bilinear maps.

A ategory is an abstrat version of \lass of strutures of the same kind and their

homomorphisms". However, the de�nition of a bihomomorphism seems to require an

expliit referene to elements. Also, the map � itself is ertainly external to the ategory

at hand.

A slight rede�nition of bihomomorphism is more amenable to a ategorial treatment.

Instead of �:A �B ! C, we onsider �

0

:A ! (B ! C) given by �

0

(x)(y) := �(x; y). If

we assume that the set (B ! C) of homomorphisms is itself a struture of the same kind

as A;B and C, through a pointwise de�nition of the operations, then bihomomorphisms

�:A � B ! C and homomorphism �

0

:A ! (B ! C) are in one-to-one orrespondene.

These two onditions are indeed satis�ed for vetor spaes and also for the objets under

onsideration here, omplete latties with sup-preserving maps.

Categorially, one requires an objet > and an internal hom-funtor ( ! ), on-

travariant in the �rst and ovariant in the seond argument, to model the requirement

that the set of homomorphisms quali�es as a struture. In order to reognize the ob-

jet (A ! B) as the set of homomorphisms from A to B one requires ertain natural

transformations and equivalenes, to wit

(> ! A)

�

=

A

>

�

�! (A! A)

(B ! C)

�

�! ((A! B)! (A! C))

subjet to a number of axioms (Eilenberg and Kelly 1966). A ategory with these prop-

erties is alled losed. In a losed ategory we may replae \bihomomorphism" with

\morphism from A to (B ! C)". See (Banashewski and Nelson 1976) for an in-depth

disussion.

A losed ategory is alled symmetri losed if (A ! (B ! C)) and (B ! (A ! C))

are naturally isomorphi.

From Linear Algebra we know that bilinear maps A � B ! C are in one-to-one

orrespondene with linear maps A
B ! C, where 
 denotes the tensor produt of

vetor spaes. Abstratly, then, the presene of a \tensor produt" gives us an alternative

way of oding bihomomorphisms. To make this preise, one stipulates that 
 be a

bifuntor for whih 
 B is left adjoint to (B ! ), or, equivalently, (A 
 B ! C) and

(A! (B ! C)) are naturally isomorphi. In addition to this, the abstrat tensor produt

is required to be assoiative and to have a unit I subjet to a number of oherene axioms

(Eilenberg and Kelly 1966; Ma Lane 1971). With this additional data, we arrive at a

monoidal losed ategory. In a monoidal losed ategory, whih is also symmetri in the
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sense above, the tensor produt is ommutative, A 
 B

�

=

B 
 A. Together, one speaks

of a symmetri monoidal losed or autonomous ategory.

One last remark: Not every algebrai theory allows us to internalize the hom-funtor

(non-Abelian groups are an example) and even if it does, a suitable tensor produt

may not exist. Beyond these two obstales, a further one needs to be overome for a

ategory to be artesian losed, namely, it must be the ase that bihomomorphisms are

already homomorphisms. The ategory SET quali�es for trivial reasons; in the ase of

DCPO (direted-omplete partial orders and Sott-ontinuous funtions) this is one of

the fundamental lemmas of its theory (Abramsky and Jung 1994, Lemma 3.2.6).

In (Barr 1979), Mihael Barr studies the situation where an autonomous ategory is

equipped with an internal duality, that is, where there exists an objet ? suh that A

and ((A! ?)! ?) are naturally isomorphi for all objets A. Writing A

?

for (A! ?),

one gets the following equivalenes:

(A! B)

�

=

(B

?

! A

?

) (1)

A
B

�

=

(A! B

?

)

?

(2)

without making any further assumptions. A ategory with these properties, dubbed

�-autonomous by Barr, provides a model for the multipliative part of Linear Logi,

(Girard 1987; Barr 1991).

3. SUP as a model of Linear Logi

The ategory SUP of omplete latties and suprema preserving maps was mentioned

as an example for a �-autonomous ategory in (Barr 1979). For our purposes below, it

will be neessary to have some understanding of the onrete struture of the various

onnetives in SUP. We will also have to adjust the ategorial notation to this partiular

setting.

De�nition 3.1. Let A and B be omplete latties and f a map from A to B. We all f

linear if it preserves all suprema, f(

W

X) =

W

f(X), X � A. We write f :A �Æ B in this

situation. The set of all linear maps between A and B, ordered pointwise, is denoted by

(A �Æ B).

Complete assoiativity of the supremum operation in latties, (Abramsky and Jung

1994, Proposition 2.1.4(3)), entails that the funtion spae (A �Æ B) is again a omplete

lattie.

Every linear map f :A �Æ B has an upper adjoint f

�

:B ! A (Abramsky and Jung

1994, Set. 3.1.3), (Gierz et al. 1980, Chapter IV). It is given by

f

�

(y) :=

_

fx j f(x) � yg :

Alternatively, the orrespondene between f and f

�

may be enoded in the equivalene

f(x) � y () x � f

�

(y) : (3)
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From this we glean that the assignment f 7! f

�

is order reversing

z

. Hene, if we view

f

�

as a map from B

op

to A

op

, we get a linear funtion and the orrespondene f 7!

f

�

: (A �Æ B)! (B

op

�Æ A

op

) is in fat an order isomorphism.

There is only one possibility for a dualizing objet in SUP, and this is the two-element

lattie 2. For the dual A

?

of a omplete lattie A with respet to ? = 2, we have

A

?

= (A �Æ 2)

�

=

(2

op

�Æ A

op

)

�

=

(2 �Æ A

op

)

�

=

A

op

;

where the last isomorphism holds beause the bottom element of 2 must be mapped onto

the bottom element of A

op

by any linear funtion and the top element an be mapped

onto any element of A

op

whatsoever.

From now on, we will write A

op

instead of A

?

and 2 instead of ? to avoid onfusion

with the established notation for the least element of a domain. Also, we will use the

symbols, �, _, et, as they apply to A even when we speak of A

op

.

For the tensor produt we take equivalene (2) as the (neessary) de�nition: A
B :=

(A �Æ B

op

)

op

. Conretely, a linear map r from A to B

op

orresponds to an antitone map

from A to B whih translates suprema into in�ma. The upper adjoint r

�

:B

op

! A,

if viewed as a funtion from B to A, has exatly the same property. Together, (r; r

�

)

form a Galois-onnetion between A and B. Any pair of maps between omplete latties

satisfying

r(x) � y () x � s(y) ; x 2 A; y 2 B (4)

is of this kind.

The de Morgan dual of 
, denoted O (\par"), is given by the set of linear funtions

from A

op

to B. Maps r:A

op

�Æ B together with their adjoints r

�

:B

op

�Æ A form pairs

(r; r

�

) whih are ompletely haraterized by the equivalene

r(x) � y () x � s(y) ; x 2 A; y 2 B :

As noted in (Barr 1979), AOB an be di�erent from A 
 B, even for �nite latties A

and B. In fat, it is distributivity, not �niteness, whih renders O and 
 equal, as we

will see in Setion 5.

It is quite enjoyable to explore what the abstrat equivalenes of a �-autonomous

ategory amount to in the ase of SUP. For example, the symmetry of the tensor produt

is e�eted by swithing to the other half of a Galois-onnetion. The natural isomorphism

between (A
B �Æ C) and (A �Æ (B �Æ C)) is enoded in the equation

�

�

()(a) =  (a)

�

()

� 2 (A
B �Æ C)  2 (A �Æ (B �Æ C))

in whih one side ompletely determines the other.

Besides the multipliatives of Linear Logi, whih are all faithfully modelled beause

SUP is �-autonomous, we an also study the additives N and �. In SUP, these are

both modelled by artesian produt (whih is also the oprodut beause (A � B)

op

�

=

A

op

�B

op

), with the one-element lattie representing the units.

z

Assume f � g. From g

�

(y) � g

�

(y) get g(g

�

(y)) � y and hene f(g

�

(y)) � y. Therefore g

�

(y) � f

�

(y).
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Fig. 1. The lattie M

1

.

Sine the interpretations of N and � oinide, our model satis�es all distributivity

laws of the form A

m

(B

a

C), where m 2 f
;Og, a 2 fN;�g, i.e. it is fully distributive.

This property was noted in (Huth 1995b) already. It has reently been studied from a

proof-theoreti point of view in (Leneutre 1998).

