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We study continuous lattices with maps which preserve all suprema rather than only
directed ones. We introduce the (full) subcategory of FS-lattices which turns out to be
x-autonomous, and in fact maximal with this property. FS-lattices are studied in the
presence of distributivity and algebraicity. The theory is extremely rich with numerous
connections to classical Domain Theory, complete distributivity, Topology, and models of
Linear Logic.

1. Introduction

The work reported in this paper derives its motivation from at least three different
directions. Firstly, there is the theory of autonomous (or symmetric monoidal closed)
categories as described extensively in (Eilenberg and Kelly 1966). These are abstrac-
tions of the frequent phenomenon in algebra of the set of homomorphisms between two
structures being a structure of the same kind again without the internal hom functor
interacting with the product in the usual way. The correspondence as it is expressed in
Linear Algebra, then, is between bilinear maps and tensor products rather than between
linear maps and products. In (Barr 1979), the abstract theory of symmetric monoidal
closed categories is extended with a duality derived from a dualizing object L. Again,
algebra provides a number of motivating examples. One of these is the category SUP
of complete lattices and sup-preserving functions.t In the present paper we augment the
objects of this category with a notion of “approximation” in the sense of Domain Theory
(Abramsky and Jung 1994). We show that the full subcategory CL of continuous lattices
is not closed and one of our main results characterizes the largest closed full subcategory
of CL (under one extra condition). The result is reminiscent of similar theorems for
cartesian closed categories (Smyth 1983; Jung 1990); it would be very interesting to find
a deeper reason for this similarity.

From a different perspective, this paper introduces a new model for Classical Linear

1 In fact, Barr works with infima rather than suprema but this difference is immaterial.
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Logic (Girard 1987). On the surface, this construction seems fairly straightforward, given
the general theory of x-autonomous categories as explicated in (Barr 1991). We choose
the modality ! to be that of all Scott-closed subsets of the lattice with the goal in mind to
get Scott-continuous maps in the corresponding co-Kleisli category. Rather pleasingly, the
dual modality ? has a meaningful interpretation in its own right, rather than just being
the de Morgan dual of !; it yields precisely the so-called Smyth-powerdomain (Smyth
1978). One may see this as a vindication of the move to approximated lattices, as such
a characterization is not available in the bigger category SUP. ((Abramsky and Jung
1994) contains other instances of this phenomenon.)

Finally, one may see this paper as an attempt to achieve a linear decomposition of
Scott-continuous functions along the lines of Girard’s original construction of coherence
spaces and stable maps. It is then interesting to see that certain concepts of Domain
Theory still apply, certifying their robustness and generality.

The structure of the paper is as follows. We recall the algebraic tradition which led
to the theory of *-autonomous categories in Section 2. In Section 3 we give some details
of Barr’s example SUP for a x-autonomous category consisting of complete lattices and
suprema preserving functions. It is the ambient category for the remainder of the paper.
Section 4 introduces the main objects of study, linear FS-lattices. They are defined in
analogy to FS-domains, (Jung 1990), and, as in the Scott-continuous setting, they provide
a closed category of approximated objects. In fact, we are able to show that they are
a maximal choice when a certain further condition (called “leanness”) is assumed. FS-
lattices are subsequently augmented with two (independent) properties: distributivity
(Section 5) and algebraicity (Section 7). In both cases, we obtain additional information:
distributive FS-lattices turn out to be completely distributive and they form not only a -
autonomous but a compact closed category. Algebraic FS-lattices are shown to be exactly
the bifinite ones (in the linear sense), and a fairly involved argument in Subsection 7.3
shows that algebraic FS-lattices are the maximal x-autonomous full subcategory of SUP
whose objects are algebraic. A number of parallels between the Scott-continuous and the
linear setting are pointed out in the remainder of Section 7.

In between, in Section 6, we show how to build a Benton-model of Linear Logic with the
ingredients of Domain Theory. The development is extremely smooth and we would like
to claim that the model is a natural yet non-trivial one. We were particularly pleased to
find the connection between modalities and powerdomains mentioned before. Although
Section 6 refers to distributivity at some point, it can be read directly after Section 4.

Section 8 indicates how the theory could be extended from lattices to Scott-domains.
For the sake of brevity, we have refrained from a detailed exposition. Section 9 refers to
further interesting discoveries about FS-lattices, which were made more recently.

In our notation for domain-theoretic concepts we follow (Abramsky and Jung 1994);
relevant background information on continuous lattices can be found there as well as in
(Gierz et al. 1980).
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2. Categorical preliminaries

If K is a class of algebraic structures and A, B, C' are objects in K, the one calls a map
¢: A x B — C a bihomomorphism if for every a € A, b € B the functions

o(a,-):y — ¢(a,y),and
d(o,0):z — P(x,b)

are homomorphisms of K. The prime example is vector spaces and bilinear maps.

A category is an abstract version of “class of structures of the same kind and their
homomorphisms”. However, the definition of a bihomomorphism seems to require an
explicit reference to elements. Also, the map ¢ itself is certainly external to the category
at hand.

A slight redefinition of bihomomorphism is more amenable to a categorical treatment.
Instead of ¢: A x B — C, we consider ¢": A — (B — C) given by ¢'(z)(y) := ¢(z,y). If
we assume that the set (B — C) of homomorphisms is itself a structure of the same kind
as A, B and C, through a pointwise definition of the operations, then bihomomorphisms
¢: A x B — C and homomorphism ¢': A — (B — () are in one-to-one correspondence.
These two conditions are indeed satisfied for vector spaces and also for the objects under
consideration here, complete lattices with sup-preserving maps.

Categorically, one requires an object T and an internal hom-functor (- — _), con-
travariant in the first and covariant in the second argument, to model the requirement
that the set of homomorphisms qualifies as a structure. In order to recognize the ob-
ject (A — B) as the set of homomorphisms from A to B one requires certain natural
transformations and equivalences, to wit

(T—=4) = A
T 5 (A-> 4
(B—»C) — ((A—=B)—=>(A—>0))

subject to a number of axioms (Eilenberg and Kelly 1966). A category with these prop-
erties is called closed. In a closed category we may replace “bihomomorphism” with
“morphism from A to (B — C)”. See (Banaschewski and Nelson 1976) for an in-depth
discussion.

A closed category is called symmetric closed if (A — (B — C)) and (B = (A — C))
are naturally isomorphic.

From Linear Algebra we know that bilinear maps A x B — C are in one-to-one
correspondence with linear maps A ® B — C, where _ ® _ denotes the tensor product of
vector spaces. Abstractly, then, the presence of a “tensor product” gives us an alternative
way of coding bihomomorphisms. To make this precise, one stipulates that - ® _ be a
bifunctor for which - ® B is left adjoint to (B — _), or, equivalently, (A ® B — C) and
(A — (B — C)) are naturally isomorphic. In addition to this, the abstract tensor product
is required to be associative and to have a unit I subject to a number of coherence axioms
(Eilenberg and Kelly 1966; Mac Lane 1971). With this additional data, we arrive at a
monoidal closed category. In a monoidal closed category, which is also symmetric in the



M. Huth, A. Jung and K. Keimel 4

sense above, the tensor product is commutative, A ® B =2 B ® A. Together, one speaks
of a symmetric monoidal closed or autonomous category.

One last remark: Not every algebraic theory allows us to internalize the hom-functor
(non-Abelian groups are an example) and even if it does, a suitable tensor product
may not exist. Beyond these two obstacles, a further one needs to be overcome for a
category to be cartesian closed, namely, it must be the case that bihomomorphisms are
already homomorphisms. The category SET qualifies for trivial reasons; in the case of
DCPO (directed-complete partial orders and Scott-continuous functions) this is one of
the fundamental lemmas of its theory (Abramsky and Jung 1994, Lemma 3.2.6).

