
Teaching Denotational Semantics

Achim Jung

Last revision: 11 April 2018

Please cite as:
A. Jung. Teaching denotational semantics. ACM SIGLOG News, 1(2):25–37,
2014. With an introduction by Mike Mislove.

1 Introduction
In 1969 Dana Scott suggested, [Sco93], that a Tarskian semantics could be given
to programming languages by employing ordered structures of a certain kind, now
known as domains. One of his key insights was that recursion can be modelled
via the least fixpoint of endofunctions on domains. Shortly afterwards Gordon
Plotkin, explored this proposal further; among the many results of his landmark
paper [Plo77] he formulated and proved computational adequacy, which can be
said to justify Scott’s least-fixpoint semantics. Much of the development of de-
notational semantics since then can be traced back to these two papers and few
would contest their status as “classics” of our subject.

50 years later, one would expect to see Scott’s and Plotkin’s work reflected
in the standard syllabus of computer science degrees around the world, on a par
with other classic results of our subject, such as the relationship between automata
and languages, the undecidability of the halting problem, and NP -completeness.
This, however, is not the case, despite a clutch of excellent textbooks appearing in
the late 1980s and early 1990s: [Sch86, Ten91, NN91, Gun92, Win93, Mit96]. Of
the many possible reasons for this state of affairs, I believe the following are the
most important: (a) the subject is notationally subtle and heavy at the same time,
(b) students do not have enough mathematical background, (c) the “rewards” for
the time and effort invested appear limited to the student.

1



In this note I want to report on my own experiences of teaching denotational
semantics, which has taken place in a variety of contexts and to some very differ-
ent audiences, with my primary reference point being a five-lecture course deliv-
ered as part of the Midlands Graduate School in the Foundations of Computing
Science (MGS), which since 2001 has taken place annually at one of the four
partner universities: Birmingham, Leicester, Nottingham, and Sheffield.

My aim here is to present my choice of topics and methodology for these five
lectures in the light of the problems listed above, and to report on the specific
experience in that context. So the focus is on reflection, not on presenting the
material in detail and what follows are not course notes, but I still hope that I
will give enough detail so that a knowledgeable reader may be able to adopt some
ideas for their own teaching.

I am grateful to Mike Mislove for giving me the opportunity to present my
musings in the newly established SIGLog Newsletter and I hope that my exam-
ple will encourage others to use this venue to discuss matters of communicating
research as well as research itself.

2 Approach
As I said at the beginning, denotational semantics is a challenging subject to teach,
dealing as it does with an unusually wide range of mathematical ideas and com-
plex notations. Students of computer science are typically poorly prepared for
such a study, and students of mathematics are not interested. Both constituencies
have difficulties seeing the point of it all, and this phenomenon is my first main
issue: How to motivate the subject and how to pique students’ interest?

Many texts choose to start with a simple while-language, introduce its de-
notational semantics as state-transforming functions and explain the meaning of
a while-loop as a least fixpoint. From a pedagogical point of view, it seems
appropriate and correct to begin with a formalism that is familiar to the students
but I’d like to propose that this is also a key problem: The language is simple and
the semantics is hard. However, if we are to “sell” denotational semantics, then it
should be the other way round!

Alternatively, one could begin immediately with PCF; it can be argued, after
all, that it is nothing more than the core of any modern functional programming
language and students can be assumed to have taken a course in that subject be-
fore. Thomas Streicher’s excellent book [Str06] does exactly that. I have found,
however, that in practice the learning curve is too steep for many in my target

2



audience (which includes mathematicians as well as computer scientists).
The approach that I have adopted and that I want to advertise here, is the one

that Carl Gunter chose for his textbook [Gun92]. In a nutshell, the idea is to
discuss the semantics of the simply typed lambda calculus as a primer for PCF.
Apart from offering a gentler path towards domain semantics and the adequacy
proof, it lays the foundation for other subjects that students may want to study, in
particular, type theory.

