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We study 
ontinuous latti
es with maps whi
h preserve all suprema rather than only

dire
ted ones. We introdu
e the (full) sub
ategory of FS-latti
es whi
h turns out to be

�-autonomous, and in fa
t maximal with this property. FS-latti
es are studied in the

presen
e of distributivity and algebrai
ity. The theory is extremely ri
h with numerous


onne
tions to 
lassi
al Domain Theory, 
omplete distributivity, Topology, and models of

Linear Logi
.

1. Introdu
tion

The work reported in this paper derives its motivation from at least three di�erent

dire
tions. Firstly, there is the theory of autonomous (or symmetri
 monoidal 
losed)


ategories as des
ribed extensively in (Eilenberg and Kelly 1966). These are abstra
-

tions of the frequent phenomenon in algebra of the set of homomorphisms between two

stru
tures being a stru
ture of the same kind again without the internal hom fun
tor

intera
ting with the produ
t in the usual way. The 
orresponden
e as it is expressed in

Linear Algebra, then, is between bilinear maps and tensor produ
ts rather than between

linear maps and produ
ts. In (Barr 1979), the abstra
t theory of symmetri
 monoidal


losed 
ategories is extended with a duality derived from a dualizing obje
t ?. Again,

algebra provides a number of motivating examples. One of these is the 
ategory SUP

of 
omplete latti
es and sup-preserving fun
tions.

y

In the present paper we augment the

obje
ts of this 
ategory with a notion of \approximation" in the sense of Domain Theory

(Abramsky and Jung 1994). We show that the full sub
ategory CL of 
ontinuous latti
es

is not 
losed and one of our main results 
hara
terizes the largest 
losed full sub
ategory

of CL (under one extra 
ondition). The result is reminis
ent of similar theorems for


artesian 
losed 
ategories (Smyth 1983; Jung 1990); it would be very interesting to �nd

a deeper reason for this similarity.

From a di�erent perspe
tive, this paper introdu
es a new model for Classi
al Linear

y

In fa
t, Barr works with in�ma rather than suprema but this di�eren
e is immaterial.



M. Huth, A. Jung and K. Keimel 2

Logi
 (Girard 1987). On the surfa
e, this 
onstru
tion seems fairly straightforward, given

the general theory of �-autonomous 
ategories as expli
ated in (Barr 1991). We 
hoose

the modality ! to be that of all S
ott-
losed subsets of the latti
e with the goal in mind to

get S
ott-
ontinuous maps in the 
orresponding 
o-Kleisli 
ategory. Rather pleasingly, the

dual modality ? has a meaningful interpretation in its own right, rather than just being

the de Morgan dual of !; it yields pre
isely the so-
alled Smyth-powerdomain (Smyth

1978). One may see this as a vindi
ation of the move to approximated latti
es, as su
h

a 
hara
terization is not available in the bigger 
ategory SUP. ((Abramsky and Jung

1994) 
ontains other instan
es of this phenomenon.)

Finally, one may see this paper as an attempt to a
hieve a linear de
omposition of

S
ott-
ontinuous fun
tions along the lines of Girard's original 
onstru
tion of 
oheren
e

spa
es and stable maps. It is then interesting to see that 
ertain 
on
epts of Domain

Theory still apply, 
ertifying their robustness and generality.

The stru
ture of the paper is as follows. We re
all the algebrai
 tradition whi
h led

to the theory of �-autonomous 
ategories in Se
tion 2. In Se
tion 3 we give some details

of Barr's example SUP for a �-autonomous 
ategory 
onsisting of 
omplete latti
es and

suprema preserving fun
tions. It is the ambient 
ategory for the remainder of the paper.

Se
tion 4 introdu
es the main obje
ts of study, linear FS-latti
es. They are de�ned in

analogy to FS-domains, (Jung 1990), and, as in the S
ott-
ontinuous setting, they provide

a 
losed 
ategory of approximated obje
ts. In fa
t, we are able to show that they are

a maximal 
hoi
e when a 
ertain further 
ondition (
alled \leanness") is assumed. FS-

latti
es are subsequently augmented with two (independent) properties: distributivity

(Se
tion 5) and algebrai
ity (Se
tion 7). In both 
ases, we obtain additional information:

distributive FS-latti
es turn out to be 
ompletely distributive and they form not only a �-

autonomous but a 
ompa
t 
losed 
ategory. Algebrai
 FS-latti
es are shown to be exa
tly

the bi�nite ones (in the linear sense), and a fairly involved argument in Subse
tion 7.3

shows that algebrai
 FS-latti
es are the maximal �-autonomous full sub
ategory of SUP

whose obje
ts are algebrai
. A number of parallels between the S
ott-
ontinuous and the

linear setting are pointed out in the remainder of Se
tion 7.

In between, in Se
tion 6, we show how to build a Benton-model of Linear Logi
 with the

ingredients of Domain Theory. The development is extremely smooth and we would like

to 
laim that the model is a natural yet non-trivial one. We were parti
ularly pleased to

�nd the 
onne
tion between modalities and powerdomains mentioned before. Although

Se
tion 6 refers to distributivity at some point, it 
an be read dire
tly after Se
tion 4.

Se
tion 8 indi
ates how the theory 
ould be extended from latti
es to S
ott-domains.

For the sake of brevity, we have refrained from a detailed exposition. Se
tion 9 refers to

further interesting dis
overies about FS-latti
es, whi
h were made more re
ently.

In our notation for domain-theoreti
 
on
epts we follow (Abramsky and Jung 1994);

relevant ba
kground information on 
ontinuous latti
es 
an be found there as well as in

(Gierz et al. 1980).
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2. Categori
al preliminaries

If K is a 
lass of algebrai
 stru
tures and A;B;C are obje
ts in K, the one 
alls a map

�:A�B ! C a bihomomorphism if for every a 2 A, b 2 B the fun
tions

�(a; ): y 7! �(a; y); and

�( ; b):x 7! �(x; b)

are homomorphisms of K. The prime example is ve
tor spa
es and bilinear maps.

A 
ategory is an abstra
t version of \
lass of stru
tures of the same kind and their

homomorphisms". However, the de�nition of a bihomomorphism seems to require an

expli
it referen
e to elements. Also, the map � itself is 
ertainly external to the 
ategory

at hand.

A slight rede�nition of bihomomorphism is more amenable to a 
ategori
al treatment.

Instead of �:A �B ! C, we 
onsider �

0

:A ! (B ! C) given by �

0

(x)(y) := �(x; y). If

we assume that the set (B ! C) of homomorphisms is itself a stru
ture of the same kind

as A;B and C, through a pointwise de�nition of the operations, then bihomomorphisms

�:A � B ! C and homomorphism �

0

:A ! (B ! C) are in one-to-one 
orresponden
e.

These two 
onditions are indeed satis�ed for ve
tor spa
es and also for the obje
ts under


onsideration here, 
omplete latti
es with sup-preserving maps.

Categori
ally, one requires an obje
t > and an internal hom-fun
tor ( ! ), 
on-

travariant in the �rst and 
ovariant in the se
ond argument, to model the requirement

that the set of homomorphisms quali�es as a stru
ture. In order to re
ognize the ob-

je
t (A ! B) as the set of homomorphisms from A to B one requires 
ertain natural

transformations and equivalen
es, to wit

(> ! A)

�

=

A

>

�

�! (A! A)

(B ! C)

�

�! ((A! B)! (A! C))

subje
t to a number of axioms (Eilenberg and Kelly 1966). A 
ategory with these prop-

erties is 
alled 
losed. In a 
losed 
ategory we may repla
e \bihomomorphism" with

\morphism from A to (B ! C)". See (Banas
hewski and Nelson 1976) for an in-depth

dis
ussion.

A 
losed 
ategory is 
alled symmetri
 
losed if (A ! (B ! C)) and (B ! (A ! C))

are naturally isomorphi
.

From Linear Algebra we know that bilinear maps A � B ! C are in one-to-one


orresponden
e with linear maps A
B ! C, where 
 denotes the tensor produ
t of

ve
tor spa
es. Abstra
tly, then, the presen
e of a \tensor produ
t" gives us an alternative

way of 
oding bihomomorphisms. To make this pre
ise, one stipulates that 
 be a

bifun
tor for whi
h 
 B is left adjoint to (B ! ), or, equivalently, (A 
 B ! C) and

(A! (B ! C)) are naturally isomorphi
. In addition to this, the abstra
t tensor produ
t

is required to be asso
iative and to have a unit I subje
t to a number of 
oheren
e axioms

(Eilenberg and Kelly 1966; Ma
 Lane 1971). With this additional data, we arrive at a

monoidal 
losed 
ategory. In a monoidal 
losed 
ategory, whi
h is also symmetri
 in the
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sense above, the tensor produ
t is 
ommutative, A 
 B

�

=

B 
 A. Together, one speaks

of a symmetri
 monoidal 
losed or autonomous 
ategory.

One last remark: Not every algebrai
 theory allows us to internalize the hom-fun
tor

(non-Abelian groups are an example) and even if it does, a suitable tensor produ
t

may not exist. Beyond these two obsta
les, a further one needs to be over
ome for a


ategory to be 
artesian 
losed, namely, it must be the 
ase that bihomomorphisms are

already homomorphisms. The 
ategory SET quali�es for trivial reasons; in the 
ase of

DCPO (dire
ted-
omplete partial orders and S
ott-
ontinuous fun
tions) this is one of

the fundamental lemmas of its theory (Abramsky and Jung 1994, Lemma 3.2.6).

In (Barr 1979), Mi
hael Barr studies the situation where an autonomous 
ategory is

equipped with an internal duality, that is, where there exists an obje
t ? su
h that A

and ((A! ?)! ?) are naturally isomorphi
 for all obje
ts A. Writing A

?

for (A! ?),

one gets the following equivalen
es:

(A! B)

�

=

(B

?

! A

?

) (1)

A
B

�

=

(A! B

?

)

?