4. Adding approximation

We ome to the main objetive of this paper, whih is to enrih the objets of Barr's

ategory SUP with a domain-theoreti notion of approximation; that is, to onsider

ontinuous latties. We are faed with an immediate diÆulty, beause the ategory CL

of ontinuous latties and linear maps is not losed.

Example 4.1. Let M

1

be the lattie of the disretely ordered set of natural num-

bers extended with a least and a largest element (see Figure 1). In the linear funtion

spae (M

1

�ÆM

1

) we look at the identity id. Beause all maps of this spae are sup-

preserving, there is only one funtion below id, namely, the onstant bottom funtion. If

(M

1

�ÆM

1

) were ontinuous, then id would have to be a ompat element. However, we

have the following hain of maps whose supremum exeeds id without any of its elements

being above id:

f

n

:M

1

!M

1

; n 2 N

f

n

(?) = ?; f

n

(>) = >

f

n

(m) =

�

>; if m � n;

m+ 1; otherwise.

A similar problem arises in Domain Theory. There one has the artesian losed ate-

gory DCPO whose full subategories of ontinuous, respetively algebrai, domains are

not losed. By restriting these ategories further one reovers losedness. Examples are

Sott-domains, SFP-domains, et., see (Abramsky and Jung 1994, Chapter 4) for more

details. In the same vein, we will now exhibit a full subategory of CL whih is losed.

De�nition 4.1 ((Jung 1990)). A funtion f :A ! A on a partially ordered set A is

said to be �nitely separated from id

A

, if there exists a �nite subset M of A suh that for

all x 2 A there exists m 2M with f(x) � m � x.

For a omplete lattie A to be an FS-lattie we require the existene of a direted
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family D of linear �nitely separated funtions on A whose supremum equals id

A

. Let FS

denote the full subategory of SUP whose objets are FS-latties.

This de�nition is formulated in lose analogy to a similar one for domains, (Jung 1990).

Beause the setting is now that of omplete latties we an immediately reformulate it

in a number of ways:

Proposition 4.1. For a omplete lattie A the following are equivalent:

(i) A is an FS-lattie.

(ii) There exists some family of linear �nitely separated funtions on A whose supremum

equals id

A

.

(iii) The supremum of all linear �nitely separated funtions below id

A

equals id

A

.

Proof. Observe that the pointwise supremum of a �nite set of linear �nitely separated

funtions is again linear and �nitely separated from id

A

.

Obviously, every �nite lattie is in FS beause we an hoose D = fidg in this ase. As

for in�nite examples, we will see in Setion 5 below that every ompletely distributive

lattie is in FS. At this point, however, it is neessary to justify our de�nition by showing

that FS-latties are indeed ontinuous. We let [A! B℄ denote the omplete lattie of

all Sott-ontinuous funtions f :A! B in the pointwise order. Note that (A �Æ B) is a

subset of [A! B℄ losed under all suprema.

Lemma 4.1. Let A be a omplete lattie. If a Sott-ontinuous funtion f 2 [A! A℄ is

�nitely separated from id

A

, then f(x)� x for all x 2 A.

Proof. Let M be the �nite subset of A whih separates f from id

A

. Given x 2 A and

a direted set D � A with x �

W

"

D let D

m

:= fd 2 D j f(d) � m � dg, m 2 M . By

assumption we haveD =

S

m2M

D

m

and so at least one D

m

0

must be o�nal in D. Hene

we get f(x) � f(

W

"

D) = f(

W

"

D

m

0

) =

W

"

f(D

m

o

) � m

0

� d for any d 2 D

m

0

.

Corollary 4.1. FS-latties are ontinuous.

Let us now show that FS arries enough struture to model all of Linear Logi. As

we know from Setion 3, the whole struture of a �-autonomous ategory is derived from

the funtion spae. The following is therefore ruial.

Lemma 4.2. Let A and B be FS-latties. Then (A �Æ B) is also an FS-lattie.

Proof. Let D � (A �Æ A) and E � (B �Æ B) be direted sets with

W

"

D = id

A

and

W

"

E = id

B

suh that all f 2 D and g 2 E are �nitely separated from the respetive

identities. For f 2 D, g 2 E and M

f

, M

g

the respetive �nite separating sets, we will

show that �

2

f;g

, where �

f;g

(h) = g Æ h Æ f , is �nitely separated from id

(A �Æ B)

. This

suÆes to prove the result beause

W

"

�

2

f;g

is equal to id

(A �Æ B)

. So let f 2 D, g 2 E

be given. We de�ne an equivalene relation � on (A �Æ B) by

h

1

� h

2

:, 8m 2M

f

: "g(h

1

(m)) \M

g

= "g(h

2

(m)) \M

g

:
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As M

f

and M

g

are �nite, there are only �nitely many equivalene lasses on (A �Æ B).

Let K be a set of representatives of these lasses. We laim that the �nite set �

f;g

(K)

separates �

2

f;g

from id

(A �Æ B)

. Given h 2 (A �Æ B), let k

h

be the orresponding repre-

sentative in K. For a 2 A, we ompute

h(a) � h(m

f

) for some m

f

2M

f

with f(a) � m

f

� a

� m

g

for some m

g

2M

g

with g(h(m

f

)) � m

g

� h(m

f

)

� g(k

h

(m

f

)) as g(h(m

f

)) � m

g

and h � k

h

� g(k

h

(f(a))) as f(a) � m

f

:

By symmetry, we obtain k

h

� �

f;g

(h), so h � �

f;g

(k

h

) � �

2

f;g

(h).

A similar proof, for FS-domains, appeared �rst in (Jung 1990).

Theorem 4.1. FS is a �-autonomous full subategory of SUP. Furthermore, it is losed

under artesian produts.

Remember that the order dual of a lattie, A

op

, an be expressed as a linear funtion

spae: A

op

�

=

(A �Æ 2), so the preeding theorem says in partiular that with A we

automatially have that A

op

is an FS-lattie again.

Let us now attempt to show that FS is indeed the largest full subategory of ontinuous

latties of SUP whih is losed. Finiteness, whih is part of the de�nition of an FS-lattie,

will have to ome from a ompatness argument. In other words, we will have to work with

topologial onepts as well as order theoreti ones. The topology whih is appropriate

for our purposes is the path- or Lawson-topology, beause it is ompat Hausdor� on a

ontinuous lattie, (Gierz et al. 1980, Theorem III-1.10). It is a re�nement of the Sott-

topology and generated by Sott-open subsets and omplements of Sott-ompat upper

subsets.

Now, for a omplete lattie A it is easy to see that every Sott-ompat upper set C � A

is losed with respet to the Sott-topology on A

op

beause a downward direted set

(x

i

)

i2I

gives rise to a direted olletion (A n #x

i

)

i2I

of Sott-open sets, resulting in a

ompatness argument if the in�mum of (x

i

)

i2I

is assumed not to be in C. The onverse

is not neessarily true: Consider the lattieM

1

from Example 4.1; every upper set inM

1

is losed with respet to �

M

op

1

but only �nite upper sets are ompat with respet to �

M

1

.

Let us say that a omplete lattie A is lean if every �

A

op

-losed subset is �

A

-ompat.

Somewhat surprisingly, leanness is a self-dual onept in our setting:

Lemma 4.3. Let A be a biontinuous lattie. Then A is lean if and only if A

op

is lean.

Proof. Let us denote the join of the two Sott-topologies by �

2

. It is a re�nement of

both Lawson-topologies �

A

and �

A

op

. Under the assumption of ontinuity, the Lawson-

topology is ompat Hausdor�. In this setting, for A to be lean means nothing else

but �

A

= �

2

. So assuming A to be lean renders �

2

a ompat Hausdor� re�nement of

the ompat Hausdor� topology �

A

op

. It is a standard topologial result that the two

topologies must oinide in this ase.
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Remark 4.1. The previous lemma holds already if A and A

op

are assumed to be sober

spaes in their Sott-topologies, beause the so-alled path topologies are then ompat

Hausdor�. We will, however, not need this generality.

Lemma 4.4. FS-latties are lean.

Proof. Let C be a �

A

op

-losed subset of the FS-lattie A and let (f

i

)

i2I

be an approxi-

mating family of �nitely separated linear maps. For eah i 2 I letM

i

be the �nite separat-

ing set. We have that C is ontained in "N

i

whereN

i

= fm 2M

i

j 9x 2 C:f

i

(x) � m � xg.