No doubt, from a pedagogical perspective Gunter’s approach has many inher-
ent problems of its own — and one aim of this note is to discuss those — but there
are many attractive features which tip the balance in its favour. Foremost, the pre-
sentation can be motivated by the desire to prove theorems about calculi. Without
going into any detail, these concern compositionality, soundness, completeness,
definability, adequacy, and extensionality. The methods employed in the proofs
are themselves rich and varied, and they are ubiquitous in denotational semantics:
proof by structural induction, term model construction, logical relations and do-
main theory. In fact, their applicability is not confined to denotational semantics
and one of the joys of teaching at the Midlands Graduate School is to see these
themes and methods emerge in different courses.

This emphasis on theorems marks me out as a mathematician, I admit, and
it does not work for everyone. As an alternative motivation that may work bet-
ter for more practically-minded computer science students, I’d like to advertise
the approach that Martı́n Escardó has successfully tried at the Midlands Grad-
uate School. He begins by writing down the PCF term for the “Gandy–Berger
functional”, [Ber90], which tests whether a predicate on Cantor space (the latter
implemented as int → bool) is satisfiable. The term is small but quite incompre-
hensible and Martı́n’s point is that it is not clear at all that it must terminate for
total predicates. He then goes fairly deeply into the domain semantics of PCF and
develops the topological machinery that one needs for the termination proof. The
Gandy-Berger functional is not just a pedagogical device; it appears, for example,
in Alex Simpson’s implementation of exact real number integration, [Sim98].

Returning to my approach, a second key argument for beginning with the
lambda calculus is that despite its similarity to functional programming, still ap-
pears sufficiently “foreign” to students so that giving a semantics seems appro-
priate; in other words, the language is “hard,” and it remains to make sure that
the semantics is (or appears) “easy.” Here we take advantage of the fact that the
simply-typed lambda calculus only requires ordinary functions for its semantics,
and that the discussion of partiality and fixpoints can be deferred to the second part
when we talk about PCF. This goes some way to address Problem (b) mentioned

3



in the Introduction, the lack of mathematical knowledge in our target audience.
Disappointingly, for the first problem — the notational complexity so typical

of denotational semantics — I cannot offer a silver bullet, as that’s just the way
things are. However, we have an advantage when we are giving lectures as often
some detail can be said rather than written down, and sometimes, it can even be
suppressed entirely. Since I don’t use slides but always present with the help of
the board only, it is absolutely essential for me to simplify as much as possible.
I’d like to propose that this is actually a very good thing, because students need to
see how we practitioners organise the material for ourselves, how we keep on top
of the notations, what we emphasise and what we neglect.

3 Lecture I: The simply typed λ-calculus
I usually begin the lectures with a discussion of different approaches to semantics,
relating them to the ways in which a child learns the meaning of words. The de-
notational approach is perhaps the most natural one: pointing to a dog and simul-
taneously saying the word “doggie” to the child. There is already an interesting
point to be made, in that the “objects” which our chosen calculus denotes are sets
and functions, and these do not have any physical representation we can point to
but are construction of our (mathematical) mind expressed in mathematical lan-
guage. It follows that denotational semantics does not feel denotational at all but
in essence comes down to a translation from a syntactic calculus to mathemati-
cal language. (Translation is what we use when we learn a foreign language but
clearly not when we learn the first words from our parents.) I think it is important
to confront this issue head on at the very beginning because it is one that tends
to confuse and even confound learners when they encounter semantic definitions
for the first time. One can then make the point that even straightforward transla-
tion can be useful if the languages involved are sufficiently different, and that one
should feel entitled to question why the particular translation that denotational se-
mantics offers provides any insight at all. I also stress that it is theorems we are
after, not just alternative descriptions, and that the onus is on me to demonstrate
that the theorems we will prove are interesting and useful.

At the Midlands Graduate School, my course is usually complemented with a
concurrent one on the lambda calculus, so my introduction to the language can be
brief. But even without that support, it is not too hard to present the syntax to an
audience of beginning PhD students. There are, after all just two clauses to the
definition of simple types and three to the definition of terms.

