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Abstract

Quasicontinuity is a generalisation of Scott’s notion of continuous
domain, introduced in the early 80s by Gierz, Lawson and Stralka.
In this paper we ask which cartesian closed full subcategories exist
in qCONT, the category of all quasicontinuous domains and Scott-
continuous functions. The surprising, and perhaps disappointing, an-
swer turns out to be that all such subcategories consist entirely of
continuous domains. In other words, there are no new cartesian closed
full subcategories in qCONT beyond those already known to exist
in CONT.

To prove this, we reduce the notion of meet-continuity for dcpos to
one which only involves well-ordered chains. This allows us to char-
acterise meet-continuity by “forbidden substructures”. We then show
that each forbidden substructure has a non-quasicontinuous function
space.
Keywords: cartesian closed category; quasicontinuous domain; meet-
continuity; meet∗-continuity

1 Introduction

Domain theory was introduced by Dana Scott in the late sixties as a math-
ematical universe within which to define the semantics of programming lan-
guages. In this programme, one seeks to identify the precise properties of
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domains that correspond to the language features of interest. Early on it
became clear that the ability to define higher-order functions in program-
ming has its counterpart in the formation of function spaces, more precisely,
in the requirement that a category of domains be cartesian closed. In 1980,
[17] Nasser Saheb-Djahromi considered programs with a probabilistic choice
operator and in order to accommodate this in the semantics, introduced the
probabilistic powerdomain construction. This was studied more deeply by
Claire Jones and Gordon Plotkin, [9, 8], towards the end of that decade and it
was shown that the behaviour of the probabilistic powerdomain construction
is much more easily understood in the context of continuous domains. This
confirmed the experience gained before, namely, that continuous domains
allow one to say much more about the workings of domain constructions
and their relationship with program constructs. In a nutshell, one can say
that the nice properties of continuous domains result from the fact that they
are completions of finitary structures.

However, while it is advantageous to have continuous domains as inputs
to domain constructions, it is not always guaranteed that one obtains them
in the output, too. The most prominent construction which causes a com-
plication is the function space: given two continuous domains D and E, the
space [D → E] of Scott-continuous functions may not itself be continuous.
For a detailed discussion of this phenomenon, see [10]. One way to overcome
this problem is to restrict continuous domains even further and this indeed
leads to various cartesian closed categories, such as the continuous Scott
domains, RB-domains ([12]) and FS-domains ([11]). However, it remains an
open problem to find such a category that is simultaneously closed under
the probabilistic powerdomain construction.

In light of these difficulties, it is natural to ask whether the condition
of continuity can be relaxed, which would allow us to cast our net wider.
A natural candidate for a more liberal notion of approximation is that of
quasicontinuity, a concept which was introduced in the early eighties by Ger-
hard Gierz, Jimmie Lawson and Albert Stralka, [3], as a generalization of
classical continuous domains. Indeed, Jean Goubault-Larrecq, [4], was able
to show that the category of QRB-domains (a special class of quasicontin-
uous domains) is closed under the probabilistic powerdomain construction,
adding to what is a very small set of such closure results. This led many
researchers to re-examine quasicontinuous domains [4, 5, 6, 14, 15, 19] and
many pleasing properties were established. For example, it was proved by
Goubault-Larrecq and the second author, [5], and independently by Jim-
mie Lawson and Xiaoyong Xi, [14], that QFS-domains and QRB-domains
are the same class and that they can be characterised as being precisely
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the Lawson-compact quasicontinuous domains, while, in the classical case,
whether FS-domains and RB-domains are the same is one of the oldest and
best-known open problems in domain theory.

However, unlike FS-domains or RB-domains, the category of QFS-domains
(equivalently, QRB-domains) with Scott-continuous functions as morphisms
is not cartesian closed (see Remark 3.9). This raises the question whether
there are any new cartesian closed categories consisting of quasicontinuous
domains at all. In this paper we show that this is not the case.

