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Abstrat

Stably ompat spaes are a natural generalization of ompat Hausdor� spaes in

the T

0

setting. They have been studied intensively by a number of researhers and

from a variety of standpoints.

In this paper we let the morphisms between stably ompat spaes be ertain

\losed relations" and study the resulting ategorial properties. Apart from ex-

tending ordinary ontinuous maps, these morphisms have a number of pleasing

properties, the most prominent, perhaps, being that they orrespond to preframe

homomorphisms on the loali side. We exploit this Stone-type duality to establish

that the ategory of stably ompat spaes and losed relations has bilimits.

1 Introdution

The researh reported in this paper derives its motivation from two soures.

For some time, we have tried to extend Samson Abramsky's Domain Theory
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in Logial Form to ontinuous domains, [1,15,14,17℄. This has led to a number

of insights, the most important perhaps being that in order to perform domain

onstrutions stritly logially, one an invoke a version of Gentzen's ut elim-

ination theorem. This, however, requires that we onsider a purer logi than

Abramsky did. Semantially, it then turns out that the notion of morphisms

so aptured onsists of ertain relations, rather than funtions, [14, Proposi-

tion 6.5℄. This is quite in line with developments in denotational semantis,

where the need for (or the advantages of) relations has been notied for some

time, [5,3℄.

Our seond motivation stems from the desire to irumvent some of the

diÆulties onneted to lassial domain theory. As is well known, in order

to get a artesian losed ategory of ontinuous domains, one has to restrit

to a subategory of FS-domains, [13,1℄. Unlike general ontinuous domains,

a straightforward haraterisation of FS-domains via their Stone dual, for

example, is not known. Perhaps as a result of the relative weakness of our

tools for FS-domains, ertain basi questions about them remain unresolved.

We still do not know whether they oinide with retrats of bi�nite domains

or whether the probabilisti powerdomain an be restrited to this ategory,

[16℄.

The semanti spaes whih we put forward in this paper, in ontrast to

FS-domains, are very well behaved and understood. They are the so-alled

stably-ompat spaes. Many equivalent haraterisations are known and many

properties have been disovered for them. Also, they do enompass most ate-

gories of ontinuous domains whih have played a role in denotational seman-

tis. As is lear from what we have said at the beginning, we are interested

in the ategory SCS

�

of stably ompat spaes with losed relations as mor-

phisms. Although a similar set-up has been onsidered some time ago, [26,

Prop. 11.2.5℄, the expliit relational presentation appears to be new.

The purpose of this paper is to examine the suitability of SCS

�

as a se-

manti universe. To this end we look at �nitary losure properties and the

bilimit onstrution. The latter, to our great satisfation, behaves in a very

natural and intuitive way. Spei�ally, we show that the bilimit oinides with

a lassial topologial limit although it is onstruted order-theoretially.

2 The ategory of of stably ompat spaes and losed

relations

2.1 The spaes

We assume standard domain theoreti notation as it is used in [8,1℄, for exam-

ple. Slightly less well known, perhaps, are the following notions and results.

If X is a topologial spae and A an arbitrary subset of X then the saturation

of A is de�ned as the intersetion of all neighborhoods of A. For any T

0

-

topologial spae X, the speialization order of X is the relation v

X

given by
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x v

X

y if every neighborhood of x is also a neighborhood of y. The saturation

of a subset A an then also be desribed as the upward losure with respet

to v

X

. Open set are always upper, that is, saturated. An important fat is

that the saturation of a ompat set is again ompat, for a set A has exatly

the same open overs as its saturation.

For any topologial spae X the set of open subsets forms a omplete

lattie 
(X) with respet to subset inlusion. Vie versa, for every omplete

lattie L the set of ompletely prime �lters, denoted pt(L), arries the topology

fO

a

j a 2 Lg where F 2 O

a

if a 2 F . A spae is T

0

if the assignment, whih

assoiates with a point x 2 X the open neighborhood �lter N(x), is injetive.

A spae is alled sober if the assignment is bijetive. See [1, Setion 7℄ for a

detailed introdution to this topi. We are now ready to de�ne the objets of

interest in this paper:

De�nition 2.1 A topologial spae is alled stably ompat if it is sober,

ompat, loally ompat and �nite intersetions of ompat saturated subsets

are again ompat.

Stably ompat spaes have been studied intensively (and under many

di�erent names), [8,10,9,24,19,15℄ but, unfortunately, apart from [17℄ there

is no single omprehensive referene for their many properties. We therefore

state the main fats needed in the sequel. Our prinipal tehnial tool is the

Hofmann-Mislove Theorem, [11,18℄:

Theorem 2.2 Let X be a sober spae. There is an order-reversing bijetion

between the set K(X) of ompat saturated subsets of X (ordered by reversed

inlusion) and Sott-open �lters in 
(X) (ordered by inlusion). It assigns to

a ompat saturated set the �lter of open neighborhoods and to a Sott-open

�lter of open sets their intersetion.

One onsequene of this whih we will need later is that every Sott-open

�lter in 
(X) is equal to the intersetion of all ompletely prime �lters on-

taining it. Another is the fat that the set K(X) is a dpo when equipped

with reversed inlusion. For stably ompat spaes even more is true:

Proposition 2.3 Let X be a stably ompat spae.

(i) K(X) is a omplete lattie in whih suprema are alulated as interse-

tions and �nite in�ma as unions.

(ii) 
(X) and K(X) are stably ontinuous frames.

(iii) In 
(X) we have O � O

0

if and only if there is K 2 K(X) with O �

K � O

0

.

(iv) In K(X) we have K � K

0

if and only if there is O2
(X) with K

0

�

O � K.

As in [15℄ we use stably ontinuous frame to denote ontinuous distributive
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latties in whih the way-below relation is multipliative, that is, in whih

x � y; z implies x � y ^ z and in whih 1 � 1. They are preisely the

Stone duals of stably ompat spaes, see [10, Theorem 1.5℄. Note that the

proposition tells us that the omplements of ompat saturated sets form

another topology on X, alled the o-ompat topology for X and denoted by

X

�

. Original and o-ompat topology are losely related:

Proposition 2.4 Let X be a stably ompat spae.

(i) The open sets of X

�

are the omplements of ompat saturated sets in X.

(ii) The open sets of X are the omplements of ompat saturated sets in X

�

.

(iii) X

�

is stably ompat and (X

�

)

�

is idential to X.

(iv) The speialization order of X is the inverse of the speialization order

of X

�

.