In (Barr 1979), Michael Barr studies the situation where an autonomous category is
equipped with an internal duality, that is, where there exists an object L such that A
and ((A — 1) — 1) are naturally isomorphic for all objects A. Writing A+ for (4 — 1),
one gets the following equivalences:

(A — B)
A® B

(Bt — 4% (1)
(A—Bh)* (2)

1%

1

without making any further assumptions. A category with these properties, dubbed
x-autonomous by Barr, provides a model for the multiplicative part of Linear Logic,
(Girard 1987; Barr 1991).

3. SUP as a model of Linear Logic

The category SUP of complete lattices and suprema preserving maps was mentioned
as an example for a x-autonomous category in (Barr 1979). For our purposes below, it
will be necessary to have some understanding of the concrete structure of the various
connectives in SUP. We will also have to adjust the categorical notation to this particular
setting.

Definition 3.1. Let A and B be complete lattices and f a map from A to B. We call f
linear if it preserves all suprema, f(\/ X) =\/ f(X), X C A. We write f: A —o B in this

situation. The set of all linear maps between A and B, ordered pointwise, is denoted by
(A — B).

Complete associativity of the supremum operation in lattices, (Abramsky and Jung
1994, Proposition 2.1.4(3)), entails that the function space (A —o B) is again a complete
lattice.

Every linear map f: A —o B has an upper adjoint f*: B — A (Abramsky and Jung
1994, Sect. 3.1.3), (Gierz et al. 1980, Chapter IV). It is given by

£ =\ {z| f2) <y}

Alternatively, the correspondence between f and f* may be encoded in the equivalence

f@) <y <= =< (y) - (3)
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From this we glean that the assignment f — f* is order reversing?. Hence, if we view
f* as a map from B°P to A°P, we get a linear function and the correspondence f +
f*: (A —o B) = (B°" —o A°P) is in fact an order isomorphism.

There is only one possibility for a dualizing object in SUP, and this is the two-element
lattice 2. For the dual A of a complete lattice A with respect to L = 2, we have

Al = (A —02) = (2°P —0 A°P) = (2 —0 A°P) = A°P

where the last isomorphism holds because the bottom element of 2 must be mapped onto
the bottom element of A°? by any linear function and the top element can be mapped
onto any element of A°P? whatsoever.

From now on, we will write A°" instead of A' and 2 instead of L to avoid confusion
with the established notation for the least element of a domain. Also, we will use the
symbols, <, V, etc, as they apply to A even when we speak of A°P.

For the tensor product we take equivalence (2) as the (necessary) definition: A® B :=
(A —o B°P)°P. Concretely, a linear map 7 from A to B°P corresponds to an antitone map
from A to B which translates suprema into infima. The upper adjoint r*: B°? — A,
if viewed as a function from B to A, has exactly the same property. Together, (r,r*)
form a Galois-connection between A and B. Any pair of maps between complete lattices
satisfying

r(r) >y < z<s(y), =z€AyeB (4)
is of this kind.

The de Morgan dual of ®, denoted %® (“par”), is given by the set of linear functions
from A°P to B. Maps r: A°? —o B together with their adjoints r*: B°? —o A form pairs
(r,r*) which are completely characterized by the equivalence

r(r) <y < z>s(y), re€AyeB.

As noted in (Barr 1979), A2 B can be different from A ® B, even for finite lattices A
and B. In fact, it is distributivity, not finiteness, which renders *® and ® equal, as we
will see in Section 5.

It is quite enjoyable to explore what the abstract equivalences of a x-autonomous
category amount to in the case of SUP. For example, the symmetry of the tensor product
is effected by switching to the other half of a Galois-connection. The natural isomorphism
between (A ® B —o C) and (A —o (B —o ()) is encoded in the equation

¢*(c)(a) = (a)*(e)
¢€(A®B — () Y e(Ad—o(B—C))

in which one side completely determines the other.

Besides the multiplicatives of Linear Logic, which are all faithfully modelled because
SUP is x-autonomous, we can also study the additives & and @. In SUP, these are
both modelled by cartesian product (which is also the coproduct because (A x B)°P =
A°P x B°P), with the one-element lattice representing the units.

 Assume f < g. From g*(y) < g*(y) get g(¢* (y)) < y and hence f(g* (y)) < y. Therefore g*(y) < f*(y).
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Fig. 1. The lattice M.

Since the interpretations of & and @ coincide, our model satisfies all distributivity
laws of the form Am(Ba(C), where m € {®,%}, a € {&, ®}, i.e. it is fully distributive.
This property was noted in (Huth 1995b) already. It has recently been studied from a
proof-theoretic point of view in (Leneutre 1998).

4. Adding approximation

We come to the main objective of this paper, which is to enrich the objects of Barr’s
category SUP with a domain-theoretic notion of approximation; that is, to consider
continuous lattices. We are faced with an immediate difficulty, because the category CL
of continuous lattices and linear maps is not closed.

Example 4.1. Let M., be the lattice of the discretely ordered set of natural num-
bers extended with a least and a largest element (see Figure 1). In the linear function
space (M, —o M) we look at the identity id. Because all maps of this space are sup-
preserving, there is only one function below id, namely, the constant bottom function. If
(M, —0 M) were continuous, then id would have to be a compact element. However, we
have the following chain of maps whose supremum exceeds id without any of its elements
being above id:

fniMy = Mo,n € N
fn(J-) = J—afn(—r) =T

fn(m):{T, if m <mn;

m + 1, otherwise.

A similar problem arises in Domain Theory. There one has the cartesian closed cate-
gory DCPO whose full subcategories of continuous, respectively algebraic, domains are
not closed. By restricting these categories further one recovers closedness. Examples are
Scott-domains, SFP-domains, etc., see (Abramsky and Jung 1994, Chapter 4) for more
details. In the same vein, we will now exhibit a full subcategory of CL which is closed.

Definition 4.1 ((Jung 1990)). A function f: A — A on a partially ordered set A is
said to be finitely separated from id 4, if there exists a finite subset M of A such that for
all z € A there exists m € M with f(z) <m < z.

For a complete lattice A to be an FS-lattice we require the existence of a directed
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family D of linear finitely separated functions on A whose supremum equals id 4. Let F'S
denote the full subcategory of SUP whose objects are FS-lattices.

This definition is formulated in close analogy to a similar one for domains, (Jung 1990).
Because the setting is now that of complete lattices we can immediately reformulate it
in a number of ways:

Proposition 4.1. For a complete lattice A the following are equivalent:

(i) A is an FS-lattice.

(ii) There exists some family of linear finitely separated functions on A whose supremum
equals id 4.

(iii) The supremum of all linear finitely separated functions below id4 equals id 4.

Proof. Observe that the pointwise supremum of a finite set of linear finitely separated
functions is again linear and finitely separated from id 4. ]

Obviously, every finite lattice is in F'S because we can choose D = {id} in this case. As
for infinite examples, we will see in Section 5 below that every completely distributive
lattice is in F'S. At this point, however, it is necessary to justify our definition by showing
that FS-lattices are indeed continuous. We let [A — B] denote the complete lattice of
all Scott-continuous functions f: A — B in the pointwise order. Note that (A —o B) is a
subset of [A — B] closed under all suprema.

Lemma 4.1. Let A be a complete lattice. If a Scott-continuous function f € [A — A] is
finitely separated from id 4, then f(z) < z for all z € A.

Proof. Let M be the finite subset of A which separates f from id4. Given z € A and
a directed set D C A with z < \/TD let D,,, := {d€ D | f(d) <m <d}, m € M. By
assumption we have D = J,, - 1s Dm and so at least one D,,, must be cofinal in D. Hence
we get £(2) < f(V1D) = F(V 1 Dyny) = V1 f(D,) <mo < dfor any d € Dp,. [

Corollary 4.1. FS-lattices are continuous.

Let us now show that F'S carries enough structure to model all of Linear Logic. As
we know from Section 3, the whole structure of a *-autonomous category is derived from
the function space. The following is therefore crucial.

Lemma 4.2. Let A and B be FS-lattices. Then (A —o B) is also an FS-lattice.

