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Abstract

In this note, we prove that a well-filtered dcpo L is coherent in its Scott topology if and only if
for every x, y ∈ L, ↑x ∩ ↑y is compact in the Scott topology. We use this result to prove that
a well-filtered dcpo L is Lawson-compact if and only if it is patch-compact if and only if L is
finitely generated and ↑x ∩ ↑y is compact in the Scott topology for every x, y ∈ L.
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1. Introduction

In this paper, we investigate the coherence with respect to the Scott topology on directed-
complete partial ordered sets (dcpo’s for short). Coherence, which states that the intersection of
any two compact saturated sets is again compact, is an important property in domain theory [1, 3].
For instance, coherence is equivalent to Lawson compactness on pointed continuous domains [5].
This equivalence enabled the second author to characterise the Lawson compactness of continuous
domains by the so-called “property M”, and use this element-level characterization to classify the
category of continuous domains with respect to the cartesian closedness [5, 6].

In [9, 8], the equivalence between coherence and Lawson compactness was generalised to
quasicontinuous domains. In Chapter 3 of [3], one even sees that on finitely generated quasicon-
tinuous domains the compactness of ↑x ∩ ↑y for any x, y ∈ L, which seems much weaker than
what coherence requires, already implies the Lawson compactness of L. In this note, we greatly
generalize this result to well-filtered dcpos. Indeed, since every quasicontinuous domain is locally
finitary compact and sober (see for example, [4]), our proof drops the locally finitary compact
property and only uses well-filteredness, which is even strictly weaker than sobriety [7].

2. Preliminaries

We refer to [1, 3] for the standard definitions and notations of order theory and domain theory,
and to [4] for topology.
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A topological space is called well-filtered if, whenever an open set U contains a filtered in-
tersection

∩
i∈I Qi of compact saturated subsets, then U contains Qi for some i ∈ I. Any sober

space is well-filtered (see [3, Theorem II-1.21]). We take coherence of a topological space to mean
that the intersection of any two compact saturated subsets is compact. A stably compact space
is a topological space which is compact, locally compact, well-filtered and coherent. We call a
dcpo L well-filtered (respectively, compact, sober, coherent, locally compact, stably compact) if
L with its Scott topology σ(L) is a well-filtered (respectively, compact, sober, coherent, locally
compact, stably compact) space. Without further reference, we always equip L with the Scott
topology σ(L). Finally, a dcpo L is said to be core-compact if its Scott topology σ(L) is a
continuous lattice in the inclusion order.

For a topological space X, we denote the set of all compact saturated sets of X by Q(X). We
consider the upper Vietoris topology v on Q(X), generated by the sets

□U = {K ∈ Q(X) | K ⊆ U},

where U ranges over the open subsets of X. We use Qv(X) to denote the resulting topological
space. For a dcpo L, we use Qv(L) to denote Qv((L, σ(L))).

3. Main results

Lemma 3.1. Let L be a well-filtered dcpo. Then L is coherent if and only if ↑x ∩ ↑y is compact
for all x, y ∈ L.

Proof. If L is coherent, it is obvious that ↑x ∩ ↑y is compact for all x, y ∈ L, since ↑x, ↑y are
compact saturated.

For the reverse, suppose ↑x∩↑y is compact for all x, y ∈ L. We proceed to prove that for any
compact saturated sets A,B ⊆ L, A ∩ B is compact in L. To this end, fix some element a ∈ L;
we define a function f from L to Qv(L) by sending an element x to the compact saturated
set ↑x ∩ ↑a. We claim that f is continuous. Indeed, for every Scott open subset U ⊆ L,
f−1(□U) = {x | ↑x ∩ ↑a ⊆ U} is obviously an upper set. Let D ⊆ L be a directed subset with
supD ∈ f−1(□U), then one has ↑(supD) ∩ ↑a ⊆ U , that is,

∩
d∈D(↑d ∩ ↑a) ⊆ U . Note that L is

well-filtered and {↑d ∩ ↑a | d ∈ D} is a filtered family of compact saturated sets by assumption,
so we have some d ∈ D such that ↑d ∩ ↑a ⊆ U , i. e., d ∈ f−1(□U). Hence f is continuous.

Since f is continuous, for the given compact saturated subset A ⊆ L, f(A) = {↑x∩↑a | x ∈ A}
is a compact subset of Qv(L). We now claim that the union of f(A), which is just A ∩ ↑a, is
compact in L. Indeed, for any compact subset C of Qv(L), let {Uα} be a directed family of
open sets of L covering

∪
C. By compactness, every element K of C is already covered by one

Uα; in other words, K ∈ □Uα. It follows that {□Uα} is a directed family covering C, and now
the compactness of C tells us that C ⊆ □Uα for some α. Hence

∪
C ⊆ Uα for this α. (This

argument is similar to the one employed by Andrea Schalk in [10, Chapter 7] for showing that∪
: Qv(Qv(X)) → Qv(X) is well-defined.)