Eah "N

i

is �

A

-ompat as it is generated by a �nite set. The intersetion C

0

of all "N

i

,

i 2 I , ontains C and is �

A

-ompat again beause A is a omplete lattie, (Abramsky

and Jung 1994, Theorem 4.2.18). All we need to show is that C

0

= C.

To this end let a be in the �

A

op

-open set A n C. Sine the family of upper adjoints

(f

�

i

)

i2I

is approximating from above there exists i

0

2 I suh that f

�

i

0

(a) 2 A n C. The

orresponding f

i

0

maps C into A n #a beause f

i

0

(x) � a implies x � f

�

i

0

(a). It follows

that "N

i

0

does not ontain a.

After these preliminaries, let us now press on towards the promised maximality result.

Lemma 4.5. Let A be a omplete lattie and f � g in (A �Æ A). Then f(a)� g(a) for

all a 2 A.

Proof. Let g(a) �

W

"

i2I

x

i

be given. De�ne

f

i

(x) :=

8

<

:

?

A

; x = ?

A

;

x

i

; x � a;

>

A

; otherwise.

Then (f

i

)

i2I

is direted in (A �Æ A) and g �

W

"

i2I

f

i

. Sine f � g in (A �Æ A) we have

f � f

j

for some j 2 I and f(a) � f

j

(a) = x

j

as desired.

Corollary 4.2. Let A be a omplete lattie suh that (A �Æ A) is ontinuous. Then both

A and A

op

are ontinuous.

Proof. For A this follows diretly from the previous lemma. It is true for A

op

as well

beause (A �Æ A) and (A

op

�Æ A

op

) are isomorphi.

Lemma 4.6. Let A be a lean ontinuous lattie with ontinuous linear funtion spae

(A �Æ A). If f is way-below id

A

in (A �Æ A), then f is �nitely separated from id

A

.

Proof. The ontinuity of (A �Æ A) and the Sott-ontinuity of omposition imply the

existene of some g � id

A

with f � g Æ g. As h 7! h

�

: (A �Æ A) ! (A

op

�Æ A

op

) is

an order isomorphism, we obtain g

�

� id

A

op

in (A

op

�Æ A

op

). By the previous lemma,

g

�

(a) � a in A

op

for all a 2 A. Thus, O

a

:= fb 2 A

op

j g

�

(a)� b in A

op

g ontains a

and is Sott-open in A

op

. Sine A is lean, this set is also �

A

-open. The ontinuity of

A ensures that U

a

:= fe 2 A j g(a)� e in Ag is Sott-open in A; again, it ontains a.

Thus, V

a

:= O

a

\ U

a

is a �

A

-open set ontaining a.

The topology �

A

is ompat as A is ontinuous. Therefore, the open over

S

a2A

V

a

of

A has a �nite subover A =

S

m2M

V

m

. For a 2 A, we have a 2 V

m

for some m 2 M .
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In partiular, this guarantees the inequalities g(m) � a and a � g

�

(m). The latter is

equivalent to g(a) � m, so f(a) � g(g(a)) � g(m) � a shows that g(M) is a �nite set

separating f from id

A

.

As a diret onsequene of this lemma we get our �rst main result.

Theorem 4.2. FS is the largest (full) �-autonomous subategory of SUP whose objets

are lean and ontinuous.

It is slightly unsatisfatory that we need to refer to leanness in the statement of this

theorem. Indeed, in Setion 7.3 we dispense with this ondition in the speial ase of

algebrai latties. The proof, as we will see, is rather tehnial and makes vital use of the

abundane of ompat elements. It would be desirable to have a more oneptual aount

of this result whih | one hopes | would then also apply to ontinuous latties. We

leave this as an open problem.

5. Distributivity

The aim of this setion is to study the subategory CD of SUP whose objets are

ompletely distributive latties. Before we do so, we need to reord some fundamental

properties of these latties.

It was disovered very early in the history of ontinuous latties that there is a strong

onnetion between the notions of approximation and distributivity, (Sott 1972) and

(Gierz et al. 1980, Theorem I-2.3). In the ase of ompletely distributive latties this

onnetion was noted even earlier in the work of G.N. Raney, (Raney 1953). Let us

review the main points.

De�nition 5.1. Let x; y be elements of a omplete lattie A. We say that a

0

is ompletely

below a (and write a

0

n a) if for every subset X of A we have that a �

W

X implies

a

0

� x for some x 2 X .

This, of ourse, is the same as the de�nition of the way-below relation with arbitrary

subsets replaing the direted ones. The elementary properties of n are the same as

for � and their proofs are ompletely analogous (and simpler):

Proposition 5.1. For any omplete lattie A and a; a

0

; b; b

0

2 A the following are true:

(i) a

0

n a implies a

0

� a;

(ii) a

0

� an b � b

0

implies a

0

n b

0

;

(iii) ?n a if and only if ? 6= a.

We an now de�ne a omplete lattie A to be super-ontinuous if every element of A is

the supremum of elements ompletely below it. However, super-ontinuity is equivalent

to omplete distributivity:

Theorem 5.1 (Raney). A omplete lattie A is ompletely distributive if and only if

for all a 2 A, a =

W

fa

0

2 A j a

0

n ag holds.

Corollary 5.1.
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(i) A omplete lattie A is super-ontinuous if and only if A

op

is super-ontinuous.

(ii) Completely distributive latties are biontinuous.

The orollary says that we get approximation from both sides automatially in super-

ontinuous latties. Observe, however, that the relationsn

A

and (n

A

op

)

�1

are di�erent

in general.

We will also make use of the following observation whih is a onsequene of Raney's

work on tight Galois onnetions, (Raney 1960).

Theorem 5.2 (Raney). A omplete lattie A is ompletely distributive if and only if

for every a 2 A we have a =

V

a

0

6�a

W

a

00

6�a

0

a

00

.

Proof. \if": It is easy to see that for every a

0

6� a the element x :=

W

a

00

6�a

0

a

00

is

ompletely above a. Hene A

op

is super-ontinuous.

\only if": Sine a is always among the a

00

of whih we take the supremum in

W

a

00

6�a

0

a

00

,

we have y :=

V

a

0

6�a

W

a

00

6�a

0

a

00

� a. Assume that y is stritly above a. Then, by super-

ontinuity, we have an element y

0

ompletely below y but not below a. This y

0

is one of

the a

0

in the formula, and it follows that y

0

n y �

W

a

00

6�y

0

a

00

; hene there exists a

00

6� y

0

whih is above y

0

| learly absurd.

Approximation, rather than distributivity, is used to show the following:

Lemma 5.1. Let A and B be omplete latties and m:A! B be monotone.

(i) If A is ontinuous then the largest ontinuous funtion

_

m

below m is given by

_

m

(x) =

W

"

fm(y) j y � xg. The assignment m 7!

_

m

is ontinuous as a funtion from the

monotone funtion spae to the ontinuous funtion spae.

(ii) If A is super-ontinuous then the largest linear funtion

Æ

m

below m is given by

Æ

m

(x) =

W

fm(y) j yn xg. The assignment m 7!

Æ

m

is linear as a funtion from the

monotone funtion spae to the linear funtion spae.

If m has �nite image within B then so do

_

m

and

Æ

m

, respetively.

We need to re�ne this lemma somewhat for our purposes:

Lemma 5.2. Let A;B be ontinuous latties and let m:A! B be a _-homomorphism

whih also maps ?

A

to ?

B

. Then

_

m

=

Æ

m

.

Proof. Sine any supremum an be written as a ombination of direted supremum and

�nite suprema,

W

X =

W

"

F�

fin

X

F , it suÆes to show that

_

m

is still a _-homomorphism.

