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Abstract

The second author proved in [7] that each cartesian closed category
of pointed domains and Scott-continuous functions is contained in either
the category of Lawson-compact domains or that of L-domains, and this
result eventually led to a classification of continuous domains with respect
to cartesian closedness, as laid out in [8].

In this paper, we generalise this result to the category LcS of pointed
locally compact sober dcpos and Scott-continuous functions, and show
that any cartesian closed full subcategory of LcS is contained in either
the category of stably compact dcpos or that of L-dcpos. (Note that
for domains Lawson-compactness and stable compactness are equivalent.)
As we will show, this entails that any candidate for solving the Jung-Tix
problem in LcS must be stably compact.

To prove our dichotomy result, we first show that any dcpo with a core-
compact function space must be meet-continuous; then we prove that a
function space in LcS is meet-continuous only if either its input dcpo is
coherent or its output dcpo has complete principal ideals.

1 Introduction

Domain theory was initially introduced by Dana Scott in the late sixties for the
purpose of modelling functional programming languages. In Scott’s framework,
programming languages are modelled by categories of (continuous) domains,
and due to the syntactical structure of functional programming languages, these
categories are required to be cartesian closed. For this very purpose, different
domain structures have been proposed and investigated. Examples are SFP-
domains, Scott-domains, bi-finite domains, RB-domains, et cetera, [2, 12, 10].
Moreover, a systematic study of cartesian closed subcategories of continuous
domains was carried out by the second author, [7, 8]. To wit, one has two
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maximal cartesian closed subcategories of pointed domains, FS-domains and
L-domains. The key ingredient of his proof is a lemma which shows that in the
category of pointed continuous domains a function space is continuous only if
the input domain is Lawson-compact or the output dcpo is an L-domain; then
he showed that the categories of L-domains and FS-domains are cartesian closed
and a dcpo with a pointed Lawson-compact continuous function space itself is
an FS-domain.

In this paper, we will see that a similar but generalised investigation can
be carried out in the category LcS of pointed locally compact sober dcpos and
Scott-continuous functions. More precisely, we show that every cartesian closed
full subcategory of LcS is included in either the category of stably compact
dcpos or that of L-dcpos. To prove this, first of all we derive meet-continuity
and bi-completeness from the core-compactness of function spaces, a result that
illustrates deep interplay between topology and order-theoretic properties. Then
we give characterisations of coherence and L-dcpos, respectively. By using these
new characterisations we show that a function space in LcS is meet-continuous
only if its input dcpo is coherent or the output dcpo has complete principal
ideals. Since the objects of LcS are all compact, locally compact and sober,
coherence implies stable compactness.

2 Preliminaries

We refer to [1, 2] for the standard definitions and notations of order theory and
domain theory, and to [4] for topology.

For a dcpo L, the Scott topology σ(L) on L is given by all the upper subsets
of L that are inaccessible by joins of directed subsets of L. We take coher-
ence of a topological space to mean that the intersection of any two compact
saturated subsets is compact. A stably compact space is a topological space
which is compact, locally compact, sober and coherent. We call a dcpo L stably
compact (respectively, compact, sober, coherent, locally compact) if L with its
Scott topology σ(L) is a stably compact (respectively, compact, sober, coherent,
locally compact) space. Without further reference, we always equip L with the
Scott topology σ(L). Finally, a dcpo L is said to be core-compact if its Scott
topology σ(L) is a continuous lattice in the inclusion order.

A function f :L → M between dcpos L and M is called Scott-continuous
if it preserves sups of directed subsets. It is known that such an f is Scott-
continuous if and only if it is continuous in the topological sense when L and
M are equipped with the Scott topology. We use [L → M ] to denote the set
of all Scott-continuous functions from L to M . Given a compact set K ⊆ L
and a Scott open set U ⊆ L, N(K,U) denotes the set of all Scott-continuous
functions that send K into U . A Scott-continuous map f : L → M is called a
retraction if there exists a Scott-continuous function g from M to L such that
f ◦ g = idM .