(2)

without making any further assumptions. A 
ategory with these properties, dubbed

�-autonomous by Barr, provides a model for the multipli
ative part of Linear Logi
,

(Girard 1987; Barr 1991).

3. SUP as a model of Linear Logi


The 
ategory SUP of 
omplete latti
es and suprema preserving maps was mentioned

as an example for a �-autonomous 
ategory in (Barr 1979). For our purposes below, it

will be ne
essary to have some understanding of the 
on
rete stru
ture of the various


onne
tives in SUP. We will also have to adjust the 
ategori
al notation to this parti
ular

setting.

De�nition 3.1. Let A and B be 
omplete latti
es and f a map from A to B. We 
all f

linear if it preserves all suprema, f(

W

X) =

W

f(X), X � A. We write f :A �Æ B in this

situation. The set of all linear maps between A and B, ordered pointwise, is denoted by

(A �Æ B).

Complete asso
iativity of the supremum operation in latti
es, (Abramsky and Jung

1994, Proposition 2.1.4(3)), entails that the fun
tion spa
e (A �Æ B) is again a 
omplete

latti
e.

Every linear map f :A �Æ B has an upper adjoint f

�

:B ! A (Abramsky and Jung

1994, Se
t. 3.1.3), (Gierz et al. 1980, Chapter IV). It is given by

f

�

(y) :=

_

fx j f(x) � yg :

Alternatively, the 
orresponden
e between f and f

�

may be en
oded in the equivalen
e

f(x) � y () x � f

�

(y) : (3)
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From this we glean that the assignment f 7! f

�

is order reversing

z

. Hen
e, if we view

f

�

as a map from B

op

to A

op

, we get a linear fun
tion and the 
orresponden
e f 7!

f

�

: (A �Æ B)! (B

op

�Æ A

op

) is in fa
t an order isomorphism.

There is only one possibility for a dualizing obje
t in SUP, and this is the two-element

latti
e 2. For the dual A

?

of a 
omplete latti
e A with respe
t to ? = 2, we have

A

?

= (A �Æ 2)

�

=

(2

op

�Æ A

op

)

�

=

(2 �Æ A

op

)

�

=

A

op

;

where the last isomorphism holds be
ause the bottom element of 2 must be mapped onto

the bottom element of A

op

by any linear fun
tion and the top element 
an be mapped

onto any element of A

op

whatsoever.

From now on, we will write A

op

instead of A

?

and 2 instead of ? to avoid 
onfusion

with the established notation for the least element of a domain. Also, we will use the

symbols, �, _, et
, as they apply to A even when we speak of A

op

.

For the tensor produ
t we take equivalen
e (2) as the (ne
essary) de�nition: A
B :=

(A �Æ B

op

)

op

. Con
retely, a linear map r from A to B

op


orresponds to an antitone map

from A to B whi
h translates suprema into in�ma. The upper adjoint r

�

:B

op

! A,

if viewed as a fun
tion from B to A, has exa
tly the same property. Together, (r; r

�

)

form a Galois-
onne
tion between A and B. Any pair of maps between 
omplete latti
es

satisfying

r(x) � y () x � s(y) ; x 2 A; y 2 B (4)

is of this kind.

The de Morgan dual of 
, denoted O (\par"), is given by the set of linear fun
tions

from A

op

to B. Maps r:A

op

�Æ B together with their adjoints r

�

:B

op

�Æ A form pairs

(r; r

�

) whi
h are 
ompletely 
hara
terized by the equivalen
e

r(x) � y () x � s(y) ; x 2 A; y 2 B :

As noted in (Barr 1979), AOB 
an be di�erent from A 
 B, even for �nite latti
es A

and B. In fa
t, it is distributivity, not �niteness, whi
h renders O and 
 equal, as we

will see in Se
tion 5.

It is quite enjoyable to explore what the abstra
t equivalen
es of a �-autonomous


ategory amount to in the 
ase of SUP. For example, the symmetry of the tensor produ
t

is e�e
ted by swit
hing to the other half of a Galois-
onne
tion. The natural isomorphism

between (A
B �Æ C) and (A �Æ (B �Æ C)) is en
oded in the equation

�

�

(
)(a) =  (a)

�

(
)

� 2 (A
B �Æ C)  2 (A �Æ (B �Æ C))

in whi
h one side 
ompletely determines the other.

Besides the multipli
atives of Linear Logi
, whi
h are all faithfully modelled be
ause

SUP is �-autonomous, we 
an also study the additives N and �. In SUP, these are

both modelled by 
artesian produ
t (whi
h is also the 
oprodu
t be
ause (A � B)

op

�

=

A

op

�B

op

), with the one-element latti
e representing the units.

z

Assume f � g. From g

�

(y) � g

�

(y) get g(g

�

(y)) � y and hen
e f(g

�

(y)) � y. Therefore g

�

(y) � f

�

(y).
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Fig. 1. The latti
e M

1

.

Sin
e the interpretations of N and � 
oin
ide, our model satis�es all distributivity

laws of the form A

m

(B

a

C), where m 2 f
;Og, a 2 fN;�g, i.e. it is fully distributive.

This property was noted in (Huth 1995b) already. It has re
ently been studied from a

proof-theoreti
 point of view in (Leneutre 1998).

4. Adding approximation

We 
ome to the main obje
tive of this paper, whi
h is to enri
h the obje
ts of Barr's


ategory SUP with a domain-theoreti
 notion of approximation; that is, to 
onsider


ontinuous latti
es. We are fa
ed with an immediate diÆ
ulty, be
ause the 
ategory CL

of 
ontinuous latti
es and linear maps is not 
losed.

Example 4.1. Let M

1

be the latti
e of the dis
retely ordered set of natural num-

bers extended with a least and a largest element (see Figure 1). In the linear fun
tion

spa
e (M

1

�ÆM

1

) we look at the identity id. Be
ause all maps of this spa
e are sup-

preserving, there is only one fun
tion below id, namely, the 
onstant bottom fun
tion. If

(M

1

�ÆM

1

) were 
ontinuous, then id would have to be a 
ompa
t element. However, we

have the following 
hain of maps whose supremum ex
eeds id without any of its elements

being above id:

f

n

:M

1

!M

1

; n 2 N

f

n

(?) = ?; f

n

(>) = >

f

n

(m) =

�

>; if m � n;

m+ 1; otherwise.

A similar problem arises in Domain Theory. There one has the 
artesian 
losed 
ate-

gory DCPO whose full sub
ategories of 
ontinuous, respe
tively algebrai
, domains are

not 
losed. By restri
ting these 
ategories further one re
overs 
losedness. Examples are

S
ott-domains, SFP-domains, et
., see (Abramsky and Jung 1994, Chapter 4) for more

details. In the same vein, we will now exhibit a full sub
ategory of CL whi
h is 
losed.

De�nition 4.1 ((Jung 1990)). A fun
tion f :A ! A on a partially ordered set A is

said to be �nitely separated from id

A

, if there exists a �nite subset M of A su
h that for

all x 2 A there exists m 2M with f(x) � m � x.

For a 
omplete latti
e A to be an FS-latti
e we require the existen
e of a dire
ted
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family D of linear �nitely separated fun
tions on A whose supremum equals id

A

. Let FS

denote the full sub
ategory of SUP whose obje
ts are FS-latti
es.

This de�nition is formulated in 
lose analogy to a similar one for domains, (Jung 1990).

Be
ause the setting is now that of 
omplete latti
es we 
an immediately reformulate it

in a number of ways:

Proposition 4.1. For a 
omplete latti
e A the following are equivalent:

(i) A is an FS-latti
e.

(ii) There exists some family of linear �nitely separated fun
tions on A whose supremum

equals id

A

.

(iii) The supremum of all linear �nitely separated fun
tions below id

A

equals id

A

.

Proof. Observe that the pointwise supremum of a �nite set of linear �nitely separated

fun
tions is again linear and �nitely separated from id

A

.

Obviously, every �nite latti
e is in FS be
ause we 
an 
hoose D = fidg in this 
ase. As

for in�nite examples, we will see in Se
tion 5 below that every 
ompletely distributive

latti
e is in FS. At this point, however, it is ne
essary to justify our de�nition by showing

that FS-latti
es are indeed 
ontinuous. We let [A! B℄ denote the 
omplete latti
e of

all S
ott-
ontinuous fun
tions f :A! B in the pointwise order. Note that (A �Æ B) is a

subset of [A! B℄ 
losed under all suprema.

Lemma 4.1. Let A be a 
omplete latti
e. If a S
ott-
ontinuous fun
tion f 2 [A! A℄ is

�nitely separated from id

A

, then f(x)� x for all x 2 A.

Proof. Let M be the �nite subset of A whi
h separates f from id

A

. Given x 2 A and

a dire
ted set D � A with x �

W

"

D let D

m

:= fd 2 D j f(d) � m � dg, m 2 M . By

assumption we haveD =

S

m2M

D

m

and so at least one D

m

0

must be 
o�nal in D. Hen
e

we get f(x) � f(

W

"

D) = f(

W

"

D

m

0

) =

W

"

f(D

m

o

) � m

0

� d for any d 2 D

m

0

.

Corollary 4.1. FS-latti
es are 
ontinuous.

Let us now show that FS 
arries enough stru
ture to model all of Linear Logi
. As

we know from Se
tion 3, the whole stru
ture of a �-autonomous 
ategory is derived from

the fun
tion spa
e. The following is therefore 
ru
ial.

Lemma 4.2. Let A and B be FS-latti
es. Then (A �Æ B) is also an FS-latti
e.