For a stably ompat spae X, the path topology of X is the ommon

re�nement of the original topology and the o-ompat topology. It is denoted

byX

�

. It is the key to making the onnetion to muh earlier work by Leopoldo

Nahbin, [21℄: A partially ordered spae or pospae is a topologial spae X

with a partial order relation v

X

suh that the graph of v

X

is a losed subset

of X�X. Suh a spae must be Hausdor� beause the diagonal relation, i.e.,

the intersetion of v

X

and the opposite partial order w

X

, is losed.

Theorem 2.5 For a stably ompat spae X the speialization order together

with the path topology makes X

�

into a ompat ordered spae. Conversely,

for a ompat ordered spae (X;v) the open upper sets "U = U 2 
(X)

form the topology for a stably ompat spae X

"

, and the two operations are

mutually inverse.

Moreover, for a stably ompat spae X the upper losed sets of X

�

are

preisely the ompat saturated sets of X.

Notie that for a ompat Hausdor� spae X, the diagonal relation �

X

is a losed (trivial) partial order. By applying Theorem 2.5 to the pospae

(X;�

X

), we see that the upper opens and lower opens are just the opens of

the original topology. So X = X

�

= X

�

. The onverse also holds.

Corollary 2.6 A spae X is ompat Hausdor� if and only if it is a stably

ompat spae for whih X = X

�

.

Proof. The path topology for any stably ompat spae is Hausdor�. In

the ase of a stably ompat spae for whih X = X

�

, the path topology is

simply the original. 2

We an thus think of stably ompat spaes as the T

0

generalization of

ompat Hausdor� spaes. The fat that X 6= X

�

in general fores us to tread

arefully in Setion 2.2 as we generalize from losed relations between ompat

Hausdor� spaes to losed relations between stably ompat spaes.
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The importane of stably ompat spaes for domain theory is that almost

all ategories used in semantis are partiular ategories of stably ompat

spaes.

Proposition 2.7 FS domains, and hene in partiular Sott domains and

ontinuous latties, equipped with their Sott topologies, are stably ompat

spaes.

2.2 The morphisms

The obvious ategory of stably ompat spaes is that of ontinuous funtions,

i.e. the full subategory SCS of the ategory of topologial spaes Top. The

ategory that we are really interested in, however, is one that generalizes

KHaus

�

, the ategory of ompat Hausdor� spaes and losed relations. We

quote the basi de�nitions and results from [14℄.

The speialization order of a stably ompat spaeX is generally not losed

in X � X. Indeed, were it losed, X would be a pospae, hene would be

Hausdor�. Thus, speialization would be trivial. Speialization, on the other

hand, is reversed by taking the o-ompat topology (again, in the Hausdor�

ase X = X

�

so the \reversal" is trivial). Thus:

Proposition 2.8 The speialization order of a stably ompat spae X is

losed in X �X

�

.

Proof. Suppose that x 6v

X

y. Then there is an open set U ontaining x and

not y. By loal ompatness, we an assume that U is ontained in a ompat

saturated neighborhood K of x that also does not ontain y. U is an upper

set ontaining x. The omplement of K is a lower set ontaining y. Thus

U � (X nK) is a neighborhood of hx; yi in X �X

�

that does not meet v

X

.2

For stably ompat spaes X and Y , we all a losed subset R � X �Y

�

a

losed relation from X to Y and we write it as R : X +

-

Y . If we spell out

this ondition then it means that for x 2 X and y 2 Y suh that x 6R y we �nd

an open neighborhood U of x and a ompat saturated set K � Y that doesn't

ontain y suh that U � (Y nK) \ R = ;. [f. the proof Proposition 2.8.℄

Note that every losed relation R satis�es the rule x

0

v

X

x R y v

Y

y

0

=)

x

0

R y

0

.

The omposition of losed relations is the usual relation produt, R ; S =

�

hx; zi j (9y) x R y and y S zg. Note that, following usual pratie, we write

the omposition of relations from left to right, whereas for funtions it is from

right to left. To avoid ambiguity we use \;" to indiate left-to-right omposi-

tion. Notie that the speialization order of any stably ompat spae X ats

as identity under taking the relation produt with losed relations from or to

X and also that the omposition of two losed relations is again losed. We

all the ategory of stably ompat spaes with losed relations SCS

�

.

5



Jung, Kegelmann and Moshier

The Hausdor� ase is worth onsidering separately as it helps to illuminate

the de�nition of losed relations. As we have noted, a stably ompat spae is

Hausdor� if and only if its topology agrees with its o-ompat topology. Thus

our losed relations from X to Y are simply losed subsets of X�Y = X�Y

�

whenever Y is Hausdor�. Thus SCS

�

orretly generalizes KHaus

�

, in whih

we ould take the morphisms simply as losed subsets of X � Y . The fat

that we ould get away with this apparently simpler notion of morphism in

the Hausdor� setting is due essentially to the fat that in ompat Hausdor�

spaes the o-ompat topology is \hidden from view." In partiular, KHaus

�

is a full subategory of SCS

�

(as well as being a subategory of Rel).

Note that the obvious forgetful \funtor" from SCS

�

to Rel, the ategory

of sets with relations, preserves omposition but not identities. The only

stably ompat spaes for whih identity is preserved are those with trivial

speialization orders, i.e., the ompat Hausdor� spaes.

Relations between sets an be understood as multi-funtions. As the fol-

lowing proposition shows this arries over to our topologial setting in an

interesting way.

Proposition 2.9 Let X and Y be stably ompat spaes and R : X +

-

Y a

losed relation then

f

R

(x) := fy 2 Y j x R yg

de�nes a ontinuous funtion from X to K(Y ), where the latter is equipped

with the Sott topology. Conversely, if f : X ! K(Y ) is ontinuous then

�

hx; yi 2 X � Y

�

�

y 2 f(x)

	

is a losed relation from X to Y . Moreover, these two translations are mutually

inverse.

To extend this orrespondene to the omposition of relations and multi-

funtions, respetively, we �rst have to de�ne a law of omposition on the

latter. To this end reall that K(X) with its Sott topology is again a stably

ompat spae by Propositions 2.3 and 2.7. Hene we an make K into an

endofuntor on SCS by mapping a ontinuous funtion f : X ! Y to the

funtion K(f) : K(X)! K(Y ) that takes a ompat saturated subset K � X

to "f [K℄. This endofuntor is part of a monad whose unit takes the saturation

of points and whose multipliation is simply union [22℄. Consequently, the

anonial omposition of multi-funtions is Kleisli omposition whih turns

out to be the analogue of ordinary relation produt.