The category of stably compact dcpos and Scott-continuous functions will
be denoted by SCS, while that of pointed locally compact sober dcpos and
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Figure 1: M(N)⊥

Scott-continuous functions is denoted by LcS.
Finally, we use standard notations for ordinal numbers. In this paper, we

will make use of both upward and downward well-ordered chains. For an upward
well-ordered chain C and c ∈ C, we use c + 1 to denote the least element of
the set {x ∈ C | c < x}. Note that such elements are always compact in the
sense of domain theory. Thus, C is an algebraic domain if a largest element is
present. On the other hand, every downward well-ordered chain is always an
algebraic domain, because it is a dcpo and every element is compact. Unless we
say otherwise, well-ordered chains are meant to be upward.

3 Core-compactness entails meet-continuity

Following Kou [11], a dcpo L is called meet-continuous if for any x ∈ L and
directed subset D of L with x ≤ supD, x is in ↓x ∩ ↓D, the Scott closure of
↓x∩↓D. It is easy to see that meet-continuity is preserved by Scott-continuous
retractions.

We show in this section that for any dcpo L the core-compactness of its
function space [L → L] entails that L is meet-continuous. To prove this, we
first recall the following theorem from [5] which characterises meet-continuity
via “forbidden substructures” M(C) and M(C)⊥ .

Definition 3.1. For every well-ordered chain C without a top element, we
define the poset M(C) = C ∪{>, a}, where a and > are not in C and the order
on M(C) is: x ≤ y iff x = y = a or y = > or x, y ∈ C, x ≤ y in C. Define
M(C)⊥ to be the lifting of M(C) by adding a least element ⊥. Figure 1 shows
M(N)⊥ (where N is the ordered chain of natural numbers).

Theorem 3.2. [5] Let L be a dcpo which is not meet-continuous. Then L has
someM(C) orM(C)⊥ as a Scott-continuous retract, where C is a well-ordered
chain without a top element.
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The following lemma is useful in identifying core-compactness and local com-
pactness.

Lemma 3.3. Let L be a join-complete poset, that is, the supremum of any non-
empty subset of L exists. If L is core-compact, then L is sober, hence locally
compact.

Proof. The proof is the same as that of [2, Corollary II-4.16] by noticing that a
least element is not actually required in the argument.

Although the following theorem is only needed for locally compact dcpos, we
give the proof for a more general situation. Actually, it was shown in [5] that for
any dcpo L quasicontinuity of the function space [L → L] implies that L must
be meet-continuous. We will see in the following theorem that core-compactness
of [L→ L] suffices to guarantee meet-continuity of L. Since every quasicontin-
uous domain is locally compact, hence core-compact, the following result is a
substantial generalisation of [5, Theorem 4.2]. Although the arguments are very
much alike, in order to keep this paper self-contained, we spell out the proof in
full.

Theorem 3.4. Given a dcpo L, if the function space [L→ L] is core-compact,
then L must be meet-continuous.

Proof. Assume that L is not meet-continuous, then by Theorem 3.2, L has
someM(C) orM(C)⊥ as a Scott-continuous retract, where C is a well-ordered
chain without a top element. So [M(C) → M(C)] or [M(C)⊥ → M(C)⊥] is
a Scott-continuous retract of [L → L] (see for example [7, Proposition 1.22]).
Since core-compactness is preserved by Scott-continuous retractions, we reach
a contradiction by showing that neither [M(C) → M(C)] nor [M(C)⊥ →
M(C)⊥] is core-compact.

To this end, let C be a well-ordered chain without a top element and c0 its
bottom element. We begin with D⊥ := [M(C)⊥→M(C)⊥] and assume for the
sake of a contradiction that it is core-compact. First, one easily sees that D⊥ is
a complete lattice. It then follows from [2, Corollary II-4.16] that D⊥ is sober,
hence locally compact by [2, Theorem V-5.6]. Consider the function a↘⊥ that
maps the element a to ⊥ and keeps everything else fixed. It is clearly strictly
less than the identity on M(C)⊥. By local compactness this implies that we
should have a compact saturated neighbourhood K in D⊥ such that idM(C)⊥

is in the interior of K and a↘⊥ 6∈ K. Let K ′ := {f ∈ K | f ≤ idM(C)⊥}.
Clearly, K ′ is not empty (since idM(C)⊥ ∈ K), and for each f ∈ K ′ we must have
f(a) = a as otherwise we would have f ≤ a↘⊥ and a↘⊥ ∈ K. Now > can
only be mapped to a or to itself by such an f . In the former case, some c ∈ C
would also have to be mapped to a to ensure continuity but this would violate
the condition f ≤ idM(C)⊥ ; so f(>) = > is the only possibility that remains.
In other words, each such f continuously maps the infinite well-ordered chain
C ∪ {⊥,>} into itself, keeping both ⊥ and > fixed.

