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Abstra
t

Stably 
ompa
t spa
es are a natural generalization of 
ompa
t Hausdor� spa
es in

the T

0

setting. They have been studied intensively by a number of resear
hers and

from a variety of standpoints.

In this paper we let the morphisms between stably 
ompa
t spa
es be 
ertain

\
losed relations" and study the resulting 
ategori
al properties. Apart from ex-

tending ordinary 
ontinuous maps, these morphisms have a number of pleasing

properties, the most prominent, perhaps, being that they 
orrespond to preframe

homomorphisms on the lo
ali
 side. We exploit this Stone-type duality to establish

that the 
ategory of stably 
ompa
t spa
es and 
losed relations has bilimits.

1 Introdu
tion

The resear
h reported in this paper derives its motivation from two sour
es.

For some time, we have tried to extend Samson Abramsky's Domain Theory
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in Logi
al Form to 
ontinuous domains, [1,15,14,17℄. This has led to a number

of insights, the most important perhaps being that in order to perform domain


onstru
tions stri
tly logi
ally, one 
an invoke a version of Gentzen's 
ut elim-

ination theorem. This, however, requires that we 
onsider a purer logi
 than

Abramsky did. Semanti
ally, it then turns out that the notion of morphisms

so 
aptured 
onsists of 
ertain relations, rather than fun
tions, [14, Proposi-

tion 6.5℄. This is quite in line with developments in denotational semanti
s,

where the need for (or the advantages of) relations has been noti
ed for some

time, [5,3℄.

Our se
ond motivation stems from the desire to 
ir
umvent some of the

diÆ
ulties 
onne
ted to 
lassi
al domain theory. As is well known, in order

to get a 
artesian 
losed 
ategory of 
ontinuous domains, one has to restri
t

to a sub
ategory of FS-domains, [13,1℄. Unlike general 
ontinuous domains,

a straightforward 
hara
terisation of FS-domains via their Stone dual, for

example, is not known. Perhaps as a result of the relative weakness of our

tools for FS-domains, 
ertain basi
 questions about them remain unresolved.

We still do not know whether they 
oin
ide with retra
ts of bi�nite domains

or whether the probabilisti
 powerdomain 
an be restri
ted to this 
ategory,

[16℄.

The semanti
 spa
es whi
h we put forward in this paper, in 
ontrast to

FS-domains, are very well behaved and understood. They are the so-
alled

stably-
ompa
t spa
es. Many equivalent 
hara
terisations are known and many

properties have been dis
overed for them. Also, they do en
ompass most 
ate-

gories of 
ontinuous domains whi
h have played a role in denotational seman-

ti
s. As is 
lear from what we have said at the beginning, we are interested

in the 
ategory SCS

�

of stably 
ompa
t spa
es with 
losed relations as mor-

phisms. Although a similar set-up has been 
onsidered some time ago, [26,

Prop. 11.2.5℄, the expli
it relational presentation appears to be new.

The purpose of this paper is to examine the suitability of SCS

�

as a se-

manti
 universe. To this end we look at �nitary 
losure properties and the

bilimit 
onstru
tion. The latter, to our great satisfa
tion, behaves in a very

natural and intuitive way. Spe
i�
ally, we show that the bilimit 
oin
ides with

a 
lassi
al topologi
al limit although it is 
onstru
ted order-theoreti
ally.

2 The 
ategory of of stably 
ompa
t spa
es and 
losed

relations

2.1 The spa
es

We assume standard domain theoreti
 notation as it is used in [8,1℄, for exam-

ple. Slightly less well known, perhaps, are the following notions and results.

If X is a topologi
al spa
e and A an arbitrary subset of X then the saturation

of A is de�ned as the interse
tion of all neighborhoods of A. For any T

0

-

topologi
al spa
e X, the spe
ialization order of X is the relation v

X

given by

2
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x v

X

y if every neighborhood of x is also a neighborhood of y. The saturation

of a subset A 
an then also be des
ribed as the upward 
losure with respe
t

to v

X

. Open set are always upper, that is, saturated. An important fa
t is

that the saturation of a 
ompa
t set is again 
ompa
t, for a set A has exa
tly

the same open 
overs as its saturation.

For any topologi
al spa
e X the set of open subsets forms a 
omplete

latti
e 
(X) with respe
t to subset in
lusion. Vi
e versa, for every 
omplete

latti
e L the set of 
ompletely prime �lters, denoted pt(L), 
arries the topology

fO

a

j a 2 Lg where F 2 O

a

if a 2 F . A spa
e is T

0

if the assignment, whi
h

asso
iates with a point x 2 X the open neighborhood �lter N(x), is inje
tive.

A spa
e is 
alled sober if the assignment is bije
tive. See [1, Se
tion 7℄ for a

detailed introdu
tion to this topi
. We are now ready to de�ne the obje
ts of

interest in this paper:

De�nition 2.1 A topologi
al spa
e is 
alled stably 
ompa
t if it is sober,


ompa
t, lo
ally 
ompa
t and �nite interse
tions of 
ompa
t saturated subsets

are again 
ompa
t.

Stably 
ompa
t spa
es have been studied intensively (and under many

di�erent names), [8,10,9,24,19,15℄ but, unfortunately, apart from [17℄ there

is no single 
omprehensive referen
e for their many properties. We therefore

state the main fa
ts needed in the sequel. Our prin
ipal te
hni
al tool is the

Hofmann-Mislove Theorem, [11,18℄:

Theorem 2.2 Let X be a sober spa
e. There is an order-reversing bije
tion

between the set K(X) of 
ompa
t saturated subsets of X (ordered by reversed

in
lusion) and S
ott-open �lters in 
(X) (ordered by in
lusion). It assigns to

a 
ompa
t saturated set the �lter of open neighborhoods and to a S
ott-open

�lter of open sets their interse
tion.

One 
onsequen
e of this whi
h we will need later is that every S
ott-open

�lter in 
(X) is equal to the interse
tion of all 
ompletely prime �lters 
on-

taining it. Another is the fa
t that the set K(X) is a d
po when equipped

with reversed in
lusion. For stably 
ompa
t spa
es even more is true:

Proposition 2.3 Let X be a stably 
ompa
t spa
e.

(i) K(X) is a 
omplete latti
e in whi
h suprema are 
al
ulated as interse
-

tions and �nite in�ma as unions.

(ii) 
(X) and K(X) are stably 
ontinuous frames.

(iii) In 
(X) we have O � O

0

if and only if there is K 2 K(X) with O �

K � O

0

.

(iv) In K(X) we have K � K

0

if and only if there is O2
(X) with K

0

�

O � K.

As in [15℄ we use stably 
ontinuous frame to denote 
ontinuous distributive

3
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latti
es in whi
h the way-below relation is multipli
ative, that is, in whi
h

x � y; z implies x � y ^ z and in whi
h 1 � 1. They are pre
isely the

Stone duals of stably 
ompa
t spa
es, see [10, Theorem 1.5℄. Note that the

proposition tells us that the 
omplements of 
ompa
t saturated sets form

another topology on X, 
alled the 
o-
ompa
t topology for X and denoted by

X

�

. Original and 
o-
ompa
t topology are 
losely related:

Proposition 2.4 Let X be a stably 
ompa
t spa
e.

(i) The open sets of X

�

are the 
omplements of 
ompa
t saturated sets in X.

(ii) The open sets of X are the 
omplements of 
ompa
t saturated sets in X

�

.

(iii) X

�

is stably 
ompa
t and (X

�

)

�

is identi
al to X.

(iv) The spe
ialization order of X is the inverse of the spe
ialization order

of X

�

.