Proof. Let D C (A — A) and £ C (B —o B) be directed sets with \/TD = id4 and
\/ '€ = idp such that all f € D and g € & are finitely separated from the respective
identities. For f € D, g € £ and My, M, the respective finite separating sets, we will
show that (;5?79, where ¢y 4(h) = go ho f, is finitely separated from id(A — B)- This
suffices to prove the result because VTgﬁfc,g is equal to id(A — B) Solet feD,gef&

be given. We define an equivalence relation ~ on (A — B) by

hi ~ hy :& VYm € My. tg(hi(m)) N M, = Tg(ha(m)) N M,.
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As My and M, are finite, there are only finitely many equivalence classes on (4 —o B).
Let K be a set of representatives of these classes. We claim that the finite set ¢ 4(K)
separates ¢fc7g from id(A o B) Given h € (A —o B), let kj, be the corresponding repre-
sentative in K. For a € A, we compute

h(a) > h(my) for some my € My with f(a) <my <a
> my for some my € My with g(h(my)) < my < h(my)
> g(kn(my)) as g(h(my)) <mgyand h ~ ky
> g(ka(f(a))) as f(a) <my.
By symmetry, we obtain ky > ¢74(h), so h > ¢y 4(ks) > gi)?c,g (h). ]

A similar proof, for F'S-domains, appeared first in (Jung 1990).

Theorem 4.1. FS is a x-autonomous full subcategory of SUP. Furthermore, it is closed
under cartesian products.

Remember that the order dual of a lattice, A°P, can be expressed as a linear function
space: A°? = (A —o2), so the preceding theorem says in particular that with A we
automatically have that A°P is an FS-lattice again.

Let us now attempt to show that F'S is indeed the largest full subcategory of continuous
lattices of SUP which is closed. Finiteness, which is part of the definition of an FS-lattice,
will have to come from a compactness argument. In other words, we will have to work with
topological concepts as well as order theoretic ones. The topology which is appropriate
for our purposes is the patch- or Lawson-topology, because it is compact Hausdorff on a
continuous lattice, (Gierz et al. 1980, Theorem III-1.10). It is a refinement of the Scott-
topology and generated by Scott-open subsets and complements of Scott-compact upper
subsets.

Now, for a complete lattice A it is easy to see that every Scott-compact upper set C C A
is closed with respect to the Scott-topology on A°P because a downward directed set
(x;)icr gives rise to a directed collection (A \ Jx;);cr of Scott-open sets, resulting in a
compactness argument if the infimum of (z;);cs is assumed not to be in C'. The converse
is not necessarily true: Consider the lattice M, from Example 4.1; every upper set in M,
is closed with respect to osop but only finite upper sets are compact with respect to o, .
Let us say that a complete lattice A is lean if every o 4op-closed subset is o 4-compact.

Somewhat surprisingly, leanness is a self-dual concept in our setting:

Lemma 4.3. Let A be a bicontinuous lattice. Then A is lean if and only if A°P is lean.

Proof. Let us denote the join of the two Scott-topologies by o2. It is a refinement of
both Lawson-topologies A4 and A4or. Under the assumption of continuity, the Lawson-
topology is compact Hausdorff. In this setting, for A to be lean means nothing else
but As4 = o%. So assuming A to be lean renders o a compact Hausdorff refinement of
the compact Hausdorff topology Aaor. It is a standard topological result that the two
topologies must coincide in this case. [
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Remark 4.1. The previous lemma holds already if A and A°P are assumed to be sober
spaces in their Scott-topologies, because the so-called patch topologies are then compact
Hausdorff. We will, however, not need this generality.

Lemma 4.4. FS-lattices are lean.

Proof. Let C be a 0 400-closed subset of the FS-lattice A and let (f;);cr be an approxi-
mating family of finitely separated linear maps. For each ¢ € I let M; be the finite separat-
ing set. We have that C'is contained in 1V; where N; = {m € M; | Az € C.f;(x) < m < z}.
Each TN; is o 4-compact as it is generated by a finite set. The intersection C' of all T1V;,
i € I, contains C' and is o 4-compact again because A is a complete lattice, (Abramsky
and Jung 1994, Theorem 4.2.18). All we need to show is that C' = C.

To this end let a be in the o 40p-open set A \ C. Since the family of upper adjoints
(f{)ier is approximating from above there exists igp € I such that f; (a) € A\ C. The
corresponding f;, maps C' into A\ la because f;,(z) < a implies z < ff (a). It follows
that tV;, does not contain a. U

After these preliminaries, let us now press on towards the promised maximality result.

Lemma 4.5. Let A be a complete lattice and f <« gin (A — A). Then f(a) < g(a) for
all a € A.

Proof. Let g(a) < \/T,.; 2; be given. Define

La, == Lyu;
filx) =¢ z;, z<q
T4, otherwise.

Then (f;)ier is directed in (A —o A) and g < \/T,_; f;. Since f < g in (A —o A) we have
f < f; for some j € I and f(a) < fj(a) = z; as desired. ]

Corollary 4.2. Let A be a complete lattice such that (A —o A) is continuous. Then both
A and A°P are continuous.

Proof. For A this follows directly from the previous lemma. It is true for A°P as well
because (A —o A) and (A°P —o A°P) are isomorphic. U

Lemma 4.6. Let A be a lean continuous lattice with continuous linear function space
(A — A). If f is way-below id4 in (A —o A), then f is finitely separated from id 4.

Proof. The continuity of (A —o A) and the Scott-continuity of composition imply the
existence of some g < id4 with f < gog. As h — h*:(4A — A) — (A°P —o A°P) is
an order isomorphism, we obtain g* < id4or in (A°P? —o A°P). By the previous lemma,
g*(a) < a in A°P for all @ € A. Thus, O, := {b € A°? | g*(a) < bin A°P} contains a
and is Scott-open in A°P. Since A is lean, this set is also A4g-open. The continuity of
A ensures that U, := {e € A | g(a) < e in A} is Scott-open in A; again, it contains a.
Thus, V, := O, NU, is a A4-open set containing a.

The topology A4 is compact as A is continuous. Therefore, the open cover |, 4 Va of

A has a finite subcover A = J,,,cp; Vin. For a € A, we have a € V;,, for some m € M.
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In particular, this guarantees the inequalities g(m) < a and a < g*(m). The latter is
equivalent to g(a) < m, so f(a) < g(g(a)) < g(m) < a shows that g(M) is a finite set
separating f from id4. ]

As a direct consequence of this lemma we get our first main result.

Theorem 4.2. FS is the largest (full) x-autonomous subcategory of SUP whose objects
are lean and continuous.

It is slightly unsatisfactory that we need to refer to leanness in the statement of this
theorem. Indeed, in Section 7.3 we dispense with this condition in the special case of
algebraic lattices. The proof, as we will see, is rather technical and makes vital use of the
abundance of compact elements. It would be desirable to have a more conceptual account
of this result which — one hopes — would then also apply to continuous lattices. We
leave this as an open problem.

5. Distributivity

The aim of this section is to study the subcategory CD of SUP whose objects are
completely distributive lattices. Before we do so, we need to record some fundamental
properties of these lattices.

It was discovered very early in the history of continuous lattices that there is a strong
connection between the notions of approximation and distributivity, (Scott 1972) and
(Gierz et al. 1980, Theorem I-2.3). In the case of completely distributive lattices this
connection was noted even earlier in the work of G.N. Raney, (Raney 1953). Let us
review the main points.

Definition 5.1. Let z,y be elements of a complete lattice A. We say that a’ is completely
below a (and write a’ < a) if for every subset X of A we have that a < \/ X implies
a' <z for some z € X.

This, of course, is the same as the definition of the way-below relation with arbitrary
subsets replacing the directed ones. The elementary properties of <& are the same as
for <« and their proofs are completely analogous (and simpler):

Proposition 5.1. For any complete lattice A and a,a’,b,b" € A the following are true:
(i) o' <« a implies @’ < q;

(ii) ' <a<b<b implies a’ K b';

(iii) L <« a if and only if L # a.