We always have

_

m

(a _ a

0

) �

_

m

(a) _

_

m

(a

0

) by monotoniity. For the onverse assume

b �

_

m

(a) _

_

m

(a

0

). The set fy _ y

0

j y �

_

m

(a); y

0

�

_

m

(a

0

)g is direted with supremum

_

m

(a)_

_

m

(a

0

), so for some y �

_

m

(a) and y

0

�

_

m

(a

0

) we have b � y_y

0

. The de�nition of

_

m

gives us x� a and x

0

� a

0

suh that y � m(x) and y

0

� m(x

0

). Now, x_x

0

� a_a

0

and

hene

_

m

(a_a

0

) � m(x_x

0

) = m(x)_m(x

0

) � y_y

0

� b. Thus we have shown that every

element way below

_

m

(a)_

_

m

(a

0

) is also below

_

m

(a_a

0

), and so

_

m

(a_a

0

) �

_

m

(a)_

_

m

(a

0

)

follows as B is ontinuous.
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Besides approximation from below, ontinuous latties also enjoy a representation from

above: every element x is the in�mum of ^-irreduible elements, (Gierz et al. 1980,

Theorem I-3.10). If the lattie is biontinuous then this in�mum may be taken over

the subset of ^-irreduible elements whih are way-below x in A

op

. In a distributive

lattie there is no di�erene between ^-irreduible and ^-prime elements. Finally, an

element y whih is both _-prime and way-below x is atually ompletely below x. These

observations prove the following:

Theorem 5.3 (Gierz et al. 1980). A omplete lattie is ompletely distributive if, and

only if, it is biontinuous and distributive. In that ase, every element is the supremum

of _-primes way-below it.

Let us now put these preliminaries to work in our setting.

Lemma 5.3. Every ompletely distributive lattie is an FS-lattie.

Proof. Let A be a ompletely distributive lattie; it is biontinuous by Corollary 5.1 and

so every element is the supremum of _-prime elements below it. For every �nite subset F

of _-primes de�ne m

F

:A ! A, m

F

(x) :=

W

fa 2 F j a � xg. Then m

F

preserves �nite

suprema and the onditions of Lemma 5.2 are satis�ed. Hene

_

m

F

is linear.

Every

_

m

F

has a �nite image and so is �nitely separated from id

A

. The identity is equal

to the direted supremum of all m

F

and sine it itself is ontinuous, it is also the direted

supremum of the

_

m

F

by Lemma 5.1(1).

Theorem 5.4. A omplete lattie is ompletely distributive if and only if it is a dis-

tributive FS-lattie.

Proof. This follows from Lemma 5.3, Corollary 4.1, Theorems 4.1 and 5.3.

Lemma 5.4. The ategory CD of ompletely distributive latties and linear maps is

losed.

Proof. The latties 2 and > are objets in CD. By the preeding theorem we already

know that the linear funtion spae (A �Æ B) of two ompletely distributive latties

is FS, and we only need to show distributivity. To this end observe that the supremum of

elements in (A �Æ B) is alulated pointwise; even the �nite pointwise in�mum, however,

is not sup-preserving in general. Hene the in�mum is given by Lemma 5.1:

(f ^ g)(a) =

_

ff(a

0

) ^ g(a

0

) j a

0

n ag :

Now, given f; g; h:A �Æ B, we will always have (f ^ g) _ (f ^ h) � f ^ (g _ h). For the

onverse �x a 2 A and assume bn (f ^ (g _ h))(a). By what we just said about in�ma

in (A �Æ B), there must exist a

0

n a suh that b � f(a

0

)^ (g(a

0

)_h(a

0

)). Distributivity

at the element level gives us b � (f(a

0

) ^ g(a

0

)) _ (f(a

0

) ^ h(a

0

)) and the latter is a term

whih ours in the alulation of ((f ^ g) _ (f ^ h))(a).

Theorem 5.5. CD is the largest losed full subategory of SUP whose objets are

distributive and ontinuous.
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If follows that CD gives us another, smaller model of Linear Logi. Besides its objets

being more regular than those of FS, we �nd that in CD the interpretation of tensor

and its de Morgan dual, par, oinide:

Theorem 5.6. Let A and B be omplete latties and let one of them be ompletely

distributive. Then (A �Æ B

op

)

�

=

(A

op

�Æ B)

op

, i.e. A
B

�

=

AOB.

Proof. (Note that all operations and relation symbols in this proof refer to the original

latties, not their order duals.) Given omplete latties A and B, de�ne

�: (A �Æ B

op

) ! (A

op

�Æ B); �(r)(x) :=

W

x

0

6�x

r(x

0

)

	: (A

op

�Æ B) ! (A �Æ B

op

); 	(s)(x) :=

V

x

0

6�x

s(x

0

) :

It is lear that � and 	 are antitone. More important is well-de�nedness:

�(r)(

V

X) =

W

x

0

6�

V

X

r(x

0

)

=

W

x2X

W

x

0

6�x

r(x

0

) by the de�nition of

V

X

and dually for 	. The maps � and 	 are mutual inverses of eah other. Let s:A

op

�Æ B.

Then

�(	(s))(x) =

_

x

0

6�x

	(s)(x

0

) =

_

x

0

6�x

^

x

00

6�x

0

s(x

00

) =: t(x) :

It is lear that t(x) � s(x) beause x is always one of the x

00

in the formula. For

the onverse we use omplete distributivity of A whih entails x =

V

aox

a and x =

V

x

0

6�x

W

x

00

6�x

0

x

00

(Theorem 5.2). Now, for a o x we get 9x

0

6� x:

W

x

00

6�x

0

x

00

� a,

i.e., 9x

0

6� x8x

00

6� x

0

: x

00

� a. Sine s is antitone, this translates as 9x

0

6� x8x

00

6�

x

0

: s(x

00

) � s(a) and hene t(x) � s(a). Sine s translates in�ma into suprema, we get

s(x) = s(

V

aox

a) =

W

aox

s(a) � t(x).

Note that we have used omplete distributivity of A alone. Complete distributivity of

B would also suÆe sine we an always swith to the other half of a Galois-onnetion.

In Barr's terminology, what we have shown is:

Corollary 5.2. The ategory CD is ompat losed.

We onlude this setion with an observation whih is easy to justify at this point but

will be used only in Setion 7.3.

Lemma 5.5. Let A and B be biontinuous latties and let F � (A �Æ B) be �ltered.

Then the in�mum of F in (A �Æ B) equals the in�mum of F in [A! B℄.

Proof. Given a �ltered family F � (A �Æ B) we onsider the pointwise in�mum

m(x) :=

V

f2F

f(x). It is not only monotone but also preserves the least element and

binary suprema. This is beause B

op

is also ontinuous and on a ontinuous lattie the

binary in�mum is a ontinuous operation. Now we an apply Lemma 5.2 and we get that

_

m

, whih is the in�mum of m in [A! B℄, is linear and hene the in�mum in (A �Æ B).
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6. The modalities

So far, we have ignored the modalities of Linear Logi and it is high time to study how

they an be added to our framework. Some general omments may be in plae here. From

the viewpoint of �-autonomous ategories, modalities require a further piee of struture

in the form of a omonad. First Seely, (Seely 1989), and later Benton, Bierman, de Paiva,

and Hyland, (Benton et al. 1993b; Benton et al. 1993a; Bierman 1995), worked out the

preise onditions that need to be imposed on the omonad in order to get the desired

lose orrespondene between proof theory and ategorial semantis.

More reently, Benton, (Benton 1994), ame up with a quite di�erent notion of at-

egorial model, where one has a artesian losed ategory (the intuitionisti ategory)

and a �-autonomous ategory (the linear ategory) linked by a monoidal adjuntion. The

attrations of Benton's approah are twofold: Firstly, the set of axioms is small and uses

well-established onepts only. Seondly, the free parameters in a Benton model of Linear

Logi are learly visible; neither does the linear ategory determine the intuitionisti one,

nor the other way round; and one the two ategories are �xed, there may still be some

variability in terms of whih adjuntion to hoose.

These general bene�ts are augmented with some spei� advantages in our setting.

Sine we an hoose the intuitionisti ategory independently from the linear ategory,

we have the opportunity to bring lassial ategories of domains into the piture. In other

words, we are not fored to work with omplete latties alone. This ought to failitate

the appliation of our results to Denotational Semantis.

Although the de�nition of a Benton model is very neat, the number of diagrams to

hek is still quite daunting. We are helped by the following general result from (Kelly

1974) (whih was also noted in (Benton 1994)):

Theorem 6.1. Let (C;


C

; I

C

)

G

�! (D;


D

; I

D

)

F

�! (C;


C

; I

C

) be an adjuntion be-

tween (symmetri) monoidal ategories and let

n:F (A)


C

F (B)

�

�! F (A


D

B) p: I

C

! F (I

D

)

be a natural transformation (resp. a morphism) making the left adjoint F monoidal.