Proof. Let D � (A �Æ A) and E � (B �Æ B) be dire
ted sets with

W

"

D = id

A

and

W

"

E = id

B

su
h that all f 2 D and g 2 E are �nitely separated from the respe
tive

identities. For f 2 D, g 2 E and M

f

, M

g

the respe
tive �nite separating sets, we will

show that �

2

f;g

, where �

f;g

(h) = g Æ h Æ f , is �nitely separated from id

(A �Æ B)

. This

suÆ
es to prove the result be
ause

W

"

�

2

f;g

is equal to id

(A �Æ B)

. So let f 2 D, g 2 E

be given. We de�ne an equivalen
e relation � on (A �Æ B) by

h

1

� h

2

:, 8m 2M

f

: "g(h

1

(m)) \M

g

= "g(h

2

(m)) \M

g

:
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As M

f

and M

g

are �nite, there are only �nitely many equivalen
e 
lasses on (A �Æ B).

Let K be a set of representatives of these 
lasses. We 
laim that the �nite set �

f;g

(K)

separates �

2

f;g

from id

(A �Æ B)

. Given h 2 (A �Æ B), let k

h

be the 
orresponding repre-

sentative in K. For a 2 A, we 
ompute

h(a) � h(m

f

) for some m

f

2M

f

with f(a) � m

f

� a

� m

g

for some m

g

2M

g

with g(h(m

f

)) � m

g

� h(m

f

)

� g(k

h

(m

f

)) as g(h(m

f

)) � m

g

and h � k

h

� g(k

h

(f(a))) as f(a) � m

f

:

By symmetry, we obtain k

h

� �

f;g

(h), so h � �

f;g

(k

h

) � �

2

f;g

(h).

A similar proof, for FS-domains, appeared �rst in (Jung 1990).

Theorem 4.1. FS is a �-autonomous full sub
ategory of SUP. Furthermore, it is 
losed

under 
artesian produ
ts.

Remember that the order dual of a latti
e, A

op

, 
an be expressed as a linear fun
tion

spa
e: A

op

�

=

(A �Æ 2), so the pre
eding theorem says in parti
ular that with A we

automati
ally have that A

op

is an FS-latti
e again.

Let us now attempt to show that FS is indeed the largest full sub
ategory of 
ontinuous

latti
es of SUP whi
h is 
losed. Finiteness, whi
h is part of the de�nition of an FS-latti
e,

will have to 
ome from a 
ompa
tness argument. In other words, we will have to work with

topologi
al 
on
epts as well as order theoreti
 ones. The topology whi
h is appropriate

for our purposes is the pat
h- or Lawson-topology, be
ause it is 
ompa
t Hausdor� on a


ontinuous latti
e, (Gierz et al. 1980, Theorem III-1.10). It is a re�nement of the S
ott-

topology and generated by S
ott-open subsets and 
omplements of S
ott-
ompa
t upper

subsets.

Now, for a 
omplete latti
e A it is easy to see that every S
ott-
ompa
t upper set C � A

is 
losed with respe
t to the S
ott-topology on A

op

be
ause a downward dire
ted set

(x

i

)

i2I

gives rise to a dire
ted 
olle
tion (A n #x

i

)

i2I

of S
ott-open sets, resulting in a


ompa
tness argument if the in�mum of (x

i

)

i2I

is assumed not to be in C. The 
onverse

is not ne
essarily true: Consider the latti
eM

1

from Example 4.1; every upper set inM

1

is 
losed with respe
t to �

M

op

1

but only �nite upper sets are 
ompa
t with respe
t to �

M

1

.

Let us say that a 
omplete latti
e A is lean if every �

A

op

-
losed subset is �

A

-
ompa
t.

Somewhat surprisingly, leanness is a self-dual 
on
ept in our setting:

Lemma 4.3. Let A be a bi
ontinuous latti
e. Then A is lean if and only if A

op

is lean.

Proof. Let us denote the join of the two S
ott-topologies by �

2

. It is a re�nement of

both Lawson-topologies �

A

and �

A

op

. Under the assumption of 
ontinuity, the Lawson-

topology is 
ompa
t Hausdor�. In this setting, for A to be lean means nothing else

but �

A

= �

2

. So assuming A to be lean renders �

2

a 
ompa
t Hausdor� re�nement of

the 
ompa
t Hausdor� topology �

A

op

. It is a standard topologi
al result that the two

topologies must 
oin
ide in this 
ase.
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Remark 4.1. The previous lemma holds already if A and A

op

are assumed to be sober

spa
es in their S
ott-topologies, be
ause the so-
alled pat
h topologies are then 
ompa
t

Hausdor�. We will, however, not need this generality.

Lemma 4.4. FS-latti
es are lean.

Proof. Let C be a �

A

op

-
losed subset of the FS-latti
e A and let (f

i

)

i2I

be an approxi-

mating family of �nitely separated linear maps. For ea
h i 2 I letM

i

be the �nite separat-

ing set. We have that C is 
ontained in "N

i

whereN

i

= fm 2M

i

j 9x 2 C:f

i

(x) � m � xg.

Ea
h "N

i

is �

A

-
ompa
t as it is generated by a �nite set. The interse
tion C

0

of all "N

i

,

i 2 I , 
ontains C and is �

A

-
ompa
t again be
ause A is a 
omplete latti
e, (Abramsky

and Jung 1994, Theorem 4.2.18). All we need to show is that C

0

= C.

To this end let a be in the �

A

op

-open set A n C. Sin
e the family of upper adjoints

(f

�

i

)

i2I

is approximating from above there exists i

0

2 I su
h that f

�

i

0

(a) 2 A n C. The


orresponding f

i

0

maps C into A n #a be
ause f

i

0

(x) � a implies x � f

�

i

0

(a). It follows

that "N

i

0

does not 
ontain a.

After these preliminaries, let us now press on towards the promised maximality result.

Lemma 4.5. Let A be a 
omplete latti
e and f � g in (A �Æ A). Then f(a)� g(a) for

all a 2 A.

Proof. Let g(a) �

W

"

i2I

x

i

be given. De�ne

f

i

(x) :=

8

<

:

?

A

; x = ?

A

;

x

i

; x � a;

>

A

; otherwise.

Then (f

i

)

i2I

is dire
ted in (A �Æ A) and g �

W

"

i2I

f

i

. Sin
e f � g in (A �Æ A) we have

f � f

j

for some j 2 I and f(a) � f

j

(a) = x

j

as desired.

Corollary 4.2. Let A be a 
omplete latti
e su
h that (A �Æ A) is 
ontinuous. Then both

A and A

op

are 
ontinuous.

Proof. For A this follows dire
tly from the previous lemma. It is true for A

op

as well

be
ause (A �Æ A) and (A

op

�Æ A

op

) are isomorphi
.

Lemma 4.6. Let A be a lean 
ontinuous latti
e with 
ontinuous linear fun
tion spa
e

(A �Æ A). If f is way-below id

A

in (A �Æ A), then f is �nitely separated from id

A

.

Proof. The 
ontinuity of (A �Æ A) and the S
ott-
ontinuity of 
omposition imply the

existen
e of some g � id

A

with f � g Æ g. As h 7! h

�

: (A �Æ A) ! (A

op

�Æ A

op

) is

an order isomorphism, we obtain g

�

� id

A

op

in (A

op

�Æ A

op

). By the previous lemma,

g

�

(a) � a in A

op

for all a 2 A. Thus, O

a

:= fb 2 A

op

j g

�

(a)� b in A

op

g 
ontains a

and is S
ott-open in A

op

. Sin
e A is lean, this set is also �

A

-open. The 
ontinuity of

A ensures that U

a

:= fe 2 A j g(a)� e in Ag is S
ott-open in A; again, it 
ontains a.

Thus, V

a

:= O

a

\ U

a

is a �

A

-open set 
ontaining a.

The topology �

A

is 
ompa
t as A is 
ontinuous. Therefore, the open 
over

S

a2A

V

a

of

A has a �nite sub
over A =

S

m2M

V

m

. For a 2 A, we have a 2 V

m

for some m 2 M .
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In parti
ular, this guarantees the inequalities g(m) � a and a � g

�

(m). The latter is

equivalent to g(a) � m, so f(a) � g(g(a)) � g(m) � a shows that g(M) is a �nite set

separating f from id

A

.

As a dire
t 
onsequen
e of this lemma we get our �rst main result.

Theorem 4.2. FS is the largest (full) �-autonomous sub
ategory of SUP whose obje
ts

are lean and 
ontinuous.

It is slightly unsatisfa
tory that we need to refer to leanness in the statement of this

theorem. Indeed, in Se
tion 7.3 we dispense with this 
ondition in the spe
ial 
ase of

algebrai
 latti
es. The proof, as we will see, is rather te
hni
al and makes vital use of the

abundan
e of 
ompa
t elements. It would be desirable to have a more 
on
eptual a

ount

of this result whi
h | one hopes | would then also apply to 
ontinuous latti
es. We

leave this as an open problem.

5. Distributivity

The aim of this se
tion is to study the sub
ategory CD of SUP whose obje
ts are


ompletely distributive latti
es. Before we do so, we need to re
ord some fundamental

properties of these latti
es.

It was dis
overed very early in the history of 
ontinuous latti
es that there is a strong


onne
tion between the notions of approximation and distributivity, (S
ott 1972) and

(Gierz et al. 1980, Theorem I-2.3). In the 
ase of 
ompletely distributive latti
es this


onne
tion was noted even earlier in the work of G.N. Raney, (Raney 1953). Let us

review the main points.

De�nition 5.1. Let x; y be elements of a 
omplete latti
e A. We say that a

0

is 
ompletely

below a (and write a

0

n a) if for every subset X of A we have that a �

W

X implies

a

0

� x for some x 2 X .

This, of 
ourse, is the same as the de�nition of the way-below relation with arbitrary

subsets repla
ing the dire
ted ones. The elementary properties of n are the same as

for � and their proofs are 
ompletely analogous (and simpler):

Proposition 5.1. For any 
omplete latti
e A and a; a

0

; b; b

0

2 A the following are true:

(i) a

0

n a implies a

0

� a;

(ii) a

0

� an b � b

0

implies a

0

n b

0

;

(iii) ?n a if and only if ? 6= a.