Now for such A the above argument enables us to define another function g from L to Qv(L)
as: g(x) = ↑x ∩ A for every x ∈ L. A similar deduction shows that g is continuous. So for the
compact saturated subset B of L, g(B) is compact in Qv(L), and again the union of g(B), which
is A ∩B, is compact in L. So L is coherent.
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Corollary 3.2. Every well-filtered complete lattice L is coherent.

Proof. For every x, y ∈ L the intersection of ↑x and ↑y, which is ↑(x ∨ y), is always compact, so
the statement follows from Lemma 3.1.

The following fact about core-compact complete lattices is essentially due to G. Gierz and
K.H. Hofmann [2]; we collect it here as a corollary to the previous result.

Corollary 3.3. For a complete lattice L, the following statements are equivalent:

1. L is core-compact, i. e., σ(L) is a continuous lattice;

2. (L, σ(L)) is stably compact.

Proof. The only interesting part is that 1 implies 2. Suppose L is a complete lattice and σ(L)
is continuous, then (L, σ(L)) is a locally compact sober space by [3, PropositionVII-4.1]. Since
sober spaces are well-filtered, L is coherent by Corollary 3.2. Finally, L is obviously compact in
its Scott topology since it has a least element.

We now come to a characterization of the compactness of Lawson and patch topologies on L.
Recall that the patch topology on L arises by taking all Scott closed sets together with all
compact saturated sets as a subbasis for the closed sets; whereas the (coarser) Lawson topology
is generated by the Scott closed subsets and principal upper sets ↑x. The following theorem is a
generalization of [3, Theorem III-5.8] which is stated for quasicontinuous domains.

Theorem 3.4. Let L be a well-filtered dcpo. Then the following statements are equivalent:

1. L is patch-compact, i. e., L is compact in the patch topology;

2. L is Lawson-compact;

3. L is compact and ↑x ∩ ↑y is compact for every x, y ∈ L;

4. L is finitely generated and ↑x ∩ ↑y is compact for every x, y ∈ L;

5. L is finitely generated and coherent.

Proof. (1⇒2): That 1 implies 2 is true for all dcpos since the patch topology is finer than the
Lawson topology.
(2⇒3): It is obvious that L is compact since the Lawson topology is finer than the Scott topology.
For every x, y ∈ L, ↑x∩↑y is Lawson closed; therefore it is Lawson-compact, thus Scott compact.
(3⇒4): Since L is compact, by the Hausdorff Maximality Principle, every element is above some
minimal element of L. Denote the set of all minimal elements of L by M ; M must be finite.
Otherwise, the family {M\F | F ⊆fin M} is a filtered set of non-empty Scott closed sets with an
empty intersection, which contradicts compactness.
(4⇒5): This is from Lemma 3.1.
(5⇒1): This is a straightforward consequence of [3, Lemma VI-6.5]1.
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1This lemma works for sober dcpos in [3]. However, one can find that its proof only uses well-filteredness.

3



References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Semantic Structures, volume 3 of Handbook of Logic in Computer Science,
pages 1–168. Clarendon Press, 1994.

[2] G. Gierz and K. H. Hofmann. On complete lattices L for which O(L) is continuous – A lattice
theoretical characterisation of CS. Available at http://www.mathematik.tu-darmstadt.
de/~keimel/SCS/scs34.pdf, August 1977.

[3] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continu-
ous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2003.

[4] J. Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory, volume 22 of New Math-
ematical Monographs. Cambridge University Press, 2013.

[5] A. Jung. Cartesian Closed Categories of Domains, volume 66 of CWI Tracts. Centrum voor
Wiskunde en Informatica, Amsterdam, 1989. 107 pp.

[6] A. Jung. The classification of continuous domains. In Proceedings, Fifth Annual IEEE
Symposium on Logic in Computer Science, pages 35–40. IEEE Computer Society Press,
1990.

[7] Hui Kou. Uk-admitting dcpo’s need not be sober. In K. Keimel, G.-Q. Zhang, Y.-M.
Liu, and Y.-X. Chen, editors, Domain and Processes, volume 1 of Semantic Structures in
Computation, pages 41–50. Kluwer Academic Publishers, 2001.

[8] Hui Kou, Ying-Ming Liu, and Mao-Kang Luo. On meet-continuous dcpos. In G. Zhang,
J. Lawson, Y. Liu, and M. Luo, editors, Domain Theory, Logic and Computation, volume 3
of Semantic Structures in Computation, pages 117–135. Springer Netherlands, 2003.

[9] J. Lawson. The upper interval topology, Property M, and compactness. In Abbas Edalat,
Achim Jung, Klaus Keimel, and Marta Kwiatkowska, editors, Comprox III, Third Workshop
on Computation and Approximation, volume 13 of Electronic Notes in Theoretical Computer
Science, pages 158–172. Elsevier Science Publishers, 1998.

[10] A. Schalk. Algebras for Generalized Power Constructions. Doctoral thesis, Technische
Hochschule Darmstadt, 1993. 166 pp.

4

http://www.mathematik.tu-darmstadt.de/~keimel/SCS/scs34.pdf
http://www.mathematik.tu-darmstadt.de/~keimel/SCS/scs34.pdf

	Introduction
	Preliminaries
	Main results
	Acknowledgments