Proposition 2.10 The ategory of losed relations SCS

�

is isomorphi to the

Kleisli ategory SCS

K

.

It is generally the ase that a ategory C with a monad T is embedded in

the Kleisli ategory C

T

simply by post-omposing with the unit of the monad.

6
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Moreover, if the units of the monad are moni, then the embedding is faithful.

Hene, SCS is a subategory of SCS

K

and thus also of SCS

�

. Conretely,

this embedding works by taking the hypergraph of a funtion. The following

proposition haraterizes those relations that are really embedded funtions:

Proposition 2.11 If f : X ! Y is a ontinuous funtion then the hypergraph

�

hx; yi 2 X � Y

�

�

f(x) v y

	

is a losed relation from X to Y . Conversely, if R : X +

-

Y is a losed

relation suh that for all x 2 X the set f

R

(x) has a least element r(x) then

r : X ! Y is a ontinuous funtion, and this operation is the inverse of the

previous.

Again, the Hausdor� ase may help to illuminate this. If f : X ! Y is a

ontinuous funtion with Y a ompat Hausdor� spae, then the hypergraph

is simply the graph of f . This is a losed relation just as lassial topology

tells us it should be. Conversely, suppose that a losed relation from X to Y

is the graph of a funtion g. Then learly f

R

(x) has a least element g(x) for

eah x. Thus g is a ontinuous funtion.

2.3 The ategory

The left adjoint from SCS to the Kleisli ategory SCS

K

�

=

SCS

�

preserves

oproduts. Hene, they are given in SCS

�

simply as topologial oproduts,

i.e., as disjoint unions.

In the ategory Rel of sets and relations for every relation R : X +

-

Y

there is the reiproal relation R

�

that is given by y R

�

x () x R y. This is

the main ingredient that makes Rel into an allegory [7℄. Our ategory SCS

�

fails

to be an allegory exatly beause, as we shall see, it laks a true reiproation

operation. On the other hand, if R : X +

-

Y is a losed relation between

stably ompat spaes then R

�

: Y

�

+

-

X

�

is a losed relation between the

o-ompat topologies, and (�)

�

is an involution on SCS

�

. The problem is that

it doesn't �x objets. We an think of X

�

as an upside-down version of X

sine the speialization order v

X

�

for the o-ompat topology is simply w

X

,

i.e. the dual of the one for the original spae.

Nonetheless, the maps X 7! X

�

and R 7! R

�

omprise a ontravariant

funtor, showing that SCS

�

is a self-dual ategory. Consequently, ategorial

produts (denoted here by X �

�

Y to avoid onit with topologial produts

X � Y ) are also given by disjoint union:

X �

�

Y

�

=

(X

�

+ Y

�

)

�

= (X

�

:

[ Y

�

)

�

= (X

�

)

�

:

[ (Y

�

)

�

= X

:

[ Y = X + Y:

If a self-dual ategory is artesian losed then all objets are isomorphi and

hene the ategory is equivalent to the ategory with only one (identity) mor-

phism. This shows that SCS

�

annot be artesian losed.

7
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Sine ategorial produts in SCS

�

are the same as o-produts, let us

look at artesian produts. In SCS they are the ategorial produt and we

an lift them to SCS

�

to make SCS

�

into a symmetri monoidal ategory.

The tensor produt takes the artesian produt of the spaes with the prod-

ut topology and we also embed the morphisms needed for the symmetri

monoidal struture from SCS as desribed in Proposition 2.11. The de�ni-

tion of the tensor produt of two losed relations R and S is pointwise, i,e,

hx; yi R 
 S hx

0

; y

0

i : () x R y and x

0

R y

0

. This de�nes a losed rela-

tion and extends to produts of ontinuous funtions; for the details see [17,

Setion 3.2.4℄.

With respet to 
, the ategory SCS

�

is losed: Beause of (X � Y )

�

=

X

�

�Y

�

we see that losed subsets of (X�Y )�Z

�

are the same thing as losed

subsets of X � (Y

�

� Z)

�

whih proves SCS

�

(X 
 Y; Z)

�

=

SCS

�

(X; Y

�


 Z).

This internal homset Y

�


 Z, however, does not orrespond to the \real"

homset SCS

�

(Y; Z).

The homset SCS

�

(Y; Z) onsists of the losed subsets of Y � Z

�

whih by

Theorem 2.5 are preisely the ompat saturated subsets of the dual (Y �Z

�

)

�

.

Hene, we an write the relation spae as [Y ) Z℄ := K(Y

�

� Z). With this

de�nition and Proposition 2.10 we get

SCS

�

(X 
 Y; Z)

�

=

SCS

�

(X; Y

�


 Z)

�

=

SCS

�

X;K(Y

�


 Z)

�

= SCS

�

X; [Y ) Z℄

�

:

So, we see that (�
Y ) and [Y ) �℄ are almost adjoint. The problem is that

the indued morphism X +

-

[Y ) Z℄ is not uniquely determined.

The anonial evaluation morphism is a funtional losed relation and for

the indued morphism we an always hoose a funtional one, and as suh it is

unique, i.e. these morphisms ome from SCS rather than SCS

�

. In [23℄ suh a

situation is alled a Kleisli exponential. There is an alternative desription of

the relation spae by observing SCS

�

(Y; Z)

�

=

SCS

�

Y;K(Z)

�

: Thus the normal

funtion spae [Y ! K(Z)℄ with the ompat-open topology, whih is simply

the Sott topology, yields a spae that is homeomorphi to [Y ) Z℄. This

onstrution was �rst studied in [25℄, although it seems that some of subtleties

onerning the fat that this is only a Kleisli exponential were overlooked.

3 Stone Duality

Next we develop the Stone duality of losed relations. The morphisms between

open set latties orresponding to losed relations turn out to be preframe

homomorphisms, [2℄, preserving �nite meets and direted suprema. They

have been studied in a similar framework before, see [26, Prop. 11.2.5℄, but

the duality with relations seems to be new.

8
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3.1 Relational preimage

If R : X +

-

Y is a relation and A � X a subset, then we write

[A℄R :=

�

y 2 Y

�

�

(9x 2 A) x R y

	

for the usual forward image. The de�nition of the preimage of a subset B � Y

under the relation R is a bit more triky as there are several andidates. Here,

we are only interested in the universal preimage given by

(8R)[B℄ :=

�

x 2 X

�

�

(8y 2 Y ) x R y =) y 2 B

	

:

This de�nition is useful beause 8R turns out to be the right adjoint to [�℄R:

Lemma 3.1 If R � X � Y is a relation and A and B are subsets of X and

Y , respetively, then we have

[A℄R � B () A � (8R)[B℄:

In the usual funtional setting the situation is analogous; preimage is right

adjoint to diret image. The onnetion between relational and funtional

preimage is the following.