For a stably 
ompa
t spa
e X, the pat
h topology of X is the 
ommon

re�nement of the original topology and the 
o-
ompa
t topology. It is denoted

byX

�

. It is the key to making the 
onne
tion to mu
h earlier work by Leopoldo

Na
hbin, [21℄: A partially ordered spa
e or pospa
e is a topologi
al spa
e X

with a partial order relation v

X

su
h that the graph of v

X

is a 
losed subset

of X�X. Su
h a spa
e must be Hausdor� be
ause the diagonal relation, i.e.,

the interse
tion of v

X

and the opposite partial order w

X

, is 
losed.

Theorem 2.5 For a stably 
ompa
t spa
e X the spe
ialization order together

with the pat
h topology makes X

�

into a 
ompa
t ordered spa
e. Conversely,

for a 
ompa
t ordered spa
e (X;v) the open upper sets "U = U 2 
(X)

form the topology for a stably 
ompa
t spa
e X

"

, and the two operations are

mutually inverse.

Moreover, for a stably 
ompa
t spa
e X the upper 
losed sets of X

�

are

pre
isely the 
ompa
t saturated sets of X.

Noti
e that for a 
ompa
t Hausdor� spa
e X, the diagonal relation �

X

is a 
losed (trivial) partial order. By applying Theorem 2.5 to the pospa
e

(X;�

X

), we see that the upper opens and lower opens are just the opens of

the original topology. So X = X

�

= X

�

. The 
onverse also holds.

Corollary 2.6 A spa
e X is 
ompa
t Hausdor� if and only if it is a stably


ompa
t spa
e for whi
h X = X

�

.

Proof. The pat
h topology for any stably 
ompa
t spa
e is Hausdor�. In

the 
ase of a stably 
ompa
t spa
e for whi
h X = X

�

, the pat
h topology is

simply the original. 2

We 
an thus think of stably 
ompa
t spa
es as the T

0

generalization of


ompa
t Hausdor� spa
es. The fa
t that X 6= X

�

in general for
es us to tread


arefully in Se
tion 2.2 as we generalize from 
losed relations between 
ompa
t

Hausdor� spa
es to 
losed relations between stably 
ompa
t spa
es.

4
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The importan
e of stably 
ompa
t spa
es for domain theory is that almost

all 
ategories used in semanti
s are parti
ular 
ategories of stably 
ompa
t

spa
es.

Proposition 2.7 FS domains, and hen
e in parti
ular S
ott domains and


ontinuous latti
es, equipped with their S
ott topologies, are stably 
ompa
t

spa
es.

2.2 The morphisms

The obvious 
ategory of stably 
ompa
t spa
es is that of 
ontinuous fun
tions,

i.e. the full sub
ategory SCS of the 
ategory of topologi
al spa
es Top. The


ategory that we are really interested in, however, is one that generalizes

KHaus

�

, the 
ategory of 
ompa
t Hausdor� spa
es and 
losed relations. We

quote the basi
 de�nitions and results from [14℄.

The spe
ialization order of a stably 
ompa
t spa
eX is generally not 
losed

in X � X. Indeed, were it 
losed, X would be a pospa
e, hen
e would be

Hausdor�. Thus, spe
ialization would be trivial. Spe
ialization, on the other

hand, is reversed by taking the 
o-
ompa
t topology (again, in the Hausdor�


ase X = X

�

so the \reversal" is trivial). Thus:

Proposition 2.8 The spe
ialization order of a stably 
ompa
t spa
e X is


losed in X �X

�

.

Proof. Suppose that x 6v

X

y. Then there is an open set U 
ontaining x and

not y. By lo
al 
ompa
tness, we 
an assume that U is 
ontained in a 
ompa
t

saturated neighborhood K of x that also does not 
ontain y. U is an upper

set 
ontaining x. The 
omplement of K is a lower set 
ontaining y. Thus

U � (X nK) is a neighborhood of hx; yi in X �X

�

that does not meet v

X

.2

For stably 
ompa
t spa
es X and Y , we 
all a 
losed subset R � X �Y

�

a


losed relation from X to Y and we write it as R : X +

-

Y . If we spell out

this 
ondition then it means that for x 2 X and y 2 Y su
h that x 6R y we �nd

an open neighborhood U of x and a 
ompa
t saturated set K � Y that doesn't


ontain y su
h that U � (Y nK) \ R = ;. [
f. the proof Proposition 2.8.℄

Note that every 
losed relation R satis�es the rule x

0

v

X

x R y v

Y

y

0

=)

x

0

R y

0

.

The 
omposition of 
losed relations is the usual relation produ
t, R ; S =

�

hx; zi j (9y) x R y and y S zg. Note that, following usual pra
ti
e, we write

the 
omposition of relations from left to right, whereas for fun
tions it is from

right to left. To avoid ambiguity we use \;" to indi
ate left-to-right 
omposi-

tion. Noti
e that the spe
ialization order of any stably 
ompa
t spa
e X a
ts

as identity under taking the relation produ
t with 
losed relations from or to

X and also that the 
omposition of two 
losed relations is again 
losed. We


all the 
ategory of stably 
ompa
t spa
es with 
losed relations SCS

�

.

5
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The Hausdor� 
ase is worth 
onsidering separately as it helps to illuminate

the de�nition of 
losed relations. As we have noted, a stably 
ompa
t spa
e is

Hausdor� if and only if its topology agrees with its 
o-
ompa
t topology. Thus

our 
losed relations from X to Y are simply 
losed subsets of X�Y = X�Y

�

whenever Y is Hausdor�. Thus SCS

�


orre
tly generalizes KHaus

�

, in whi
h

we 
ould take the morphisms simply as 
losed subsets of X � Y . The fa
t

that we 
ould get away with this apparently simpler notion of morphism in

the Hausdor� setting is due essentially to the fa
t that in 
ompa
t Hausdor�

spa
es the 
o-
ompa
t topology is \hidden from view." In parti
ular, KHaus

�

is a full sub
ategory of SCS

�

(as well as being a sub
ategory of Rel).

Note that the obvious forgetful \fun
tor" from SCS

�

to Rel, the 
ategory

of sets with relations, preserves 
omposition but not identities. The only

stably 
ompa
t spa
es for whi
h identity is preserved are those with trivial

spe
ialization orders, i.e., the 
ompa
t Hausdor� spa
es.

Relations between sets 
an be understood as multi-fun
tions. As the fol-

lowing proposition shows this 
arries over to our topologi
al setting in an

interesting way.

Proposition 2.9 Let X and Y be stably 
ompa
t spa
es and R : X +

-

Y a


losed relation then

f

R

(x) := fy 2 Y j x R yg

de�nes a 
ontinuous fun
tion from X to K(Y ), where the latter is equipped

with the S
ott topology. Conversely, if f : X ! K(Y ) is 
ontinuous then

�

hx; yi 2 X � Y

�

�

y 2 f(x)

	

is a 
losed relation from X to Y . Moreover, these two translations are mutually

inverse.

To extend this 
orresponden
e to the 
omposition of relations and multi-

fun
tions, respe
tively, we �rst have to de�ne a law of 
omposition on the

latter. To this end re
all that K(X) with its S
ott topology is again a stably


ompa
t spa
e by Propositions 2.3 and 2.7. Hen
e we 
an make K into an

endofun
tor on SCS by mapping a 
ontinuous fun
tion f : X ! Y to the

fun
tion K(f) : K(X)! K(Y ) that takes a 
ompa
t saturated subset K � X

to "f [K℄. This endofun
tor is part of a monad whose unit takes the saturation

of points and whose multipli
ation is simply union [22℄. Consequently, the


anoni
al 
omposition of multi-fun
tions is Kleisli 
omposition whi
h turns

out to be the analogue of ordinary relation produ
t.