A note on provenance. The origin of the ideas for the present paper
lies in the paper [19] published in Chinese by Haoran Zhao and Hui Kou.
During 2014, the same two authors went on to show that a cartesian closed
category of countably based quasicontinuous domains must consist of con-
tinuous domains entirely. Shortly afterwards and independently, the other
three authors of the present paper also considered [19] and came up with
the same result about ccc’s of countably based quasicontinuous domains.
They continued their investigation with the aim of removing the countabil-
ity assumption and as we report below this was eventually successful. The
parallels between the work of the two teams was discovered during the re-
viewing process of our respective journal submissions and we are grateful to
our editor, Michael Mislove, for encouraging us to combine our efforts into
a single paper.

2 Preliminaries

We use the standard definitions of domain theory as can be found in [1] or [2].
The following, taken from [2, Section III-3], may be less familiar: One says
that a subset G of a dcpo is way-below a subset H if for every directed
set D, supD ∈ ↑H implies d ∈ ↑G for some d ∈ D. This generalises the
usual way-below relation between elements which justifies writing G � H
for it. If H consists of a single element x then one writes G� x instead of
G� {x}. Consistent with this we define an order between subsets G,H by
G ≤ H ⇔ ↑H ⊆ ↑G. This implies that a family F of subsets is directed if
the corresponding family {↑G | G ∈ F} is a filter base.

Definition 2.1. A dcpo L is called quasicontinuous (or a quasicontinuous
domain) if for each x ∈ L the family

fin(x) = {F | F is finite, F � x}

3



is a directed family, and whenever x � y, then there exists F ∈ fin(x) with
y /∈ ↑F , i.e., ↑x =

⋂
{↑F | F ∈ fin(x)}.

The following key fact relies on the Axiom of Choice via Rudin’s Lemma:

Proposition 2.2. [2, Proposition III-3.4] Let F be a directed family of non-
empty finite sets in a dcpo. If G � H and

⋂
{↑F | F ∈ F} ⊆ ↑H, then

F ⊆ ↑G for some F ∈ F .

We use this to prove the following convenient criterion for quasicontinu-
ity:

Proposition 2.3. A dcpo L is quasicontinuous, if for every x ∈ L the family
fin(x) contains a directed subfamily G such that ↑x =

⋂
{↑G | G ∈ G}.

Proof. We only need to prove that the family fin(x) is directed. For F,H ∈
fin(x), since F,H � x and

⋂
{↑G | G ∈ G} = ↑x, by Proposition 2.2, there

exist G1, G2 ∈ G such that G1 ⊆ ↑F and G2 ⊆ ↑H. Then some G ∈ G is
included in ↑F ∩ ↑H since G is directed.

Proposition 2.4. [2, Proposition III-3.6] Let P be a quasicontinuous do-
main. A subset U of P is Scott open iff for each x ∈ U there exists a finite
F � x such that ↑F ⊆ U . The sets ↑↑F = {x | F � x} are Scott open and
they form a basis for the Scott topology.

Quasicontinuity is preserved by Scott-continuous retractions:

Proposition 2.5. Let f be a Scott-continuous retraction from a quasicon-
tinuous domain L to a dcpo M . Then M is quasicontinuous.

Proof. Since f is a Scott-continuous retraction, then by definition there
exists a Scott-continuous function g from M to L such that f ◦g = idM . For
every x ∈ M and finite set F � g(x), we claim that f(F )� x. Indeed, let
D be a directed set of M with x ≤ supD; then g(x) ≤ g(supD) = sup g(D)
and we obtain an element d ∈ D such that g(d) ∈ ↑F because F � g(x).
So we get d = f(g(d)) ∈ f(↑F ) ⊆ ↑f(F ), and the claim is true.