Then the following are equivalent:

(i) The whole adjuntion is monoidal.

(ii) All arrows n

A;B

and p are isomorphisms.

In the spirit of Denotational Semantis and Domain Theory, the natural partner for

Barr's linear ategory SUP is DCPO, the ategory of direted-omplete partial orders

and Sott-ontinuous funtions. DCPO is artesian losed and is the ambient ategory

for many of the more re�ned onepts in Domain Theory. Our hoie of adjuntion is

informed by our wish to deompose the maps of DCPO. Consider the de�nitions

HD := fX � D j X Sott-losedg ;

where D is a dpo and the order on HD is subset inlusion, and

i

D

:D ! HD ; d 7! #d :
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(We hose the notation H beause HA is almost the Hoare-powerdomain of A, exept that

for the latter the empty set is usually exluded.) The funtions i

D

are Sott-ontinuous.

Furthermore, we have the following.

Lemma 6.1. Let D be a dpo and B be a omplete lattie. For every Sott-ontinuous

funtion f :D ! B there is a unique linear funtion

^

f :HD �Æ B suh that f =

^

f Æ i

D

.

Proof. The equality f =

^

f Æ i

D

fores the following de�nition of

^

f :

^

f(X) :=

_

ff(x) j #x � Xg :

For linearity, let (X

i

)

i2I

be a olletion of Sott-losed subsets of D. Note that in HD

the supremum is alulated as

_

i2I

X

i

= l(

[

i2I

X

i

) ;

where l(�) denotes the losure of a subset in the Sott-topology. We need to show that

^

f(

W

i2I

X

i

) �

W

i2I

^

f(X

i

), the other inequality being satis�ed trivially. Consider the

Sott-losed subset #

W

i2I

^

f(X

i

) of B. Its pre-image under f is Sott-losed by the Sott-

ontinuity of f and ontains all X

i

's, hene

W

i2I

X

i

as well. So we get f(

W

i2I

X

i

) �

#

W

i2I

^

f(X

i

) and onsequently

^

f(

W

i2I

X

i

) =

W

ff(x) j x 2

W

i2I

X

i

g �

W

i2I

^

f(X

i

).

From the lemma above we obtain that SUP is a reetive subategory of DCPO, the

reetion being given by

D 7! HD

f :D ! E 7!

\

i

E

Æ f :

In order to show that the adjuntion is monoidal we hek the onditions of Theorem 6.1.

First of all, I

SUP

= 2 is learly isomorphi to HI

DCPO

= H1. We get the desired natural

isomorphism between HA
HB and H(A�B) from the following funtional desription

of H

x

:

HA

�

=

[A! 2℄

op

:

The alulation runs as follows

HA
 HB = (HA �Æ (HB)

op

)

op

�

=

[A! (HB)

op

℄

op

�

=

[A! [B ! 2℄℄

op

�

=

[A�B ! 2℄

op

�

=

H(A�B) :

We also need to establish that these isomorphisms ommute in a suitable way with the

transformations whih orrespond to the assoiativity, symmetry, and unit laws of the

x

As Paola Maneggia pointed out to us, this representation of H is no oinidene; whenever H is a

monoidal reetion from a Cartesian losed ategory to a �-autonomous subategory with dualizing

objet ?, one has HA

�

=

(HA �Æ ?) �Æ ?

�

=

[A!?℄ �Æ ?.
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symmetri monoidal struture. For this we need a more expliit desription of the above

isomorphism.

For a 2 A; b 2 B de�ne a Galois-map (a% b):A! B by

(a% b) :=

^

fr 2 A
B j r(a) � bg

or, expliitly,

(a% b)(x) :=

8

<

:

>

B

; if x = ?

A

;

b; if x 2 #a n f?

A

g;

?

B

; if x 62 #a:

The other half of this Galois-map is just (b% a), as one an see from the haraterization

in Formula (4). Furthermore, we have r =

W

a2A

(a% r(a)) for all r 2 A
 B, beause r

itself is an element of the set of whih the in�mum is taken in the de�nition of (a% r(a)).

Also note that (?

A

% b) and (a% ?

B

) equal (?

A

% >

B

), the smallest element in A
B.

Using this information, we an desribe the isomorphism between HA
HB and H(A�

B) expliitly by

(#a% #b) � r () (a; b) 2 C

where r 2 HA
HB and C 2 H(A�B). The diagrams for the monoidiity of H:DCPO!

SUP now beome easy exerises. For example, ommutativity of

HA
 HB Æ H(A�B)

HB 
 HA

s

SUP

Æ

Æ H(B �A)

Æ

Hs

DCPO

is argued as follows. For r 2 HA 
 HB we have (#a % #b) � r () (a; b) 2 C ()

(b; a) 2 Hs

DCPO

(C) () (#b % #a) � s

SUP

(r). Leaving the remaining diagrams as

exerises, we arrive at the following:

Theorem 6.2. The ategories DCPO and SUP, linked by the reetion H:DCPO!

SUP, form a Benton model of Linear Logi.

The theorem implies that there is a natural transformation A � B

�

�! A 
 B. This,

of ourse, is nothing other than the assignment (a; b) 7! (a % b); it is linear in both

variables separately.

The setup of Theorem 6.2 an be restrited on both sides to approximated objets.

Sine the Sott-topology of a ontinuous domain is a ompletely distributive lattie,

(Abramsky and Jung 1994, Theorem 7.2.28), we get a very small model by pairing Sott-

domains on the intuitionisti side with ompletely distributive latties on the linear side.

At the other end, a maximal Benton model within approximated ordered strutures is

given by FS-domains paired with FS-latties.

The desired deomposition of the Sott-ontinuous funtion spae [A! B℄ into (HA �Æ B)

was the motivation for our hoie of the modality !A as the lattie of all Sott-losed sub-

sets of A, ordered by set inlusion. While !A owes its de�nition to a topologial notion,

the nature of ?A is then ompletely determined by the struture of the ambient linear
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ategory SUP: ?A has to be naturally isomorphi to (!A

op

)

op

. This, in turn, is natu-

rally isomorphi to �

A

op

, the Sott-topology on A

op

. This works on the level of DCPO

and SUP already. In the approximated ase we an give a good deal more information

about ?. Reall that a subset of a topologial spae is alled saturated if it equals the

intersetion of its neighborhoods. The set of all ompat saturated subsets of a spae X ,

ordered by revered inlusion, is denoted by �

X

.

Proposition 6.1. If A is a lean omplete lattie then ?A and �

A

are isomorphi, where

the isomorphism an be viewed as the identity at the level of sets.

Proof. We have remarked before that a ompat upper set is neessarily losed with

respet to �

A

op

, that is, a member of H(A

op

). The onverse is exatly the de�nition of

leanness.

The proposition above entails that ?A

�

=

�

A

holds for all FS-latties A. Now, exept

for the empty set, �

A

is exatly the Smyth-powerdomain of A if A is ontinuous, (Smyth

1978; Abramsky and Jung 1994). Hene in our domain-theoreti model of Linear Logi

the two modalities are just the two fundamental powerdomains.

7. Algebraiity

The ategory FS has plenty of algebrai latties as objets. Theorem 5.4 assures us that

FS ontains at least all ompletely distributive algebrai latties; moreover, every �nite

lattie is ertainly algebrai and FS. In this setion we will explore the world of algebrai

FS-latties in more detail. As we will see, a lot of the theory is in lose analogy to that

of algebrai domains and Sott-ontinuous funtions, but there are a few surprises. In

the following, we will frequently refer to the lassial theory of domains, so we like to

alert the reader that she will �nd FS-domains next to FS-latties and Sott-ontinuous

funtions next to linear ones in our proofs. It will be ruial that every linear funtion

is also Sott-ontinuous.

7.1. Algebrai FS-latties

FS-latties are de�ned with referene to �nitely separated (linear) funtions. There are

two strengthenings of this onept that we will make use of here: a funtion below the

identity is alled a deation if it has �nite image. A deation may or may not be idempo-

tent. Sott-ontinuous deations are familiar from the study of bi�nite domains (Plotkin

1976; Abramsky and Jung 1994); here, of ourse, we require them to be linear.