Proposition 2.10 The 
ategory of 
losed relations SCS

�

is isomorphi
 to the

Kleisli 
ategory SCS

K

.

It is generally the 
ase that a 
ategory C with a monad T is embedded in

the Kleisli 
ategory C

T

simply by post-
omposing with the unit of the monad.

6
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Moreover, if the units of the monad are moni
, then the embedding is faithful.

Hen
e, SCS is a sub
ategory of SCS

K

and thus also of SCS

�

. Con
retely,

this embedding works by taking the hypergraph of a fun
tion. The following

proposition 
hara
terizes those relations that are really embedded fun
tions:

Proposition 2.11 If f : X ! Y is a 
ontinuous fun
tion then the hypergraph

�

hx; yi 2 X � Y

�

�

f(x) v y

	

is a 
losed relation from X to Y . Conversely, if R : X +

-

Y is a 
losed

relation su
h that for all x 2 X the set f

R

(x) has a least element r(x) then

r : X ! Y is a 
ontinuous fun
tion, and this operation is the inverse of the

previous.

Again, the Hausdor� 
ase may help to illuminate this. If f : X ! Y is a


ontinuous fun
tion with Y a 
ompa
t Hausdor� spa
e, then the hypergraph

is simply the graph of f . This is a 
losed relation just as 
lassi
al topology

tells us it should be. Conversely, suppose that a 
losed relation from X to Y

is the graph of a fun
tion g. Then 
learly f

R

(x) has a least element g(x) for

ea
h x. Thus g is a 
ontinuous fun
tion.

2.3 The 
ategory

The left adjoint from SCS to the Kleisli 
ategory SCS

K

�

=

SCS

�

preserves


oprodu
ts. Hen
e, they are given in SCS

�

simply as topologi
al 
oprodu
ts,

i.e., as disjoint unions.

In the 
ategory Rel of sets and relations for every relation R : X +

-

Y

there is the re
ipro
al relation R

�

that is given by y R

�

x () x R y. This is

the main ingredient that makes Rel into an allegory [7℄. Our 
ategory SCS

�

fails

to be an allegory exa
tly be
ause, as we shall see, it la
ks a true re
ipro
ation

operation. On the other hand, if R : X +

-

Y is a 
losed relation between

stably 
ompa
t spa
es then R

�

: Y

�

+

-

X

�

is a 
losed relation between the


o-
ompa
t topologies, and (�)

�

is an involution on SCS

�

. The problem is that

it doesn't �x obje
ts. We 
an think of X

�

as an upside-down version of X

sin
e the spe
ialization order v

X

�

for the 
o-
ompa
t topology is simply w

X

,

i.e. the dual of the one for the original spa
e.

Nonetheless, the maps X 7! X

�

and R 7! R

�


omprise a 
ontravariant

fun
tor, showing that SCS

�

is a self-dual 
ategory. Consequently, 
ategori
al

produ
ts (denoted here by X �

�

Y to avoid 
on
i
t with topologi
al produ
ts

X � Y ) are also given by disjoint union:

X �

�

Y

�

=

(X

�

+ Y

�

)

�

= (X

�

:

[ Y

�

)

�

= (X

�

)

�

:

[ (Y

�

)

�

= X

:

[ Y = X + Y:

If a self-dual 
ategory is 
artesian 
losed then all obje
ts are isomorphi
 and

hen
e the 
ategory is equivalent to the 
ategory with only one (identity) mor-

phism. This shows that SCS

�


annot be 
artesian 
losed.

7



Jung, Kegelmann and Moshier

Sin
e 
ategori
al produ
ts in SCS

�

are the same as 
o-produ
ts, let us

look at 
artesian produ
ts. In SCS they are the 
ategori
al produ
t and we


an lift them to SCS

�

to make SCS

�

into a symmetri
 monoidal 
ategory.

The tensor produ
t takes the 
artesian produ
t of the spa
es with the prod-

u
t topology and we also embed the morphisms needed for the symmetri


monoidal stru
ture from SCS as des
ribed in Proposition 2.11. The de�ni-

tion of the tensor produ
t of two 
losed relations R and S is pointwise, i,e,

hx; yi R 
 S hx

0

; y

0

i : () x R y and x

0

R y

0

. This de�nes a 
losed rela-

tion and extends to produ
ts of 
ontinuous fun
tions; for the details see [17,

Se
tion 3.2.4℄.

With respe
t to 
, the 
ategory SCS

�

is 
losed: Be
ause of (X � Y )

�

=

X

�

�Y

�

we see that 
losed subsets of (X�Y )�Z

�

are the same thing as 
losed

subsets of X � (Y

�

� Z)

�

whi
h proves SCS

�

(X 
 Y; Z)

�

=

SCS

�

(X; Y

�


 Z).

This internal homset Y

�


 Z, however, does not 
orrespond to the \real"

homset SCS

�

(Y; Z).

The homset SCS

�

(Y; Z) 
onsists of the 
losed subsets of Y � Z

�

whi
h by

Theorem 2.5 are pre
isely the 
ompa
t saturated subsets of the dual (Y �Z

�

)

�

.

Hen
e, we 
an write the relation spa
e as [Y ) Z℄ := K(Y

�

� Z). With this

de�nition and Proposition 2.10 we get

SCS

�

(X 
 Y; Z)

�

=

SCS

�

(X; Y

�


 Z)

�

=

SCS

�

X;K(Y

�


 Z)

�

= SCS

�

X; [Y ) Z℄

�

:

So, we see that (�
Y ) and [Y ) �℄ are almost adjoint. The problem is that

the indu
ed morphism X +

-

[Y ) Z℄ is not uniquely determined.

The 
anoni
al evaluation morphism is a fun
tional 
losed relation and for

the indu
ed morphism we 
an always 
hoose a fun
tional one, and as su
h it is

unique, i.e. these morphisms 
ome from SCS rather than SCS

�

. In [23℄ su
h a

situation is 
alled a Kleisli exponential. There is an alternative des
ription of

the relation spa
e by observing SCS

�

(Y; Z)

�

=

SCS

�

Y;K(Z)

�

: Thus the normal

fun
tion spa
e [Y ! K(Z)℄ with the 
ompa
t-open topology, whi
h is simply

the S
ott topology, yields a spa
e that is homeomorphi
 to [Y ) Z℄. This


onstru
tion was �rst studied in [25℄, although it seems that some of subtleties


on
erning the fa
t that this is only a Kleisli exponential were overlooked.

3 Stone Duality

Next we develop the Stone duality of 
losed relations. The morphisms between

open set latti
es 
orresponding to 
losed relations turn out to be preframe

homomorphisms, [2℄, preserving �nite meets and dire
ted suprema. They

have been studied in a similar framework before, see [26, Prop. 11.2.5℄, but

the duality with relations seems to be new.

8
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3.1 Relational preimage

If R : X +

-

Y is a relation and A � X a subset, then we write

[A℄R :=

�

y 2 Y

�

�

(9x 2 A) x R y

	

for the usual forward image. The de�nition of the preimage of a subset B � Y

under the relation R is a bit more tri
ky as there are several 
andidates. Here,

we are only interested in the universal preimage given by

(8R)[B℄ :=

�

x 2 X

�

�

(8y 2 Y ) x R y =) y 2 B

	

:

This de�nition is useful be
ause 8R turns out to be the right adjoint to [�℄R:

Lemma 3.1 If R � X � Y is a relation and A and B are subsets of X and

Y , respe
tively, then we have

[A℄R � B () A � (8R)[B℄:

In the usual fun
tional setting the situation is analogous; preimage is right

adjoint to dire
t image. The 
onne
tion between relational and fun
tional

preimage is the following.