Given x, y ∈ M with x � y, then x = f(g(x)) ∈ M \ ↓y and we get
g(x) ∈ f−1(M \ ↓y). Since L is quasicontinuous and f−1(M \ ↓y) is Scott
open, we get from the preceding proposition that there exists G ∈ fin(g(x))
such that G ⊆ f−1(M \ ↓y). This means that f(G) ⊆M \ ↓y or y /∈ ↑f(G).
By the claim above we know that f(G) � x, that is, f(G) ∈ fin(x). So for
every x ∈M , we have ↑x =

⋂
{↑f(G) | G ∈ fin(g(x))}.

Finally, we note that the family {f(G) | G ∈ fin(g(x))} is directed
because fin(g(x)) is and f preserves the order. Proposition 2.3 now allows
us to conclude that M is quasicontinuous.
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Recall that a well-ordered set is a poset where every non-empty subset
has a least element. Every well-ordered set is a chain and in fact order-
isomorphic to an ordinal. In accordance with the theory of ordinal numbers
we write c+ 1 to denote the least element of {x ∈ C | c < x}, provided this
set is not empty. Note that every element of the form c + 1 is compact in
the sense of domain theory. Moreover we have the following:

Proposition 2.6. Every well-ordered set C with a top element > is an
algebraic lattice, and every compact element of it is equal to the least element
or of the form c+ 1 for some c ∈ C \ {>}.

Proof. Let C be a well-ordered chain with top element > and least ele-
ment ⊥. By well-orderedness, C has infima for non-empty subsets and since
we assume a top element, it follows that C is a complete lattice. For every
non-compact element a one has a = sup{x ∈ C | x < a} ≤ sup{x + 1 | x ∈
C, x < a} ≤ a, so every element in C is the supremum of compact elements
below it. Thus, C is an algebraic lattice.

If k ∈ C \ {⊥} is compact, then the set {x ∈ C | x < k} is non-empty
and its supremum s strictly smaller than k. It is now easy to verify that
k = s+ 1.

We will be concerned with well-ordered chains that are subsets of dcpos.
We say that such a chain C is limit embedded in the dcpo L, if whenever
x = supD in C, for D a non-empty subset of C, then x is also the supremum
of D considered as a subset of L. (Equivalently, we could stipulate that the
embedding of C into L preserves existing directed suprema.)

Proposition 2.7. 1. The image of a well-ordered set under a monotone
function is well-ordered.

2. Let C be a bounded-complete chain and f : C → L a Scott-continuous
function into a dcpo L. Then the image of f is limit embedded in L.1

Proof. (1) Assume f is a monotone function from a well-ordered set C to a
poset Q and A is a non-empty subset of f(C). Then f−1(A) is a non-empty
subset of C and hence contains a least element a. It is now easy to see that
f(a) is minimal in A.

(2) Let D be a non-empty subset in the image of the Scott-continuous
function f : C → L. If f−1(D) is bounded in C then it has a supremum c
there. Since f−1(D) is automatically directed we can use Scott-continuity

1Note that this is not true for the image of a general dcpo under a Scott-continuous
function.
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of f to conclude that f(c) = supD which shows that the supremum of D
lies in the image of f .

If f−1(D) is unbounded in C then because C is a chain this means that
f−1(D) is cofinal in C. This implies that D is cofinal in f(C) and therefore
if it has a supremum in f(C) then that is the largest element of D and
clearly also the supremum of D in L.

Note that a well-ordered chain is bounded-complete, so the second part
of the preceding proposition applies to the subsets of interest in this paper.

3 Meet∗-continuity

Meet-continuity on dcpos was introduced by Kou, Liu, and Luo in [13]. It
was found that quasicontinuity, meet-continuity, and continuity itself have a
close relationship with each other. In this section, we define a restricted
notion, called meet∗-continuity, and show that it is equivalent to meet-
continuity. By using this new notion, we are able to give a characterisation
of meet-continuous dcpos by “forbidden substructures” and this will prove
essential for our main result.