We 
an now de�ne a 
omplete latti
e A to be super-
ontinuous if every element of A is

the supremum of elements 
ompletely below it. However, super-
ontinuity is equivalent

to 
omplete distributivity:

Theorem 5.1 (Raney). A 
omplete latti
e A is 
ompletely distributive if and only if

for all a 2 A, a =

W

fa

0

2 A j a

0

n ag holds.

Corollary 5.1.
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(i) A 
omplete latti
e A is super-
ontinuous if and only if A

op

is super-
ontinuous.

(ii) Completely distributive latti
es are bi
ontinuous.

The 
orollary says that we get approximation from both sides automati
ally in super-


ontinuous latti
es. Observe, however, that the relationsn

A

and (n

A

op

)

�1

are di�erent

in general.

We will also make use of the following observation whi
h is a 
onsequen
e of Raney's

work on tight Galois 
onne
tions, (Raney 1960).

Theorem 5.2 (Raney). A 
omplete latti
e A is 
ompletely distributive if and only if

for every a 2 A we have a =

V

a

0

6�a

W

a

00

6�a

0

a

00

.

Proof. \if": It is easy to see that for every a

0

6� a the element x :=

W

a

00

6�a

0

a

00

is


ompletely above a. Hen
e A

op

is super-
ontinuous.

\only if": Sin
e a is always among the a

00

of whi
h we take the supremum in

W

a

00

6�a

0

a

00

,

we have y :=

V

a

0

6�a

W

a

00

6�a

0

a

00

� a. Assume that y is stri
tly above a. Then, by super-


ontinuity, we have an element y

0


ompletely below y but not below a. This y

0

is one of

the a

0

in the formula, and it follows that y

0

n y �

W

a

00

6�y

0

a

00

; hen
e there exists a

00

6� y

0

whi
h is above y

0

| 
learly absurd.

Approximation, rather than distributivity, is used to show the following:

Lemma 5.1. Let A and B be 
omplete latti
es and m:A! B be monotone.

(i) If A is 
ontinuous then the largest 
ontinuous fun
tion

_

m

below m is given by

_

m

(x) =

W

"

fm(y) j y � xg. The assignment m 7!

_

m

is 
ontinuous as a fun
tion from the

monotone fun
tion spa
e to the 
ontinuous fun
tion spa
e.

(ii) If A is super-
ontinuous then the largest linear fun
tion

Æ

m

below m is given by

Æ

m

(x) =

W

fm(y) j yn xg. The assignment m 7!

Æ

m

is linear as a fun
tion from the

monotone fun
tion spa
e to the linear fun
tion spa
e.

If m has �nite image within B then so do

_

m

and

Æ

m

, respe
tively.

We need to re�ne this lemma somewhat for our purposes:

Lemma 5.2. Let A;B be 
ontinuous latti
es and let m:A! B be a _-homomorphism

whi
h also maps ?

A

to ?

B

. Then

_

m

=

Æ

m

.

Proof. Sin
e any supremum 
an be written as a 
ombination of dire
ted supremum and

�nite suprema,

W

X =

W

"

F�

fin

X

F , it suÆ
es to show that

_

m

is still a _-homomorphism.

We always have

_

m

(a _ a

0

) �

_

m

(a) _

_

m

(a

0

) by monotoni
ity. For the 
onverse assume

b �

_

m

(a) _

_

m

(a

0

). The set fy _ y

0

j y �

_

m

(a); y

0

�

_

m

(a

0

)g is dire
ted with supremum

_

m

(a)_

_

m

(a

0

), so for some y �

_

m

(a) and y

0

�

_

m

(a

0

) we have b � y_y

0

. The de�nition of

_

m

gives us x� a and x

0

� a

0

su
h that y � m(x) and y

0

� m(x

0

). Now, x_x

0

� a_a

0

and

hen
e

_

m

(a_a

0

) � m(x_x

0

) = m(x)_m(x

0

) � y_y

0

� b. Thus we have shown that every

element way below

_

m

(a)_

_

m

(a

0

) is also below

_

m

(a_a

0

), and so

_

m

(a_a

0

) �

_

m

(a)_

_

m

(a

0

)

follows as B is 
ontinuous.
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Besides approximation from below, 
ontinuous latti
es also enjoy a representation from

above: every element x is the in�mum of ^-irredu
ible elements, (Gierz et al. 1980,

Theorem I-3.10). If the latti
e is bi
ontinuous then this in�mum may be taken over

the subset of ^-irredu
ible elements whi
h are way-below x in A

op

. In a distributive

latti
e there is no di�eren
e between ^-irredu
ible and ^-prime elements. Finally, an

element y whi
h is both _-prime and way-below x is a
tually 
ompletely below x. These

observations prove the following:

Theorem 5.3 (Gierz et al. 1980). A 
omplete latti
e is 
ompletely distributive if, and

only if, it is bi
ontinuous and distributive. In that 
ase, every element is the supremum

of _-primes way-below it.

Let us now put these preliminaries to work in our setting.

Lemma 5.3. Every 
ompletely distributive latti
e is an FS-latti
e.

Proof. Let A be a 
ompletely distributive latti
e; it is bi
ontinuous by Corollary 5.1 and

so every element is the supremum of _-prime elements below it. For every �nite subset F

of _-primes de�ne m

F

:A ! A, m

F

(x) :=

W

fa 2 F j a � xg. Then m

F

preserves �nite

suprema and the 
onditions of Lemma 5.2 are satis�ed. Hen
e

_

m

F

is linear.

Every

_

m

F

has a �nite image and so is �nitely separated from id

A

. The identity is equal

to the dire
ted supremum of all m

F

and sin
e it itself is 
ontinuous, it is also the dire
ted

supremum of the

_

m

F

by Lemma 5.1(1).

Theorem 5.4. A 
omplete latti
e is 
ompletely distributive if and only if it is a dis-

tributive FS-latti
e.

Proof. This follows from Lemma 5.3, Corollary 4.1, Theorems 4.1 and 5.3.

Lemma 5.4. The 
ategory CD of 
ompletely distributive latti
es and linear maps is


losed.

Proof. The latti
es 2 and > are obje
ts in CD. By the pre
eding theorem we already

know that the linear fun
tion spa
e (A �Æ B) of two 
ompletely distributive latti
es

is FS, and we only need to show distributivity. To this end observe that the supremum of

elements in (A �Æ B) is 
al
ulated pointwise; even the �nite pointwise in�mum, however,

is not sup-preserving in general. Hen
e the in�mum is given by Lemma 5.1:

(f ^ g)(a) =

_

ff(a

0

) ^ g(a

0

) j a

0

n ag :

Now, given f; g; h:A �Æ B, we will always have (f ^ g) _ (f ^ h) � f ^ (g _ h). For the


onverse �x a 2 A and assume bn (f ^ (g _ h))(a). By what we just said about in�ma

in (A �Æ B), there must exist a

0

n a su
h that b � f(a

0

)^ (g(a

0

)_h(a

0

)). Distributivity

at the element level gives us b � (f(a

0

) ^ g(a

0

)) _ (f(a

0

) ^ h(a

0

)) and the latter is a term

whi
h o

urs in the 
al
ulation of ((f ^ g) _ (f ^ h))(a).

Theorem 5.5. CD is the largest 
losed full sub
ategory of SUP whose obje
ts are

distributive and 
ontinuous.
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If follows that CD gives us another, smaller model of Linear Logi
. Besides its obje
ts

being more regular than those of FS, we �nd that in CD the interpretation of tensor

and its de Morgan dual, par, 
oin
ide:

Theorem 5.6. Let A and B be 
omplete latti
es and let one of them be 
ompletely

distributive. Then (A �Æ B

op

)

�

=

(A

op

�Æ B)

op

, i.e. A
B

�

=

AOB.

Proof. (Note that all operations and relation symbols in this proof refer to the original

latti
es, not their order duals.) Given 
omplete latti
es A and B, de�ne

�: (A �Æ B

op

) ! (A

op

�Æ B); �(r)(x) :=

W

x

0

6�x

r(x

0

)

	: (A

op

�Æ B) ! (A �Æ B

op

); 	(s)(x) :=

V

x

0

6�x

s(x

0

) :

It is 
lear that � and 	 are antitone. More important is well-de�nedness:

�(r)(

V

X) =

W

x

0

6�

V

X

r(x

0

)

=

W

x2X

W

x

0

6�x

r(x

0

) by the de�nition of

V

X

and dually for 	. The maps � and 	 are mutual inverses of ea
h other. Let s:A

op

�Æ B.

Then

�(	(s))(x) =

_

x

0

6�x

	(s)(x

0

) =

_

x

0

6�x

^

x

00

6�x

0

s(x

00

) =: t(x) :

It is 
lear that t(x) � s(x) be
ause x is always one of the x

00

in the formula. For

the 
onverse we use 
omplete distributivity of A whi
h entails x =

V

aox

a and x =

V

x

0

6�x

W

x

00

6�x

0

x

00

(Theorem 5.2). Now, for a o x we get 9x

0

6� x:

W

x

00

6�x

0

x

00

� a,

i.e., 9x

0

6� x8x

00

6� x

0

: x

00

� a. Sin
e s is antitone, this translates as 9x

0

6� x8x

00

6�

x

0

: s(x

00

) � s(a) and hen
e t(x) � s(a). Sin
e s translates in�ma into suprema, we get

s(x) = s(

V

aox

a) =

W

aox

s(a) � t(x).

Note that we have used 
omplete distributivity of A alone. Complete distributivity of

B would also suÆ
e sin
e we 
an always swit
h to the other half of a Galois-
onne
tion.

In Barr's terminology, what we have shown is:

Corollary 5.2. The 
ategory CD is 
ompa
t 
losed.

We 
on
lude this se
tion with an observation whi
h is easy to justify at this point but

will be used only in Se
tion 7.3.

Lemma 5.5. Let A and B be bi
ontinuous latti
es and let F � (A �Æ B) be �ltered.