Lemma 3.2 If f : X ! Y is a 
ontinuous fun
tion between stably 
ompa
t

spa
es and F : X +

-

Y the 
orresponding 
losed relation given by the hyper-

graph, then for all upper sets A = "A � Y we have

f

�1

[A℄ = (8F )[A℄:

We now des
ribe the translation from topologi
al spa
es to frames in the

relational setting.

Proposition 3.3 If R : X +

-

Y is a 
losed relation then 8R is a 
ontinuous

semilatti
e homomorphism from 
(Y ) to 
(X), i.e. it preserves �nite in�ma

and dire
ted suprema.

Proof. First, we have to 
he
k that for any open V � Y the preimage (8R)[V ℄

is open. So let x 2 (8R)[V ℄, or equivalently f

R

(x) = [x℄R � V . We know from

Proposition 2.9 that f

R

is 
ontinuous and thus Proposition 2.3 gives us an open

neighborhood U of x su
h that f

R

(x

0

) � V for all x

0

2 U . We 
on
lude x 2

U � (8R)[V ℄, thus showing that for a 
losed relation the universal preimage

of an open set is open.

As we have seen in Lemma 3.1, 8R as a fun
tion between the full powersets

is a right adjoint. As su
h it preserves all interse
tions and thus the �nite meets

in 
(Y ).

Thus, it is a monotone map and, 
onsequently, to show that it also pre-

serves dire
ted suprema we only have to verify (8R)

�

S

"

V

i

�

�

S

"

(8R)[V

i

℄. So,

9
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we 
onsider an x 2 (8R)

�

S

"

V

i

�

whi
h means f

R

(x) �

S

"

V

i

. But as f

R

(x) is


ompa
t we 
an �nd an index i su
h that f

R

(x) � V

i

and, equivalently, su
h

that x 2 (8R)[V

i

℄. 2

We 
all 


�

R the restri
tion and 
o-restri
tion of 8R to the open subsets

of X and Y to simplify notation. Going from a relation to the forward im-

age fun
tion is well-known to be fun
torial, and so is taking adjoints. By

Lemma 3.1 this implies that universal preimage is also fun
torial. Clearly,




�

v

X

is the identity on 


�

(X) = 
(X) as all open sets are upper sets. Thus




�

is a 
ontravariant fun
tor from SCS

�

to the 
ategory of stably 
ontinuous

frames and S
ott 
ontinuous semilatti
e homomorphisms whi
h we denote

by SCF

�

.

Just like 
 we also have to adjust the fun
tor pt to the relational setting.

Consider a homomorphism � : L!M . We de�ne the relation pt

�

(�) : pt

�

(M) +

-

pt

�

(L)

by

Q pt

�

(�) P :() �

�1

[Q℄ � P

where pt

�

on obje
ts behaves just like the usual pt, i.e., P and Q are 
om-

pletely prime �lters in L and M , respe
tively. Alternatively, we 
an identify


ompletely prime �lters with their 
hara
teristi
 fun
tions whi
h are frame

morphisms to 2, the two-element latti
e. For two su
h points p : L ! 2 and

q : M ! 2 the above de�nition be
omes

q pt

�

(�) p :() q Æ � v p:

Proposition 3.4 If � : L ! M is a 
ontinuous semilatti
e homomorphism,

then pt

�

(�) : pt

�

(M) +

-

pt

�

(L) is a 
losed relation.

Proof. Suppose Q � M and P � L are 
ompletely prime �lters su
h that

�

�1

[Q℄ * P . As � is S
ott 
ontinuous and Q 
ompletely prime and thus, in

parti
ular, S
ott open, the set �

�1

[Q℄ is also S
ott open. Be
ause it is also

not 
ontained in P and L is a 
ontinuous latti
e we 
an �nd an x 2 �

�1

[Q℄nP

su
h that

�

�

x * P . On the other hand Q, as an upper set, is the union of

prin
ipal �lters "y for y 2 Q and hen
e we get �

�1

[Q℄ = �

�1

�

S

f"y j y 2 Qg

�

=

S

�

�

�1

["y℄

�

�

y 2 Q

	

3 x. This means that we 
an �nd a y 2 Q su
h that

x 2 �

�1

["y℄.

As L is stably 
ontinuous, the set

�

�

x is a S
ott open �lter whi
h 
orresponds

to the 
ompa
t saturated subset

�

P 2 pt

�

(L)

�

�

�

�

x � P

	

of pt

�

(L) by the

Hofmann-Mislove theorem. Now, we 
onsider the open subset of pt

�

(M) �

pt

�

(L)

�

whi
h is given as the produ
t of the open set 
orresponding to y and

to the 
omplement of the 
ompa
t saturated set 
orresponding to

�

�

x, and we


laim that this is a neighborhood of hQ;P i that doesn't meet R

�

. Clearly,

hQ;P i is in this set, and if Q

0

2 pt

�

(M) and P

0

2 pt

�

(L) are su
h that y 2 Q

0

and

�

�

x * P

0

we get �

�1

[Q

0

℄ � �

�1

�

"y

�

3 x and thus �

�1

[Q

0

℄ �

�

�

x whi
h

implies �

�1

[Q

0

℄ * P

0

. 2

10
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Now we have all the ingredients for a duality between SCS

�

and SCF

�

. It

remains to 
he
k that the 
ategori
al 
onditions are indeed met.

Theorem 3.5 The 
ontravariant fun
tors 


�

and pt

�

are part of a dual equiv-

alen
e between the 
ategories SCF

�

and SCS

�

.

Proof. We begin by showing that pt

�

is indeed a fun
tor. Clearly, pt

�

(id

L

) =

v

pt

�

(L)

, the identity 
losed relation on pt

�

(L). The interesting dire
tion for

fun
toriality is to show that pt

�

( Æ�) � pt

�

( ); pt

�

(�), where � : L!M and

 : M ! N are 
ontinuous semilatti
e morphisms. Let P 2 pt

�

(N) and P

0

2

pt

�

(L) be su
h that P (pt

�

( Æ �)) P

0

, or equivalently that �

�1

�

 

�1

[P ℄

�

� P

0

.

We need to �nd a 
ompletely prime �lter Q � M that satis�es  

�1

[P ℄ � Q

and �

�1

[Q℄ � P

0

. Unfortunately,  

�1

[P ℄ in general is only a S
ott open �lter,

not a point in M .

However, by the Hofmann-Mislove Theorem, 2.2, we have  

�1

[P ℄ =

T

fQ 2

pt

�

(M) j  

�1

[P ℄ � Qg. So for the sake of 
ontradi
tion, assume there exists

x

Q

2 �

�1

[Q℄ n P

0

for all Q �  

�1

[P ℄. Then the supremum

W

x

Q

of all these

elements does not belong to P

0

be
ause P

0

is 
ompletely prime; on the other

hand, �(

W

x

Q

) belongs to all Q �  

�1

[P ℄ by monotoni
ity of �, hen
e to

 

�1

[P ℄. This 
ontradi
ts the assumption �

�1

[ 

�1

[P ℄℄ � P

0

.

To show that 


�

and pt

�

give rise to a duality between SCF

�

and SCS

�

we have to 
he
k that their a
tions on morphisms are mutually inverse. So,

suppose R : X +

-

Y is a 
losed relation and N(x) and N(y) are the open

neighborhood �lters of two points x 2 X and y 2 Y . We get

N(x) (pt

�

(8R)) N(y) () (8R)

�1

�

N(x)

�

� N(y)

()

�

8V 2 


�

(Y )

�

V 2 (8R)

�1

�

N(x)

�

=) V 2 N(y)

()

�

8V 2 


�

(Y )

�

x 2 (8R)[V ℄ =) y 2 V

()

�

8V 2 


�

(Y )

�

[x℄R � V =) y 2 V

Clearly, x R y implies this last 
ondition and the 
onverse follows from the

fa
t that [x℄R is saturated.