Lemma 7.1. Let f be a �nitely separated funtion on a omplete lattie A. Then some

�nite iterate of f is an idempotent deation.

Proof. The statement follows from the fat that in a sequene x > f(x) > f

2

(x) > : : :

a di�erent separating element is needed at least every other step. Hene suh a sequene

an never be longer than 2l where l is the ardinality of the �nite separating set. It follows

that f

2l

is idempotent. The iterated funtion has �nite image beause it remains �nitely

separated.
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Proposition 7.1. A omplete lattie A is an algebrai FS-lattie if and only if the

identity id

A

is the direted supremum of idempotent linear deations.

Proof. \if": The image of an idempotent deation onsists wholly of ompat elements.

So A must be algebrai if there exists a direted family of idempotent deations approx-

imating id

A

. Sine deations are �nitely separated (by their image) the lattie must also

be FS.

\only if": Given a ompat element  of A there exists a �nitely separated funtion f

whih �xes . By the previous lemma, some iterate of f is an idempotent deation. This

iterate still �xes . This shows that the supremum of all idempotent deations equals id

A

.

The supremum is direted beause the pointwise supremum of idempotent deations is

another suh funtion.

This haraterization of algebrai FS-latties allows us to prove easily that the linear

funtion spae of two algebrai FS-latties is again of the same kind. This losure property

is suÆient to onlude the following:

Theorem 7.1. The ategory aFS of algebrai FS-latties and linear maps is �-autonomous.

In analogy to the Sott-ontinuous ase, one an de�ne linear bi�nite latties as the

bilimits of �nite latties with respet to linear embedding projetion pairs. The following

haraterization is then proved exatly as for bi�nite domains (Jung 1989, Theorem 1.26).

Proposition 7.2. A omplete lattie A is linearly bi�nite if and only if there exists a

direted olletion of idempotent deations whose supremum equals id

A

.

To summarize, what we have is:

Theorem 7.2. For a omplete lattie A the following are equivalent:

(i) A is an algebrai FS-lattie.

(ii) A is linearly bi�nite.

(iii) A has a direted olletion of idempotent linear deations whose supremum equals id

A

.

(iv) A has a olletion of idempotent linear deations whose supremum equals id

A

.

(v) The supremum of all idempotent linear deations on A equals id

A

.

7.2. Retrats of bi�nite latties

As we will see in the next subsetion, it is often useful to be able to pass to retrats

without leaving the ambient ategory. We therefore ollet a few basi results about

retrats of various kinds of FS-latties.

Proposition 7.3. The ategory FS is losed under forming retrats.

Proof. For A 2 FS, B 2 SUP, let r:A �Æ B and e:B �Æ A be linear maps with

rÆe = id

B

. If f is �nitely separated in (A �Æ A) by a setM , then rÆf Æe is easily seen to

be �nitely separated in (B �Æ B) by the set r(M). If the supremum of the set D of linear

�nitely separated funtions on A equals id

A

, then the supremum of the set of funtions



Linear Types and Approximation 19

r Æ f Æ e, f 2 D, equals id

B

, beause r is linear and the supremum of linear funtions is

alulated pointwise.

Corollary 7.1. Retrats of linear bi�nite latties are FS-latties.

As in the Sott-ontinuous ase, retrats of linear bi�nite latties an be haraterised

funtionally:

Theorem 7.3. A omplete lattie B is a linear retrat of some linear bi�nite lattie if,

and only if, its identity is the direted supremum of deations in (B �Æ B).

The question arises whether every FS-lattie is the retrat of an algebrai FS-lattie

(= linear bi�nite lattie). This we don't know. The situation is exatly as with bi�nite

domains and FS-domains (Abramsky and Jung 1994, Proposition 4.2.12), although we

do not see any general reason for this analogy.

If we ombine distributivity with algebraiity, then the problem does not arise:

Theorem 7.4. Every distributive FS-lattie is the linear retrat of a distributive linear

bi�nite lattie.

Proof. A distributive FS-lattie A is automatially ompletely distributive by Theo-

rem 5.3. Now, if A is in CD, then let B be the lattie of lower sets of _-prime elements

in A ordered by inlusion. Then B is ompletely distributive and algebrai. The maps

r:B ! A, L 7!

W

L, and e:A ! B, x 7! fr j r � x; r _-primeg, are linear with

r Æ e = id

A

due to Theorem 5.3.

7.3. Maximality of aFS

In the ase of ontinuous latties, our proof tehniques required latties to be lean in

order to realize FS as a maximal �-autonomous subategory of ontinuous latties in

SUP, Lemma 4.6 and Theorem 4.2. This topologial assumption an be eliminated in

the algebrai setting (Huth 1995a):

Theorem 7.5. Let A be an algebrai lattie with ontinuous linear funtion spae

(A �Æ A). Then A is an FS-lattie.

Corollary 7.2. aFS is the largest (full) �-autonomous subategory of SUP suh that

every objet is algebrai.

The proof of the theorem above is ustom-tailored for the strutural properties of

algebrai latties; it remains unlear whether it has a suitable abstration allowing one

to prove its ontinuous version. We leave this as an open problem: If (A �Æ A) is a

ontinuous lattie, is A neessarily lean?

Sine A is algebrai in the theorem above, we know that id

A

is the direted supremum of

idempotent, Sott-ontinuous deations. Thus, it suÆes to show that any suh funtion

d has a linear deation p above it. We will reason the existene of suh a p in a number

of steps. In the disussion below, we �x an algebrai lattie A suh that (A �Æ A) is

ontinuous and d is an arbitrary Sott-ontinuous idempotent deation on A.
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Step 1: A is biontinuous. This follows diretly from Corollary 4.2.

Step 2: Obtaining a andidate linear deation. Any andidate linear deation above

d has to be in the set U = ff 2 (A �Æ A) j d � f � idg. This set ontains id and is

losed under omposition as omposition is monotone and d and id are idempotent. The

ombination of these two fats establishes that U is a �ltered subset of (A �Æ A) and by

Lemma 5.5 we may onlude that its �ltered in�mum p in (A �Æ A) is atually the one

in [A! A℄, using the biontinuity of A seured in Step 1. Thus, p has to be above d.

Sine id is in U we get p � id. From this, the minimality of p in U , and the fat that U is

losed under omposition, we infer that p is idempotent. In summary, p is the minimal

idempotent linear funtion above d and below id. Sine the order on suh funtions is

given by the inlusion of their image, we onlude that there is a linear deation above

d if, and only if, the image of p is �nite.

From now on we write B for the image of p, and i:B ! A, q:A ! B for the deom-

position of p into inlusion and projetion part.

Step 3: (B �Æ B) is ontinuous. The pair (q; i) realizes B as a linear retrat of A. Using

the internal hom ( �Æ ) on the pairs (q; i) and (i; q) we obtain (B �Æ B) as a linear retrat

of (A �Æ A). Sine the Sott-ontinuous retrat of a ontinuous lattie is ontinuous (Gierz

et al. 1980; Abramsky and Jung 1994), we infer that (B �Æ B) is ontinuous.

Step 4: The identity is ompat in (B �Æ B). The deation d is in K[A! A℄ and so

W = fh 2 (A �Æ A) j d � hg is Sott-open in (A �Æ A) as direted suprema are the same

in [A! A℄ and (A �Æ A). Thus, p is a minimal element of the Sott-open set W and the

ontinuity of (A �Æ A) makes p ompat in (A �Æ A). Using this ompatness, one may

now ompute that q Æ i is ompat in (B �Æ B), but q Æ i is just id

B

.

Step 5: B satis�es the asending (ACC) and desending hain ondition (DCC). We

already know that the identity of B is ompat in (B �Æ B). By Lemma 4.5, we get

that every b 2 B is ompat. Sine (B �Æ B) is isomorphi to (B

op

�Æ B

op

), we also get

id 2 K(B

op

�Æ B

op

) and may use the same lemma to infer that every b 2 B is ompat

in B

op

. These two properties ensure that B satis�es (ACC) and (DCC).

To summarize this disussion, we arrived at a biontinuous lattie B with ontinuous

linear funtion spae (B �Æ B), where B satis�es (ACC) and (DCC). Let us say that any

lattie C with these properties has property F. Our aim is to demonstrate that property F

is nothing but that of being a �nite lattie.