Then the in�mum of F in (A �Æ B) equals the in�mum of F in [A! B℄.

Proof. Given a �ltered family F � (A �Æ B) we 
onsider the pointwise in�mum

m(x) :=

V

f2F

f(x). It is not only monotone but also preserves the least element and

binary suprema. This is be
ause B

op

is also 
ontinuous and on a 
ontinuous latti
e the

binary in�mum is a 
ontinuous operation. Now we 
an apply Lemma 5.2 and we get that

_

m

, whi
h is the in�mum of m in [A! B℄, is linear and hen
e the in�mum in (A �Æ B).
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6. The modalities

So far, we have ignored the modalities of Linear Logi
 and it is high time to study how

they 
an be added to our framework. Some general 
omments may be in pla
e here. From

the viewpoint of �-autonomous 
ategories, modalities require a further pie
e of stru
ture

in the form of a 
omonad. First Seely, (Seely 1989), and later Benton, Bierman, de Paiva,

and Hyland, (Benton et al. 1993b; Benton et al. 1993a; Bierman 1995), worked out the

pre
ise 
onditions that need to be imposed on the 
omonad in order to get the desired


lose 
orresponden
e between proof theory and 
ategori
al semanti
s.

More re
ently, Benton, (Benton 1994), 
ame up with a quite di�erent notion of 
at-

egori
al model, where one has a 
artesian 
losed 
ategory (the intuitionisti
 
ategory)

and a �-autonomous 
ategory (the linear 
ategory) linked by a monoidal adjun
tion. The

attra
tions of Benton's approa
h are twofold: Firstly, the set of axioms is small and uses

well-established 
on
epts only. Se
ondly, the free parameters in a Benton model of Linear

Logi
 are 
learly visible; neither does the linear 
ategory determine the intuitionisti
 one,

nor the other way round; and on
e the two 
ategories are �xed, there may still be some

variability in terms of whi
h adjun
tion to 
hoose.

These general bene�ts are augmented with some spe
i�
 advantages in our setting.

Sin
e we 
an 
hoose the intuitionisti
 
ategory independently from the linear 
ategory,

we have the opportunity to bring 
lassi
al 
ategories of domains into the pi
ture. In other

words, we are not for
ed to work with 
omplete latti
es alone. This ought to fa
ilitate

the appli
ation of our results to Denotational Semanti
s.

Although the de�nition of a Benton model is very neat, the number of diagrams to


he
k is still quite daunting. We are helped by the following general result from (Kelly

1974) (whi
h was also noted in (Benton 1994)):

Theorem 6.1. Let (C;


C

; I

C

)

G

�! (D;


D

; I

D

)

F

�! (C;


C

; I

C

) be an adjun
tion be-

tween (symmetri
) monoidal 
ategories and let

n:F (A)


C

F (B)

�

�! F (A


D

B) p: I

C

! F (I

D

)

be a natural transformation (resp. a morphism) making the left adjoint F monoidal.

Then the following are equivalent:

(i) The whole adjun
tion is monoidal.

(ii) All arrows n

A;B

and p are isomorphisms.

In the spirit of Denotational Semanti
s and Domain Theory, the natural partner for

Barr's linear 
ategory SUP is DCPO, the 
ategory of dire
ted-
omplete partial orders

and S
ott-
ontinuous fun
tions. DCPO is 
artesian 
losed and is the ambient 
ategory

for many of the more re�ned 
on
epts in Domain Theory. Our 
hoi
e of adjun
tion is

informed by our wish to de
ompose the maps of DCPO. Consider the de�nitions

HD := fX � D j X S
ott-
losedg ;

where D is a d
po and the order on HD is subset in
lusion, and

i

D

:D ! HD ; d 7! #d :
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(We 
hose the notation H be
ause HA is almost the Hoare-powerdomain of A, ex
ept that

for the latter the empty set is usually ex
luded.) The fun
tions i

D

are S
ott-
ontinuous.

Furthermore, we have the following.

Lemma 6.1. Let D be a d
po and B be a 
omplete latti
e. For every S
ott-
ontinuous

fun
tion f :D ! B there is a unique linear fun
tion

^

f :HD �Æ B su
h that f =

^

f Æ i

D

.

Proof. The equality f =

^

f Æ i

D

for
es the following de�nition of

^

f :

^

f(X) :=

_

ff(x) j #x � Xg :

For linearity, let (X

i

)

i2I

be a 
olle
tion of S
ott-
losed subsets of D. Note that in HD

the supremum is 
al
ulated as

_

i2I

X

i

= 
l(

[

i2I

X

i

) ;

where 
l(�) denotes the 
losure of a subset in the S
ott-topology. We need to show that

^

f(

W

i2I

X

i

) �

W

i2I

^

f(X

i

), the other inequality being satis�ed trivially. Consider the

S
ott-
losed subset #

W

i2I

^

f(X

i

) of B. Its pre-image under f is S
ott-
losed by the S
ott-


ontinuity of f and 
ontains all X

i

's, hen
e

W

i2I

X

i

as well. So we get f(

W

i2I

X

i

) �

#

W

i2I

^

f(X

i

) and 
onsequently

^

f(

W

i2I

X

i

) =

W

ff(x) j x 2

W

i2I

X

i

g �

W

i2I

^

f(X

i

).

From the lemma above we obtain that SUP is a re
e
tive sub
ategory of DCPO, the

re
e
tion being given by

D 7! HD

f :D ! E 7!

\

i

E

Æ f :

In order to show that the adjun
tion is monoidal we 
he
k the 
onditions of Theorem 6.1.

First of all, I

SUP

= 2 is 
learly isomorphi
 to HI

DCPO

= H1. We get the desired natural

isomorphism between HA
HB and H(A�B) from the following fun
tional des
ription

of H

x

:

HA

�

=

[A! 2℄

op

:

The 
al
ulation runs as follows

HA
 HB = (HA �Æ (HB)

op

)

op

�

=

[A! (HB)

op

℄

op

�

=

[A! [B ! 2℄℄

op

�

=

[A�B ! 2℄

op

�

=

H(A�B) :

We also need to establish that these isomorphisms 
ommute in a suitable way with the

transformations whi
h 
orrespond to the asso
iativity, symmetry, and unit laws of the

x

As Paola Maneggia pointed out to us, this representation of H is no 
oin
iden
e; whenever H is a

monoidal re
e
tion from a Cartesian 
losed 
ategory to a �-autonomous sub
ategory with dualizing

obje
t ?, one has HA

�

=

(HA �Æ ?) �Æ ?

�

=

[A!?℄ �Æ ?.
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symmetri
 monoidal stru
ture. For this we need a more expli
it des
ription of the above

isomorphism.

For a 2 A; b 2 B de�ne a Galois-map (a% b):A! B by

(a% b) :=

^

fr 2 A
B j r(a) � bg

or, expli
itly,

(a% b)(x) :=

8

<

:

>

B

; if x = ?

A

;

b; if x 2 #a n f?

A

g;

?

B

; if x 62 #a:

The other half of this Galois-map is just (b% a), as one 
an see from the 
hara
terization

in Formula (4). Furthermore, we have r =

W

a2A

(a% r(a)) for all r 2 A
 B, be
ause r

itself is an element of the set of whi
h the in�mum is taken in the de�nition of (a% r(a)).

Also note that (?

A

% b) and (a% ?

B

) equal (?

A

% >

B

), the smallest element in A
B.

Using this information, we 
an des
ribe the isomorphism between HA
HB and H(A�

B) expli
itly by

(#a% #b) � r () (a; b) 2 C

where r 2 HA
HB and C 2 H(A�B). The diagrams for the monoidi
ity of H:DCPO!

SUP now be
ome easy exer
ises. For example, 
ommutativity of

HA
 HB Æ H(A�B)

HB 
 HA

s

SUP

Æ

Æ H(B �A)

Æ

Hs

DCPO

is argued as follows. For r 2 HA 
 HB we have (#a % #b) � r () (a; b) 2 C ()

(b; a) 2 Hs

DCPO

(C) () (#b % #a) � s

SUP

(r). Leaving the remaining diagrams as

exer
ises, we arrive at the following:

Theorem 6.2. The 
ategories DCPO and SUP, linked by the re
e
tion H:DCPO!

SUP, form a Benton model of Linear Logi
.

The theorem implies that there is a natural transformation A � B

�

�! A 
 B. This,

of 
ourse, is nothing other than the assignment (a; b) 7! (a % b); it is linear in both

variables separately.

The setup of Theorem 6.2 
an be restri
ted on both sides to approximated obje
ts.

Sin
e the S
ott-topology of a 
ontinuous domain is a 
ompletely distributive latti
e,

(Abramsky and Jung 1994, Theorem 7.2.28), we get a very small model by pairing S
ott-

domains on the intuitionisti
 side with 
ompletely distributive latti
es on the linear side.

At the other end, a maximal Benton model within approximated ordered stru
tures is

given by FS-domains paired with FS-latti
es.

The desired de
omposition of the S
ott-
ontinuous fun
tion spa
e [A! B℄ into (HA �Æ B)

was the motivation for our 
hoi
e of the modality !A as the latti
e of all S
ott-
losed sub-

sets of A, ordered by set in
lusion. While !A owes its de�nition to a topologi
al notion,

the nature of ?A is then 
ompletely determined by the stru
ture of the ambient linear
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ategory SUP: ?A has to be naturally isomorphi
 to (!A

op

)

op

. This, in turn, is natu-

rally isomorphi
 to �

A

op

, the S
ott-topology on A

op

. This works on the level of DCPO

and SUP already. In the approximated 
ase we 
an give a good deal more information

about ?. Re
all that a subset of a topologi
al spa
e is 
alled saturated if it equals the

interse
tion of its neighborhoods. The set of all 
ompa
t saturated subsets of a spa
e X ,

ordered by revered in
lusion, is denoted by �

X

.

Proposition 6.1. If A is a lean 
omplete latti
e then ?A and �

A

are isomorphi
, where

the isomorphism 
an be viewed as the identity at the level of sets.