4



xσ : σ

M : σ → τ N : σ

MN : τ

M : τ

λxσ.M : σ → τ

Figure 1: The term formation rules of the simply typed lambda calculus in Church
style

However, the issue of variable binding is much more subtle than it may ap-
pear to the students, and we know now that our best semantic accounts require a
formidable mathematical apparatus. We don’t yet know whether it is possible to
present these in the context of an introductory lecture course, so for the time be-
ing we must stick to the tried and tested ways of keeping the problems of binding
under control.

Given the constraints of a rather short lecture course, I have come to the con-
clusion that Church’s original formalism is the most appropriate. In it each vari-
able has a fixed type, which may be part of the name (as in xσ) or which may be
accessed via a global type assignment function: type(x) = σ. The only proviso
one needs to make (and the reason for it becomes clear early on in the course) is
that there should be an unbounded number of variables for every type. This is the
approach that one finds in [Win93, Chapter 11] and also [Plo77], for example.

While it is clear that Church’s calculus is the most economical available, see
Figure 1, it may still be worthwhile to spend some time here to ponder its pros
and cons more generally as well as those of the alternatives.

One of its disadvantages is that apart from FORTRAN it has not been adopted
in any practical programming language. A more serious objection is that the ap-
proach does not generalise to more sophisticated type systems. Regarding the last
point, there is little I can say in defence of my choice other than to reiterate the
point that formalisms should be introduced as and when they are needed, and they
should not be allowed to dominate the presentation.

If nevertheless a Curry-style presentation with explicit type environments is
chosen, then it seems to me that one should go the full mile and deal with them
as one does in actual programming languages and in type theory, that is, type en-
vironments are lists and later declarations of a variable override those that come
earlier, a phenomenon known as shadowing. The machinery required to make
this work is formidable but at least it is honest. One has to talk explicitly about
“structural rules”, that is, weakening, exchange and duplication of type assump-
tions although that may not be apparent from the term formation rules, Figure 2,

5



x 6∈ dom(∆)

Γ, x : σ,∆ ` x : σ

Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ

Γ, x : σ `M : τ

Γ ` λx.M : σ → τ

Figure 2: The term formation rules of the simply typed lambda calculus in Curry
style

but they will be necessary for a discussion of the equational theory.
I don’t know of any textbook on denotational semantics that goes down this

route, and I agree that dealing with type contexts is probably not a core concern
of denotational semantics, but the various compromises that one finds are not very
convincing either: One common assumption, for example, is that terms are really
only representatives of their α-equivalence classes and semantics is given to the
latter rather than the former. Pedagogically, this seems to me problematic as it
amounts to the admission that we can’t model the original concrete language, and
it means that semantic considerations have encroached on the syntax and made
it less realistic. Another device that appears in the literature is to say that typing
contexts are sets and to require that x 6∈ dom(Γ) in the formation rule of lambda
abstraction, but this is credible only if one is dealing with α-equivalence classes,
as nested occurrences of the same variable may appear after β-reduction even if
this was not the case at the outset.

After this digression, let us return to the material that I do present. The seman-
tics of types is the usual one: an arbitrary set Aι is chosen for the ground type ι
and function types are interpreted by the set of all functions. Semantic environ-
ments ρ are functions from a set of variables to their respective semantic domains.
The semantic function J−Kρ is defined for those terms of the language whose set
of free variables is contained in the domain of ρ.

As another aside for the cognoscenti, in the chosen presentation the semantic
value of a term M of type σ in a semantic environment ρ is an element of the
set Aσ. For the completeness proof that follows, and also for the discussion of
PCF, this is the most convenient approach. One could call this the model-theoretic
point of view. If typing contexts are made explicit, then we give semantics to
judgements Γ `M : σ, not to terms, and the semantic values are always functions
from JΓK to JσK = Aσ; we could call this the categorical point of view.

