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Abstract

The long-standing problem of �nding the maxi-

mal cartesian closed categories of continuous do-

mains is solved. The solution requires the de�ni-

tion of a new class of continuous domains, called

FS-domains, which contains all retracts of SFP-

objects. The properties of FS-domains are dis-

cussed in some detail.
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1 Introduction

The �rst spaces suitable for the interpretation of

programming language constructs were continu-

ous lattices discovered by Dana Scott in the late

sixties. Continuous lattices turned out to have

numerous connections to other �elds of math-

ematics such as algebra, topology, and convex

analysis. An indication of this is the volumi-

nous Bibliography of Continuous Lattices con-

tained in [4].

In Computer Science, however, it was soon

recognized that the subclass of algebraic lattices

is fully su�ciant for the purposes of semantics.

Indeed, the basic concept of �nite pieces of in-

formation corresponds nicely to the idea of com-

pact elements in these structures. Generality was

sought in a di�erent direction, namely, in the

�
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way the least upper bound of pieces of informa-

tion was to be formed. This led to a variety

of di�erent classes of domains: Lattices, meet-

semilattices (= Scott-domains), SFP-objects, to

name a few.

It is our belief that continuous domains do

have a similar importance for computer science

in areas largely still to be developed. One appli-

cation is the analysis of probabilistic algorithms.

Here the central domain is clearly the unit inter-

val, a non-algebraic but continuous lattice. Some

work in this direction has been carried out in [3,

5].

Looking at all those di�erent de�nitions of

domains the novice in the �eld will naturally ask

for some orientation. And indeed, it is possible

to give a rather complete overview once the basic

assumption is shared that a collection of domains

should form a cartesian closed category. Michael

Smyth [9] showed 1983 that there is a largest

cartesian closed full subcategory in the class of

all countably based algebraic dcpo's with least

element. In his doctoral thesis [6] the present

author completely described all categories of al-

gebraic domains with respect to that criterion

of cartesian closedness. It is the purpose of the

present note to do the same for continuous do-

mains.

It is an easy exercise to show that any Scott-

continuous retract of an algebraic dcpo is a con-

tinuous dcpo and it is equally simple to see that

the class of all such retracts is cartesian closed if

one starts with a cartesian closed category. This

immediately gives us a class of continuous do-

mains for each class of algebraic domains. It is

then an obvious question whether this will give
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us the whole variety on the continuous side. As

Smyth notes at the end of his paper [9] \(this

result) does not come out by manipulating re-

tractions". It turned out to be a very hard prob-

lem, indeed. The solution, which was partly

provided in [6] and is completed here, involves

the de�nition of two new classes of domains: L-

domains and FS-domains. We will show below

that each cartesian closed category of continuous

domains with least element consists of continu-

ous L-domains or of FS-domains. The special

question, whether the retracts of SFP-objects

form a maximal class we leave unanswered. They

are FS-domains but we do not know whether this

containment is proper.

FS-domains do have a distinctive advantage

over SFP-retracts: They are easy to discover.

This is illustrated below by showing that the col-

lection of all closed discs in the plane together

with the plane itself (the ordering being reversed

inclusion) forms a countably based FS-domain.

Even for this well-structured concrete example it

appears to be extremely hard to decide whether

it is an SFP-retract.

2 Background

Our notation will be fairly standard. We call

directed-complete partial orders dcpo's and do

not generally assume that they have a least el-

ement. If a dcpo does have a bottom element

then we call it pointed. A dcpo is continuous if

every element is the directed supremum of ele-

ments way-below it, where an element x is way-

below an element y (x � y) if whenever the sup

of a directed set is above y then some element of

the directed set is above x. A subset B is a basis

if every element x is the directed sup of base el-

ements way-below x. A dcpo is countably based

or !-continuous if it has a countable basis.

Our functions are Scott-continuous that is,

they preserve directed sups. Dcpo's together with

Scott-continuous maps form a cartesian closed

categoryDCPO. The full subcategoriesCONT

and CONT

?

of continuous dcpo's (with bot-

tom) are not cartesian closed. It is the purpose of

this note to describe all maximal cartesian closed

full subcategories of CONT

?

.

The basic properties of the way-below rela-

tion are sumarized in the following lemma.

Lemma 1 If D is a continuous dcpo then the

following holds for all x; x

0

; y; y

0

2 D:

(i) x� y =) x � y.