Lemma 3.2 If f : X ! Y is a ontinuous funtion between stably ompat

spaes and F : X +

-

Y the orresponding losed relation given by the hyper-

graph, then for all upper sets A = "A � Y we have

f

�1

[A℄ = (8F )[A℄:

We now desribe the translation from topologial spaes to frames in the

relational setting.

Proposition 3.3 If R : X +

-

Y is a losed relation then 8R is a ontinuous

semilattie homomorphism from 
(Y ) to 
(X), i.e. it preserves �nite in�ma

and direted suprema.

Proof. First, we have to hek that for any open V � Y the preimage (8R)[V ℄

is open. So let x 2 (8R)[V ℄, or equivalently f

R

(x) = [x℄R � V . We know from

Proposition 2.9 that f

R

is ontinuous and thus Proposition 2.3 gives us an open

neighborhood U of x suh that f

R

(x

0

) � V for all x

0

2 U . We onlude x 2

U � (8R)[V ℄, thus showing that for a losed relation the universal preimage

of an open set is open.

As we have seen in Lemma 3.1, 8R as a funtion between the full powersets

is a right adjoint. As suh it preserves all intersetions and thus the �nite meets

in 
(Y ).

Thus, it is a monotone map and, onsequently, to show that it also pre-

serves direted suprema we only have to verify (8R)

�

S

"

V

i

�

�

S

"

(8R)[V

i

℄. So,

9
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we onsider an x 2 (8R)

�

S

"

V

i

�

whih means f

R

(x) �

S

"

V

i

. But as f

R

(x) is

ompat we an �nd an index i suh that f

R

(x) � V

i

and, equivalently, suh

that x 2 (8R)[V

i

℄. 2

We all 


�

R the restrition and o-restrition of 8R to the open subsets

of X and Y to simplify notation. Going from a relation to the forward im-

age funtion is well-known to be funtorial, and so is taking adjoints. By

Lemma 3.1 this implies that universal preimage is also funtorial. Clearly,




�

v

X

is the identity on 


�

(X) = 
(X) as all open sets are upper sets. Thus




�

is a ontravariant funtor from SCS

�

to the ategory of stably ontinuous

frames and Sott ontinuous semilattie homomorphisms whih we denote

by SCF

�

.

Just like 
 we also have to adjust the funtor pt to the relational setting.

Consider a homomorphism � : L!M . We de�ne the relation pt

�

(�) : pt

�

(M) +

-

pt

�

(L)

by

Q pt

�

(�) P :() �

�1

[Q℄ � P

where pt

�

on objets behaves just like the usual pt, i.e., P and Q are om-

pletely prime �lters in L and M , respetively. Alternatively, we an identify

ompletely prime �lters with their harateristi funtions whih are frame

morphisms to 2, the two-element lattie. For two suh points p : L ! 2 and

q : M ! 2 the above de�nition beomes

q pt

�

(�) p :() q Æ � v p:

Proposition 3.4 If � : L ! M is a ontinuous semilattie homomorphism,

then pt

�

(�) : pt

�

(M) +

-

pt

�

(L) is a losed relation.

Proof. Suppose Q � M and P � L are ompletely prime �lters suh that

�

�1

[Q℄ * P . As � is Sott ontinuous and Q ompletely prime and thus, in

partiular, Sott open, the set �

�1

[Q℄ is also Sott open. Beause it is also

not ontained in P and L is a ontinuous lattie we an �nd an x 2 �

�1

[Q℄nP

suh that

�

�

x * P . On the other hand Q, as an upper set, is the union of

prinipal �lters "y for y 2 Q and hene we get �

�1

[Q℄ = �

�1

�

S

f"y j y 2 Qg

�

=

S

�

�

�1

["y℄

�

�

y 2 Q

	

3 x. This means that we an �nd a y 2 Q suh that

x 2 �

�1

["y℄.

As L is stably ontinuous, the set

�

�

x is a Sott open �lter whih orresponds

to the ompat saturated subset

�

P 2 pt

�

(L)

�

�

�

�

x � P

	

of pt

�

(L) by the

Hofmann-Mislove theorem. Now, we onsider the open subset of pt

�

(M) �

pt

�

(L)

�

whih is given as the produt of the open set orresponding to y and

to the omplement of the ompat saturated set orresponding to

�

�

x, and we

laim that this is a neighborhood of hQ;P i that doesn't meet R

�

. Clearly,

hQ;P i is in this set, and if Q

0

2 pt

�

(M) and P

0

2 pt

�

(L) are suh that y 2 Q

0

and

�

�

x * P

0

we get �

�1

[Q

0

℄ � �

�1

�

"y

�

3 x and thus �

�1

[Q

0

℄ �

�

�

x whih

implies �

�1

[Q

0

℄ * P

0

. 2

10
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Now we have all the ingredients for a duality between SCS

�

and SCF

�

. It

remains to hek that the ategorial onditions are indeed met.

Theorem 3.5 The ontravariant funtors 


�

and pt

�

are part of a dual equiv-

alene between the ategories SCF

�

and SCS

�

.

Proof. We begin by showing that pt

�

is indeed a funtor. Clearly, pt

�

(id

L

) =

v

pt

�

(L)

, the identity losed relation on pt

�

(L). The interesting diretion for

funtoriality is to show that pt

�

( Æ�) � pt

�

( ); pt

�

(�), where � : L!M and

 : M ! N are ontinuous semilattie morphisms. Let P 2 pt

�

(N) and P

0

2

pt

�

(L) be suh that P (pt

�

( Æ �)) P

0

, or equivalently that �

�1

�

 

�1

[P ℄

�

� P

0

.

We need to �nd a ompletely prime �lter Q � M that satis�es  

�1

[P ℄ � Q

and �

�1

[Q℄ � P

0

. Unfortunately,  

�1

[P ℄ in general is only a Sott open �lter,

not a point in M .

However, by the Hofmann-Mislove Theorem, 2.2, we have  

�1

[P ℄ =

T

fQ 2

pt

�

(M) j  

�1

[P ℄ � Qg. So for the sake of ontradition, assume there exists

x

Q

2 �

�1

[Q℄ n P

0

for all Q �  

�1

[P ℄. Then the supremum

W

x

Q

of all these

elements does not belong to P

0

beause P

0

is ompletely prime; on the other

hand, �(

W

x

Q

) belongs to all Q �  

�1

[P ℄ by monotoniity of �, hene to

 

�1

[P ℄. This ontradits the assumption �

�1

[ 

�1

[P ℄℄ � P

0

.