Note that K ′ is compact since it is the intersection of the compact set K
and the closed set ↓idM(C)⊥ . We now show that K ′ does not “isolate” idM(C)⊥
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Figure 2: The situation in the proof of Theorem 3.4

against directed suprema from below. (For the argument that follows it may be
useful to keep Figure 2 in mind.)

Consider the function g:M(C) → M(C) defined by g(x) = min{f(x) |
f ∈ K ′}. As argued above it is easy to see that g is well-defined and mono-
tone. We now show that it is in fact Scott-continuous. Note that a is fixed
by g. We proceed by showing that g also continuously maps C ∪ {⊥,>} into
C ∪ {⊥,>}. To this end, let x0 ∈ C ∪ {⊥,>} and choose a basic Scott-open
neighbourhood of g(x0) of the form ↑c, where c ∈ C ∪ {⊥}. For every f ∈ K ′,
there is a neighbourhood Uf of x0 and a neighbourhood Vf of f such that
f(x) ∈ ↑c for all (f, x) ∈ Vf ×Uf . This is because M(C)⊥ is core-compact and
by [2, Theorem II-4.10] the evaluation mapping eval (f, x) 7→ f(x): [M(C)⊥ →
M(C)⊥]×M(C)⊥ →M(C)⊥ is continuous 1. By compactness of K ′, a finite
number of the Vf are covering K ′. Let U be the intersection of the correspond-
ing (finitely many) Uf . Then U is a neighbourhood of x0 such that f(x) ∈ ↑c
for all f ∈ K ′ and all x ∈ U . Hence, g(x) ∈ ↑c for all x ∈ U . So we have proved
that g is Scott-continuous.

Now we present a directed set of functions with supremum idM(C)⊥ but none
of them is in K. This will be a contradiction to the assumption that K is a
Scott-neighbourhood of idM(C)⊥ . To this end, consider the Scott-continuous
function h:M(C)→M(C) defined on a and the compact elements of C ∪ {>}

1Note that the Scott topology is finer than the Isbell topology on [M(C)⊥ →M(C)⊥].
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by

h(x) =


⊥, x = ⊥;
a, x = a;
c0, x = c0;
g(c), x = c+ 1.

It follows that g and h agree for limit ordinals and h(>) = g(>) = >, but
there are also many inputs where h is strictly less than g; more precisely, for
any e ∈ C, there exists a d ∈ C, d ≥ e such that h(d + 1) < g(d + 1). Indeed,
suppose there exists some e ∈ C such that h(d + 1) = g(d + 1) for all d ≥ e.
Because h(d + 1) = g(d), it then follows that g(d) = g(d + 1) when d ≥ e.
Using transfinite induction and the fact that g is Scott-continuous, we get that
g(x) = g(y) for all x, y ≥ e. In particular, we obtain g(e) = g(>) = >. However,
g is below idM(C)⊥ and this implies > = g(e) ≤ e, which is not possible since
C does not have a top element.

From h(>) = > and Scott-continuity we get that for any c ∈ C, there exists
m > c such that h(m) > c. Define m(c) to be the least element of {m ∈ C |
h(m) > c}. We use this to define a family K of functions kc:M(C)⊥ →M(C)⊥
indexed by the elements of C and defined by

kc(x) =

 x, x ≤ c;
c, c < x ≤ m(c);
h(x), otherwise.

It is clear that each kc is Scott-continuous as it is pieced together from Scott-
continuous functions on Scott-closed subsets. It is also clear that the supremum
of K is the identity on M(C)⊥, but unfortunately, K may not be directed.
This is only a small hindrance, however, because D⊥ is complete and we can
enrich K with all finite suprema. Notice that for any non-empty finite subset
F ⊆fin C, the supremum supc∈F kc is equal to h on ↑max{m(c) + 1 | c ∈ F},
hence from the last paragraph we know that supc∈F kc cannot be greater than g.
This, then, yields a directed set with supremum idM(C)⊥ no member of which is
above g and therefore not above an element of K ′. Since all of this takes place
in ↓idM(C)⊥ , none of them exceeds any of the other members of K either. Thus
we have given a counterexample to the claim that K is a Scott neighbourhood
of idM(C)⊥ and this contradiction shows that the assumption that the function
space D⊥ is core-compact must have been wrong.