We can now define a complete lattice A to be super-continuous if every element of A is
the supremum of elements completely below it. However, super-continuity is equivalent
to complete distributivity:

Theorem 5.1 (Raney). A complete lattice A is completely distributive if and only if
forallae A, a=\/{a' € A|d K a} holds.

Corollary 5.1.
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(i) A complete lattice A is super-continuous if and only if A°P is super-continuous.
(ii) Completely distributive lattices are bicontinuous.

The corollary says that we get approximation from both sides automatically in super-
continuous lattices. Observe, however, that the relations << 4 and (< 400 ) ! are different
in general.

We will also make use of the following observation which is a consequence of Raney’s
work on tight Galois connections, (Raney 1960).

Theorem 5.2 (Raney). A complete lattice A is completely distributive if and only if
for every a € A we have a = A, 4, Varya -

Proof. “if”: It is easy to see that for every a’ £ a the element z := \/ .4, a" is
completely above a. Hence A°P is super-continuous.

“only if”: Since a is always among the a” of which we take the supremum in \/ 1w, a”,
we have y := A, 2, Vg @ > a. Assume that y is strictly above a. Then, by super-
continuity, we have an element y' completely below y but not below a. This 3’ is one of
the a' in the formula, and it follows that y' <<y </, a”; hence there exists a” 2 y'
which is above y' — clearly absurd. ]

Approximation, rather than distributivity, is used to show the following;:

Lemma 5.1. Let A and B be complete lattices and m: A — B be monotone.

(i) If A is continuous then the largest continuous function m below m is given by m(z) =
VHm(y) | y € z}. The assignment m ~ m is continuous as a function from the
monotone function space to the continuous function space.

(i) If A is super-continuous then the largest linear function m below m is given by
m(z) = \/ {m(y) | y K x}. The assignment m ~ m is linear as a function from the
monotone function space to the linear function space.

If m has finite image within B then so do m and m, respectively.
We need to refine this lemma somewhat for our purposes:

Lemma 5.2. Let A, B be continuous lattices and let m: A — B be a V-homomorphism
which also maps L4 to L. Then m = m.

Proof. Since any supremum can be written as a combination of directed supremum and

finite suprema, \/ X = \/T, | F, it suffices to show that m is still a V-homomorphism.

We always have m(a V a’) > m(a) V m(a’) by monotonicity. For the converse assume

b < m(a) Vm(a'). The set {yVy' |y < m(a),y’ < m(a')} is directed with supremum
m(a)Vm(a'), so for some y < m(a) and 3’ < m(a') we have b < yVy'. The definition of 7
gives us < a and 2’ < o' such that y < m(z) and y’ < m(z'). Now, 2V’ < aVa' and
hence m(aVa') > m(zVa') = m(z)Vm(z') > yVy' > b. Thus we have shown that every
element way below m(a)Vm(a') is also below m(aVa'), and so m(aVa') < m(a)Vm(a')
follows as B is continuous. U
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Besides approximation from below, continuous lattices also enjoy a representation from
above: every element z is the infimum of A-irreducible elements, (Gierz et al. 1980,
Theorem I-3.10). If the lattice is bicontinuous then this infimum may be taken over
the subset of A-irreducible elements which are way-below z in A°P. In a distributive
lattice there is no difference between A-irreducible and A-prime elements. Finally, an
element y which is both V-prime and way-below x is actually completely below x. These
observations prove the following:

Theorem 5.3 (Gierz et al. 1980). A complete lattice is completely distributive if, and
only if, it is bicontinuous and distributive. In that case, every element is the supremum
of V-primes way-below it.

Let us now put these preliminaries to work in our setting.
Lemma 5.3. Every completely distributive lattice is an FS-lattice.

Proof. Let A be a completely distributive lattice; it is bicontinuous by Corollary 5.1 and
so every element is the supremum of V-prime elements below it. For every finite subset F'
of V-primes define mp: A — A, mp(z) := \/{a € F | a < z}. Then mp preserves finite
suprema and the conditions of Lemma 5.2 are satisfied. Hence mp is linear.

Every mp has a finite image and so is finitely separated from id 4. The identity is equal
to the directed supremum of all mg and since it itself is continuous, it is also the directed
supremum of the My by Lemma 5.1(1). U

Theorem 5.4. A complete lattice is completely distributive if and only if it is a dis-
tributive FS-lattice.

Proof. This follows from Lemma 5.3, Corollary 4.1, Theorems 4.1 and 5.3. [

Lemma 5.4. The category CD of completely distributive lattices and linear maps is
closed.

Proof. The lattices 2 and T are objects in CD. By the preceding theorem we already
know that the linear function space (A —o B) of two completely distributive lattices
is FS, and we only need to show distributivity. To this end observe that the supremum of
elements in (A —o B) is calculated pointwise; even the finite pointwise infimum, however,
is not sup-preserving in general. Hence the infimum is given by Lemma 5.1:

(fAg)(a) =\ {f(a) Agld) |d' < a}.

Now, given f,g,h: A —o B, we will always have (f Ag)V (f Ah) < fA(gVh). For the
converse fix a € A and assume b < (f A (¢ V h))(a). By what we just said about infima
in (A —o B), there must exist a’ < a such that b < f(a’) A (g(a’) V h(a’)). Distributivity
at the element level gives us b < (f(a’) A g(a’)) vV (f(a') A h(a’)) and the latter is a term
which occurs in the calculation of ((f A g) V (f A h))(a). U

Theorem 5.5. CD is the largest closed full subcategory of SUP whose objects are
distributive and continuous.
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If follows that CD gives us another, smaller model of Linear Logic. Besides its objects
being more regular than those of FS, we find that in CD the interpretation of tensor
and its de Morgan dual, par, coincide:

Theorem 5.6. Let A and B be complete lattices and let one of them be completely
distributive. Then (4 —o B°P) = (A°? — B)? ie. A® B = A9B.

Proof. (Note that all operations and relation symbols in this proof refer to the original
lattices, not their order duals.) Given complete lattices A and B, define

$:(A o B®) — (AP - B), P(r)(z) :=V,ig, (@)
V(A% o B) - (A -0 BP), W(s)(z) =N,y s(@).
It is clear that ® and ¥ are antitone. More important is well-definedness:

S(r)(AX) = Vagpxr@@)
= Viex Vg 7(z') by the definition of A X

and dually for ¥. The maps ® and ¥ are mutual inverses of each other. Let s: A°® —o B.
Then
s(u(s)@) = \ @) =\ A\ s =) .
o' L 'Lz Fa'

It is clear that #(x) < s(x) because z is always one of the z" in the formula. For
the converse we use complete distributivity of A which entails 2 = A, ,a and z =
Ao gz Vonye @' (Theorem 5.2). Now, for a >> = we get 32" £ z. V, iy, 2" < qa,
ie., dz' £ zVz" ¥# 2'. " < a. Since s is antitone, this translates as 3z’ £ zVz" #
z'. s(z") > s(a) and hence t(z) > s(a). Since s translates infima into suprema, we get
5(7) = 5(Auspe @) = Viyspp 5(a) < H(a).

Note that we have used complete distributivity of A alone. Complete distributivity of
B would also suffice since we can always switch to the other half of a Galois-connection.

O

In Barr’s terminology, what we have shown is:
Corollary 5.2. The category CD is compact closed.

We conclude this section with an observation which is easy to justify at this point but
will be used only in Section 7.3.

Lemma 5.5. Let A and B be bicontinuous lattices and let F' C (A —o B) be filtered.
Then the infimum of F in (A —o B) equals the infimum of F in [A — B].

Proof. Given a filtered family FF C (A —o B) we consider the pointwise infimum
m(z) := Ajep f(2). It is not only monotone but also preserves the least element and
binary suprema. This is because B°P is also continuous and on a continuous lattice the
binary infimum is a continuous operation. Now we can apply Lemma 5.2 and we get that
mh, which is the infimum of m in [A — B], is linear and hence the infimum in (A —o B).