Step 6: Property F is inherited by prinipal lower and upper sets. Note that C has

property F if C

op

has property F and vie versa. This is due to the isomorphism

(C �Æ C)

�

=

(C

op

�Æ C

op

). Thus, given C with property F, we only have to show suh a

losure for a prinipal lower set #x. The retration ret

x

:C ! C whih leaves #x �xed and

maps all other elements to x realizes #x as a linear retrat of C. As before, we obtain

(#x �Æ #x) as a linear retrat of (C �Æ C). In partiular, (#x �Æ #x) is ontinuous. Sine

#x evidently inherits (ACC) and (DCC) from C, we only need to establish that #x is

biontinuous; but this follows from Corollary 4.2.

Beause an interval [x; x℄ = fy 2 P j x � y � xg in a poset P an be realized as

the prinipal lower set #x in a prinipal upper set "x, property F is also inherited by all

intervals in B.
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Step 7: B is �nite. Proof by ontradition: Let us assume that B, the image of p, is

indeed in�nite. Our goal is to argue that M

1

(Example 4.1) is sitting inside B.

Step 7.1: Finding in�nite anti-hains. Consider the poset P of all in�nite subintervals

of B, ordered by inlusion. It ontains B by assumption. As a poset, P satis�es (DCC)

beause an in�nite hain of smaller and smaller intervals would produe either an in�nite

asending hain in B (onsidering the lower endpoints) or an in�nite desending hain

in B (upper endpoints), and we already know that B is free of both. We an onlude

that B ontains a minimal in�nite subinterval. By Step 6 it will also have property F

and so we might as well assume that B equals that minimal in�nite subinterval. Under

this assumption, we have the following properties in addition to property F:

(i) #x is �nite for all x < > in B,

(ii) "x is �nite for all ? < x in B.

Sine B satis�es (DCC), we get B n f?g = "T , where T is the set of minimal elements

in B n f?g. Dually, the ondition (ACC) guarantees that B n f>g = #S, with S being

the set of maximal elements in B n f>g. Sine B is in�nite, item (i) implies that S is an

in�nite anti-hain. Dually, item (ii) implies that T is an in�nite anti-hain as well.

Step 7.2: Carving outM

1

. We use items (i) and (ii) above together with the two in�nite

anti-hains S and T to onstrut M

1

as a linear retrat of B. We de�ne indutively a

family of elements (x

i

)

i2N

in T and a family (S

i

)

i2N

of subsets of S: Pik any x

0

in T and

de�ne S

0

as "x

0

\S. By item (ii) above, we see that S

0

is �nite. Thus, item (i) entails that

#S

0

\T is �nite as well. Sine T is in�nite, we may pik some x

1

in T n#S

0

and repeat this

proess by piking a new element x

i+1

in the omplement of

S

1�j�i

#S

j

in T . Suppose

that x

i

_ x

i+k

< > for some i < i+ k. Then x

i

_ x

i+k

has to be below some s 2 S. Then

x

i

� s means s 2 S

i

and x

i+k

� s renders x

i+k

2 #S

i

ontraditing the hoie of the

element x

i+k

. Thus, x

i

_ x

j

= > for all i 6= j. This ensures that fx

i

j i � 0g [ f?;>g is

losed under all suprema and in�ma in B and isomorphi to M

1

. Therefore, we have an

injetive map e:M

1

! B preserving all in�ma and all suprema. Beause of the former,

e has a lower adjoint l:B ! M

1

. The injetivity of e implies l Æ e = id

M

1

. Sine lower

adjoints preserve suprema, we have realized M

1

as a linear retrat of B. Again, this

entails that (M

1

�ÆM

1

) is a linear retrat of (B �Æ B) whene (M

1

�ÆM

1

) has to be

ontinuous, ontraditing Example 4.1. Hene the assumption that B be in�nite is false.

To summarize, we have shown that there is a linear idempotent deation above every

Sott-ontinuous idempotent deation in A, and the proof that A is an FS-lattie is

omplete.

7.4. Internal haraterization

We have seen in Setion 7.1 that algebrai FS-latties are in fat bi�nite, and we have

haraterized them in terms of idempotent deations. So far, this is very muh in parallel

to the theory of domains and Sott-ontinuous funtions; in fat, the proofs of these fats

for the linear ase are virtually the same as for the ontinuous ase. We will now attempt

to push the analogy further to the internal haraterization of bi�nite domains and

latties.
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Reall that bi�nite domains an be haraterized by the struture of their subposet of

ompat elements (Plotkin 1981; Abramsky and Jung 1994). Essentially, this is ahieved

by a study of the �ne struture of the images of idempotent deations. One observes that

suh an image must onsist of ompat elements and that the image is losed under the

formation of minimal upper bounds of �nite subsets.

In the present setting we will try to proeed similarly. From the ontinuous ase we

inherit the information that the image of a linear idempotent deation must onsist of

ompat elements, and onsequently, the internal haraterization will refer to ompat

elements only. The study of minimal upper bounds, however, is trivial for omplete

latties as every subset has a supremum, and losing a �nite set of ompat elements

with all suprema will always yield a �nite set of ompat elements. Hene ontinuous

idempotent deations abound. Our problem is to ensure that there are enough linear

ones.

We will not study the preservation of suprema diretly but instead generate a deation

together with an upper adjoint. Linearity will then be automati. To start o� in this

diretion let us reord a few observations about adjoints whih an all be proved from

the haraterizing equivalene 3 in Setion 3.

Proposition 7.4. Let A be a omplete lattie and f :A �Æ A a linear funtion. The

following relationships hold between f and its upper adjoint f

�

:

(i) f � id

A

() f

�

� id

A

;

(ii) f Æ f = f () f

�

Æ f

�

= f

�

;

(iii) f has �nite image () f

�

has �nite image.

Corollary 7.3. If f is a linear projetion (idempotent deation) on the omplete lat-

tie A, then f

�

is a linear projetion (idempotent deation) on A

op

.

The following lemma will be the key to our haraterization. It holds without assuming

�nite image.

Lemma 7.2. Let f be a linear projetion on a omplete lattie A, and let x be in im(f),

the image of f . Then x reates a partition of A with the lasses U

x

= "x and L

x

= An"x

whih is respeted by both f and f

�

, that is,

f(U

x

) � U

x

; f

�

(U

x

) � U

x

;

f(L

x

) � L

x

; f

�

(L

x

) � L

x

:

Furthermore, L

x

= #f

�

(L

x

).

Proof. Assume y � x. Then f(y) � f(x) = x beause f is idempotent; hene f

restrits to U

x

. The upper adjoint trivially restrits to U

x

beause we have f

�

� id

A

by

Proposition 7.4(1) and U

x

is an upper set. For the same reason, f restrits to the lower

set L

x

. Lastly, let y 6� x and assume f

�

(y) � x. Then y � f(x) by adjointness. However,

f(x) = x as x belongs to the image of f and we get a ontradition.

The additional laim about L

x

follows from what we just proved and the fat that

f

�

� id

A

.
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Proposition 7.5. Let f be a linear projetion on a omplete lattie A, and let X be a

subset of im(f). Then the maximal elements of L

X

= A n "X all belong to im(f

�

).

Proof. We have that f

�

restrits to L

X

=

T

x2X

L

x

by the previous lemma, and that

f

�

is above id

A

by Proposition 7.4(1). Hene a maximal element of L

X

must remain �xed

under f

�

.

This last result allows us to haraterize images of linear projetions.

Theorem 7.6. The set of linear projetions on a omplete lattie A is in one-to-one

orrespondene to pairs of subsets (M;N) whih have the following properties:

P1 8X �M: max(A n "X) � N ;

P2 8Y � N: min(A n #Y ) �M ;

P3 8X �M 8a 2 A n "X 9n 2 N n "X: a � n;

P4 8Y � N 8a 2 A n #Y 9m 2M n #Y: b � m.

The orrespondene assigns to a linear projetion f the pair (im(f); im(f

�

)) and to a pair

(M;N) the funtion f : a 7!

W

(#a \M).

Proof. Given a linear projetion f , then (im(f); im(f

�

)) has the four properties listed

beause of Lemma 7.2 and Proposition 7.5. Conversely, given a pair of subsets with these

properties, we let f be as stated and g: a 7!

V

("a \N). It is lear that f is idempotent

and below id

A

.