Definition 3.1. A dcpo L is meet-continuous if for any x ∈ L and any
directed set D ⊆ L with x ≤ supD, x is in the Scott closure of ↓x ∩ ↓D.

Proposition 3.2. [2, Proposition III-3.10] A continuous dcpo is also quasi-
continuous, and a meet-continuous quasicontinuous dcpo is already contin-
uous.

Definition 3.3. A dcpo L is meet∗-continuous if for any x ∈ L and any
well-ordered chain C limit embedded in L, x ≤ supC implies that x is in
the Scott closure of ↓x ∩ ↓C.

Although seemingly weaker than meet-continuity, we will now show that
meet∗-continuity is in fact sufficient to establish the former. To this end
we recall Iwamura’s decomposition of directed sets, [7], as presented by
Markowsky:

Theorem 3.4. [16, Theorem 1] If D is an infinite directed set, then there
exists a transfinite sequence Dα, α < |D|, of directed subsets of D having
the following properties:

1. for each α, if α is finite, so is Dα, while if α is infinite |Dα| = |α|
(thus for all α, |Dα| < |D|);
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2. if α < β < |D|, Dα ⊂ Dβ;

3. if β < |D| is a limit ordinal, then Dβ =
⋃
{Dα | α < β}2;

4. D =
⋃
{Dα | α < |D|}.

Remark 3.5. Parts (2) and (3) imply that the mapping |D| → PD, α 7→ Dα

preserves existing suprema (where we consider the powerset PD as a poset
ordered by subset inclusion). Thus the assumptions of Proposition 2.7(2) are
satisfied and we may conclude that the chain {Dα | α < |D|} is well-ordered
and limit embedded in PD.

Theorem 3.6. A dcpo L is meet-continuous if and only if it is meet∗-
continuous.

Proof. It is trivial that meet-continuity implies meet∗-continuity. Conversely,
if L is meet∗-continuous, we use transfinite induction on the cardinality of
the directed set D in the definition of meet-continuity.

If D is finite, and x ≤ supD, then D has a greatest element and the fact
that x is in the Scott closure of ↓x ∩ ↓D is obvious.

Now suppose D is infinite and that y is in the Scott closure of ↓y ∩ ↓G
for any y ∈ L and any directed set G with cardinality smaller than |D|
and y ≤ supG. By Theorem 3.4 D is the union of a chain C = (Dα)α<|D|
of directed subsets of D, each of which has smaller cardinality than D.
The chain (supDα)α<|D| of elements of L is well-ordered because it is a
monotone image of the cardinal |D|. It is also limit embedded because of
Remark 3.5 above and the fact that the supremum operation (from the set
of directed subsets of D, ordered by inclusion, to L) is Scott-continuous.
Now, if x ≤ supD = sup{supDα | α < |D|}, then x is in the Scott closure
of ↓x ∩ ↓{supDα | α < |D|} since L is meet∗-continuous. For every Scott
open set U , if x ∈ U , then U ∩ ↓x ∩ ↓{supDα | α < |D|} 6= ∅, which means
that there exists y ∈ U such that y ≤ x and y ≤ supDα for some α < |D|.
By the induction hypothesis, y is in the Scott closure of ↓y ∩ ↓Dα, whence
U ∩↓y ∩↓Dα 6= ∅ and therefore U ∩↓x∩↓D 6= ∅, so x is indeed in the Scott
closure of ↓x ∩ ↓D.

Corollary 3.7. For a dcpo L which has binary infima, the following state-
ments are equivalent:

1. L is meet-continuous (in the sense of Definition 3.1);

2This is not stated in [16, Theorem 1] but appears in the proof.
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Figure 1: M(N)⊥

2. for every x ∈ L and every directed subset D of L, x ∧ sup{d | d ∈
D} = sup{x ∧ d | d ∈ D};

3. for every x ∈ L and every well-ordered chain C limit embedded in L,
x ∧ sup{c | c ∈ C} = sup{x ∧ c | c ∈ C}.