O
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6. The modalities

So far, we have ignored the modalities of Linear Logic and it is high time to study how
they can be added to our framework. Some general comments may be in place here. From
the viewpoint of *-autonomous categories, modalities require a further piece of structure
in the form of a comonad. First Seely, (Seely 1989), and later Benton, Bierman, de Paiva,
and Hyland, (Benton et al. 1993b; Benton et al. 1993a; Bierman 1995), worked out the
precise conditions that need to be imposed on the comonad in order to get the desired
close correspondence between proof theory and categorical semantics.

More recently, Benton, (Benton 1994), came up with a quite different notion of cat-
egorical model, where one has a cartesian closed category (the intuitionistic category)
and a x-autonomous category (the linear category) linked by a monoidal adjunction. The
attractions of Benton’s approach are twofold: Firstly, the set of axioms is small and uses
well-established concepts only. Secondly, the free parameters in a Benton model of Linear
Logic are clearly visible; neither does the linear category determine the intuitionistic one,
nor the other way round; and once the two categories are fixed, there may still be some
variability in terms of which adjunction to choose.

These general benefits are augmented with some specific advantages in our setting.
Since we can choose the intuitionistic category independently from the linear category,
we have the opportunity to bring classical categories of domains into the picture. In other
words, we are not forced to work with complete lattices alone. This ought to facilitate
the application of our results to Denotational Semantics.

Although the definition of a Benton model is very neat, the number of diagrams to
check is still quite daunting. We are helped by the following general result from (Kelly
1974) (which was also noted in (Benton 1994)):

Theorem 6.1. Let (C; ®¢,1¢) N (D;®p,Ip) £, (C;®¢, ) be an adjunction be-
tween (symmetric) monoidal categories and let

n: F(A) ¢ F(B) — F(A®p B) p:Ic — F(Ip)
be a natural transformation (resp. a morphism) making the left adjoint F' monoidal.
Then the following are equivalent:
(i) The whole adjunction is monoidal.

(ii) All arrows na g and p are isomorphisms.

In the spirit of Denotational Semantics and Domain Theory, the natural partner for
Barr’s linear category SUP is DCPO, the category of directed-complete partial orders
and Scott-continuous functions. DCPO is cartesian closed and is the ambient category
for many of the more refined concepts in Domain Theory. Our choice of adjunction is
informed by our wish to decompose the maps of DCPO. Consider the definitions

HD := {X C D | X Scott-closed} ,
where D is a dcpo and the order on HD is subset inclusion, and

ip:D s HD, dw |d.
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(We chose the notation H because HA is almost the Hoare-powerdomain of A, except that
for the latter the empty set is usually excluded.) The functions ip are Scott-continuous.
Furthermore, we have the following.

Lemma 6.1. Let D be a dcpo and B be a complete lattice. For every Scott-continuous
function f: D — B there is a unique linear function f: HD —o B such that f = foip.

Proof. The equality f = f oip forces the following definition of f :
fx):=\{f@@) |z c X},

For linearity, let (X;);er be a collection of Scott-closed subsets of D. Note that in HD
the supremum is calculated as

ierl el
where cl(-) denotes the closure of a subset in the Scott-topology. We need to show that
f(ViEI Xi) < Vier F(X;), the other inequality being satisfied trivially. Consider the
Scott-closed subset | \/,; f(X;) of B. Its pre-image under f is Scott-closed by the Scott-
continuity of f and contains all X;’s, hence \/,.; X; as well. So we get f(\/;c; Xi) C

Waer F(X5) and consequently F(V,e; Xi) = V{f(2) | 2 € Vi Xit < Vg, F(Xi). O

From the lemma above we obtain that SUP is a reflective subcategory of DCPO, the
reflection being given by

D —~ HD

e

f:D—-E — igof.
In order to show that the adjunction is monoidal we check the conditions of Theorem 6.1.
First of all, Isyp = 2 is clearly isomorphic to HIpcpo = H1. We get the desired natural

isomorphism between HA ® HB and H(A x B) from the following functional description
of HS:

HA =2 [A — 2]°P.

The calculation runs as follows

HA®HB = (HA —o (HB)°P)°P
[A = (HB)"P]P

~ [A—[B—2]"

~ [AxB -2

~ H(Ax B).

1

We also need to establish that these isomorphisms commute in a suitable way with the
transformations which correspond to the associativity, symmetry, and unit laws of the

§ As Paola Maneggia pointed out to us, this representation of H is no coincidence; whenever H is a
monoidal reflection from a Cartesian closed category to a x-autonomous subcategory with dualizing
object L, one has HA® (HA —o 1) o 1l 2[A— 1] — L.
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symmetric monoidal structure. For this we need a more explicit description of the above
isomorphism.
For a € A,b € B define a Galois-map (a /' b): A — B by

(a b)) = \{re Ao B|r(a)>b}

or, explicitly,

T, ifz=1y;

(@ /b)) =4 b ifwela\{ls}

J_B, if x ¢ La.
The other half of this Galois-map is just (b  a), as one can see from the characterization
in Formula (4). Furthermore, we have r = \/ _,(a / r(a)) for all r € A ® B, because r
itself is an element of the set of which the infimum is taken in the definition of (a * r(a)).
Also note that (L4 " b) and (a / L) equal (Lsg 7 Tp), the smallest element in A® B.

Using this information, we can describe the isomorphism between HA®HB and H(A x
B) explicitly by
(la /b)) <r < (a,b)€C

where r € HA®HB and C € H(Ax B). The diagrams for the monoidicity of H: DCPO —
SUP now become easy exercises. For example, commutativity of

HA® HB —o H(A x B)

SsUP Hspcro

HB ®HA —o H(B x A)

is argued as follows. For r € HA ® HB we have (Ja / |b) <r <= (a,b) € C <=
(b,a) € Hspcpo(C) < (b / la) < sspyp(r). Leaving the remaining diagrams as
exercises, we arrive at the following;:

Theorem 6.2. The categories DCPO and SUP, linked by the reflection H: DCPO —
SUP, form a Benton model of Linear Logic.

The theorem implies that there is a natural transformation A x B — A ® B. This,
of course, is nothing other than the assignment (a,b) — (a ' b); it is linear in both
variables separately.

The setup of Theorem 6.2 can be restricted on both sides to approximated objects.
Since the Scott-topology of a continuous domain is a completely distributive lattice,
(Abramsky and Jung 1994, Theorem 7.2.28), we get a very small model by pairing Scott-
domains on the intuitionistic side with completely distributive lattices on the linear side.
At the other end, a maximal Benton model within approximated ordered structures is
given by FS-domains paired with FS-lattices.

The desired decomposition of the Scott-continuous function space [A — B]into (HA — B)
was the motivation for our choice of the modality !A as the lattice of all Scott-closed sub-
sets of A, ordered by set inclusion. While !4 owes its definition to a topological notion,
the nature of ?7A is then completely determined by the structure of the ambient linear
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category SUP: 74 has to be naturally isomorphic to (IA°P)°P. This, in turn, is natu-
rally isomorphic to g 4ep, the Scott-topology on A°P. This works on the level of DCPO
and SUP already. In the approximated case we can give a good deal more information
about ?. Recall that a subset of a topological space is called saturated if it equals the
intersection of its neighborhoods. The set of all compact saturated subsets of a space X,
ordered by revered inclusion, is denoted by xx.

Proposition 6.1. If A is a lean complete lattice then 74 and k4 are isomorphic, where
the isomorphism can be viewed as the identity at the level of sets.

Proof. We have remarked before that a compact upper set is necessarily closed with
respect to o 40p, that is, a member of H(A°P). The converse is exactly the definition of
leanness. ]

The proposition above entails that 74 = k4 holds for all FS-lattices A. Now, except
for the empty set, k4 is exactly the Smyth-powerdomain of A if A is continuous, (Smyth
1978; Abramsky and Jung 1994). Hence in our domain-theoretic model of Linear Logic
the two modalities are just the two fundamental powerdomains.