Finally, we take a 
ontinuous semilatti
e morphism � : L ! M and show

that

�




�

(pt

�

(�))

��

fP 2 pt

�

(L) j x 2 Pg

�

=

�

Q 2 pt

�

(M)

�

�

�(x) 2 Q

	

for any

x 2 L:

�

8 pt

�

(�)

�

�

�

P 2 pt

�

(L) j x 2 P

	

�

=

n

Q 2 pt

�

(M)

�

�

�

8P 2 pt

�

(L)

�

Q (pt

�

(�)) P =) x 2 P

o

=

n

Q 2 pt

�

(M)

�

�

�

8P 2 pt

�

(L)

�

�

�1

[Q℄ � P =) x 2 P

o

As before we use the fa
t that �

�1

[Q℄ is a S
ott-open �lter and hen
e by the

Hofmann-Mislove Theorem equal to the interse
tion of all 
ompletely prime

�lters 
ontaining it. The expression then re-writes to fQ 2 pt

�

(M) j x 2

�

�1

[Q℄g whi
h is equal to fQ 2 pt

�

(M) j �(x) 2 Qg as desired. 2

It is interesting to 
onsider the Stone dual of the involution on SCS

�

that we

11
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dis
ussed in Se
tion 2.3. The 
o-
ompa
t topology on a stably 
ompa
t spa
e

has pre
isely the 
ompa
t saturated subsets of the original spa
e as 
losed

sets whi
h implies 


�

(X

�

) = 
(X

�

)

�

=

K(X). From the Hofmann-Mislove

Theorem we know that K(X) is in one-to-one 
orresponden
e to the S
ott

open �lters in 
(X). The latter 
an also be understood via their 
hara
teristi


fun
tions whi
h are pre
isely the 
ontinuous semilatti
e homomorphisms to 2,

the two-element latti
e. Putting it all together we get 
(X

�

)

�

=

K(X)

�

=

SCF

�

�


(X); 2

�

and we see that this self-duality in lo
ali
 terms is exa
tly the

Lawson duality of stably 
ontinuous semilatti
es [20℄.

3.2 Fun
tions revisited

We know from Proposition 2.11 that SCS embeds faithfully in SCS

�

and also

how to re
ognize the morphisms that arise from this embedding as hypergraphs

of fun
tions. We refer to a 
losed relation as fun
tional if it is the hypergraph

of a 
ontinuous fun
tion. Similarly the 
ategory SCF

�


ontains a sub
ategory

of fun
tional arrows.

Proposition 3.6 If R : X +

-

Y is a fun
tional 
losed relation then 


�

(R)

preserves �nite (and 
onsequently all) suprema. Conversely, if � : L ! M is

a frame homomorphism then pt

�

(L) is fun
tional.

Proof. If � is a frame homomorphism then for any 
ompletely prime �lter

Q � M the preimage �

�1

[Q℄ is 
ompletely prime. Hen
e, this is the least


ompletely prime �lter P � L su
h that �

�1

[Q℄ � P .

For the 
onverse observe that the forward image [x℄R of any point x has a

least element and hen
e will be 
ontained in either U or V i� it is 
ontained

in U [ V . This shows that 8R preserves �nite suprema. 2

This result, of 
ourse, is very similar to the 
lassi
al Stone duality be-

tween SCS, the 
ategory of stably 
ompa
t spa
es with 
ontinuous fun
tions,

and SCF

�

_

, stably 
ontinuous latti
es with frame homomorphisms. There the

fun
tors 
 and pt a
t on morphisms as follows: 
(f) is simply the preim-

age fun
tion f

�1

[�℄ and similarly pt(�) takes a 
ompletely prime �lter P to

the 
ompletely prime �lter �

�1

[P ℄. As a 
orollary of the previous proposi-

tion we get that pt

�

and 


�


ommute with the embeddings of the fun
tional

sub
ategories.

12
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Corollary 3.7 The diagram of fun
tors

SCS




-

�

pt

Frm

SCS

�

i

?

\




�

-

�

pt

�

SCF

�

?

\

j


ommutes in the sense that j Æ 
 = 


�

Æ i and i Æ pt

�

= pt Æ j.

Proof. The �rst equality was proved in Lemma 3.2. For the se
ond, take a

frame morphism � : L ! M . It is mapped by i Æ pt to the hypergraph of the

preimage fun
tion, i.e. the 
losed relation that relates Q 2 pt(M) = pt

�

(M)

to P 2 pt(L) = pt

�

(L) if and only if �

�1

[Q℄ � P whi
h is pre
isely pt

�

(j(�)).2

As a 
onsequen
e of this 
orollary the operation whi
h extra
ts from a

fun
tional relation the underlying 
ontinuous fun
tion (whi
h exists by Propo-

sition 2.11) is just the 
omposition pt Æ 


�

. It follows that this is fun
torial.

We denote it by U .

There is a more 
ategori
al way to identify the fun
tional morphisms in the

two dual 
ategories. As we have seen in Se
tion 2.3, the produ
ts on the fun
-

tional sub
ategory give rise to a symmetri
 monoidal stru
ture on the larger

relational 
ategory. In addition, the diagonals �

A

: A ! A � A and mor-

phisms !

A

to the terminal obje
t indu
e a diagonal stru
ture. The fun
tional

morphisms are then 
hara
terized as the total and deterministi
 morphisms,

i.e. the ones for whi
h ! and �, respe
tively, are natural transformations. For

more details see [17, Se
tion 3.3℄.

4 Subspa
es

There are a number of di�erent 
on
epts of \good subspa
e" in Topology as

often simply 
arrying the indu
ed topology is too weak. One very useful one

that is well-known in domain theory is that of an embedding-proje
tion pair.

It 
ombines the 
ategori
al notion of se
tion retra
tion pair with the order

theoreti
 notion of adjun
tion. It is then an immediate 
orollary that the

spa
e that is the 
odomain of the se
tion 
arries the subspa
e topology. In

the following we will generalize this to the relational setting.

4.1 Perfe
t relations

We start by de�ning a spe
ial 
lass of relations that will be important when

we 
hara
terize relations that have adjoints.

13
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De�nition 4.1 We say that a 
losed relation R : X +

-

Y is perfe
t if for

all 
ompa
t saturated sets K � Y the preimage (8R)[K℄ is 
ompa
t.

Perfe
t relations 
an alternatively be 
hara
terized in terms of their Stone

duals.

Proposition 4.2 A 
losed relation R : X +

-

Y is perfe
t if and only if




�

(R) preserves the way-below relation.

Proof. Let us assume that R is perfe
t and U � V are open subsets of Y .

Then there is a 
ompa
t saturated set K � Y su
h that U � K � V and we

get 


�

(R)(U) = (8R)[U ℄ � (8R)[K℄ � (8R)[V ℄ = 


�

(R)(V ). By assumption

(8R)[K℄ is 
ompa
t and hen
e we 
on
lude 


�

(R)(U)� 


�

(R)(V ).

Conversely, suppose 


�

(R) preserves way-below and K � Y is 
ompa
t

saturated. As a saturated set, K it is the interse
tion of all the open sets that


ontain it and we 
ompute

(8R)[K℄ = (8R)

�

\

#

fU 2 


�

(Y ) j K � Ug

�

=

\

#

�

(8R)[U ℄

�

�

K � U

	

where the last equality follows be
ause, by Lemma 3.1, 8R is a right adjoint

and hen
e preserves arbitrary interse
tions in P(Y ). Now we 
laim that this

last interse
tion is taken over a �lterbase for a S
ott open �lter in 


�

(X) =


(X). The set

�

(8R)[U ℄

�

�

K � U

	

is 
learly �ltered. To see that it is

generates a S
ott open �lter take U 2 
(Y ) that 
ontains K. Sin
e Y is

lo
ally 
ompa
t, the neighborhood �lter of the 
ompa
t set K has a basis

of 
ompa
t saturated sets. This means that there is an open set V and a


ompa
t set K

0

su
h that K � V � K

0

� U . This implies V � U and hen
e

by assumption (8R)[V ℄� (8R)[U ℄.