To show that 


�

and pt

�

give rise to a duality between SCF

�

and SCS

�

we have to hek that their ations on morphisms are mutually inverse. So,

suppose R : X +

-

Y is a losed relation and N(x) and N(y) are the open

neighborhood �lters of two points x 2 X and y 2 Y . We get

N(x) (pt

�

(8R)) N(y) () (8R)

�1

�

N(x)

�

� N(y)

()

�

8V 2 


�

(Y )

�

V 2 (8R)

�1

�

N(x)

�

=) V 2 N(y)

()

�

8V 2 


�

(Y )

�

x 2 (8R)[V ℄ =) y 2 V

()

�

8V 2 


�

(Y )

�

[x℄R � V =) y 2 V

Clearly, x R y implies this last ondition and the onverse follows from the

fat that [x℄R is saturated.

Finally, we take a ontinuous semilattie morphism � : L ! M and show

that

�




�

(pt

�

(�))

��

fP 2 pt

�

(L) j x 2 Pg

�

=

�

Q 2 pt

�

(M)

�

�

�(x) 2 Q

	

for any

x 2 L:

�

8 pt

�

(�)

�

�

�

P 2 pt

�

(L) j x 2 P

	

�

=

n

Q 2 pt

�

(M)

�

�

�

8P 2 pt

�

(L)

�

Q (pt

�

(�)) P =) x 2 P

o

=

n

Q 2 pt

�

(M)

�

�

�

8P 2 pt

�

(L)

�

�

�1

[Q℄ � P =) x 2 P

o

As before we use the fat that �

�1

[Q℄ is a Sott-open �lter and hene by the

Hofmann-Mislove Theorem equal to the intersetion of all ompletely prime

�lters ontaining it. The expression then re-writes to fQ 2 pt

�

(M) j x 2

�

�1

[Q℄g whih is equal to fQ 2 pt

�

(M) j �(x) 2 Qg as desired. 2

It is interesting to onsider the Stone dual of the involution on SCS

�

that we

11
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disussed in Setion 2.3. The o-ompat topology on a stably ompat spae

has preisely the ompat saturated subsets of the original spae as losed

sets whih implies 


�

(X

�

) = 
(X

�

)

�

=

K(X). From the Hofmann-Mislove

Theorem we know that K(X) is in one-to-one orrespondene to the Sott

open �lters in 
(X). The latter an also be understood via their harateristi

funtions whih are preisely the ontinuous semilattie homomorphisms to 2,

the two-element lattie. Putting it all together we get 
(X

�

)

�

=

K(X)

�

=

SCF

�

�


(X); 2

�

and we see that this self-duality in loali terms is exatly the

Lawson duality of stably ontinuous semilatties [20℄.

3.2 Funtions revisited

We know from Proposition 2.11 that SCS embeds faithfully in SCS

�

and also

how to reognize the morphisms that arise from this embedding as hypergraphs

of funtions. We refer to a losed relation as funtional if it is the hypergraph

of a ontinuous funtion. Similarly the ategory SCF

�

ontains a subategory

of funtional arrows.

Proposition 3.6 If R : X +

-

Y is a funtional losed relation then 


�

(R)

preserves �nite (and onsequently all) suprema. Conversely, if � : L ! M is

a frame homomorphism then pt

�

(L) is funtional.

Proof. If � is a frame homomorphism then for any ompletely prime �lter

Q � M the preimage �

�1

[Q℄ is ompletely prime. Hene, this is the least

ompletely prime �lter P � L suh that �

�1

[Q℄ � P .

For the onverse observe that the forward image [x℄R of any point x has a

least element and hene will be ontained in either U or V i� it is ontained

in U [ V . This shows that 8R preserves �nite suprema. 2

This result, of ourse, is very similar to the lassial Stone duality be-

tween SCS, the ategory of stably ompat spaes with ontinuous funtions,

and SCF

�

_

, stably ontinuous latties with frame homomorphisms. There the

funtors 
 and pt at on morphisms as follows: 
(f) is simply the preim-

age funtion f

�1

[�℄ and similarly pt(�) takes a ompletely prime �lter P to

the ompletely prime �lter �

�1

[P ℄. As a orollary of the previous proposi-

tion we get that pt

�

and 


�

ommute with the embeddings of the funtional

subategories.

12
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Corollary 3.7 The diagram of funtors

SCS




-

�

pt

Frm

SCS

�

i

?

\




�

-

�

pt

�

SCF

�

?

\

j

ommutes in the sense that j Æ 
 = 


�

Æ i and i Æ pt

�

= pt Æ j.

Proof. The �rst equality was proved in Lemma 3.2. For the seond, take a

frame morphism � : L ! M . It is mapped by i Æ pt to the hypergraph of the

preimage funtion, i.e. the losed relation that relates Q 2 pt(M) = pt

�

(M)

to P 2 pt(L) = pt

�

(L) if and only if �

�1

[Q℄ � P whih is preisely pt

�

(j(�)).2

As a onsequene of this orollary the operation whih extrats from a

funtional relation the underlying ontinuous funtion (whih exists by Propo-

sition 2.11) is just the omposition pt Æ 


�

. It follows that this is funtorial.

We denote it by U .

There is a more ategorial way to identify the funtional morphisms in the

two dual ategories. As we have seen in Setion 2.3, the produts on the fun-

tional subategory give rise to a symmetri monoidal struture on the larger

relational ategory. In addition, the diagonals �

A

: A ! A � A and mor-

phisms !

A

to the terminal objet indue a diagonal struture. The funtional

morphisms are then haraterized as the total and deterministi morphisms,

i.e. the ones for whih ! and �, respetively, are natural transformations. For

more details see [17, Setion 3.3℄.

4 Subspaes

There are a number of di�erent onepts of \good subspae" in Topology as

often simply arrying the indued topology is too weak. One very useful one

that is well-known in domain theory is that of an embedding-projetion pair.

It ombines the ategorial notion of setion retration pair with the order

theoreti notion of adjuntion. It is then an immediate orollary that the

spae that is the odomain of the setion arries the subspae topology. In

the following we will generalize this to the relational setting.

4.1 Perfet relations

We start by de�ning a speial lass of relations that will be important when

we haraterize relations that have adjoints.

13
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De�nition 4.1 We say that a losed relation R : X +

-

Y is perfet if for

all ompat saturated sets K � Y the preimage (8R)[K℄ is ompat.