The argument for D := [M(C) → M(C)] is similar but easier because any
order-preserving function below idM(C) must map a to a and > to >. Since D is
join-complete, Lemma 3.3 suffices to bridge the gap between core-compactness
and local compactness in this case.

4 Core-compactness entails bi-completeness

We call a dcpo L bi-complete if every filtered subset of L has an infimum, i.e., its
dual Lop is also a dcpo. The second author proved in [7] that every dcpo that has
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a continuous function space must be bi-complete. In this section, we generalise
this result to core-compact dcpos. First, we give some general constructions of
non bi-complete dcpos.

Definition 4.1. For every downward well-ordered chain C without a bottom
element, we define the poset K(C) = C ∪{a, b}, where a and b are not in C and
the order on K(C) is: x ≤ y iff x = y = a; x = y = b; x ∈ {a, b}, y ∈ C; or
x, y ∈ C, x ≤ y in C. Define K(C)⊥ to be the lifting of K(C) by adding a least
element ⊥. Figure 3 shows K(Nop)⊥ (where N is the ordered chain of natural
numbers).

We now give characterisations of bi-completeness via these concrete order
structures as defined above.

Lemma 4.2. Let L be a sober dcpo. If every minimal element (if they exist)
in L is compact, then the following statements are equivalent:

1. L is not bi-complete;

2. L has some C, K(C) or K(C)⊥ as a Scott-continuous retract, where C is
a downward well-ordered chain without a bottom element.

Proof. The interesting part is that 1 implies 2. Assume that L is not bi-
complete, then we can find some chain C in L such that C does not have an
infimum in L. Let A be the set of lower bounds of C in L. Then A =

⋂
x∈C ↓x

is obviously a Scott-closed subset of L. Moreover, from the proof of [7, Theorem
1.37], this C can be chosen in such a way that it is downward well-ordered, and
to satisfy that C ∪ A (with the induced order from L) is a Scott-continuous
retract of L under the retraction map:

r(x) =

{
x, x ∈ A;∧
{c ∈ C | x ≤ c}, otherwise.
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Figure 4: The situation in the proof of Lemma 4.2

We now distinguish two cases:
Case 1: A is empty. Then clearly C is a Scott-continuous retract of L.
Case 2: A is not empty. In this case we can assume that every element

of A is above some minimal element in A since otherwise, we can find some
descending chain in A without any lower bounds. Since every chain has a well-
ordered cofinal subset, this enables us to find in A a downward well-ordered
chain without any lower bounds as well, and this will lead us to Case 1.
Since A, the set of lower bounds of C, is a Scott-closed non-empty subset and C
does not have an infimum, this means that A has at least two maximal elements,
say a and b. We further consider two subcases:

Subcase 2.1: Every minimal element of A is below exactly one maximal
element in A.
In this subcase, we define a function g on C ∪A as:

g(x) =

 x, x ∈ C;
a, x ∈ ↓a;
b, otherwise.

It is easy to check that g is a Scott-continuous retraction on C ∪A with image
{a, b}∪C, which is isomorphic toK(C). Then g◦r is the wanted Scott-continuous
retraction and {a, b} ∪ C is a retract of L.

Subcase 2.2: There exists some minimal element m ∈ A such that more than
one maximal element of A is above it.

Now we consider set ↑m ∩A, the Scott closure of ↑m ∩ A. ↑m ∩A is Scott
closed in L and has more than one maximal element, so it is not irreducible in the
sober dcpo L. This implies that we have two Scott open subsets U, V of L such
that they intersect with ↑m ∩A respectively, but U ∩ V ∩ ↑m ∩A = ∅ 2. Since

2Note that U and V may intersect in A.
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U, V are Scott open and they intersect with ↑m ∩A, then they also intersect
with ↑m∩A. Fix some points c ∈ U ∩↑m∩A and d ∈ V ∩↑m∩A (see Figure 4).