The semantic clause for lambda abstraction reads

Jλx : σ.MKρ = a ∈ Aσ 7→ JMK(ρ, x 7→ a)

6



which more obviously alludes to the mathematical view of a function as a set of
ordered pairs than the “semantic lambda” that one sometimes finds. On the other
hand, this plays down the (important) view that a denotational semantic function
should be a homomorphism from the language to the model. This is a subtle point
and I wish I were able to express more clearly and convincingly why I find my
formulation more appropriate.

After presenting the three semantic clauses one has the first opportunity to
mention the principle of compositionality as the semantics is pieced together from
the semantic values of the parts. It is important to point out, however, that the
matter is slightly more subtle than this because the semantics of a lambda ab-
straction λx.M makes reference to the semantics of M in a different semantic
environment.

Also, this is a good time to pause and to explain the two views of the semantics
that has been defined:

• If our primary interest is in the calculus, then we have given a model for the
calculus employing sets and mathematical functions. Once we have intro-
duced equations for the calculus, we can then ask whether the model vali-
dates the equations (soundness) and whether the equations capture equality
in the model (completeness).

• If the primary interest is in mathematical functions, then we may view the
simply-typed lambda calculus as a language for these. The natural question
then is how expressive this language is.

4 Lecture II: Soundness
Presenting the eight rules for deriving equalities between lambda terms is straight-
forward, except that one has to be able to write very fast on the board. However,
not having to deal with typing contexts helps, and even the types of the terms
themselves can be suppressed because there is no need to repeat the rules for typ-
ing a term. Knowing the type of a term is necessary only in the case of (η).

The rules come in three groups; first the three rules that establish that ≈ is an
equivalence relation:

M ≈M

M ≈ N

N ≈M

M ≈ N N ≈ P

M ≈ P

7



Then the two congruence rules:

M ≈M ′ N ≈ N ′

MN ≈M ′N ′

M ≈M ′

λx.M ≈ λx.M ′

Finally, the three rules specific to the lambda calculus:

y 6∈ var(M)
(α)

λx.M ≈ λy.M [y/x]
(β)

(λx.M)N ≈M [N/x]

M : σ → τ xσ 6∈ var(M)
(η)

M ≈ λxσ.Mx

Again, since α is not “built into” my version of the calculus, we have a rule for it;
in a first course on semantics, I view this as an advantage.

One can then start to prove the soundness theorem and find that neither (α)
nor (β) have an obvious proof because substitution is not a connective of the
calculus. This is yet another opportunity to return to the theme of the semantic
function as a homomorphism.

I then present a precise definition of substitution for terms (taken from [HS86])
and go through some of the cases of the proof of the substitution lemma. The crit-
ical one is of course when a bound variable needs to be renamed, that is, we
want to compute J(λy.M)[N/x]K in the situation that y ∈ FV(N). The substi-
tution rules stipulate that (λy.M)[N/x] be rewritten to λz.M [z/y][N/x] where
z 6∈ {x} ∪ FV(M) ∪ FV(N). The computation of the semantics of this takes
a number of steps but it is satisfying for the students to see how everything fits
together:

Jλz.M [z/y][N/x]Kρ
= a 7→ JM [z/y][N/x]K(ρ, z 7→ a) (definition of Jλ . . .K)
= a 7→ JM [z/y]K(ρ, z 7→ a, x 7→ JNK(ρ, z 7→ a)) (induction hypothesis, x 6= z)
= a 7→ JM [z/y]K(ρ, z 7→ a, x 7→ JNKρ) (Lemma, z 6∈ FV(N))
= a 7→ JMK(ρ, z 7→ a, x 7→ JNKρ,

y 7→ JzK(ρ, z 7→ a, x 7→ JNKρ)) (induction hypothesis)
= a 7→ JMK(ρ, z 7→ a, x 7→ JNKρ, y 7→ a) (definition of JzK)
= a 7→ JMK(ρ, x 7→ JNKρ, y 7→ a) (z 6∈ FV(M))
= Jλy.MK(ρ, x 7→ JNKρ) (definition of Jλ . . .K)