Before we an show that f is linear, we need to establish that M is indeed all of

im(f). For this, let x 2 im(f), that is x =

W

(#x \ M). For every a 6� x there must

exist m

a

2 #x \M not below a. By Property P3, there is some n 2 N above a and not

above m

a

. Hene A n "x = #(N n "x). Sine x is maximal in A n #(N n "x), it belongs to

M by Property P2. Properties P1 and P4 are used to show that N is all of im(g).

We prove that f is linear by showing that f and g are adjoint. Assume x 6� g(y). We

have just shown that g(y) 2 N and so by Property 4 there exists m 2 M with m � x

and m 6� g(y). By the de�nition of f , this entails f(x) 6� g(y). Sine y � g(y) we an't

have f(x) � y. So f(x) � y implies x � g(y). The other diretion follows by duality.

We had to show already that starting with a pair (M;N), onstruting f from it

and taking (im(f); im(f

�

)) will give bak (M;N). For the other identity, start with a

projetion f . If follows (even in the monotone ase) that f is reovered from im(f) in the

way stated.

For projetions with �nite image the haraterization is even simpler:

Theorem 7.7. Let A be a omplete lattie. The set of linear idempotent deations is

in one-to-one orrespondene to pairs of �nite subsets (M;N) whih have the properties

P1 and P2 from the previous theorem plus

P3

0

M � K(A);

P4

0

N � K(A

op

).

The orrespondene is established as before.

Proof. We know from Corollary 7.3 that every linear idempotent deation has an
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adjoint whih is a linear idempotent deation on A

op

. We also know that the image of a

linear idempotent deation onsists of ompat elements only. For the onverse we need

that P3

0

and P4

0

(together with P1 and P2) imply their ounterparts in Theorem 7.6.

This is very easy: For every X � M , the set A n "X is �

A

-losed by P3. Hene every

element of this set is below a maximal element. The maximal elements of An"X , however,

all belong to N by P1.

We need to be able to extend every �nite set M of ompat elements to an image of

a linear idempotent deation, if we want that a given algebrai lattie belongs to FS.

By the previous theorem, the smallest extension (if it exists) is generated by turning

onditions (1) and (2) into mutually dependent losure operators:

M

0

:= M

M

k+1

:=

S

Y�N

k

min(A n #Y )

N

k+1

:=

S

X�M

k

max(A n "X)

M

�

:=

S

k2N

M

k

N

�

:=

S

k2N

N

k

Theorem 7.8. An algebrai lattie is an FS-lattie if and only if for every �nite subsetM

of ompat elements the sets M

�

and N

�

are �nite and onsist of ompat elements of

A and A

op

, respetively.

It is instrutive to onsider in whih ways the generation proess an fail to lead to

a linear idempotent deation. Firstly, we observe that for a �nite set X of ompat

elements, the set "X is both open and ompat. Beause of the former, the omplement

A n "X has a maximal element above every member. The latter implies that A n "X

is open in A

op

. If we assume that A

op

is algebrai as well, then eah maximal element

in A n "X is ompat with respet to A

op

. Hene assuming that A is bialgebrai will

guarantee that M

�

and N

�

onsist of ompat elements only.

Seondly, we need that the generation proess does not lead to an in�nite set. For this,

we observe the following:

Proposition 7.6. Let A be bialgebrai. Then A is lean if and only if for every C ompat

open in A

op

, the set A n C is ompat open in A.

Proof. A set C whih is ompat saturated in A

op

is losed in A. Hene its omplement

is open in A. As C is open in A

op

, its omplement is losed in A

op

. The omplement is

then ompat in A by the de�nition of leanness.

For the onverse, let C be losed in A

op

. For every x 2 A nC there is an A

op

-ompat

element above it. Given a �nite set X of A

op

-ompat elements in A n C, the set #X

is ompat open in A

op

. By assumption, its omplement (whih ontains C) is ompat

open in A. It follows that C is the �ltered intersetion of ompat open sets in A. Sine

algebrai latties are sober, (Abramsky and Jung 1994, Proposition 7.2.27), C is ompat

as well, (Abramsky and Jung 1994, Corollary 7.2.11).

As an illustration, onsider the non-lean bialgebrai lattie M

1

from Example 4.1.
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Fig. 2. A bialgebrai lean lattie whih is not an FS-lattie.

Here the generation proess, when started on any element di�erent from > or ?, leads

immediately to in�nite subsets.

Unfortunately, however, leanness is not suÆient for the generation proess to sueed.

Figure 2 shows a bialgebrai lean lattie whih is not FS. As a third ondition, in addi-

tion to bialgebrai and lean, we therefore need to stipulate that the generation proess

terminates after �nitely many iterations. This is in surprising analogy to the lassial

theory of bi�nite domains. There, too, \two thirds" of being bi�nite are aptured topo-

logially (ompatness of the Lawson-topology), but the remaining third is formulated

with referene to a generation proess.

8. Extensions to Sott-domains

If we drop the requirement that objets A be isomorphi to (A �Æ 2) �Æ 2, then we may

onsider the ategory BC of bounded omplete dpos and maps f :A ! B preserving

all existing suprema: the existene of

W

X for X � A implies that

W

f(X) exists in

B and equals f(

W

X). Sine SUP is a full subategory of BC, we have a onrete

forgetful funtor with a left adjoint given by ( �Æ 2) �Æ 2 (Huth 1995b). The tight

onnetion between these ategories is orroborated at the level of objets: A embeds

into (A �Æ 2) �Æ 2 suh that its image is a lower set losed under all suprema existing in

A. So while morphisms in BC do not have an upper adjoint in general, one ould de�ne

the other linear types in BC using the onnetions above suh that the forgetful funtor

beomes symmetri monoidal.

Instead of providing the details, we briey disuss the aspet of approximation in BC.
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If we restrit attention to ontinuous (Sott)-domains, then the resulting subategory

is not losed sine CL isn't. We may de�ne approximative objets A suh that their

double dual is an FS-lattie, but one may equivalently de�ne suh objets diretly as

done for FS-latties. It is not hard to see that this leads to a full symmetri monoidal

losed subategory of ontinuous Sott-domains in BC. One may transfer our maximality

results �a la Theorems 4.2, 5.5, and 7.5; yet we an only de�ne leanness indiretly by

stipulating that a bounded omplete ontinuous domain A be \lean" if (A �Æ 2) �Æ 2 is

lean in the sense we de�ned earlier. The Sott-domains obtained in this fashion were �rst

introdued in (Huth 1994). As for distributivity, the domains A for whih (A �Æ 2) �Æ 2

is a ompletely distributive algebrai lattie are exatly Glynn Winskel's prime-algebrai

domains (Winskel 1988; Huth 1995b).

9. Related and future work

In (Huth and Mislove 1994) one �nds another, rather astonishing, external harateri-

zation of FS-latties. Sine the inlusion of (A �Æ B) into [A! B℄ is linear, it has an

upper adjoint, whih is just the restrition of m 7!

Æ

m

to [A! B℄ as a domain of de�ni-

tion in Lemma 5.1. If A equals B and is ontinuous, then A is an FS-lattie (ompletely

distributive) if, and only if, this upper adjoint is Sott-ontinuous (linear).

In (Hekmann and Huth 1998a; Hekmann and Huth 1998b) one �nds a duality theory

with whih one an show that the more general ontinuous funtion spae [X ! B℄ for a

sober spae X is an FS-lattie (ompletely distributive) if, and only if, X is a ontinuous

spae | essentially a ontinuous domain | and B an FS-lattie (ompletely distributive)

(Hekmann et al. 1999).

Elements in biontinuous latties are in�ma of ^-irreduible elements and suprema of

_-irreduible elements. Sine these elements determine the �ne-struture of suh latties,

it is desirable to know whether suh elements have desriptions that reet the type

onstrutors, suh as [ ! ℄ and ( �Æ ), in adequate ways for FS-latties. While one

an use the natural isomorphism (HA �Æ B)

�

=

[A! B℄ to arrive at suh notions for

the spae [A! B℄, no identi�ations of suh elements in (A �Æ B) have yet been made

if neither A nor B are distributive. The diÆulty in obtaining a haraterization, say,

of _-irreduible elements in (A �Æ B) is linked to the open problems mentioned in this

paper.
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