Perfet relations an alternatively be haraterized in terms of their Stone

duals.

Proposition 4.2 A losed relation R : X +

-

Y is perfet if and only if




�

(R) preserves the way-below relation.

Proof. Let us assume that R is perfet and U � V are open subsets of Y .

Then there is a ompat saturated set K � Y suh that U � K � V and we

get 


�

(R)(U) = (8R)[U ℄ � (8R)[K℄ � (8R)[V ℄ = 


�

(R)(V ). By assumption

(8R)[K℄ is ompat and hene we onlude 


�

(R)(U)� 


�

(R)(V ).

Conversely, suppose 


�

(R) preserves way-below and K � Y is ompat

saturated. As a saturated set, K it is the intersetion of all the open sets that

ontain it and we ompute

(8R)[K℄ = (8R)

�

\

#

fU 2 


�

(Y ) j K � Ug

�

=

\

#

�

(8R)[U ℄

�

�

K � U

	

where the last equality follows beause, by Lemma 3.1, 8R is a right adjoint

and hene preserves arbitrary intersetions in P(Y ). Now we laim that this

last intersetion is taken over a �lterbase for a Sott open �lter in 


�

(X) =


(X). The set

�

(8R)[U ℄

�

�

K � U

	

is learly �ltered. To see that it is

generates a Sott open �lter take U 2 
(Y ) that ontains K. Sine Y is

loally ompat, the neighborhood �lter of the ompat set K has a basis

of ompat saturated sets. This means that there is an open set V and a

ompat set K

0

suh that K � V � K

0

� U . This implies V � U and hene

by assumption (8R)[V ℄� (8R)[U ℄.

By the Hofmann-Mislove Theorem the intersetion over a Sott open �l-

ter of open sets, and hene also of a �lterbase for suh a �lter, is ompat

saturated. This shows that (8R)[K℄ is ompat and �nishes the proof. 2

This extends the lassial situation of funtions between stably ompat

spaes (or, more generally, loally ompat sober spaes), [10, Remark 1.3℄.

Sine the Stone dual of a funtion has an upper adjoint, perfetness in that

situation an be further haraterized by the adjoint being Sott-ontinuous

(lo. it.). Beause of Corollary 3.7 we have that a ontinuous funtion be-

tween stably ompat spaes is perfet in the lassial sense if and only if the

orresponding relation given by the hypergraph is perfet in our sense.

It may be worthwhile to add a few words about terminology here. As we

quoted, perfet maps have (at least) three di�erent haraterizations and fur-

thermore many useful properties. Depending on what is onsidered essential

in a given situation, additional assumptions are made in order to preserve

ertain key properties in the absene of loal ompatness, sobriety or both.

This has led to an abundane of di�erent onepts for whih it now appears

impossible to establish a oherent terminology. Either of \proper" [4,10℄ or

14
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\perfet" [12,9,6℄ is usually used but it is not lear where the boundary be-

tween the two ought to be drawn. Our hoie of \perfet" follows the more

reent ustom of reserving \proper" for slightly stronger requirements even in

the ase of loally ompat sober spaes.

We also note that perfet funtions between stably ompat spaes are ex-

atly those whih are ontinuous with respet to both original and o-ompat

topology. This implies that they are exatly those maps whih are monotone

and path ontinuous. To summarize:

Proposition 4.3 Let f : X ! Y be a funtion between stably ompat spaes

and R : X +

-

Y the orresponding hypergraph. Then the following are equiv-

alent:

(i) R is perfet;

(ii) f is perfet with respet to the original topologies;

(iii) f is perfet with respet to the o-ompat topologies;

(iv) f is monotone and path ontinuous.

There is yet another approah to perfetness via uniform ontinuity: For

every stably ompat spae there is a unique quasi-uniformity U suh that U

indues the topology and U

�1

indues the o-ompat topology. A ontinuous

funtion f : X ! Y between stably ompat spaes is perfet if and only if it

is uniformly ontinuous with respet to these unique quasi-uniformities on X

and Y . For details see [25, Theorem 3℄.

In a way, perfet ontinuous funtions seem to be a better notion of mor-

phisms for the ategory SCS than just ontinuous ones, as open and ompat

saturated sets play similarly important roles. Moreover, with these morphisms

we an explain in whih way the path topology is a \natural" onstrution:

Every ontinuous funtion between ompat Hausdor� spaes is perfet, and

hene this ategory embeds fully and faithfully into SCS with perfet maps.

Now, taking the path topology is simply the right adjoint, i.e. the o-reetor,

for this inlusion funtor, [6℄.

Returning to losed relations again, perfetness is linked to openness. We

say that a losed relation R : X +

-

Y is open if for all open sets U � X the

forward image [U ℄R is open.

For the next proposition we need the following observation whih relates

forward image, universal preimage, omplementation and reiproation:

Lemma 4.4 If R : X +

-

Y is a relation in Rel and M � X is an arbitrary

subset then [X nM ℄R = Y n (8R

�

)[M ℄.

Proof. For y 2 Y we have

15



Jung, Kegelmann and Moshier

y 2 [X nM ℄R () (9x 2 X nM) x R y

() y =2 (8R

�

)[M ℄

() y 2 Y n (8R

�

)[M ℄:

2

Proposition 4.5 A losed relation R : X +

-

Y is open if and only if the

reiproal relation R

�

: Y

�

+

-

X

�

is perfet.

Proof. Let us assume that R is open. We take a ompat saturated set

K 2 K(X

�

) and have to show that (8R

�

)[K℄ is ompat in Y

�

. By Theorem 2.5

the ondition K 2 K(X

�

) is equivalent to X nK 2 
(X) and the openness of

R means that [X nK℄R is open. By the previous lemma we have [X nK℄R =

Y n (8R

�

)[K℄ 2 
(Y

�

) whih, again by Theorem 2.5, implies that (8R

�

)[K℄ is

a ompat saturated subset of Y

�

.

Conversely, if R

�

is perfet and U 2 
(X) then X nU is ompat saturated

inX

�

. From the previous lemmawe get (8R

�

)[X n U ℄ = Y n Y n (8R

�

)[X n U ℄ =

Y n [X n (X n U)℄R = Y n [U ℄R whih is a ompat saturated subset of Y

�

be-

ause of the perfetness of R

�

. Consequently, its omplement [U ℄R is an open

subset of Y . 2

4.2 Adjuntions

As usual in an order-enrihed ategory, we say that for two losed relations

R : X +

-

Y is the left or lower adjoint of S : Y +

-

X if S ; R : X +

-

X

is below the identity and if R ; S : Y +

-

Y is above the identity on Y .