(ii) x

0

� x� y � y

0

=) x

0

� y

0

.

(iii) x� y =) 9z:x� z � y.

Given a pointed dcpo E and a dcpo D and

given elements e 2 E and d 2 D we can de�ne

the step function (d& e) as follows:

(d& e)(x) =

�

e; if d� x;

?; otherwise.

A step function is always Scott-continuous. If

x

0

is way-below x in D then the step function

(x& x

0

) is way below the identity function id

D

on D. In a continuous dcpo we can interpolate

between x

0

and x with elements y

0

and y: x

0

�

y

0

� y � x. It is then easy to check that the step

function (x& x

0

) is way-below the step function

(y & y

0

) in the dcpo [D �! D].

3 Continuous L-domains

De�nition. A dcpo D is an L-domain if it is

pointed and if every principal ideal in D is a

complete lattice. The category of continuous L-

domains is denoted by cL.

L-domains were discovered by the present au-

thor and by T.Coquand [1, 2] independently. A

thorough treatment of their main properties can

be found in [6], where it was already shown that

they form a maximal cartesian closed full sub-

category of CONT

?

(`Theorem 4.25').

Continuous L-domains occur in `nature': Given

a compact connected and locally connected spaceX

the collection of all closed connected nonempty

subsets of X ordered by reversed inclusion forms

a continuous L-domain. This example is due to

Klaus Keimel and Jimmie Lawson.
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4 FS-domains

It was generally conjectured (see for example [9,

7]) that the retracts of SFP-objects (or rather:

bi�nite domains, see [6, 10]) form another maxi-

mal cartesian closed full subcategory ofCONT

?

and that there are no other. In what follows we

shall characterize the second maximal class and

show that every cartesian closed full subcategory

of CONT

?

is contained in one of the two. This

second class will consist of FS-domains, which

are introduced here for the �rst time. They con-

tain the retracts of SFP-objects, but it is open

whether this inclusion is strict. However, we

hope to convince the reader that FS-domains are

preferable to SFP-retracts anyway.

De�nition. Let f; g:D ! E be functions from

a set D to a dcpo E. We say that f is �nitely

separated from g if there exists a �nite subset M

of E such that for every x 2 D there is some

m 2 M such that f(x) � m � g(x) holds. The

function f is strongly �nitely separated from g if

there exists a �nite set M of pairs (m

0

;m) 2 E�

E with m

0

� m such that for every x 2 D there

is some pair from M between f(x) and g(x). We

will mostly need functions f :D ! D separated

from the identity id

D

.

Lemma 2 Let f :D ! D be a Scott-continuous

function on a dcpo D �nitely separated from id

D

.

Then f(x) � x holds for every x 2 D, f � f

is strongly �nitely separated from id

D

and way-

below id

D

in [D �! D].

De�nition. A pointed dcpo D is called an FS-

domain if there exists a directed family (f

i

)

i2I

of Scott-continuous functions, each �nitely sepa-

rated from id

D

, with supremum id

D

. The cate-

gory of FS-domains with Scott-continuous func-

tions as arrows is denoted by FS.

By the preceding lemma it is obvious that FS-

domains are continuous. Considering the charac-

terization (`Theorem 4.1') in [6], it is also clear

that FS contains all retracts of bi�nite domains.

In fact, FS has all closure properties one usually

expects from a category of domains:

Theorem 3 Any product of FS-domains is an

FS-domain and the inverse limit of FS-domains

is an FS-domain. Also, FS is a cartesian closed

subcategory of CONT

?

.

Proof. We show that the function space [D �! E]

for FS-domains D and E is again an FS-domain.

Let f :D ! D be �nitely separated from id

D

and

g:E ! E be �nitely separated from id

E

. We

show that the function F : [D �! E]! [D �! E],

de�ned by �h:g �g �h�f �f , is �nitely separated

from id

[D!E]

. Let M

f

;M

g

be �nite separating

sets for f and g, respectively. De�ne an equiva-

lence relation on [D �! E] by

h

1

� h

2

() 8m 2M

f

: "g � h

1

(m) \M

g

= "g � h

2

(m) \M

g

:

Obviously there are only �nitely many equiva-

lence classes on [D �! E]. Let

g

M

F

be a set of

representatives from each class. We show that

M

F

= g �

g

M

F

�f is a separating set for F . Given

h 2 [D �! E] let

�

h be the corresponding repre-

sentative in

g

M

F

. We calculate for an x 2 D:

h(x) � h(m

f

) ;for some m

f

2M

f

with f(x) � m

f

� x

� m

g

;for some m

g

2M

g

with

g(h(m

f

)) � m

g

� h(m

f

)

� g(

�

h(m

f

)) ;because g(h(m

f

)) � m

g

and h �

�

h

� g(

�

h(f(x))) ;because f(x) � m

f

.