Now we can see that {C, c, d,m} is a copy of K(C)⊥ inside L. Moreover, we
show it is a Scott-continuous retract of C ∪ A. Indeed, consider the function h
defined on C ∩A as follows:

h(x) =


x, x ∈ C;
c, x ∈ U ∩ ↑m ∩A;
d, x ∈ V ∩ ↑m ∩A;
m, otherwise.

Since in our assumption, the minimal element m is compact, ↑m is Scott open.
Now to check that h is a Scott-continuous retraction is just routine, and in this
subcase, L has K(C)⊥ as a Scott-continuous retract witnessed by h ◦ r.

The following corollaries are straightforward consequences of the previous
lemma.

Corollary 4.3. Let L be a meet-continuous sober dcpo. If L is not bi-complete,
then L has C, K(C) or K(C)⊥ as a Scott-continuous retract, where C is a
downward well-ordered chain without a bottom element.

Proof. Note that in a meet-continuous dcpo, every minimal element (if they
exist) is compact. Then the statement follows from the previous lemma.

Corollary 4.4. Let L be a pointed sober dcpo. If L is not bi-complete, then L
has K(C)⊥ as a Scott-continuous retract, where C is a downward well-ordered
chain without a bottom element. �

Proposition 4.5. For any downward well-ordered chain C without a bottom
element, none of the function spaces [C → C], [K(C) → K(C)] or [K(C)⊥ →
K(C)⊥] is core-compact.

Proof. We first show that [C → C] is not core-compact. Since this function
space is join-complete, by Lemma 3.3, we only need to show that it is not
locally compact. More precisely, we prove that the identity map idC does not
have any compact neighbourhoods. By way of contradiction, suppose that W is
a compact neighbourhood of idC . Then for each x ∈ C, the set {g(x) | g ∈ W}
is compact since the evaluation function eval: [C → C] × C → C is continuous
and {g(x) | g ∈W} is the continuous image of the compact set W × {x} under
eval. Moreover, {g(x) | g ∈W} has a least element since it is compact and C is
a chain.

Consider the function f :C → C defined by f(x) = min{g(x) | g ∈ W}. As
argued above, f is well-defined. Obviously, f is monotone, and Scott-continuous
since every element in C is compact. Since W is a Scott neighbourhood of idC

and W ⊆ ↑f , we have f � idC .
We proceed by showing that f cannot be way-below idC . Consider the

successor function τ on C, defined by τ(c) = c + 1. Remember that C is
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downward well-ordered, so c+ 1 < c. The functions

gc(x) =

{
τ ◦ f(x), x ≤ c;
x, otherwise.

approximate idC but none of them dominates f .
This contradiction shows that W is not a Scott neighbourhood of idC . So

[C → C] is not core-compact.
Note that all of the above also holds in ↓idC , so ↓idC as a dcpo is not core-

compact. Hence [K(C)→ K(C)] is not core-compact since its Scott-continuous
retract ↓idK(C), which is isomorphic to ↓idC , is not core-compact.

Finally, we prove [K(C)⊥ → K(C)⊥] is not core-compact by showing that its
principal ideal ↓idK(C)⊥ is not core-compact. To this end, consider the set A :=
{f ∈ ↓idK(C)⊥ | f(a) = a & f(b) = b}. One easily sees that A is Scott open
in ↓idK(C)⊥ and A is isomorphic to ↓idC . So A is not core-compact. Hence
↓idK(C)⊥ is not core-compact, since in a core-compact dcpo every Scott open
set is a core-compact dcpo in the induced order.

We arrive at our main result in this section.

Theorem 4.6. Let L be a sober dcpo with a core-compact function space [L→
L]. Then L is bi-complete.

Proof. Suppose that L is not bi-complete. Since [L → L] is core-compact, L
must be meet-continuous from Lemma 3.4. By Corollary 4.3, L has C, K(C) or
K(C)⊥ as a Scott-continuous retract, where C is some downward well-ordered
chain without a bottom element. Hence either [C → C], [K(C) → K(C)] or
[K(C)⊥ → K(C)⊥] is a Scott continuous retract of [L → L]. This implies that
one of these function spaces must be core-compact. However, this cannot be
true as we see in Proposition 4.5 that none of them is core-compact.

5 L-dcpos

In [7], the category of L-domains was introduced as one of the maximal cartesian
closed subcategories of pointed domains. A domain is called an L-domain if
every principal ideal is a complete lattice in the induced order. In general, this
notion can be defined for arbitrary dcpos.