Proof. The equivalence between (1) and (2) was shown in [13, Proposition
2.2]. The fact that (2) implies (3) is trivial. To prove (3) implies (1), from
the preceding theorem one only needs to show that L is meet∗-continuous.
So suppose x ∈ L, C is a well-ordered chain and x ≤ supC. From (3) one
has sup{x ∧ c | c ∈ C} = x ∧ sup{c | c ∈ C} = x which shows that x is in
the Scott closure of {x∧ c | c ∈ C}. To conclude the proof it suffices to note
that {x ∧ c | c ∈ C} ⊆ ↓x ∩ ↓C.

We give a general construction of non-continuous quasicontinuous dcpos
of a special form:

Definition 3.8. For every well-ordered chain C without a top element, we
define the poset M(C) = C ∪ {>, a}, where a and > are not in C and the
order on M(C) is: x ≤ y iff x = y = a or y = > or x, y ∈ C, x ≤ y in
C. Define M(C)⊥ to be the lifting of M(C) by adding a least element ⊥.
Figure 1 shows M(N)⊥ (where N is the ordered chain of natural numbers).

Remark 3.9. It is easy to show that M(N)⊥ is a QFS-domain in the sense
of [5, 14, 15]. In [19] it was shown that the function space [M(N)⊥→M(N)⊥]
is not quasicontinuous, which implies that the category of QFS-domains is
not cartesian closed. As we explained at the end of the Introduction, this
result provided much of the inspiration for the current paper.
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We come to our characterisation of meet-continuous dcpos:

Theorem 3.10. Let L be a dcpo which is not meet-continuous. Then L has
some M(C) or M(C)⊥ (as defined in 3.8) as a Scott-continuous retract,
where C is a well-ordered chain without a top element.

Proof. Let L be a dcpo which is not meet-continuous. By Theorem 3.6 this
means that it is not meet∗-continuous either, and so there exist an element a
and a well-ordered chain C ′ (limit embedded into L) such that a < supC ′,
but a is not in ↓a ∩ ↓C ′, the Scott closure of ↓a ∩ ↓C ′. Obviously, for every
c ∈ C ′, a � c and therefore C ′ does not have a top element. Moreover, we
can make every c ∈ C ′ incomparable to a by throwing away those elements
of C ′ that are below a.

We now distinguish two cases:
Case 1, ↓a ∩ ↓C ′ 6= ∅: Then there exist b ∈ L and c ∈ C ′ such that

b ∈ ↓a ∩ ↓c. Let C be the set C ′ \ ↓c and denote the set C ∪ {supC ′, a, b}
by M and order it by the induced order from L. Obviously, supC ′ = supC
and M is isomorphic to M(C)⊥. Define a function f from L to M :