By the Hofmann-Mislove Theorem the interse
tion over a S
ott open �l-

ter of open sets, and hen
e also of a �lterbase for su
h a �lter, is 
ompa
t

saturated. This shows that (8R)[K℄ is 
ompa
t and �nishes the proof. 2

This extends the 
lassi
al situation of fun
tions between stably 
ompa
t

spa
es (or, more generally, lo
ally 
ompa
t sober spa
es), [10, Remark 1.3℄.

Sin
e the Stone dual of a fun
tion has an upper adjoint, perfe
tness in that

situation 
an be further 
hara
terized by the adjoint being S
ott-
ontinuous

(lo
. 
it.). Be
ause of Corollary 3.7 we have that a 
ontinuous fun
tion be-

tween stably 
ompa
t spa
es is perfe
t in the 
lassi
al sense if and only if the


orresponding relation given by the hypergraph is perfe
t in our sense.

It may be worthwhile to add a few words about terminology here. As we

quoted, perfe
t maps have (at least) three di�erent 
hara
terizations and fur-

thermore many useful properties. Depending on what is 
onsidered essential

in a given situation, additional assumptions are made in order to preserve


ertain key properties in the absen
e of lo
al 
ompa
tness, sobriety or both.

This has led to an abundan
e of di�erent 
on
epts for whi
h it now appears

impossible to establish a 
oherent terminology. Either of \proper" [4,10℄ or

14
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\perfe
t" [12,9,6℄ is usually used but it is not 
lear where the boundary be-

tween the two ought to be drawn. Our 
hoi
e of \perfe
t" follows the more

re
ent 
ustom of reserving \proper" for slightly stronger requirements even in

the 
ase of lo
ally 
ompa
t sober spa
es.

We also note that perfe
t fun
tions between stably 
ompa
t spa
es are ex-

a
tly those whi
h are 
ontinuous with respe
t to both original and 
o-
ompa
t

topology. This implies that they are exa
tly those maps whi
h are monotone

and pat
h 
ontinuous. To summarize:

Proposition 4.3 Let f : X ! Y be a fun
tion between stably 
ompa
t spa
es

and R : X +

-

Y the 
orresponding hypergraph. Then the following are equiv-

alent:

(i) R is perfe
t;

(ii) f is perfe
t with respe
t to the original topologies;

(iii) f is perfe
t with respe
t to the 
o-
ompa
t topologies;

(iv) f is monotone and pat
h 
ontinuous.

There is yet another approa
h to perfe
tness via uniform 
ontinuity: For

every stably 
ompa
t spa
e there is a unique quasi-uniformity U su
h that U

indu
es the topology and U

�1

indu
es the 
o-
ompa
t topology. A 
ontinuous

fun
tion f : X ! Y between stably 
ompa
t spa
es is perfe
t if and only if it

is uniformly 
ontinuous with respe
t to these unique quasi-uniformities on X

and Y . For details see [25, Theorem 3℄.

In a way, perfe
t 
ontinuous fun
tions seem to be a better notion of mor-

phisms for the 
ategory SCS than just 
ontinuous ones, as open and 
ompa
t

saturated sets play similarly important roles. Moreover, with these morphisms

we 
an explain in whi
h way the pat
h topology is a \natural" 
onstru
tion:

Every 
ontinuous fun
tion between 
ompa
t Hausdor� spa
es is perfe
t, and

hen
e this 
ategory embeds fully and faithfully into SCS with perfe
t maps.

Now, taking the pat
h topology is simply the right adjoint, i.e. the 
o-re
e
tor,

for this in
lusion fun
tor, [6℄.

Returning to 
losed relations again, perfe
tness is linked to openness. We

say that a 
losed relation R : X +

-

Y is open if for all open sets U � X the

forward image [U ℄R is open.

For the next proposition we need the following observation whi
h relates

forward image, universal preimage, 
omplementation and re
ipro
ation:

Lemma 4.4 If R : X +

-

Y is a relation in Rel and M � X is an arbitrary

subset then [X nM ℄R = Y n (8R

�

)[M ℄.

Proof. For y 2 Y we have
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y 2 [X nM ℄R () (9x 2 X nM) x R y

() y =2 (8R

�

)[M ℄

() y 2 Y n (8R

�

)[M ℄:

2

Proposition 4.5 A 
losed relation R : X +

-

Y is open if and only if the

re
ipro
al relation R

�

: Y

�

+

-

X

�

is perfe
t.

Proof. Let us assume that R is open. We take a 
ompa
t saturated set

K 2 K(X

�

) and have to show that (8R

�

)[K℄ is 
ompa
t in Y

�

. By Theorem 2.5

the 
ondition K 2 K(X

�

) is equivalent to X nK 2 
(X) and the openness of

R means that [X nK℄R is open. By the previous lemma we have [X nK℄R =

Y n (8R

�

)[K℄ 2 
(Y

�

) whi
h, again by Theorem 2.5, implies that (8R

�

)[K℄ is

a 
ompa
t saturated subset of Y

�

.

Conversely, if R

�

is perfe
t and U 2 
(X) then X nU is 
ompa
t saturated

inX

�

. From the previous lemmawe get (8R

�

)[X n U ℄ = Y n Y n (8R

�

)[X n U ℄ =

Y n [X n (X n U)℄R = Y n [U ℄R whi
h is a 
ompa
t saturated subset of Y

�

be-


ause of the perfe
tness of R

�

. Consequently, its 
omplement [U ℄R is an open

subset of Y . 2

4.2 Adjun
tions

As usual in an order-enri
hed 
ategory, we say that for two 
losed relations

R : X +

-

Y is the left or lower adjoint of S : Y +

-

X if S ; R : X +

-

X

is below the identity and if R ; S : Y +

-

Y is above the identity on Y .

Likewise, S is 
alled the right or upper adjoint of R. The question is what

is the right order on the homsets SCS

�

(X; Y ). One 
hoi
e is subset in
lusion

but it turns out to be better to use the one indu
ed from the 
orresponding

homsets SCS

�

X;K(Y )

�

, in keeping with Proposition 2.10. Sin
e K(Y ) is

ordered by reverse in
lusion this means that the relations in the homsets for

SCS

�

are also ordered by reverse in
lusion of their graphs. Note that adjoints

determine ea
h other uniquely as is the 
ase in any order-enri
hed 
ategory.

Lemma 4.6 The fun
tors 


�

and pt

�

preserve the order on the homsets, thus

making SCS

�

and SCF

�

dually equivalent as order-enri
hed 
ategories. Conse-

quently, we have R a S for 
losed relations if and only if 


�

(S) a 


�

(R).

Proof. The �rst 
laim 
an easily be veri�ed from the de�nition of the two

fun
tors. Then the se
ond is an immediate 
onsequen
e. Note, however, that

be
ause of 
ontravarian
e the role of lower and upper adjoint are reversed. 2

Upper adjoints have a very 
on
ise 
hara
terization:

Theorem 4.7 A 
losed relation R : X +

-

Y has a lower adjoint if and only

if it is perfe
t and fun
tional.
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Proof. From the previous lemma we know that R has a lower adjoint if and

only if 


�

(R) has an upper adjoint. As we know, 


�

(R) is a 
ontinuous

semilatti
e homomorphism and as a monotone fun
tion between the 
omplete

latti
es 


�

(Y ) = 
(Y ) and 


�

(X) = 
(X) it is a lower adjoint if and only if

it preserves all suprema. By Proposition 3.6 this is the 
ase pre
isely when R

is fun
tional.