Definition 5.1. A dcpo L is called an L-dcpo if every principal ideal ↓x, x ∈ L,
is a complete lattice in the induced order. The dcpo X>

⊥ in Figure 5 is a typical
non L-dcpo.

Theorem 5.2. Let L be a pointed sober dcpo which is bi-complete. If L is not
an L-dcpo, then L has X>

⊥ (defined in Figure 5) as a Scott-continuous retract.

Proof. Let L be a bi-complete pointed sober dcpo with a least element ⊥. If L
is not an L-dcpo, then we have some e ∈ L such that ↓e is not complete. Since
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L is bi-complete, there exist elements a, b ∈ ↓e such that a, b have no infimum
in ↓e. Consider the closed set ↓a∩↓b. It is not empty since ⊥ ∈ ↓a∩↓b, then it
has at least two maximal elements. The sobriety of L now tells us that ↓a∩↓b is
not irreducible, so there exist two Scott open sets U and V intersecting ↓a∩↓b,
respectively, with U ∩ V ∩ ↓a ∩ ↓b = ∅. Choose some element c in U ∩ ↓a ∩ ↓b
and some d in V ∩↓a∩↓b, respectively. We define a function r:L→ L as follows:

r(x) =



e, x /∈ ↓a ∪ ↓b;
a, x ∈ ↓a \ ↓b;
b, x ∈ ↓b \ ↓a;
c, x ∈ U ∩ ↓a ∩ ↓b;
d, x ∈ V ∩ ↓a ∩ ↓b;
⊥, otherwise.

It is clear that r is a Scott-continuous retraction on L with image {a, b, c, d, e,⊥}
which is a copy of X>

⊥ inside L.

6 Function spaces

Before we reach the main result of this paper, let us recall that in a topological
space, given subsets A and B with A ⊆ B, A is said to be relatively compact
in B if every open cover of B admits a finite subcover of A.

For locally compact sober dcpos, we have the following characterisation
lemma for coherence.

Lemma 6.1. Let L be a locally compact sober dcpo. Then L is coherent if and
only if for any compact saturated subsets A,B and Scott open sets U, V with
A ⊆ U,B ⊆ V , A ∩B is relatively compact in U ∩ V .

Proof. “⇒”: This is obvious since coherence implies that A ∩B is compact.
“⇐”: For compact saturated subsets A and B, consider the filter F of Scott

open sets generated by the filter basis {U ∩ V | A ⊆ U & B ⊆ V, U, V ∈ σ(L)}.
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We claim that F is a Scott open filter of σ(L). Indeed, let {Ui | i ∈ I} be a
directed family of Scott open sets of L and

⋃
i∈I Ui ∈ F . This means that we

have some open sets U, V with A ⊆ U,B ⊆ V , and U ∩ V ⊆
⋃

i∈I Ui. Since
L is locally compact, one has compact saturated subsets K,W and Scott open
sets U ′, V ′ such that A ⊆ U ′ ⊆ K ⊆ U and B ⊆ V ′ ⊆ W ⊆ V . From the
assumption, K ∩W is relatively compact in U ∩ V , so we have some i ∈ I such
that K ∩W ⊆ Ui. Hence U ′ ∩ V ′ ⊆ Ui, which implies that F is a Scott open
filter of opens. Now the sobriety of L and the Hofmann-Mislove Theorem tell
us that the intersection of F , which equals A ∩B, is compact.

In continuous domains, property M is introduced as an equivalent property
with Lawson-compactness (see for example [2, Corollary III-5.13]). A continuous
domain L is said to satisfy property M if for any x1, y1, x2, y2 ∈ L with y1 � x1

and y2 � x2, there exists a finite set F ⊆ L such that ↑x1∩↑x2 ⊆ ↑F ⊆ ↑y1∩↑y2.
Such a property is useful in proving certain domains are Lawson-compact, for
example, FS-domains, bi-finite domains, and also useful in constructing func-
tions on domains from an element-level. The following observation is obvious
from the previous lemma; we record it here as a rephrasing of property M.

Proposition 6.2. A domain L satisfies property M if and only if for any x, y ∈
L and any Scott open sets U, V with x ∈ U, y ∈ V , ↑x∩ ↑y is relatively compact
in U ∩ V . �

We now come to our classification theorem which is a generalisation of [7,
Lemma 4.23].