The computation shows that the identity of the fresh variable z is immaterial for
the result to hold, which goes some way to address any concerns that students
might have over the fact that substitution on terms is not a deterministic opera-
tion. If there is time, then one can usefully insert a brief discussion of binding

8



diagrams (where bound variables are replaced by arrows to the binding lambda)
as an alternative “syntax.” The substitution lemma is then almost a complete triv-
iality and its proof immediately apparent from the following picture

N

M

One can use this visualisation to re-enforce the principle of compositionality.
The soundness proof is then soon completed and there is usually still time

left to introduce general Henkin models, the idea being that we may not need all
set-theoretic functions for the interpretation of lambda abstractions, although the
students have no reason to believe this at this point. One can also come back to the
view of the semantic function as a homomorphism, as Henkin models are defined
as certain multi-sorted algebras with explicit application operators. (Here I am
following [Mit96, Section 4.5].)

5 Lecture III: Completeness
The aim of this lecture is to prove Friedman’s completeness theorem which states
that the full set-theoretic model built over an infinite set (for example N) is com-
plete with respect to αβη-equality. It proceeds in two stages, first a term model
construction is used to show that the equational rules are complete with respect to
general Henkin models, and then a relation between the term model and the full
set-theoretic model establishes completeness with respect to the latter.

In the construction of the term model T our choice of a Church-style presen-
tation comes in handy: The “material” from which the semantic domains are built
are truly the terms of our calculus, that is, Tσ consists of equivalence classes of
(open) terms of type σ, and for every σ there are at least the (countably infinitely
many) variables of that type to start from. We write the equivalence classes with
respect to the basic αβη theory as 〈M〉 and define application by

app 〈M〉 〈N〉 = 〈MN〉

9



One now has to show that a Henkin model is thus obtained, that is, we need to
show extensionality and “richness” of the function types. For the former, we
exploit the fact that we have an unbounded supply of variables, and we use the
η-law:

∀N : app 〈M〉 〈N〉 = app 〈M ′〉 〈N〉 assumption
app 〈M〉 〈x〉 = app 〈M ′〉 〈x〉 choose N = x fresh

〈Mx〉 = 〈M ′x〉 definition of app
〈λx.Mx〉 = 〈λx.M ′x〉 congruence rule for lambda
〈M〉 = 〈M ′〉 η

Showing that for every type σ → τ we have enough elements in Aσ→τ requires us
to show that the semantics in this model amounts to simultaneous substitution:

JMKρ = 〈M [r]〉

where r is a map that picks out an element of ρ(x) for every variable x in the
domain of ρ. The proof is by induction on the structure of M . Here is the case of
lambda abstraction: Assume type(x) = σ; we have

Jλx.MKρ = 〈N〉 ∈ Tσ 7→ JMK(ρ, x 7→ 〈N〉)

by definition of J−K. We need to show that the function on the right hand side
behaves the same as the element 〈(λx.M)[r]〉 to which end we apply it to an
element 〈N〉 ∈ Tσ:

app 〈(λx.M)[r]〉 〈N〉
= app 〈λx′.M [x′/x][r, x′ → x′]〉 〈N〉 x′ fresh
= 〈(λx′.M [x′/x][r, x′ → x′])N〉 definition of app in T
= 〈M [x′/x][r, x′ → x′][N/x′]〉 β
= 〈M [r, x→ N ]〉

and we see that despite our attempts to simplify things we have plenty of nota-
tional fiddliness still to deal with!

Completeness now follows easily by considering the semantic environment
that maps every variable x to its αβη equivalence class 〈x〉.

Students are unlikely to have seen a completeness proof in full before and
one should therefore take the opportunity to point out that the generality of the
method. Also, although one has to be careful with the details, it is in my view a

10



0, 1, . . . : int
succ, pred : int→ int

zero? : int→ bool
ifσ : bool→ σ → σ → σ
Yσ : (σ → σ)→ σ

Figure 3: The constants of PCF

very worthwhile and satisfying exercise to see how each and every equation has
its role to play in the proof.