Proof. We have remarked before that a 
ompa
t upper set is ne
essarily 
losed with

respe
t to �

A

op

, that is, a member of H(A

op

). The 
onverse is exa
tly the de�nition of

leanness.

The proposition above entails that ?A

�

=

�

A

holds for all FS-latti
es A. Now, ex
ept

for the empty set, �

A

is exa
tly the Smyth-powerdomain of A if A is 
ontinuous, (Smyth

1978; Abramsky and Jung 1994). Hen
e in our domain-theoreti
 model of Linear Logi


the two modalities are just the two fundamental powerdomains.

7. Algebrai
ity

The 
ategory FS has plenty of algebrai
 latti
es as obje
ts. Theorem 5.4 assures us that

FS 
ontains at least all 
ompletely distributive algebrai
 latti
es; moreover, every �nite

latti
e is 
ertainly algebrai
 and FS. In this se
tion we will explore the world of algebrai


FS-latti
es in more detail. As we will see, a lot of the theory is in 
lose analogy to that

of algebrai
 domains and S
ott-
ontinuous fun
tions, but there are a few surprises. In

the following, we will frequently refer to the 
lassi
al theory of domains, so we like to

alert the reader that she will �nd FS-domains next to FS-latti
es and S
ott-
ontinuous

fun
tions next to linear ones in our proofs. It will be 
ru
ial that every linear fun
tion

is also S
ott-
ontinuous.

7.1. Algebrai
 FS-latti
es

FS-latti
es are de�ned with referen
e to �nitely separated (linear) fun
tions. There are

two strengthenings of this 
on
ept that we will make use of here: a fun
tion below the

identity is 
alled a de
ation if it has �nite image. A de
ation may or may not be idempo-

tent. S
ott-
ontinuous de
ations are familiar from the study of bi�nite domains (Plotkin

1976; Abramsky and Jung 1994); here, of 
ourse, we require them to be linear.

Lemma 7.1. Let f be a �nitely separated fun
tion on a 
omplete latti
e A. Then some

�nite iterate of f is an idempotent de
ation.

Proof. The statement follows from the fa
t that in a sequen
e x > f(x) > f

2

(x) > : : :

a di�erent separating element is needed at least every other step. Hen
e su
h a sequen
e


an never be longer than 2l where l is the 
ardinality of the �nite separating set. It follows

that f

2l

is idempotent. The iterated fun
tion has �nite image be
ause it remains �nitely

separated.
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Proposition 7.1. A 
omplete latti
e A is an algebrai
 FS-latti
e if and only if the

identity id

A

is the dire
ted supremum of idempotent linear de
ations.

Proof. \if": The image of an idempotent de
ation 
onsists wholly of 
ompa
t elements.

So A must be algebrai
 if there exists a dire
ted family of idempotent de
ations approx-

imating id

A

. Sin
e de
ations are �nitely separated (by their image) the latti
e must also

be FS.

\only if": Given a 
ompa
t element 
 of A there exists a �nitely separated fun
tion f

whi
h �xes 
. By the previous lemma, some iterate of f is an idempotent de
ation. This

iterate still �xes 
. This shows that the supremum of all idempotent de
ations equals id

A

.

The supremum is dire
ted be
ause the pointwise supremum of idempotent de
ations is

another su
h fun
tion.

This 
hara
terization of algebrai
 FS-latti
es allows us to prove easily that the linear

fun
tion spa
e of two algebrai
 FS-latti
es is again of the same kind. This 
losure property

is suÆ
ient to 
on
lude the following:

Theorem 7.1. The 
ategory aFS of algebrai
 FS-latti
es and linear maps is �-autonomous.

In analogy to the S
ott-
ontinuous 
ase, one 
an de�ne linear bi�nite latti
es as the

bilimits of �nite latti
es with respe
t to linear embedding proje
tion pairs. The following


hara
terization is then proved exa
tly as for bi�nite domains (Jung 1989, Theorem 1.26).

Proposition 7.2. A 
omplete latti
e A is linearly bi�nite if and only if there exists a

dire
ted 
olle
tion of idempotent de
ations whose supremum equals id

A

.

To summarize, what we have is:

Theorem 7.2. For a 
omplete latti
e A the following are equivalent:

(i) A is an algebrai
 FS-latti
e.

(ii) A is linearly bi�nite.

(iii) A has a dire
ted 
olle
tion of idempotent linear de
ations whose supremum equals id

A

.

(iv) A has a 
olle
tion of idempotent linear de
ations whose supremum equals id

A

.

(v) The supremum of all idempotent linear de
ations on A equals id

A

.

7.2. Retra
ts of bi�nite latti
es

As we will see in the next subse
tion, it is often useful to be able to pass to retra
ts

without leaving the ambient 
ategory. We therefore 
olle
t a few basi
 results about

retra
ts of various kinds of FS-latti
es.

Proposition 7.3. The 
ategory FS is 
losed under forming retra
ts.

Proof. For A 2 FS, B 2 SUP, let r:A �Æ B and e:B �Æ A be linear maps with

rÆe = id

B

. If f is �nitely separated in (A �Æ A) by a setM , then rÆf Æe is easily seen to

be �nitely separated in (B �Æ B) by the set r(M). If the supremum of the set D of linear

�nitely separated fun
tions on A equals id

A

, then the supremum of the set of fun
tions
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r Æ f Æ e, f 2 D, equals id

B

, be
ause r is linear and the supremum of linear fun
tions is


al
ulated pointwise.

Corollary 7.1. Retra
ts of linear bi�nite latti
es are FS-latti
es.

As in the S
ott-
ontinuous 
ase, retra
ts of linear bi�nite latti
es 
an be 
hara
terised

fun
tionally:

Theorem 7.3. A 
omplete latti
e B is a linear retra
t of some linear bi�nite latti
e if,

and only if, its identity is the dire
ted supremum of de
ations in (B �Æ B).

The question arises whether every FS-latti
e is the retra
t of an algebrai
 FS-latti
e

(= linear bi�nite latti
e). This we don't know. The situation is exa
tly as with bi�nite

domains and FS-domains (Abramsky and Jung 1994, Proposition 4.2.12), although we

do not see any general reason for this analogy.

If we 
ombine distributivity with algebrai
ity, then the problem does not arise:

Theorem 7.4. Every distributive FS-latti
e is the linear retra
t of a distributive linear

bi�nite latti
e.

Proof. A distributive FS-latti
e A is automati
ally 
ompletely distributive by Theo-

rem 5.3. Now, if A is in CD, then let B be the latti
e of lower sets of _-prime elements

in A ordered by in
lusion. Then B is 
ompletely distributive and algebrai
. The maps

r:B ! A, L 7!

W

L, and e:A ! B, x 7! fr j r � x; r _-primeg, are linear with

r Æ e = id

A

due to Theorem 5.3.

7.3. Maximality of aFS

In the 
ase of 
ontinuous latti
es, our proof te
hniques required latti
es to be lean in

order to realize FS as a maximal �-autonomous sub
ategory of 
ontinuous latti
es in

SUP, Lemma 4.6 and Theorem 4.2. This topologi
al assumption 
an be eliminated in

the algebrai
 setting (Huth 1995a):

Theorem 7.5. Let A be an algebrai
 latti
e with 
ontinuous linear fun
tion spa
e

(A �Æ A). Then A is an FS-latti
e.

Corollary 7.2. aFS is the largest (full) �-autonomous sub
ategory of SUP su
h that

every obje
t is algebrai
.

The proof of the theorem above is 
ustom-tailored for the stru
tural properties of

algebrai
 latti
es; it remains un
lear whether it has a suitable abstra
tion allowing one

to prove its 
ontinuous version. We leave this as an open problem: If (A �Æ A) is a


ontinuous latti
e, is A ne
essarily lean?

Sin
e A is algebrai
 in the theorem above, we know that id

A

is the dire
ted supremum of

idempotent, S
ott-
ontinuous de
ations. Thus, it suÆ
es to show that any su
h fun
tion

d has a linear de
ation p above it. We will reason the existen
e of su
h a p in a number

of steps. In the dis
ussion below, we �x an algebrai
 latti
e A su
h that (A �Æ A) is


ontinuous and d is an arbitrary S
ott-
ontinuous idempotent de
ation on A.
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Step 1: A is bi
ontinuous. This follows dire
tly from Corollary 4.2.

Step 2: Obtaining a 
andidate linear de
ation. Any 
andidate linear de
ation above

d has to be in the set U = ff 2 (A �Æ A) j d � f � idg. This set 
ontains id and is


losed under 
omposition as 
omposition is monotone and d and id are idempotent. The


ombination of these two fa
ts establishes that U is a �ltered subset of (A �Æ A) and by

Lemma 5.5 we may 
on
lude that its �ltered in�mum p in (A �Æ A) is a
tually the one

in [A! A℄, using the bi
ontinuity of A se
ured in Step 1. Thus, p has to be above d.

Sin
e id is in U we get p � id. From this, the minimality of p in U , and the fa
t that U is


losed under 
omposition, we infer that p is idempotent. In summary, p is the minimal

idempotent linear fun
tion above d and below id. Sin
e the order on su
h fun
tions is

given by the in
lusion of their image, we 
on
lude that there is a linear de
ation above

d if, and only if, the image of p is �nite.

From now on we write B for the image of p, and i:B ! A, q:A ! B for the de
om-

position of p into in
lusion and proje
tion part.

Step 3: (B �Æ B) is 
ontinuous. The pair (q; i) realizes B as a linear retra
t of A. Using

the internal hom ( �Æ ) on the pairs (q; i) and (i; q) we obtain (B �Æ B) as a linear retra
t

of (A �Æ A). Sin
e the S
ott-
ontinuous retra
t of a 
ontinuous latti
e is 
ontinuous (Gierz

et al. 1980; Abramsky and Jung 1994), we infer that (B �Æ B) is 
ontinuous.