7. Algebraicity

The category FS has plenty of algebraic lattices as objects. Theorem 5.4 assures us that
F'S contains at least all completely distributive algebraic lattices; moreover, every finite
lattice is certainly algebraic and FS. In this section we will explore the world of algebraic
FS-lattices in more detail. As we will see, a lot of the theory is in close analogy to that
of algebraic domains and Scott-continuous functions, but there are a few surprises. In
the following, we will frequently refer to the classical theory of domains, so we like to
alert the reader that she will find FS-domains next to FS-lattices and Scott-continuous
functions next to linear ones in our proofs. It will be crucial that every linear function
is also Scott-continuous.

7.1. Algebraic FS-lattices

FS-lattices are defined with reference to finitely separated (linear) functions. There are
two strengthenings of this concept that we will make use of here: a function below the
identity is called a deflation if it has finite image. A deflation may or may not be idempo-
tent. Scott-continuous deflations are familiar from the study of bifinite domains (Plotkin
1976; Abramsky and Jung 1994); here, of course, we require them to be linear.

Lemma 7.1. Let f be a finitely separated function on a complete lattice A. Then some
finite iterate of f is an idempotent deflation.

Proof. The statement follows from the fact that in a sequence z > f(z) > f2(z) > ...
a different separating element is needed at least every other step. Hence such a sequence
can never be longer than 2] where [ is the cardinality of the finite separating set. It follows
that f?! is idempotent. The iterated function has finite image because it remains finitely
separated. O
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Proposition 7.1. A complete lattice A is an algebraic FS-lattice if and only if the
identity id 4 is the directed supremum of idempotent linear deflations.

Proof. “if”: The image of an idempotent deflation consists wholly of compact elements.
So A must be algebraic if there exists a directed family of idempotent deflations approx-
imating id4. Since deflations are finitely separated (by their image) the lattice must also
be FS.

“only if”: Given a compact element ¢ of A there exists a finitely separated function f
which fixes c¢. By the previous lemma, some iterate of f is an idempotent deflation. This
iterate still fixes ¢. This shows that the supremum of all idempotent deflations equals id 4.
The supremum is directed because the pointwise supremum of idempotent deflations is
another such function. ]

This characterization of algebraic FS-lattices allows us to prove easily that the linear
function space of two algebraic FS-lattices is again of the same kind. This closure property
is sufficient to conclude the following:

Theorem 7.1. The category aF'S of algebraic FS-lattices and linear maps is *-autonomous.

In analogy to the Scott-continuous case, one can define linear bifinite lattices as the
bilimits of finite lattices with respect to linear embedding projection pairs. The following
characterization is then proved exactly as for bifinite domains (Jung 1989, Theorem 1.26).

Proposition 7.2. A complete lattice A is linearly bifinite if and only if there exists a
directed collection of idempotent deflations whose supremum equals id4.

To summarize, what we have is:

Theorem 7.2. For a complete lattice A the following are equivalent:

(i) A is an algebraic FS-lattice.

(ii) A is linearly bifinite.

(iii) A has a directed collection of idempotent linear deflations whose supremum equals id 4.
(iv) A has a collection of idempotent linear deflations whose supremum equals id 4.

(v) The supremum of all idempotent linear deflations on A equals id4.

7.2. Retracts of bifinite lattices

As we will see in the next subsection, it is often useful to be able to pass to retracts
without leaving the ambient category. We therefore collect a few basic results about
retracts of various kinds of FS-lattices.

Proposition 7.3. The category FS is closed under forming retracts.

Proof. For A € FS, B € SUP, let A —o B and e: B —o A be linear maps with
roe = idg. If f is finitely separated in (A —o A) by a set M, then ro foe is easily seen to
be finitely separated in (B —o B) by the set r(M). If the supremum of the set D of linear
finitely separated functions on A equals id 4, then the supremum of the set of functions
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ro foe, f €D, equals idg, because r is linear and the supremum of linear functions is
calculated pointwise. ]

Corollary 7.1. Retracts of linear bifinite lattices are FS-lattices.

As in the Scott-continuous case, retracts of linear bifinite lattices can be characterised
functionally:

Theorem 7.3. A complete lattice B is a linear retract of some linear bifinite lattice if,
and only if, its identity is the directed supremum of deflations in (B —o B).

The question arises whether every FS-lattice is the retract of an algebraic FS-lattice
(= linear bifinite lattice). This we don’t know. The situation is exactly as with bifinite
domains and FS-domains (Abramsky and Jung 1994, Proposition 4.2.12), although we
do not see any general reason for this analogy.

If we combine distributivity with algebraicity, then the problem does not arise:

Theorem 7.4. Every distributive FS-lattice is the linear retract of a distributive linear
bifinite lattice.

Proof. A distributive FS-lattice A is automatically completely distributive by Theo-
rem 5.3. Now, if A is in CD, then let B be the lattice of lower sets of V-prime elements
in A ordered by inclusion. Then B is completely distributive and algebraic. The maps
mB —» A L+ \/L,and A = B,z — {r | r < z, r V-prime}, are linear with
roe =id4 due to Theorem 5.3. O

7.3. Mazimality of aFS

In the case of continuous lattices, our proof techniques required lattices to be lean in
order to realize FS as a maximal x-autonomous subcategory of continuous lattices in
SUP, Lemma 4.6 and Theorem 4.2. This topological assumption can be eliminated in
the algebraic setting (Huth 1995a):

Theorem 7.5. Let A be an algebraic lattice with continuous linear function space
(A —o A). Then A is an FS-lattice.

Corollary 7.2. aFS is the largest (full) *-autonomous subcategory of SUP such that
every object is algebraic.

The proof of the theorem above is custom-tailored for the structural properties of
algebraic lattices; it remains unclear whether it has a suitable abstraction allowing one
to prove its continuous version. We leave this as an open problem: If (4 —o A) is a
continuous lattice, is A necessarily lean?

Since A is algebraic in the theorem above, we know that id 4 is the directed supremum of
idempotent, Scott-continuous deflations. Thus, it suffices to show that any such function
d has a linear deflation p above it. We will reason the existence of such a p in a number
of steps. In the discussion below, we fix an algebraic lattice A such that (4 —o A) is
continuous and d is an arbitrary Scott-continuous idempotent deflation on A.
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Step 1: A is bicontinuous. This follows directly from Corollary 4.2.

Step 2: Obtaining a candidate linear deflation. Any candidate linear deflation above
d has to be in the set Y = {f € (A — A) | d < f < id}. This set contains id and is
closed under composition as composition is monotone and d and id are idempotent. The
combination of these two facts establishes that ¢/ is a filtered subset of (A —o A) and by
Lemma 5.5 we may conclude that its filtered infimum p in (4 —o A) is actually the one
in [A — A], using the bicontinuity of A secured in Step 1. Thus, p has to be above d.
Since id is in U we get p < id. From this, the minimality of p in U/, and the fact that I/ is
closed under composition, we infer that p is idempotent. In summary, p is the minimal
idempotent linear function above d and below id. Since the order on such functions is
given by the inclusion of their image, we conclude that there is a linear deflation above
d if, and only if, the image of p is finite.

From now on we write B for the image of p, and i: B — A, q: A — B for the decom-
position of p into inclusion and projection part.

Step 3: (B —o B) is continuous. The pair (g, ) realizes B as a linear retract of A. Using
the internal hom ( —o ) on the pairs (¢,7) and (i, ¢) we obtain (B —o B) as a linear retract
of (A —o A). Since the Scott-continuous retract of a continuous lattice is continuous (Gierz
et al. 1980; Abramsky and Jung 1994), we infer that (B —o B) is continuous.

Step 4: The identity is compact in (B —o B). The deflation d is in K[4A — A] and so
W={he (A —oA)|d<h}isScott-open in (A — A) as directed suprema are the same
in [A — A] and (4 — A). Thus, p is a minimal element of the Scott-open set YW and the
continuity of (A —o A) makes p compact in (A —o A). Using this compactness, one may
now compute that ¢ o ¢ is compact in (B —o B), but g o is just idp.