For the second stage of the proof of Friedman’s completeness theorem we
return to the full set-theoretic model N built over JιK = N. Friedman’s proof
uses a “partial surjective homomorphism h” from N to the term model T but a
more fruitful perspective is to regard the graph of h as a logical relation. So at
this point I introduce logical relations between two Henkin models and prove the
fundamental lemma, which doesn’t take very long.

If there is sufficient time, one can generalise this to logical relations of ar-
bitrary arity, and discuss the lambda definability problem (and Ralph Loader’s
undecidability result). If there isn’t, then this is still a worthwhile topic to explore
in the exercises.

In any case, having established the fundamental lemma for logical relations,
one may now swiftly finish Friedman’s proof of the completeness of N by show-
ing that a logical relation between N and T , which happens to be a surjective
function at ground type, will be functional and surjective at every type (though it
will be a partial function).

6 Lecture IV: PCF
From the discussion of expressivity in the previous lecture, it is easy to reiterate
the point that the simply typed lambda calculus is far too parsimonious to be
considered a language for describing functions (and higher-order functions) on
the natural numbers, making the step to PCF easy and natural. All the constants
of PCF are readily introduced, see Figure 3. However, I usually defer talking
about Y until I have presented the rewrite rules for the other constants. Again,
these are easily motivated by the desire to compute normal forms. I use the small-
step presentation from Plotkin’s original paper [Plo77], where each rule may be

11



seen as a refinement of an equation as discussed previously. In fact, small-step
semantics appears so natural that it is worthwhile for the students to get a chance
— perhaps in the exercises — to reflect on how one might implement the rewriting
process in practice (and to contrast it with the algorithm derived from the big-step
presentation). In the lectures we use M ⇓ n purely as a shorthand for a finite
sequence of rewrite steps that ends in n.

As we arrive at the heart of the course — the semantics of recursion — we
take time to discuss the constant(s) Y and how they are used to represent recur-
sion. I begin by pointing out that the way we get a recursive program in ordinary
programming languages is always by naming terms, something that PCF does not
provide. For non-recursive terms, naming would be just a convenience — a case
of Landin’s syntactic sugar — but in a recursive term this is not so. A recursive
term declaration such as

f = λx. if zero? x then 1 else x ∗ f(pred x)

is really an equation for the unknown f . It is not a general equation M = N , but
one where the left-hand side is the unknown itself, that is, it has the shape of a
fixpoint equation. Making this explicit amounts to introducing a function on the
right-hand side:

f = (λg.λx. if zero? x then 1 else x ∗ g(pred x)) f

If this function is abbreviated to M , then the fixpoint equation has the form f =
Mf . We may now introduce YM as a purely formal name for the solution to this
equation, just like the imaginary constant i is a purely formal name for a solution
to x2 = −1. Nothing needs to be known about YM other than that it may be
replaced by M(YM) wherever it is encountered; again, this is in analogy to the
way students learned to manipulate i in high school: Nothing needs to be known
about it except that i2 may always be replaced by −1.

I believe it is very useful for students to see how this works in practice, by
reducing a term such as the one above for some concrete value of x, for example,
YM 2. In the exercises one can then go a bit further and ask the students to
implement primitive recursive functions in PCF, and likewise µ-recursion. It is a
useful insight for them to see that the former requires terms of rank 2 only, while
µ-recursion requires rank 3. This opens up an interesting line of thought regarding
the differences between Turing-machine computability (which the students should
be familiar with) and higher-order computability.

To continue the motivational journey from recursive definitions to the con-
stant Y , one now needs to realise that the way we treat the “formal terms” YM is

12



captured by a rewrite rule for Y that is no different in structure from those for the
other PCF constants. One then sees that the semantics of this constant amounts to
a functional that returns a fixpoint for every (definable) endofunction. I believe it
is important to spend some time on this point and to make it clear that by introduc-
ing Y we are postulating that every (fixpoint) equation has a solution, something
that is certainly not true in mathematics. One can quite usefully contemplate why
this should be the case in computer science, and one valid point of view is indeed
that it doesn’t hold there either.