Likewise, S is alled the right or upper adjoint of R. The question is what

is the right order on the homsets SCS

�

(X; Y ). One hoie is subset inlusion

but it turns out to be better to use the one indued from the orresponding

homsets SCS

�

X;K(Y )

�

, in keeping with Proposition 2.10. Sine K(Y ) is

ordered by reverse inlusion this means that the relations in the homsets for

SCS

�

are also ordered by reverse inlusion of their graphs. Note that adjoints

determine eah other uniquely as is the ase in any order-enrihed ategory.

Lemma 4.6 The funtors 


�

and pt

�

preserve the order on the homsets, thus

making SCS

�

and SCF

�

dually equivalent as order-enrihed ategories. Conse-

quently, we have R a S for losed relations if and only if 


�

(S) a 


�

(R).

Proof. The �rst laim an easily be veri�ed from the de�nition of the two

funtors. Then the seond is an immediate onsequene. Note, however, that

beause of ontravariane the role of lower and upper adjoint are reversed. 2

Upper adjoints have a very onise haraterization:

Theorem 4.7 A losed relation R : X +

-

Y has a lower adjoint if and only

if it is perfet and funtional.
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Proof. From the previous lemma we know that R has a lower adjoint if and

only if 


�

(R) has an upper adjoint. As we know, 


�

(R) is a ontinuous

semilattie homomorphism and as a monotone funtion between the omplete

latties 


�

(Y ) = 
(Y ) and 


�

(X) = 
(X) it is a lower adjoint if and only if

it preserves all suprema. By Proposition 3.6 this is the ase preisely when R

is funtional.

In this ase we have an upper adjoint u : 


�

(X)! 


�

(Y ), but it need not

be a ontinuous semilattie homomorphism. As an upper adjoint it preserves

all in�ma, but it is Sott ontinuous if and only if its adjoint 


�

(R) preserves

the way-below relation (see [1, Proposition 3.1.14℄). From Proposition 4.2 we

know that this is equivalent to R being perfet. 2

Using Proposition 4.3 above we an rephrase this as follows.

Corollary 4.8 A losed relation has a lower adjoint if and only if it is fun-

tional and the orresponding funtion is path ontinuous, i.e. ontinuous with

respet to the path topologies.

In the ase of Hausdor� spaes the last ondition is trivially true sine the

path topology is simply the original topology. Hene, we get the following

result.

Corollary 4.9 A losed relation between ompat Hausdor� spaes is a on-

tinuous funtion if and only if it has a lower adjoint in SCS

�

.

-

L

e

e

e

e e

�

J

J

J

J











1

0

b

?

S B

U

a

Fig. 1. A non-funtional embedding retration pair.

Consider the two posets given in Figure 1. We de�ne two losed relations

L := f0g � B [ f1g � fa; bg and U := f?g � S [ fa; bg � f1g whih is the

hypergraph of the funtion that maps ? to 0 and identi�es a and b by mapping

them to 1. We have L ; U = id

S

and also U ; L v id

B

whih shows that they

form a embedding-projetion pair in the sense that L is a lower adjoint setion

and U the orresponding upper adjoint retration. This example shows that

embeddings need not be funtional.

We an, however, say expliitly what this lower adjoint does. Essentially

it is just taking preimages under the funtion orresponding to its adjoint:

Proposition 4.10 Let u : X ! Y be a perfet ontinuous funtion between

stably ompat spaes, U : X +

-

Y its hypergraph and L the lower adjoint.
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Then we have

y L x () x 2 (8U)["y℄ () y � u(x)

and the orresponding multi-funtion f

L

: Y ! K(X) satis�es

f

L

(y) = u

�1

["y℄:

Proof. Note that we have x 2 (8U)["y℄ () x 2 u

�1

["y℄ by Lemma 3.2,

and hene the desriptions of the adjoint given in the proposition agree.

We begin by showing that L is a losed relation. The easiest proof is to

show that f

L

is ontinuous: It fatorizes as Y

"

-

K(Y )

u

�1

[�℄

-

K(X) where

the �rst funtion is already known to be ontinuous. The spaes K(Y ) and

K(X) arry the Sott topology and direted suprema are given by �ltered

intersetions whih are preserved by the preimage funtion u

�1

[�℄. So, f

L

is a

omposition of ontinuous funtions.

To show L a U we have to hek v

X

= id

X

� U ;L and L;U � id

Y

= v

Y

sine the order on the homsets is reversed inlusion. So, for x v x

0

we have

x U u(x) L x

0

sine u(x) v u(x

0

). For the seond inlusion, y L x U y

0

implies

y v u(x) v y

0

.

2

5 Bilimits

As our �nal topi we onsider bilimits in SCS

�

. In domain theory suh bilimits

are usually taken over direted diagrams of embedding-projetion pairs. As

pointed out in [1℄ the onstrution doesn't depend on the fat that the mor-

phisms are setions and retrations but exlusively on the properties of the

adjuntions. Hene, we disuss the onstrution of bilimits using this setup.

Both SCS

�

and SCF

�

are order enrihed ategories and support the notion

of an adjoint pair. We denote the subategories of lower adjoints by SCS

�

l

and

SCF

�

l

, respetively. The dual ategories of upper adjoints are denoted by SCS

�

u

and SCF

�

u

.

In the following we disuss bilimits of direted diagrams of adjoint losed

relations between stably ompat spaes, or to be more preise, olimits for

funtors from a direted poset I to the subategory of lower adjoint losed

relations SCS

�

l

.

Theorem 5.1 Every direted diagram in SCS

�

l

has a bilimit.

This means that it has a olimit whih is also a olimit for the whole

ategory SCS

�

. Moreover, the orresponding upper adjoints for the olimiting

oone make it into limit for the upper adjoints of the diagram and this is also

a limit in the ambient ategory SCS

�

.

Proof. We prove this via the Stone dual. So let I be a direted set and
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D : I ! SCS

�

l

a direted diagram. We onsider the omposition 


�

ÆD! SCF

�

u

where we denote the objets as L

i

:= 


�

(D(i)) and the morphisms as �

ji

and

their upper adjoints as  

ij

. Suh a diagram an be onsidered to onsist

of dpo's and Sott-ontinuous maps. Hene the general domain theoreti

mahinery an be brought to bear, f. [1, Setion 3.3℄ and [8, Setion IV-3℄.