Step 5: B satisfies the ascending (ACC) and descending chain condition (DCC). We
already know that the identity of B is compact in (B —o B). By Lemma 4.5, we get
that every b € B is compact. Since (B —o B) is isomorphic to (B°? —o B°P), we also get
id € K(B°P —o B°P) and may use the same lemma to infer that every b € B is compact
in B°P. These two properties ensure that B satisfies (ACC) and (DCC).

To summarize this discussion, we arrived at a bicontinuous lattice B with continuous
linear function space (B —o B), where B satisfies (ACC) and (DCC). Let us say that any
lattice C' with these properties has property F. Our aim is to demonstrate that property F
is nothing but that of being a finite lattice.

Step 6: Property F is inherited by principal lower and upper sets. Note that C' has
property F if C°P has property F and vice versa. This is due to the isomorphism
(C — C) 22 (C°P —o C°P). Thus, given C with property F, we only have to show such a
closure for a principal lower set . The retraction ret,: C' = C which leaves |z fixed and
maps all other elements to = realizes |z as a linear retract of C. As before, we obtain
(lz —o |x) as a linear retract of (C' —o ). In particular, (o —o Jz) is continuous. Since
lz evidently inherits (ACC) and (DCC) from C, we only need to establish that |z is
bicontinuous; but this follows from Corollary 4.2.

Because an interval [2,Z] = {y € P | z < y < T} in a poset P can be realized as
the principal lower set [T in a principal upper set 1z, property F is also inherited by all
intervals in B.
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Step 7: B is finite. Proof by contradiction: Let us assume that B, the image of p, is
indeed infinite. Our goal is to argue that M., (Example 4.1) is sitting inside B.

Step 7.1: Finding infinite anti-chains. Consider the poset P of all infinite subintervals
of B, ordered by inclusion. It contains B by assumption. As a poset, P satisfies (DCC)
because an infinite chain of smaller and smaller intervals would produce either an infinite
ascending chain in B (considering the lower endpoints) or an infinite descending chain
in B (upper endpoints), and we already know that B is free of both. We can conclude
that B contains a minimal infinite subinterval. By Step 6 it will also have property F
and so we might as well assume that B equals that minimal infinite subinterval. Under
this assumption, we have the following properties in addition to property F:

(i) Jx is finite for all z < T in B,
(ii) 1z is finite for all L < z in B.

Since B satisfies (DCC), we get B\ { L} = 17T, where T is the set of minimal elements
in B\ {L}. Dually, the condition (ACC) guarantees that B\ {T} = |S, with S being
the set of maximal elements in B\ {T}. Since B is infinite, item (i) implies that S is an
infinite anti-chain. Dually, item (ii) implies that T is an infinite anti-chain as well.

Step 7.2: Carving out M. We use items (i) and (ii) above together with the two infinite
anti-chains S and T to construct M, as a linear retract of B. We define inductively a
family of elements (z;);cn in T and a family (S;);en of subsets of S: Pick any o in 7' and
define Sy as tzoNS. By item (ii) above, we see that Sy is finite. Thus, item (i) entails that
1SoNT is finite as well. Since T is infinite, we may pick some z; in T'\ |.Sp and repeat this
process by picking a new element z;, in the complement of | J, <j<i 1S; in T'. Suppose
that z; Vz;yr < T for some i < i + k. Then x; V ;11 has to be below some s € S. Then
x; < smeans s € S; and x4 < s renders x;4 € |S; contradicting the choice of the
element x;4. Thus, z; Va; = T for all ¢ # j. This ensures that {z; |i > 0} U{L, T}is
closed under all suprema and infima in B and isomorphic to M,. Therefore, we have an
injective map e: Mo, — B preserving all infima and all suprema. Because of the former,
e has a lower adjoint [: B — M. The injectivity of e implies / o e = ids__ . Since lower
adjoints preserve suprema, we have realized M., as a linear retract of B. Again, this
entails that (M —o M) is a linear retract of (B —o B) whence (M, —0 M) has to be
continuous, contradicting Example 4.1. Hence the assumption that B be infinite is false.

To summarize, we have shown that there is a linear idempotent deflation above every
Scott-continuous idempotent, deflation in A, and the proof that A is an FS-lattice is
complete.

7.4. Internal characterization

We have seen in Section 7.1 that algebraic FS-lattices are in fact bifinite, and we have
characterized them in terms of idempotent deflations. So far, this is very much in parallel
to the theory of domains and Scott-continuous functions; in fact, the proofs of these facts
for the linear case are virtually the same as for the continuous case. We will now attempt
to push the analogy further to the internal characterization of bifinite domains and
lattices.
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Recall that bifinite domains can be characterized by the structure of their subposet of
compact elements (Plotkin 1981; Abramsky and Jung 1994). Essentially, this is achieved
by a study of the fine structure of the images of idempotent deflations. One observes that
such an image must consist of compact elements and that the image is closed under the
formation of minimal upper bounds of finite subsets.

In the present setting we will try to proceed similarly. From the continuous case we
inherit the information that the image of a linear idempotent deflation must consist of
compact elements, and consequently, the internal characterization will refer to compact
elements only. The study of minimal upper bounds, however, is trivial for complete
lattices as every subset has a supremum, and closing a finite set of compact elements
with all suprema will always yield a finite set of compact elements. Hence continuous
idempotent deflations abound. Our problem is to ensure that there are enough linear
ones.

We will not study the preservation of suprema directly but instead generate a deflation
together with an upper adjoint. Linearity will then be automatic. To start off in this
direction let us record a few observations about adjoints which can all be proved from
the characterizing equivalence 3 in Section 3.

Proposition 7.4. Let A be a complete lattice and f: A —o A a linear function. The
following relationships hold between f and its upper adjoint f*:

(i) f<idy <= f*>idy;

(i) fof=f < frofr=f4

(iii) f has finite image <= f* has finite image.

Corollary 7.3. If f is a linear projection (idempotent deflation) on the complete lat-
tice A, then f* is a linear projection (idempotent deflation) on A°P.

The following lemma will be the key to our characterization. It holds without assuming
finite image.

Lemma 7.2. Let f be a linear projection on a complete lattice A, and let z be in im(f),
the image of f. Then z creates a partition of A with the classes U, =tz and L, = A\ tz
which is respected by both f and f*, that is,

fUz) CUs, f(Ua)
flle) Cle, fr(Le)

Furthermore, L, = |f*(L;).

Ua ,
L

NI

T -

Proof. Assume y > z. Then f(y) > f(z) = x because f is idempotent; hence f
restricts to U,. The upper adjoint trivially restricts to U, because we have f* > id4 by
Proposition 7.4(1) and U, is an upper set. For the same reason, f restricts to the lower
set L,. Lastly, let y 2 x and assume f*(y) > z. Then y > f(z) by adjointness. However,
f(z) =z as x belongs to the image of f and we get a contradiction.

The additional claim about L, follows from what we just proved and the fact that
£ > ida. O
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Proposition 7.5. Let f be a linear projection on a complete lattice 4, and let X be a
subset of im(f). Then the maximal elements of Ly = A\ 1X all belong to im(f*).

Proof. We have that f* restricts to Lx = [,y Lz by the previous lemma, and that
f* is above id4 by Proposition 7.4(1). Hence a maximal element of Lx must remain fixed
under f*. [

This last result allows us to characterize images of linear projections.

Theorem 7.6. The set of linear projections on a complete lattice A is in one-to-one
correspondence to pairs of subsets (M, N) which have the following properties:

Pl VX C M. max(4A\1X)C N;

P2 VY CN. min(4\l]Y)C M;

P3 VXCMVae A\tX In e N\ 1X.a < n;

P4 VY CNVaeA\]LY Ime M\|Y.b>m.