f(x) =


b, x ∈ ↓a ∩ ↓C
a, x ∈ ↓a \ ↓a ∩ ↓C∧
{c | x ≤ c, c ∈ C}, x ∈ ↓C \ ↓a

supC, x /∈ ↓C

Since C is well-ordered, f is well-defined. We first prove that f is monotone,
so let x, y ∈ L with x ≤ y.
In case y ∈ ↓a ∩ ↓C, x is in ↓a ∩ ↓C since ↓a ∩ ↓C is a lower set, and we see
that f(x) = f(y) = b.
In case y ∈ ↓a\↓a ∩ ↓C, since x ≤ y, x must be in ↓a\↓a ∩ ↓C or in ↓a ∩ ↓C,
and in both cases f(x) ≤ f(y).
In case y /∈ ↓a, if {c | y ≤ c, c ∈ C} = ∅, then f(y) = supC ≥ f(x).
For {c | y ≤ c, c ∈ C} 6= ∅, if x ∈ ↓a, then x ∈ ↓a ∩ ↓y ⊆ ↓a ∩ ↓C, and
f(x) = b ≤ f(y). Otherwise x /∈ ↓a and f(x) ≤ f(y) follows immediately
from the fact that {c | y ≤ c, c ∈ C} ⊆ {c | x ≤ c, c ∈ C}.
This covers all possible cases and we have established that f is monotone.
Now we show Scott continuity. To this end let D be a directed set in L.
In case f(supD) = b, for every x ∈ D, b ≤ f(x) ≤ f(supD) = b since f is
monotone, so f(supD) = sup f(D) = b.
In case f(supD) = a, then supD ≤ a and supD /∈ ↓a ∩ ↓C. Since
↓a ∩ ↓C is Scott closed and D is directed, there exists some x ∈ D such
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that x ∈ ↓a \ ↓a ∩ ↓C, so a = f(x) ≤ sup f(D) ≤ f(supD) = a.
In case f(supD) = supC we have that supD � a and for every c ∈
C, supD � c. So given c ∈ C there exist x1, x2 ∈ D such that x1 � a
and x2 � c, and by the directness of D there is some x ∈ D greater than
x1, x2. For this element it holds that x � a, x � c, and f(x) > c. So for
every c ∈ C there is some x ∈ D such that f(x) > c which shows that
sup f(D) must equal supC.
The same deduction shows f(supD) = sup f(D) for the case f(supD) ∈ C.
Note though, that it is here where we need that the well-ordered chain C is
limit embedded in L.
This covers all cases to be considered and we conclude that f is a Scott-
continuous function from L to L. Inspecting the definition we see that the
elements of M are fixed under f . Hence M is a Scott-continuous retract
of L.

Case 2, ↓a ∩ ↓C ′ = ∅: In this case let C = C ′ and N be the set C ∪
{supC, a} with its order inherited from L. Obviously, N is isomorphic
to M(C). Define a function g from L to N :

g(x) =


a, x ∈ ↓a∧
{c | x ≤ c, c ∈ C}, x ∈ ↓C \ ↓a

supC, x /∈ ↓C

The same deduction as in (1) shows that g is a Scott-continuous idempotent
function on L with image N .

4 Function spaces

The following is a generalisation of a result in [19].

Proposition 4.1. Let C be an infinite well-ordered chain without a top ele-
ment. Then neither the function space [M(C)⊥→M(C)⊥] nor [M(C)→M(C)]
is quasicontinuous.

Proof. We begin with D⊥ := [M(C)⊥→M(C)⊥] and assume for the sake
of a contradiction that it is quasicontinuous. Consider the function a⇒⊥
that maps the element a to ⊥ and keeps everything else fixed. It is clearly
strictly less than the identity on M(C)⊥. By quasicontinuity this implies
that we should have a finite subset F of D⊥ such that F � idM(C)⊥ and
a⇒⊥ 6∈ ↑F . Consider F ′ := {f ∈ F | f ≤ idM(C)⊥}. Clearly, F ′ is not
empty (since idM(C)⊥ ∈ ↑F ), and for each f ∈ F ′ we must have f(a) = a
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Figure 2: The situation in the proof of Proposition 4.1

as otherwise we would have f ≤ a⇒⊥. Now > can only be mapped to a
or to itself by such an f . In the former case, some c ∈ C would also have
to be mapped to a to ensure continuity but this would violate the condition
f ≤ idM(C)⊥ ; so f(>) = > is the only possibility that remains. In other
words, each such f continuously maps the infinite well-ordered chain C∪{>}
into itself, keeping both ⊥ and > fixed. We now show that such functions
do not “isolate” idM(C)⊥ against directed suprema from below. (For the
argument that follows it may be useful to keep Figure 2 in mind.)