Step 4: The identity is 
ompa
t in (B �Æ B). The de
ation d is in K[A! A℄ and so

W = fh 2 (A �Æ A) j d � hg is S
ott-open in (A �Æ A) as dire
ted suprema are the same

in [A! A℄ and (A �Æ A). Thus, p is a minimal element of the S
ott-open set W and the


ontinuity of (A �Æ A) makes p 
ompa
t in (A �Æ A). Using this 
ompa
tness, one may

now 
ompute that q Æ i is 
ompa
t in (B �Æ B), but q Æ i is just id

B

.

Step 5: B satis�es the as
ending (ACC) and des
ending 
hain 
ondition (DCC). We

already know that the identity of B is 
ompa
t in (B �Æ B). By Lemma 4.5, we get

that every b 2 B is 
ompa
t. Sin
e (B �Æ B) is isomorphi
 to (B

op

�Æ B

op

), we also get

id 2 K(B

op

�Æ B

op

) and may use the same lemma to infer that every b 2 B is 
ompa
t

in B

op

. These two properties ensure that B satis�es (ACC) and (DCC).

To summarize this dis
ussion, we arrived at a bi
ontinuous latti
e B with 
ontinuous

linear fun
tion spa
e (B �Æ B), where B satis�es (ACC) and (DCC). Let us say that any

latti
e C with these properties has property F. Our aim is to demonstrate that property F

is nothing but that of being a �nite latti
e.

Step 6: Property F is inherited by prin
ipal lower and upper sets. Note that C has

property F if C

op

has property F and vi
e versa. This is due to the isomorphism

(C �Æ C)

�

=

(C

op

�Æ C

op

). Thus, given C with property F, we only have to show su
h a


losure for a prin
ipal lower set #x. The retra
tion ret

x

:C ! C whi
h leaves #x �xed and

maps all other elements to x realizes #x as a linear retra
t of C. As before, we obtain

(#x �Æ #x) as a linear retra
t of (C �Æ C). In parti
ular, (#x �Æ #x) is 
ontinuous. Sin
e

#x evidently inherits (ACC) and (DCC) from C, we only need to establish that #x is

bi
ontinuous; but this follows from Corollary 4.2.

Be
ause an interval [x; x℄ = fy 2 P j x � y � xg in a poset P 
an be realized as

the prin
ipal lower set #x in a prin
ipal upper set "x, property F is also inherited by all

intervals in B.
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Step 7: B is �nite. Proof by 
ontradi
tion: Let us assume that B, the image of p, is

indeed in�nite. Our goal is to argue that M

1

(Example 4.1) is sitting inside B.

Step 7.1: Finding in�nite anti-
hains. Consider the poset P of all in�nite subintervals

of B, ordered by in
lusion. It 
ontains B by assumption. As a poset, P satis�es (DCC)

be
ause an in�nite 
hain of smaller and smaller intervals would produ
e either an in�nite

as
ending 
hain in B (
onsidering the lower endpoints) or an in�nite des
ending 
hain

in B (upper endpoints), and we already know that B is free of both. We 
an 
on
lude

that B 
ontains a minimal in�nite subinterval. By Step 6 it will also have property F

and so we might as well assume that B equals that minimal in�nite subinterval. Under

this assumption, we have the following properties in addition to property F:

(i) #x is �nite for all x < > in B,

(ii) "x is �nite for all ? < x in B.

Sin
e B satis�es (DCC), we get B n f?g = "T , where T is the set of minimal elements

in B n f?g. Dually, the 
ondition (ACC) guarantees that B n f>g = #S, with S being

the set of maximal elements in B n f>g. Sin
e B is in�nite, item (i) implies that S is an

in�nite anti-
hain. Dually, item (ii) implies that T is an in�nite anti-
hain as well.

Step 7.2: Carving outM

1

. We use items (i) and (ii) above together with the two in�nite

anti-
hains S and T to 
onstru
t M

1

as a linear retra
t of B. We de�ne indu
tively a

family of elements (x

i

)

i2N

in T and a family (S

i

)

i2N

of subsets of S: Pi
k any x

0

in T and

de�ne S

0

as "x

0

\S. By item (ii) above, we see that S

0

is �nite. Thus, item (i) entails that

#S

0

\T is �nite as well. Sin
e T is in�nite, we may pi
k some x

1

in T n#S

0

and repeat this

pro
ess by pi
king a new element x

i+1

in the 
omplement of

S

1�j�i

#S

j

in T . Suppose

that x

i

_ x

i+k

< > for some i < i+ k. Then x

i

_ x

i+k

has to be below some s 2 S. Then

x

i

� s means s 2 S

i

and x

i+k

� s renders x

i+k

2 #S

i


ontradi
ting the 
hoi
e of the

element x

i+k

. Thus, x

i

_ x

j

= > for all i 6= j. This ensures that fx

i

j i � 0g [ f?;>g is


losed under all suprema and in�ma in B and isomorphi
 to M

1

. Therefore, we have an

inje
tive map e:M

1

! B preserving all in�ma and all suprema. Be
ause of the former,

e has a lower adjoint l:B ! M

1

. The inje
tivity of e implies l Æ e = id

M

1

. Sin
e lower

adjoints preserve suprema, we have realized M

1

as a linear retra
t of B. Again, this

entails that (M

1

�ÆM

1

) is a linear retra
t of (B �Æ B) when
e (M

1

�ÆM

1

) has to be


ontinuous, 
ontradi
ting Example 4.1. Hen
e the assumption that B be in�nite is false.

To summarize, we have shown that there is a linear idempotent de
ation above every

S
ott-
ontinuous idempotent de
ation in A, and the proof that A is an FS-latti
e is


omplete.

7.4. Internal 
hara
terization

We have seen in Se
tion 7.1 that algebrai
 FS-latti
es are in fa
t bi�nite, and we have


hara
terized them in terms of idempotent de
ations. So far, this is very mu
h in parallel

to the theory of domains and S
ott-
ontinuous fun
tions; in fa
t, the proofs of these fa
ts

for the linear 
ase are virtually the same as for the 
ontinuous 
ase. We will now attempt

to push the analogy further to the internal 
hara
terization of bi�nite domains and

latti
es.
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Re
all that bi�nite domains 
an be 
hara
terized by the stru
ture of their subposet of


ompa
t elements (Plotkin 1981; Abramsky and Jung 1994). Essentially, this is a
hieved

by a study of the �ne stru
ture of the images of idempotent de
ations. One observes that

su
h an image must 
onsist of 
ompa
t elements and that the image is 
losed under the

formation of minimal upper bounds of �nite subsets.

In the present setting we will try to pro
eed similarly. From the 
ontinuous 
ase we

inherit the information that the image of a linear idempotent de
ation must 
onsist of


ompa
t elements, and 
onsequently, the internal 
hara
terization will refer to 
ompa
t

elements only. The study of minimal upper bounds, however, is trivial for 
omplete

latti
es as every subset has a supremum, and 
losing a �nite set of 
ompa
t elements

with all suprema will always yield a �nite set of 
ompa
t elements. Hen
e 
ontinuous

idempotent de
ations abound. Our problem is to ensure that there are enough linear

ones.

We will not study the preservation of suprema dire
tly but instead generate a de
ation

together with an upper adjoint. Linearity will then be automati
. To start o� in this

dire
tion let us re
ord a few observations about adjoints whi
h 
an all be proved from

the 
hara
terizing equivalen
e 3 in Se
tion 3.

Proposition 7.4. Let A be a 
omplete latti
e and f :A �Æ A a linear fun
tion. The

following relationships hold between f and its upper adjoint f

�

:

(i) f � id

A

() f

�

� id

A

;

(ii) f Æ f = f () f

�

Æ f

�

= f

�

;

(iii) f has �nite image () f

�

has �nite image.

Corollary 7.3. If f is a linear proje
tion (idempotent de
ation) on the 
omplete lat-

ti
e A, then f

�

is a linear proje
tion (idempotent de
ation) on A

op

.

The following lemma will be the key to our 
hara
terization. It holds without assuming

�nite image.

Lemma 7.2. Let f be a linear proje
tion on a 
omplete latti
e A, and let x be in im(f),

the image of f . Then x 
reates a partition of A with the 
lasses U

x

= "x and L

x

= An"x

whi
h is respe
ted by both f and f

�

, that is,

f(U

x

) � U

x

; f

�

(U

x

) � U

x

;

f(L

x

) � L

x

; f

�

(L

x

) � L

x

:

Furthermore, L

x

= #f

�

(L

x

).

Proof. Assume y � x. Then f(y) � f(x) = x be
ause f is idempotent; hen
e f

restri
ts to U

x

. The upper adjoint trivially restri
ts to U

x

be
ause we have f

�

� id

A

by

Proposition 7.4(1) and U

x

is an upper set. For the same reason, f restri
ts to the lower

set L

x

. Lastly, let y 6� x and assume f

�

(y) � x. Then y � f(x) by adjointness. However,

f(x) = x as x belongs to the image of f and we get a 
ontradi
tion.

The additional 
laim about L

x

follows from what we just proved and the fa
t that

f

�

� id

A

.
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Proposition 7.5. Let f be a linear proje
tion on a 
omplete latti
e A, and let X be a

subset of im(f). Then the maximal elements of L

X

= A n "X all belong to im(f

�

).

Proof. We have that f

�

restri
ts to L

X

=

T

x2X

L

x

by the previous lemma, and that

f

�

is above id

A

by Proposition 7.4(1). Hen
e a maximal element of L

X

must remain �xed

under f

�

.

This last result allows us to 
hara
terize images of linear proje
tions.

Theorem 7.6. The set of linear proje
tions on a 
omplete latti
e A is in one-to-one


orresponden
e to pairs of subsets (M;N) whi
h have the following properties:

P1 8X �M: max(A n "X) � N ;

P2 8Y � N: min(A n #Y ) �M ;

P3 8X �M 8a 2 A n "X 9n 2 N n "X: a � n;

P4 8Y � N 8a 2 A n #Y 9m 2M n #Y: b � m.