The correspondence assigns to a linear projection f the pair (im(f),im(f*)) and to a pair
(M, N) the function f:a — \/(lan M).

Proof. Given a linear projection f, then (im(f),im(f*)) has the four properties listed
because of Lemma 7.2 and Proposition 7.5. Conversely, given a pair of subsets with these
properties, we let f be as stated and g:a — A(TaN N). It is clear that f is idempotent
and below id 4.

Before we can show that f is linear, we need to establish that M is indeed all of
im(f). For this, let € im(f), that is = \/(Jz N M). For every a # z there must
exist m, € Lz N M not below a. By Property P3, there is some n € N above a and not
above m,. Hence A\ Tz = [(N \ Tz). Since z is maximal in A \ L (N \ Tz), it belongs to
M by Property P2. Properties P1 and P4 are used to show that N is all of im(g).

We prove that f is linear by showing that f and g are adjoint. Assume z £ g(y). We
have just shown that g(y) € N and so by Property 4 there exists m € M with m < z
and m £ ¢(y). By the definition of f, this entails f(z) £ ¢(y). Since y < g(y) we can’t
have f(z) <y. So f(z) <y implies < ¢g(y). The other direction follows by duality.

We had to show already that starting with a pair (M, N), constructing f from it
and taking (im(f),im(f*)) will give back (M, N). For the other identity, start with a
projection f. If follows (even in the monotone case) that f is recovered from im(f) in the
way stated. ]

For projections with finite image the characterization is even simpler:

Theorem 7.7. Let A be a complete lattice. The set of linear idempotent deflations is
in one-to-one correspondence to pairs of finite subsets (M, N) which have the properties
P1 and P2 from the previous theorem plus

P3' M CK(A);
P4’ N CK(AP).

The correspondence is established as before.

Proof. We know from Corollary 7.3 that every linear idempotent deflation has an
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adjoint which is a linear idempotent deflation on A°P. We also know that the image of a
linear idempotent deflation consists of compact elements only. For the converse we need
that P3’ and P4’ (together with P1 and P2) imply their counterparts in Theorem 7.6.
This is very easy: For every X C M, the set A\ 1X is o4-closed by P3. Hence every
element of this set is below a maximal element. The maximal elements of A\1X, however,
all belong to N by P1. [

We need to be able to extend every finite set M of compact elements to an image of
a linear idempotent deflation, if we want that a given algebraic lattice belongs to F'S.
By the previous theorem, the smallest extension (if it exists) is generated by turning
conditions (1) and (2) into mutually dependent closure operators:

MY = M
MM = Uy ey min(A\ |Y)
Nk+L = Ux care max(A\ 1X)
M* = Upen M:
N* = Upen N

Theorem 7.8. An algebraic lattice is an FS-lattice if and only if for every finite subset M
of compact elements the sets M* and N* are finite and consist of compact elements of
A and A°P, respectively.

It is instructive to consider in which ways the generation process can fail to lead to
a linear idempotent deflation. Firstly, we observe that for a finite set X of compact
elements, the set 1X is both open and compact. Because of the former, the complement
A\ 11X has a maximal element above every member. The latter implies that A \ tX
is open in A°P. If we assume that A°P is algebraic as well, then each maximal element
in A\ 17X is compact with respect to A°P. Hence assuming that A is bialgebraic will
guarantee that M™* and N* consist of compact elements only.

Secondly, we need that the generation process does not lead to an infinite set. For this,
we observe the following:

Proposition 7.6. Let A be bialgebraic. Then A is lean if and only if for every C' compact
open in A°P, the set A\ C is compact open in A.

Proof. A set C which is compact saturated in A°P is closed in A. Hence its complement
is open in A. As C is open in A°P  its complement is closed in A°P. The complement is
then compact in A by the definition of leanness.

For the converse, let C' be closed in A°P. For every z € A\ C there is an A°P-compact
element above it. Given a finite set X of A°P-compact elements in A \ C, the set | X
is compact open in A°P. By assumption, its complement (which contains C) is compact
open in A. It follows that C' is the filtered intersection of compact open sets in A. Since
algebraic lattices are sober, (Abramsky and Jung 1994, Proposition 7.2.27), C' is compact
as well, (Abramsky and Jung 1994, Corollary 7.2.11). [

As an illustration, consider the non-lean bialgebraic lattice M., from Example 4.1.
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1o

Fig. 2. A bialgebraic lean lattice which is not an FS-lattice.

Here the generation process, when started on any element different from T or L, leads
immediately to infinite subsets.

Unfortunately, however, leanness is not sufficient for the generation process to succeed.
Figure 2 shows a bialgebraic lean lattice which is not FS. As a third condition, in addi-
tion to bialgebraic and lean, we therefore need to stipulate that the generation process
terminates after finitely many iterations. This is in surprising analogy to the classical
theory of bifinite domains. There, too, “two thirds” of being bifinite are captured topo-
logically (compactness of the Lawson-topology), but the remaining third is formulated
with reference to a generation process.

8. Extensions to Scott-domains

If we drop the requirement that objects A be isomorphic to (A —o 2) —o 2, then we may
consider the category BC of bounded complete dcpos and maps f: A — B preserving
all existing suprema: the existence of \/ X for X C A implies that \/ f(X) exists in
B and equals f(\/ X). Since SUP is a full subcategory of BC, we have a concrete
forgetful functor with a left adjoint given by (- —02) —o 2 (Huth 1995b). The tight
connection between these categories is corroborated at the level of objects: A embeds
into (A —o 2) —o 2 such that its image is a lower set closed under all suprema existing in
A. So while morphisms in BC do not have an upper adjoint in general, one could define
the other linear types in BC using the connections above such that the forgetful functor
becomes symmetric monoidal.

Instead of providing the details, we briefly discuss the aspect of approximation in BC.
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If we restrict attention to continuous (Scott)-domains, then the resulting subcategory
is not closed since CL isn’t. We may define approximative objects A such that their
double dual is an FS-lattice, but one may equivalently define such objects directly as
done for FS-lattices. It is not hard to see that this leads to a full symmetric monoidal
closed subcategory of continuous Scott-domains in BC. One may transfer our maximality
results & la Theorems 4.2, 5.5, and 7.5; yet we can only define leanness indirectly by
stipulating that a bounded complete continuous domain A be “lean” if (A —02) —0 2 is
lean in the sense we defined earlier. The Scott-domains obtained in this fashion were first
introduced in (Huth 1994). As for distributivity, the domains A for which (4 —o 2) —0 2
is a completely distributive algebraic lattice are exactly Glynn Winskel’s prime-algebraic
domains (Winskel 1988; Huth 1995b).

9. Related and future work

In (Huth and Mislove 1994) one finds another, rather astonishing, external characteri-
zation of FS-lattices. Since the inclusion of (A —o B) into [A — B] is linear, it has an
upper adjoint, which is just the restriction of m ~ m to [A — B] as a domain of defini-
tion in Lemma 5.1. If A equals B and is continuous, then A is an FS-lattice (completely
distributive) if, and only if, this upper adjoint is Scott-continuous (linear).

In (Heckmann and Huth 1998a; Heckmann and Huth 1998b) one finds a duality theory
with which one can show that the more general continuous function space [X — B] for a
sober space X is an FS-lattice (completely distributive) if, and only if, X is a continuous
space — essentially a continuous domain — and B an FS-lattice (completely distributive)
(Heckmann et al. 1999).

Elements in bicontinuous lattices are infima of A-irreducible elements and suprema of
V-irreducible elements. Since these elements determine the fine-structure of such lattices,
it is desirable to know whether such elements have descriptions that reflect the type
constructors, such as [_— ] and (_ —o _), in adequate ways for FS-lattices. While one
can use the natural isomorphism (HA — B) = [A — B] to arrive at such notions for
the space [A — BJ, no identifications of such elements in (A — B) have yet been made
if neither A nor B are distributive. The difficulty in obtaining a characterization, say,
of V-irreducible elements in (A —o B) is linked to the open problems mentioned in this

paper.
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