Consider the function g : M(C)⊥ →M(C)⊥ defined by g(x) = min{f(x) |
f ∈ F ′}. It is Scott-continuous because the chain C ∪ {>} is an algebraic
lattice as we argued in Proposition 2.6, and hence meet-continuous. Fur-
thermore, consider h : M(C)⊥ → M(C)⊥ defined on a and the compact
elements of C ∪ {>} by

h(x) =


a, x = a

⊥, x = ⊥
g(c), x = c+ 1

It follows that g and h agree for limit ordinals, but there are also many
inputs where h is strictly less than g; more precisely, for any e ∈ C, there
exists a d ∈ C, d ≥ e such that h(d + 1) < g(d + 1). Indeed, suppose there
exists some e ∈ C such that h(d + 1) = g(d + 1) for all d ≥ e. Because
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h(d + 1) = g(d), it then follows that g(d) = g(d + 1) when d ≥ e. Using
transfinite induction and the fact that g is Scott-continuous, we get that
g(x) = g(y) for all x, y ≥ e. In particular, we obtain g(e) = g(>) = >.
However, g is below idM(C)⊥ and this implies > = g(e) ≤ e, which is not
possible since C does not have a top element.

From h(>) = > and Scott-continuity we get that for any c ∈ C, there
exists m > c such that h(m) > c. Define m(c) be the least element of {m ∈
C | h(m) > c}. We use this to define a family K of functions kc : M(C)⊥ →
M(C)⊥ indexed by the elements of C and defined by

kc(x) =


x, x ≤ c
c, c < x ≤ m(c)

h(x), otherwise

It is clear that each kc is Scott-continuous as it is pieced together from
Scott-continuous functions on Scott-closed subsets. It is also clear that the
supremum of K is the identity on M(C)⊥, but unfortunately, K may not
be directed.3 This is only a small hindrance, however, because M(C)⊥ is a
complete lattice and we can enrich K with all finite suprema. This, then,
yields a directed set with supremum idM(C)⊥ no member of which is above g
and therefore not above an element of F ′. Since all of this takes place
in ↓idM(C)⊥ , none of them exceeds any of the other members of F either.
Thus we have given a counterexample to the claim that F � idM(C)⊥ and
this contradiction shows that the assumption that the function space D⊥ is
quasicontinuous must have been wrong.

The argument for D := [M(C) → M(C)] is similar but easier because
any order-preserving function below idM(C) must map a to a and > to >.

Theorem 4.2. Let L be a dcpo which is not meet-continuous. Then the
function space [L→ L] is not quasicontinuous.

Proof. By Theorem 3.10 we know that Lmust have someM(C) orM(C)⊥ as
a Scott-continuous retract. So either the function space [M(C)→M(C)] or
[M(C)⊥→M(C)⊥] is a retract of [L→ L] (see for example [10, Proposition
1.22]), both of which we know from the preceding proposition not to be
quasicontinuous. Proposition 2.5 now tells us that [L → L] itself is not
quasicontinuous.

3One can avoid this problem by changing the second clause in the definition of kc to
kc(x) = c if c < x < m(c), but one then has to argue that the resulting function is
Scott-continuous.
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We come to the main result of our paper:

Theorem 4.3. Let qCONT be the category of quasicontinuous domains
with Scott-continuous functions as morphisms and C a cartesian closed full
subcategory of qCONT. Then every object in C is continuous.

Proof. Assume L is a quasicontinuous domain in C which is not continuous.
By Proposition 3.2 L is not meet-continuous, so by the preceding theorem its
function space is not quasicontinuous, so can’t be an object of C. However,
it was shown in [18] that the function space is the exponential object in any
cartesian closed full subcategory of DCPO. This contradiction shows that
L must be continuous.

The maximal cartesian closed full subcategories of the category CONT
of continuous domains were fully classified by the second author in [10, 11].
In the pointed case, they consist of continuous L-domains or FS-domains. If
no bottom element is present, then the objects are either disjoint unions of
their pointed counterpart or finite gluings. In the countably based case, only
(finite gluings of) FS-domains remain. The preceding theorem can be read
as saying that these are also the maximal cartesian closed full subcategories
of qCONT.
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