The 
orresponden
e assigns to a linear proje
tion f the pair (im(f); im(f

�

)) and to a pair

(M;N) the fun
tion f : a 7!

W

(#a \M).

Proof. Given a linear proje
tion f , then (im(f); im(f

�

)) has the four properties listed

be
ause of Lemma 7.2 and Proposition 7.5. Conversely, given a pair of subsets with these

properties, we let f be as stated and g: a 7!

V

("a \N). It is 
lear that f is idempotent

and below id

A

.

Before we 
an show that f is linear, we need to establish that M is indeed all of

im(f). For this, let x 2 im(f), that is x =

W

(#x \ M). For every a 6� x there must

exist m

a

2 #x \M not below a. By Property P3, there is some n 2 N above a and not

above m

a

. Hen
e A n "x = #(N n "x). Sin
e x is maximal in A n #(N n "x), it belongs to

M by Property P2. Properties P1 and P4 are used to show that N is all of im(g).

We prove that f is linear by showing that f and g are adjoint. Assume x 6� g(y). We

have just shown that g(y) 2 N and so by Property 4 there exists m 2 M with m � x

and m 6� g(y). By the de�nition of f , this entails f(x) 6� g(y). Sin
e y � g(y) we 
an't

have f(x) � y. So f(x) � y implies x � g(y). The other dire
tion follows by duality.

We had to show already that starting with a pair (M;N), 
onstru
ting f from it

and taking (im(f); im(f

�

)) will give ba
k (M;N). For the other identity, start with a

proje
tion f . If follows (even in the monotone 
ase) that f is re
overed from im(f) in the

way stated.

For proje
tions with �nite image the 
hara
terization is even simpler:

Theorem 7.7. Let A be a 
omplete latti
e. The set of linear idempotent de
ations is

in one-to-one 
orresponden
e to pairs of �nite subsets (M;N) whi
h have the properties

P1 and P2 from the previous theorem plus

P3

0

M � K(A);

P4

0

N � K(A

op

).

The 
orresponden
e is established as before.

Proof. We know from Corollary 7.3 that every linear idempotent de
ation has an
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adjoint whi
h is a linear idempotent de
ation on A

op

. We also know that the image of a

linear idempotent de
ation 
onsists of 
ompa
t elements only. For the 
onverse we need

that P3

0

and P4

0

(together with P1 and P2) imply their 
ounterparts in Theorem 7.6.

This is very easy: For every X � M , the set A n "X is �

A

-
losed by P3. Hen
e every

element of this set is below a maximal element. The maximal elements of An"X , however,

all belong to N by P1.

We need to be able to extend every �nite set M of 
ompa
t elements to an image of

a linear idempotent de
ation, if we want that a given algebrai
 latti
e belongs to FS.

By the previous theorem, the smallest extension (if it exists) is generated by turning


onditions (1) and (2) into mutually dependent 
losure operators:

M

0

:= M

M

k+1

:=

S

Y�N

k

min(A n #Y )

N

k+1

:=

S

X�M

k

max(A n "X)

M

�

:=

S

k2N

M

k

N

�

:=

S

k2N

N

k

Theorem 7.8. An algebrai
 latti
e is an FS-latti
e if and only if for every �nite subsetM

of 
ompa
t elements the sets M

�

and N

�

are �nite and 
onsist of 
ompa
t elements of

A and A

op

, respe
tively.

It is instru
tive to 
onsider in whi
h ways the generation pro
ess 
an fail to lead to

a linear idempotent de
ation. Firstly, we observe that for a �nite set X of 
ompa
t

elements, the set "X is both open and 
ompa
t. Be
ause of the former, the 
omplement

A n "X has a maximal element above every member. The latter implies that A n "X

is open in A

op

. If we assume that A

op

is algebrai
 as well, then ea
h maximal element

in A n "X is 
ompa
t with respe
t to A

op

. Hen
e assuming that A is bialgebrai
 will

guarantee that M

�

and N

�


onsist of 
ompa
t elements only.

Se
ondly, we need that the generation pro
ess does not lead to an in�nite set. For this,

we observe the following:

Proposition 7.6. Let A be bialgebrai
. Then A is lean if and only if for every C 
ompa
t

open in A

op

, the set A n C is 
ompa
t open in A.

Proof. A set C whi
h is 
ompa
t saturated in A

op

is 
losed in A. Hen
e its 
omplement

is open in A. As C is open in A

op

, its 
omplement is 
losed in A

op

. The 
omplement is

then 
ompa
t in A by the de�nition of leanness.

For the 
onverse, let C be 
losed in A

op

. For every x 2 A nC there is an A

op

-
ompa
t

element above it. Given a �nite set X of A

op

-
ompa
t elements in A n C, the set #X

is 
ompa
t open in A

op

. By assumption, its 
omplement (whi
h 
ontains C) is 
ompa
t

open in A. It follows that C is the �ltered interse
tion of 
ompa
t open sets in A. Sin
e

algebrai
 latti
es are sober, (Abramsky and Jung 1994, Proposition 7.2.27), C is 
ompa
t

as well, (Abramsky and Jung 1994, Corollary 7.2.11).

As an illustration, 
onsider the non-lean bialgebrai
 latti
e M

1

from Example 4.1.
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Fig. 2. A bialgebrai
 lean latti
e whi
h is not an FS-latti
e.

Here the generation pro
ess, when started on any element di�erent from > or ?, leads

immediately to in�nite subsets.

Unfortunately, however, leanness is not suÆ
ient for the generation pro
ess to su

eed.

Figure 2 shows a bialgebrai
 lean latti
e whi
h is not FS. As a third 
ondition, in addi-

tion to bialgebrai
 and lean, we therefore need to stipulate that the generation pro
ess

terminates after �nitely many iterations. This is in surprising analogy to the 
lassi
al

theory of bi�nite domains. There, too, \two thirds" of being bi�nite are 
aptured topo-

logi
ally (
ompa
tness of the Lawson-topology), but the remaining third is formulated

with referen
e to a generation pro
ess.

8. Extensions to S
ott-domains

If we drop the requirement that obje
ts A be isomorphi
 to (A �Æ 2) �Æ 2, then we may


onsider the 
ategory BC of bounded 
omplete d
pos and maps f :A ! B preserving

all existing suprema: the existen
e of

W

X for X � A implies that

W

f(X) exists in

B and equals f(

W

X). Sin
e SUP is a full sub
ategory of BC, we have a 
on
rete

forgetful fun
tor with a left adjoint given by ( �Æ 2) �Æ 2 (Huth 1995b). The tight


onne
tion between these 
ategories is 
orroborated at the level of obje
ts: A embeds

into (A �Æ 2) �Æ 2 su
h that its image is a lower set 
losed under all suprema existing in

A. So while morphisms in BC do not have an upper adjoint in general, one 
ould de�ne

the other linear types in BC using the 
onne
tions above su
h that the forgetful fun
tor

be
omes symmetri
 monoidal.

Instead of providing the details, we brie
y dis
uss the aspe
t of approximation in BC.
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If we restri
t attention to 
ontinuous (S
ott)-domains, then the resulting sub
ategory

is not 
losed sin
e CL isn't. We may de�ne approximative obje
ts A su
h that their

double dual is an FS-latti
e, but one may equivalently de�ne su
h obje
ts dire
tly as

done for FS-latti
es. It is not hard to see that this leads to a full symmetri
 monoidal


losed sub
ategory of 
ontinuous S
ott-domains in BC. One may transfer our maximality

results �a la Theorems 4.2, 5.5, and 7.5; yet we 
an only de�ne leanness indire
tly by

stipulating that a bounded 
omplete 
ontinuous domain A be \lean" if (A �Æ 2) �Æ 2 is

lean in the sense we de�ned earlier. The S
ott-domains obtained in this fashion were �rst

introdu
ed in (Huth 1994). As for distributivity, the domains A for whi
h (A �Æ 2) �Æ 2

is a 
ompletely distributive algebrai
 latti
e are exa
tly Glynn Winskel's prime-algebrai


domains (Winskel 1988; Huth 1995b).

9. Related and future work

In (Huth and Mislove 1994) one �nds another, rather astonishing, external 
hara
teri-

zation of FS-latti
es. Sin
e the in
lusion of (A �Æ B) into [A! B℄ is linear, it has an

upper adjoint, whi
h is just the restri
tion of m 7!

Æ

m

to [A! B℄ as a domain of de�ni-

tion in Lemma 5.1. If A equals B and is 
ontinuous, then A is an FS-latti
e (
ompletely

distributive) if, and only if, this upper adjoint is S
ott-
ontinuous (linear).

In (He
kmann and Huth 1998a; He
kmann and Huth 1998b) one �nds a duality theory

with whi
h one 
an show that the more general 
ontinuous fun
tion spa
e [X ! B℄ for a

sober spa
e X is an FS-latti
e (
ompletely distributive) if, and only if, X is a 
ontinuous

spa
e | essentially a 
ontinuous domain | and B an FS-latti
e (
ompletely distributive)

(He
kmann et al. 1999).

Elements in bi
ontinuous latti
es are in�ma of ^-irredu
ible elements and suprema of

_-irredu
ible elements. Sin
e these elements determine the �ne-stru
ture of su
h latti
es,

it is desirable to know whether su
h elements have des
riptions that re
e
t the type


onstru
tors, su
h as [ ! ℄ and ( �Æ ), in adequate ways for FS-latti
es. While one


an use the natural isomorphism (HA �Æ B)

�

=

[A! B℄ to arrive at su
h notions for

the spa
e [A! B℄, no identi�
ations of su
h elements in (A �Æ B) have yet been made

if neither A nor B are distributive. The diÆ
ulty in obtaining a 
hara
terization, say,

of _-irredu
ible elements in (A �Æ B) is linked to the open problems mentioned in this

paper.
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