By symmetry we also have

�

h(x) � g(h(f(x)))

and hence g �

�

h � f � g � g � h � f � f . So indeed:

h � g �

�

h � f � F (h).

De�nition. For a continuous dcpoD the Lawson-

topology �

D

is generated by the subbasic open

sets

"

"x; x 2 D and D n "x; x 2 D.

On continuous dcpo's the Lawson-topology

will always be Hausdor�. With the results in [6]

or in [8] it is easy to see that FS-domains are

Lawson-compact. In fact, the Lawson-topology

is closely connected to the function space:

Theorem 4 Let D be an FS-domain.
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(i) For each f � id

D

we de�ne an entourage

U

f

= f(x; y) 2 D �D j f(x) � y ^ f(y) �

xg resulting in a basis (U

f

)

f�id

D

for a uni-

formity on D. The corresponding topology

equals �

D

.

(ii) A function f :D ! D is way-below id

D

if

and only if it is strongly �nitely separated

from id

D

.

We �nish this section with the discussion of

a concrete example of an FS-domain. (It was

suggested to me by Jimmie Lawson.) Let Disc

be the collection of all closed discs in the plane

plus the plane itself, ordered by reversed inclu-

sion. One checks that the �ltered intersection

of discs is again a disc, so Disc is a dcpo. A

disc d

1

is way-below a disc d

2

if and only if d

1

is a neighborhood of d

2

. This proves that Disc

is continuous. For every � > 0 we de�ne a map

f

�

on Disc as follows. All discs inside the open

disc with radius

1

�

are mapped to their closed �-

neighborhood, all other discs are mapped to the

plane which is the bottom element of Disc. Be-

cause the closed discs contained in some compact

set form a compact space under the Hausdor�

subspace topology, these functions are �nitely

separated from the identity map. This proves

that Disc is a countably based FS-domain. We

do not know whether this domain is a retract of

an SFP-object.

5 The classi�cation

The following lemma, which we cite from [6] is

the starting point for our classi�cation:

Lemma 5 Let D and E be continuous pointed

dcpo's with property m. If [D �! E] is contin-

uous then E is an L-domain or D is Lawson-

compact.

Lawson-compact dcpo's do not form a carte-

sian closed category. Indeed, we are now going

to show that FS-domains are the largest carte-

sian closed full subcategory of CONT

?

which

consists of Lawson-compact domains only.

De�nition. For any dcpo D and any d 2 D the

retraction r

d

:D ! D is de�ned by r

d

(x) = x if

x � d and r

d

(x) = d otherwise.

Lemma 6 If a function f :D ! D is below r

x

and r

y

then f(x) � x; f(x) � y; f(y) � x; and

f(y) � y.

The following Lemma appears also in [8]

Lemma 7 If D is a dcpo with continuous and

Lawson-compact function space [D �! D] and

if f � id

D

holds then there exist pairs x

0

1

�

x

1

; : : : ; x

0

n

� x

n

such that every upper bound

of the step functions (x

i

& x

0

i

), i = 1; : : : ; n, is

above f .

Proof.

"

"f is a Lawson-neighborhood of "id

D

.

Since [D �! D] is Lawson-compact, each of the

sets "(x

1

& x

0

1

)\: : :\"(x

m

& x

0

m

), for any �nite

set of pairs x

0

1

� x

1

; : : : ; x

0

m

� x

m

, is Lawson-

compact. The intersection of all these sets is �l-

tered and equals "id

D

. Therefore one of them is

already contained in

"

"f .

Theorem 8 If D and [D �! D] are continuous

and Lawson-compact and if f � id

D

then f is

�nitely separated from id

D

.