So now that we have all components of the language, we turn to the semantics.
Given the training the students have had with the simply typed lambda calculus,
very little time needs to be spent on the semantics of PCF minus Y , in other
words, one can cut straight to the chase and explain the difficulties one has with
interpreting Y in the usual full set hierarchy N where functions do not need to
have fixpoints.

This brings us to domain theory, introduced as an abstraction of the idea of
interpreting function types as partial rather than total functions. Without going
into the detail of this “partial function model,” one can introduce the order between
them (as containment of the function graphs) and observe that a programmable
function should preserve it.

One then shows how partial functions can be replaced by total ones into a
“lifted set,” that is, a flat domain. But then all sets should be lifted and by looking
at the Booleans, one finds that while there are only nine partial functions from B
to B, there are 11 monotone and total functions from B⊥ to B⊥. This provides an
opportunity to talk about strictness and CBV vs CBN.

Next we look at [N⊥ → N⊥], again comparing this to the partial function
space [N⇀ N] and see that its order structure is much richer. This is the moment
to define abstractly the notion of an ω-chain-complete partial order, or ccpo, and
that of an ω-chain-continuous function.

The four key theorems to prove are (a) that the function space of two ccpos
is again a ccpo, (b) that application and abstraction are continuous functions, (c)
that every continuous function has a fixpoint, and (d) that the fixpoint map itself
is continuous. I am embarrassed to admit that of these I only ever manage to
prove (c) in any detail. It is good material for the exercise class, though.

I stress to the students that because of (a) and (b), ccpos and ω-chain-
continuous functions are the third example of a Henkin model for the simply typed
lambda calculus, after the full set hierarchy and the term model.

As an aside, it is a fact that continuity is not necessary for the adequacy proof
but it is of course much harder to prove that monotone functions have fixpoints,

13



which would require either transfinite induction or otherwise the clever argument
of Pataraia. Both can be considered in the exercises.

7 Lecture V: Adequacy and the Context Lemma
This lecture starts with pointing out that one should not expect an axiomatisation
of the equational theory induced by the domain model for PCF, as this would
entail solving the halting problem. On the other hand, the equations that we do
have, all have been refined to rewrite rules, so we can talk about computation as
reduction to normal form (again, it may be helpful to point out that we could have
done the same for the simply typed lambda calculus). Correctness is still an issue
but it can be dealt with swiftly. Completeness, on the other hand, is available at
ground type only and now takes the rather interesting form of adequacy:

Theorem. If P is a closed term of type int and if JP K = n ∈ N then P reduces
to n in finitely many steps.

In class, the proof is given in full and uses the well-known “logical relation”
technique (which, I am told, has indeed a long history). For a closed term M of
ground type (let’s restrict attention to the integers from now on) and a ∈ N⊥, one
defines

(a,M) ∈ Rint iff a = ⊥ or (a = n and M ⇓ n)

This is extended to higher types as usual:

(f,M) ∈ Rσ→τ iff ∀N : σ closed and a ∈ Aσ. (a,N) ∈ Rσ =⇒ (f(a),MN) ∈ Rτ

We now proceed by the following simple steps:

Lemma. ⊥ R M always.

Lemma. If M ′ →M and a R M then a R M ′.

Lemma. If ai R M for the elements of a chain a0 v a1 v . . . then
⊔
ai R M .

It is in the proof of the last lemma where we notice that we only need that
sups of functions are computed pointwise but not that functions are continuous.
In other words, the proof would go through if we built our model with functions
which are only required to be monotone, an observation which I learned from
Alley Stoughton.

The three lemmas allow us to show the following, which has the same shape
as the fundamental lemma for logical relations:

14



Lemma. If M is closed, then JMK R M .

The proof is by induction over the structure of M (so we need to extend R
to open terms) whereas the others are by induction over the type, the key steps
being lambda abstraction and the fixpoint combinator. Adequacy then follows
immediately from this and the definition of R.