In this 
ase we have an upper adjoint u : 


�

(X)! 


�

(Y ), but it need not

be a 
ontinuous semilatti
e homomorphism. As an upper adjoint it preserves

all in�ma, but it is S
ott 
ontinuous if and only if its adjoint 


�

(R) preserves

the way-below relation (see [1, Proposition 3.1.14℄). From Proposition 4.2 we

know that this is equivalent to R being perfe
t. 2

Using Proposition 4.3 above we 
an rephrase this as follows.

Corollary 4.8 A 
losed relation has a lower adjoint if and only if it is fun
-

tional and the 
orresponding fun
tion is pat
h 
ontinuous, i.e. 
ontinuous with

respe
t to the pat
h topologies.

In the 
ase of Hausdor� spa
es the last 
ondition is trivially true sin
e the

pat
h topology is simply the original topology. Hen
e, we get the following

result.

Corollary 4.9 A 
losed relation between 
ompa
t Hausdor� spa
es is a 
on-

tinuous fun
tion if and only if it has a lower adjoint in SCS

�

.

-

L

e

e

e

e e

�

J

J

J

J











1

0

b

?

S B

U

a

Fig. 1. A non-fun
tional embedding retra
tion pair.

Consider the two posets given in Figure 1. We de�ne two 
losed relations

L := f0g � B [ f1g � fa; bg and U := f?g � S [ fa; bg � f1g whi
h is the

hypergraph of the fun
tion that maps ? to 0 and identi�es a and b by mapping

them to 1. We have L ; U = id

S

and also U ; L v id

B

whi
h shows that they

form a embedding-proje
tion pair in the sense that L is a lower adjoint se
tion

and U the 
orresponding upper adjoint retra
tion. This example shows that

embeddings need not be fun
tional.

We 
an, however, say expli
itly what this lower adjoint does. Essentially

it is just taking preimages under the fun
tion 
orresponding to its adjoint:

Proposition 4.10 Let u : X ! Y be a perfe
t 
ontinuous fun
tion between

stably 
ompa
t spa
es, U : X +

-

Y its hypergraph and L the lower adjoint.
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Then we have

y L x () x 2 (8U)["y℄ () y � u(x)

and the 
orresponding multi-fun
tion f

L

: Y ! K(X) satis�es

f

L

(y) = u

�1

["y℄:

Proof. Note that we have x 2 (8U)["y℄ () x 2 u

�1

["y℄ by Lemma 3.2,

and hen
e the des
riptions of the adjoint given in the proposition agree.

We begin by showing that L is a 
losed relation. The easiest proof is to

show that f

L

is 
ontinuous: It fa
torizes as Y

"

-

K(Y )

u

�1

[�℄

-

K(X) where

the �rst fun
tion is already known to be 
ontinuous. The spa
es K(Y ) and

K(X) 
arry the S
ott topology and dire
ted suprema are given by �ltered

interse
tions whi
h are preserved by the preimage fun
tion u

�1

[�℄. So, f

L

is a


omposition of 
ontinuous fun
tions.

To show L a U we have to 
he
k v

X

= id

X

� U ;L and L;U � id

Y

= v

Y

sin
e the order on the homsets is reversed in
lusion. So, for x v x

0

we have

x U u(x) L x

0

sin
e u(x) v u(x

0

). For the se
ond in
lusion, y L x U y

0

implies

y v u(x) v y

0

.

2

5 Bilimits

As our �nal topi
 we 
onsider bilimits in SCS

�

. In domain theory su
h bilimits

are usually taken over dire
ted diagrams of embedding-proje
tion pairs. As

pointed out in [1℄ the 
onstru
tion doesn't depend on the fa
t that the mor-

phisms are se
tions and retra
tions but ex
lusively on the properties of the

adjun
tions. Hen
e, we dis
uss the 
onstru
tion of bilimits using this setup.

Both SCS

�

and SCF

�

are order enri
hed 
ategories and support the notion

of an adjoint pair. We denote the sub
ategories of lower adjoints by SCS

�

l

and

SCF

�

l

, respe
tively. The dual 
ategories of upper adjoints are denoted by SCS

�

u

and SCF

�

u

.

In the following we dis
uss bilimits of dire
ted diagrams of adjoint 
losed

relations between stably 
ompa
t spa
es, or to be more pre
ise, 
olimits for

fun
tors from a dire
ted poset I to the sub
ategory of lower adjoint 
losed

relations SCS

�

l

.

Theorem 5.1 Every dire
ted diagram in SCS

�

l

has a bilimit.

This means that it has a 
olimit whi
h is also a 
olimit for the whole


ategory SCS

�

. Moreover, the 
orresponding upper adjoints for the 
olimiting


o
one make it into limit for the upper adjoints of the diagram and this is also

a limit in the ambient 
ategory SCS

�

.

Proof. We prove this via the Stone dual. So let I be a dire
ted set and

18
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D : I ! SCS

�

l

a dire
ted diagram. We 
onsider the 
omposition 


�

ÆD! SCF

�

u

where we denote the obje
ts as L

i

:= 


�

(D(i)) and the morphisms as �

ji

and

their upper adjoints as  

ij

. Su
h a diagram 
an be 
onsidered to 
onsist

of d
po's and S
ott-
ontinuous maps. Hen
e the general domain theoreti


ma
hinery 
an be brought to bear, 
f. [1, Se
tion 3.3℄ and [8, Se
tion IV-3℄.

From this we know that the (domain-theoreti
) bilimit is given by

�

(x

i

)

i2I

2

Y

i2I

L

i

�

�

(8i < j) 

ij

(x

j

) = x

i

	

and that the (S
ott-
ontinuous) maps  

j

: L! L

j

,  

j

((x

i

)

i2I

) = x

j

form a lim-

iting 
one over the diagram ((L

i

)

i2I

; ( 

ij

)

i�j

) in the 
ategory DCPO. Further-

more, the (S
ott-
ontinuous) maps �

i

: L

i

! L, �

i

(x) =

�

F

"

k�i;j

 

jk

(�

ki

(x))

�

j2I

form a 
olimiting 
o
one of the diagram ((L

i

)

i2I

; (�

ji

)

i�j

) in DCPO. The fol-

lowing relationships hold:

(i) For all i 2 I, �

i

is a lower adjoint of  

i

.

(ii) id

L

=

F

"

i2I

�

i

Æ  

i

.

(iii) (8i; j 2 I) 

j

Æ �

i

=

F

"

k�i;j

 

jk

Æ �

ki

.

(iv) For any 
one (M; (�

i

)

i2I

) (of S
ott-
ontinuous maps) over the diagram

((L

i

)

i2I

; ( 

ij

)

i�j

) the mediating morphism � : M ! L is given by � =

F

"

i2I

�

i

Æ �

i

.

(v) For any 
o
one (M; (�

i

)

i2I

) (of S
ott-
ontinuous maps) over the diagram

((L

i

)

i2I

; (�

ji

)

i�j

) the mediating morphism � : L ! M is given by � =

F

"

i2I

�

i

Æ  

i

.

The obje
ts and morphisms of the 
ategory SCF

�

have additional stru
ture,

so we need to show the following:

(a) L is a 
omplete latti
e.

(b) L is 
ontinuous.

(
) L is distributive.

(d) The way-below relation on L is multipli
ative and 1� 1.

(e) For all i 2 I, �

i

and  

i

preserve �nite in�ma.