Proof. Let g � id

D

be such that f � g � g and

let X

1

= (x

1

& x

0

1

); : : : ;X

n

= (x

n

& x

0

n

) be step

functions such that any upper bound of them is

above g according to Lemma 7. For each i 2 I =

f1; : : : ; ng interpolate between x

0

i

and x

i

to get

y

0

i

; y

i

such that x

0

i

� y

0

i

� y

i

� x

i

and let Y

i

be the step function (y

i

& y

0

i

). We noted above

that X

i

� Y

i

holds in [D �! D]. Also note that

for each x 2 D nO | where O =

"

"y

1

[ : : : [

"

"y

n

| g(x) = ? holds. That is because the function

which maps each element of O onto itself and

everything else onto bottom is above all Y

i

and

hence above g.

For each x 2 O consider the retraction r

x

.

The element x is way-above some of the y

i

but

not necessarily above all of them. Call the subset

of I for which y

i

� x; I

x

. Then r

x

is above all

Y

i

with i 2 I

x

, because r

x

(e) = x � y

i

� y

0

i

�
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Y

i

(e) for e 6� x and r

x

(e) = e = id

D

(e) � Y

i

(e)

otherwise.

Claim: If h:D ! D is below r

x

and above all

X

i

with i 2 I

x

, then h j

#x

� g j

#x

.

De�ne h

0

:D ! D by h

0

(e) = e if e 6� x and

h

0

(e) = h(e) otherwise. This is continuous be-

cause h

0

j

#x

= h j

#x

� r

x

j

#x

= id

D

j

#x

and h

0

�

�

�

Dn#x

=

id

D

�

�

�

Dn#x

. The map h

0

is above all step functions

X

i

:

Case 1: e 6� x : h

0

(e) = e = id

D

(e) �

X

i

(e); i 2 I:

Case 2a: e � x; i 2 I

x

: h

0

(e) = h(e) � X

i

(e)

by assumption.

Case 2b: e � x; i 2 I n I

x

: e 62

"

"x

i

�

"

"y

i

by

the de�nition of I

x

, so h

0

(e) = h(e) � ? = X

i

(e).

So h

0

is above g and hence h j

#x

= h

0

j

#x

�

g j

#x

. This proves our claim.

Now let J be some subset of I. Since [D �! D]

is Lawson-compact there exists a �nite set M

J

contained in

T

f"X

i

j i 2 Jg such that every up-

per bound of fY

i

j i 2 Jg is above some h 2M

J

,

that is

\

i2J

"Y

i

�

[

h2M

J

"h:

In particular, for a given x 2 D, there is h 2

M

I

x

with h � r

x

. We now take all h from each

M

J

that we need, that is:

FM = fh 2

S

J�I

M

J

j 9x 2 D:I

x

= J^

^h � r

x

^ h 2M

J

g:

A function in FM will in general be below many

r

x

with J = I

x

. We select just one x

h

for each

h 2 FM and de�ne

M = fh(x

h

) j h 2 FMg:

It remains to show that M separates f from the

identity on D. To this end, let x be some ar-

bitrary but �xed element in D and let h 2 M

I

x

be such that r

x

� h. x is not necessarily equal

to x

h

but we have h � r

x

; r

x

h

and we can apply

Lemma 6: h(x

h

) � x and h(x) � x

h

, also, h �

X

i

for all i 2 I

x

by construction. Hence by the

`Claim' above, h j

#x

� g j

#x

and h j

#x

h

� g j

#x

h

.

So we can calculate:

x � h(x

h

) Lemma 6

� g(x

h

) `Claim'

� g(h(x)) Lemma 6

� g(g(x)) `Claim'

� f(x) by construction.

Thus with m = h(x

h

) we have found a sepa-

rating element in M between x and f(x).

Corollary 9 If D and [D �! D] are Lawson-

compact and continuous then D is an FS-domain.

Corollary 10 Every cartesian closed full sub-

category of CONT

?

is contained in cL or in

FS.

If we restrict our attention to continuous do-

mains with a countable basis, then we must have

Lawson-compactness. This was shown in [6]. So

we also have the following continuous analogue

to Smyth's Theorem for continuous domains:

Theorem 11 The class !-CONT

?

of pointed

continuous countably based dcpo's contains a largest

cartesian closed full subcategory, the class of all

countably based FS-domains.

It is an interesting observation that the tech-

niques of our present paper yield a proof of Smyth's

Theorem which does not use the Axiom of Choice.

Also, it is possible to extend the results of this

paper to dcpo's without bottom element. Most

of the work for this was done in [6] already. One

gets four maximal cartesian closed full subcate-

gories of CONT.
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