Theorem 6.3. Let D be a locally compact sober dcpo and E a pointed bi-
complete sober dcpo. If D is not coherent and E is not an L-dcpo, then the
function space [D → E] is not meet-continuous.

Proof. Assume that [D → E] is meet-continuous although neither E is an L-
dcpo nor D is coherent. From Theorem 5.2 we know that [D → X>

⊥] (see
Figure 5 for X>

⊥) is also meet-continuous since it is a Scott-continuous retract
of [D → E].

Since D is not coherent, Lemma 6.1 implies that there are compact saturated
subsets A,B and Scott open sets U, V of D such that A ⊆ U,B ⊆ V , but A∩B is
not relatively compact in U∩V . Thus, there exists a directed family {Ui | i ∈ I}
of open sets such that U ∩ V =

⋃
i∈I Ui, but Ui fails to cover A ∩ B for every

i ∈ I. Define a function f from D to X>
⊥ as follows:

f(x) =


c, x ∈ U \ V ;
d, x ∈ V \ U ;
b, x ∈ U ∩ V ;
⊥, otherwise.
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Moreover, for every Ui, i ∈ I, we define a function gi as follows:

gi(x) =


c, x ∈ U \ V ;
d, x ∈ V \ U ;
e, x ∈ Ui;
a, (U ∩ V ) \ Ui;
⊥, otherwise.

It is easy to verify that f and gi, i ∈ I, are Scott-continuous, and the set
G = {gi | i ∈ I} is directed with its supremum above f . However, f ∈ N(A, ↑c)∩
N(B, ↑d), and note that

N(A, ↑c) ∩N(B, ↑d) ∩ ↓f ⊆ {h ∈ [D → X>
⊥] | h(A ∩B) = {b}}.

Moreover, since for every i ∈ I, (A∩B)\Ui 6= ∅, there is some x ∈ (A∩B)\Ui.
Then gi(x) = a, and therefore we have

N(A, ↑c) ∩N(B, ↑d) ∩ ↓f ∩ ↓G = ∅.

Note that N(A, ↑c) ∩ N(B, ↑d) is a Scott open neighbourhood of f , since c, d
are compact in X>

⊥. Hence f is not in ↓f ∩ ↓G, the Scott closure of ↓f ∩ ↓G.
This implies that the function space [D → X>

⊥] is not meet-continuous. A
contradiction.

Finally, our dichotomy result for locally compact sober dcpos reads as fol-
lows:

Theorem 6.4. Let C be a cartesian closed full subcategory in LcS. Then either
C is included in SCS, or every object in C is an L-dcpo.

Proof. Let L be any dcpo in C. Then the function space [L→ L] is in C from the
cartesian closedness of C. It is obvious that both L and [L → L] are compact,
locally compact and sober in the Scott topology. Thus by Theorem 3.4 and
Theorem 4.6 they are also meet-continuous and bi-complete.

If we assume that L is neither coherent nor has complete principal ideals,
then from Theorem 6.3 the function space [L → L] is not meet-continuous. A
contradiction.

7 Closing remarks

The Jung-Tix problem [9, 3] asks for a nice category of dcpos and Scott-
continuous functions in domain theory that is simultaneously cartesian closed
and closed under the probabilistic powerdomain construction. Since lattice
structures are destroyed by this powerdomain construction (see for example [6]),
if we consider the Jung-Tix problem in the category LcS, from Theorem 6.4 and
Theorem 3.4 it follows that one will always end up within a category consisting
of meet-continuous stably compact dcpos. However, we do not know at this
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point of any new cartesian closed subcategories of SCS besides those included
in the category of FS-domains. We would like to leave this as an open question.

For the general case in which a least element is not present, we want to
mention that a similar investigation as in [7] can be conducted. One will have
four subcategories of locally compact sober dcpos such that any cartesian closed
subcategory is entirely contained in one of them. Analogous to the work in [7],
the crucial step is to find conditions such that [[L → L] → [L → L]] is meet-
continuous. This requirement implies that either L is well-rooted as defined
in [7] or it is formed as a disjoint union of pointed dcpos. This work can be
found in the last chapter of the first author’s PhD thesis.
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