(f) Assuming that the 
one (resp. 
o
one) maps preserve �nite in�ma, so do

the mediating morphisms.

For the sake of brevity, we will from now on write x for a sequen
e (x

i

)

i2I

wherever possible.

(a) The  

ij

, as upper adjoints, preserve all in�ma. Hen
e these are 
al
u-

lated pointwise in L.

(b) Continuity follows for d
po's already, see Theorem 3.3.11 in [1℄. How-

ever, it will be ne
essary for the remaining 
laims to have a 
hara
terization

of the way-below relation on L at hand. For this observe that the �

i

preserve

way-below, [1, Proposition 3.1.14(2)℄; we 
an therefore employ property 2
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above to get x � y i� there exists an index j 2 I and elements x � y in L

i

su
h that x � �

j

(x)� �

j

(y) � y.

We need to do (e) next: The  

i

preserve in�ma be
ause they are upper

adjoints. For the lower adjoints we exploit the fa
t that �nite meets 
ommute

with dire
ted joints in 
ontinuous latti
es, [8, Corollary I-2.2℄. The 
laim then

follows dire
tly from the formula for the �

i

.

(
) We need to invoke the 
ontinuity of L for this: Assume a � x ^ (y _

z). Using the 
ontinuity of supremum and in�mum we know that there are

additional sequen
es a

0

, b and 
 su
h that a � a

0

^(b_
) and a

0

� x, b� y and


� z. By our 
hara
terization of way-below on L it follows that we 
an �nd

elements x; y; z in some approximating latti
e L

j

su
h that a

0

� �

j

(x) � x, et
.

Now we 
an 
al
ulate a � a

0

^(b_
) � �

j

(x)^(�

j

(y)_�

j

(z)) = �

j

(x^(y_z)) =

�

j

((x ^ y) _ (x ^ z)) = (�

j

(x) ^ �

j

(y)) _ (�

j

(x) ^ �

j

(z)) � (x ^ y) _ (x ^ z).

(d) This is similar to the previous item: For x � y; z �nd x � y, x

0

� z

in some L

j

su
h that x � �

j

(x) � �

j

(y) � y and x � �

j

(x

0

) � �

j

(z) � z.

The 
laim then follows from multipli
ativity of� in L

j

: x � �

j

(x)^�

j

(x

0

) =

�

j

(x ^ x

0

)� �

j

(y ^ z) = �

j

(y) ^ �

j

(z) � y ^ z.

For 1� 1 just observe that 1� 1 holds in ea
h L

i

and the lower adjoints

are SCF

�

maps, that is, they preserve the empty meet.

(f) Like (e), this follows from the de�ning formulas for mediating mor-

phisms and the fa
t that �nite meets 
ommute with dire
ted suprema. 2

The limit-
olimit 
oin
iden
e for SCF

�

whi
h we established in the pre-


eding proof says (among other things) that dire
ted 
olimits in SCF

�

l

are

also 
olimits in the original 
ategory of semilatti
e homomorphisms. Both the

diagram maps �

ji

and the 
o
one maps �

i

are in fa
t lower adjoints and 
onse-

quently sup-preserving, whi
h means that they are frame maps. Frame maps

between 
ontinuous semilatti
es, however, are not ne
essarily lower adjoints.

Nonetheless, dire
ted 
olimits in SCF

�

l

are also 
olimits of frames, as our next

lemma shows.

Lemma 5.2 The embedding of SCF

�

l

into the 
ategory Frm of frames and

frame homomorphisms preserves dire
ted 
olimits.

Proof. The 
olimit L of a dire
ted diagram ((L

i

)

i2I

; (�

ji

)

i�j

) in SCF

�

l

as 
on-

stru
ted in the proof of the previous theorem yields a distributive 
ontinuous

latti
e, hen
e a (spatial) frame, [8, Theorem 5.5℄. The 
olimiting maps �

i

are

lower adjoints in addition to being SCF

�

morphisms, so they are frame homo-

morphisms. What needs to be shown is that the mediating morphism � for

a 
o
one (�

i

)

i2I

of frame homomorphisms is again a frame homomorphism.

Sin
e we already know that � will be a 
ontinuous semilatti
e homomorphisms

all that remains to be shown is preservation of (�nite) suprema. The proof

of this property is a beautiful interplay between formulas 2 and 3 from the

pre
eding theorem. Let X be a set of elements of the 
olimit L. We 
al
ulate
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for the non-trivial inequality:

�(

G

X) =

G

"

j2I

�

j

Æ  

j

(

G

X) de�nition of �

=

G

"

j2I

�

j

Æ  

j

(

G

x2X

G

"

i2I

�

i

Æ  

i

(x))

formula 2

=

G

"

j2I

G

"

i2I

�

j

Æ  

j

(

G

x2X

�

i

Æ  

i

(x))

asso
iativity

=

G

"

j2I

G

"

i2I

�

j

Æ  

j

Æ �

i

(

G

x2X

 

i

(x)) �

i

's are lower adjoints

=

G

"

j2I

G

"

i2I

�

j

�

G

"

k�i;j

 

jk

Æ �

ki

(

G

x2X

 

i

(x))

�

formula 3

=

G

"

j2I

G

"

i2I

G

"

k�i;j

�

j

Æ  

jk

(

G

x2X

�

ki

Æ  

i

(x))

�

j

's are 
ontinuous &

�

ki

's are lower adjoints

=

G

"

j2I

G

"

i2I

G

"

k�i;j

�

k

Æ �

kj

Æ  

jk

(

G

x2X

�

ki

Æ  

ik

Æ  

k

(x)) (
o)
one 
ondition

�

G

"

j2I

G

"

i2I

G

"

k�i;j

�

k

(

G

x2X

 

k

(x)) adjointness of � and  

=

G

"

k2I

�

k

(

G

x2X

 

k

(x))

redundant indi
es

=

G

"

k2I

G

x2X

�

k

Æ  

k

(x) �

k

's are frame maps

=

G

x2X

G

"

k2I

�

k

Æ  

k

(x)

asso
iativity

=

G

x2X

�(x) de�nition of �

2

Theorem 5.3 The fun
tor U from SCS

�

u

to SCS preserves inverse limits.

Proof. The dual equivalen
e between SCS

�

u

and SCF

�

l

transforms inverse lim-

its into dire
t 
olimits. The latter are preserved by the in
lusion of SCF

�

l

into

Frm a

ording to the pre
eding lemma. Stone duality translates them into

inverse limits in Top. 2

The reader may still feel a bit numb from all these 
al
ulations and not

immediately re
ognize the for
e of this theorem. Let us therefore elaborate on

its 
ontent a little bit. Top is a 
omplete 
ategory and limits are 
al
ulated

in the usual way: If D : I ! Top is a fun
tor (for any diagram D) then the

points of limD are given by threads:

limD =

�

(x

i

)

i2obj(I)

2

Y

i2obj(I)

D(i)

�

�

(8(f : i! j) 2 mor(I)) D(f)(x

i

) = x

j
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The topology is inherited from the produ
t spa
e

Q

i2obj(I)

D(i). Upper adjoint

relations between stably 
ompa
t spa
es are fun
tional and the fun
tor U asso-


iates with every su
h relation the generating (perfe
t) fun
tion. Theorem 5.3

then states that a bilimit in N

�

is 
al
ulated topologi
ally as the limit of the


orresponding inverse diagram of perfe
t maps. One 
an turn this around and

say that the 
ontent of the theorem is to re
ognize inverse limits of perfe
t

maps as bilimits in an order-enri
hed setting, yielding a limit-
olimit 
oin-


iden
e with respe
t to 
losed relations. This appears to be an important

�rst step in making stably 
ompa
t spa
es a suitable universe for semanti


interpretations.
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