The final highlight of the course is a demonstration that the semantics can be
invoked to show Milner’s context lemma. So we introduce contexts as “terms with
holes” and the contextual preorder .. The key to the argument is to employ the
relation R from the adequacy proof:

Lemma. Let M,M ′ be closed and of type σ = σ1 → σ2 → . . . → σk → int.
Then the following are equivalent:

1. M .M ′

2. ∀P closed. PM ⇓ n =⇒ PM ′ ⇓ n

3. ∀N1, . . . , Nk closed.MN1 . . . Nk ⇓ n =⇒M ′N1 . . . Nk ⇓ n

4. JMK R M ′

The proof is so elegant that it is worthwhile to spell it out in full:

Proof. (1) ⇔ (2) It is possible to treat the “hole” in a context as if it were a
variable because M and M ′ are assumed to be closed.

(3) is a special case of (2), consider P = λx.xN1 . . . Nk.
(3) ⇒ (4) Use the definition of the logical relation: Let ai R Ni for i ∈

{1, . . . , k} and consider M ′N1 . . . Nk and JMK(a1) . . . (ak). We want to show
that JMK(a1) . . . (ak) is in relation to M ′N1 . . . Nk. We know that JMK R M and
hence JMK(a1) . . . (ak) R MN1 . . . Nk. There are two cases:

• If JMK(a1) . . . (ak) = ⊥ then JMK(a1) . . . (ak) R M ′N1 . . . Nk by defini-
tion.

• If JMK(a1) . . . (ak) = n then again by the definition of R: MN1 . . . Nk ⇓
n, and hence M ′N1 . . . Nk ⇓ n by assumption. In this case, too,
JMK(a1) . . . (ak) R M ′N1 . . . Nk follows.

(4) ⇒ (2) Let P be closed. We have JP K R P , hence JPMK =
JP K(JMK) R PM ′ by assumption. Now if PM ⇓ n then by correctness
JPMK = n. By the definition of R, PM ′ ⇓ n follows.

15



The course ends by pointing the students to the classic texts by Scott [Sco93]
and Plotkin [Plo77], as well as to the textbooks mentioned above, and especially
[Str06] for a continuation of the story begun in this course.

8 Concluding remarks
If you have taught denotational semantics yourself, you will have made different
choices and you will have had different experiences. I’d love to hear from you! If
you agree or disagree with the particular choices I have presented here, then I’d
love to hear from you, too! Perhaps you have suggestions for making the subject
more interesting or more tractable still; that would also be welcome.

I should like to end by expressing my gratitude to the many colleagues and
students (especially here at Birmingham) with whom I have discussed the contents
of my course over the years, and I ask for forgiveness from those from whom I
have taken an idea without giving proper credit. Most of all, I am indebted to Dana
Scott and Gordon Plotkin for laying the foundation for this beautiful subject.

References
[Ber90] U. Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD

thesis, Ludwig-Maximilians-Universität München, 1990.

[Gun92] C. Gunter. Semantics of Programming Languages. Structures and Tech-
niques. Foundations of Computing. MIT Press, 1992.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-
Calculus. Cambridge University Press, 1986.

[Mit96] J.C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[NN91] H. R. Nielson and F. Nielson. Semantics with Applications: A Formal
Introduction for Computer Science. Wiley, 1991.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[Sch86] D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

16



[Sco93] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science, 121:411–440, 1993. Reprint of a
manuscript written in 1969.

[Sim98] A. Simpson. Lazy functional algorithms for exact real functionals. In
Mathematical Foundations of Computer Science 1998, volume 1450 of
Lecture Notes in Computer Science, pages 456–464. Springer Verlag,
1998.

[Str06] Th. Streicher. Domain-Theoretic Foundations of Functional Program-
ming. World Scientific, 2006. 132pp.

[Ten91] R. D. Tennent. Semantics of Programming Languages. Prentice Hall,
1991.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. An
Introduction. MIT Press, 1993.

17