From this we know that the (domain-theoreti) bilimit is given by

�

(x

i

)

i2I

2

Y

i2I

L

i

�

�

(8i < j) 

ij

(x

j

) = x

i

	

and that the (Sott-ontinuous) maps  

j

: L! L

j

,  

j

((x

i

)

i2I

) = x

j

form a lim-

iting one over the diagram ((L

i

)

i2I

; ( 

ij

)

i�j

) in the ategory DCPO. Further-

more, the (Sott-ontinuous) maps �

i

: L

i

! L, �

i

(x) =

�

F

"

k�i;j

 

jk

(�

ki

(x))

�

j2I

form a olimiting oone of the diagram ((L

i

)

i2I

; (�

ji

)

i�j

) in DCPO. The fol-

lowing relationships hold:

(i) For all i 2 I, �

i

is a lower adjoint of  

i

.

(ii) id

L

=

F

"

i2I

�

i

Æ  

i

.

(iii) (8i; j 2 I) 

j

Æ �

i

=

F

"

k�i;j

 

jk

Æ �

ki

.

(iv) For any one (M; (�

i

)

i2I

) (of Sott-ontinuous maps) over the diagram

((L

i

)

i2I

; ( 

ij

)

i�j

) the mediating morphism � : M ! L is given by � =

F

"

i2I

�

i

Æ �

i

.

(v) For any oone (M; (�

i

)

i2I

) (of Sott-ontinuous maps) over the diagram

((L

i

)

i2I

; (�

ji

)

i�j

) the mediating morphism � : L ! M is given by � =

F

"

i2I

�

i

Æ  

i

.

The objets and morphisms of the ategory SCF

�

have additional struture,

so we need to show the following:

(a) L is a omplete lattie.

(b) L is ontinuous.

() L is distributive.

(d) The way-below relation on L is multipliative and 1� 1.

(e) For all i 2 I, �

i

and  

i

preserve �nite in�ma.

(f) Assuming that the one (resp. oone) maps preserve �nite in�ma, so do

the mediating morphisms.

For the sake of brevity, we will from now on write x for a sequene (x

i

)

i2I

wherever possible.

(a) The  

ij

, as upper adjoints, preserve all in�ma. Hene these are alu-

lated pointwise in L.

(b) Continuity follows for dpo's already, see Theorem 3.3.11 in [1℄. How-

ever, it will be neessary for the remaining laims to have a haraterization

of the way-below relation on L at hand. For this observe that the �

i

preserve

way-below, [1, Proposition 3.1.14(2)℄; we an therefore employ property 2
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above to get x � y i� there exists an index j 2 I and elements x � y in L

i

suh that x � �

j

(x)� �

j

(y) � y.

We need to do (e) next: The  

i

preserve in�ma beause they are upper

adjoints. For the lower adjoints we exploit the fat that �nite meets ommute

with direted joints in ontinuous latties, [8, Corollary I-2.2℄. The laim then

follows diretly from the formula for the �

i

.

() We need to invoke the ontinuity of L for this: Assume a � x ^ (y _

z). Using the ontinuity of supremum and in�mum we know that there are

additional sequenes a

0

, b and  suh that a � a

0

^(b_) and a

0

� x, b� y and

� z. By our haraterization of way-below on L it follows that we an �nd

elements x; y; z in some approximating lattie L

j

suh that a

0

� �

j

(x) � x, et.

Now we an alulate a � a

0

^(b_) � �

j

(x)^(�

j

(y)_�

j

(z)) = �

j

(x^(y_z)) =

�

j

((x ^ y) _ (x ^ z)) = (�

j

(x) ^ �

j

(y)) _ (�

j

(x) ^ �

j

(z)) � (x ^ y) _ (x ^ z).

(d) This is similar to the previous item: For x � y; z �nd x � y, x

0

� z

in some L

j

suh that x � �

j

(x) � �

j

(y) � y and x � �

j

(x

0

) � �

j

(z) � z.

The laim then follows from multipliativity of� in L

j

: x � �

j

(x)^�

j

(x

0

) =

�

j

(x ^ x

0

)� �

j

(y ^ z) = �

j

(y) ^ �

j

(z) � y ^ z.

For 1� 1 just observe that 1� 1 holds in eah L

i

and the lower adjoints

are SCF

�

maps, that is, they preserve the empty meet.

(f) Like (e), this follows from the de�ning formulas for mediating mor-

phisms and the fat that �nite meets ommute with direted suprema. 2

The limit-olimit oinidene for SCF

�

whih we established in the pre-

eding proof says (among other things) that direted olimits in SCF

�

l

are

also olimits in the original ategory of semilattie homomorphisms. Both the

diagram maps �

ji

and the oone maps �

i

are in fat lower adjoints and onse-

quently sup-preserving, whih means that they are frame maps. Frame maps

between ontinuous semilatties, however, are not neessarily lower adjoints.

Nonetheless, direted olimits in SCF

�

l

are also olimits of frames, as our next

lemma shows.

Lemma 5.2 The embedding of SCF

�

l

into the ategory Frm of frames and

frame homomorphisms preserves direted olimits.

Proof. The olimit L of a direted diagram ((L

i

)

i2I

; (�

ji

)

i�j

) in SCF

�

l

as on-

struted in the proof of the previous theorem yields a distributive ontinuous

lattie, hene a (spatial) frame, [8, Theorem 5.5℄. The olimiting maps �

i

are

lower adjoints in addition to being SCF

�

morphisms, so they are frame homo-

morphisms. What needs to be shown is that the mediating morphism � for

a oone (�

i

)

i2I

of frame homomorphisms is again a frame homomorphism.

Sine we already know that � will be a ontinuous semilattie homomorphisms

all that remains to be shown is preservation of (�nite) suprema. The proof

of this property is a beautiful interplay between formulas 2 and 3 from the

preeding theorem. Let X be a set of elements of the olimit L. We alulate
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for the non-trivial inequality:

�(

G

X) =

G

"

j2I

�

j

Æ  

j

(

G

X) de�nition of �

=

G

"

j2I

�

j

Æ  

j

(

G

x2X

G

"

i2I

�

i

Æ  

i

(x))

formula 2

=

G

"

j2I

G

"

i2I

�

j

Æ  

j

(

G

x2X

�

i

Æ  

i

(x))

assoiativity

=

G

"

j2I

G

"

i2I

�

j

Æ  

j

Æ �

i

(

G

x2X

 

i

(x)) �

i

's are lower adjoints

=

G

"

j2I

G

"

i2I

�

j

�

G

"

k�i;j

 

jk

Æ �

ki

(

G

x2X

 

i

(x))

�

formula 3

=

G

"

j2I

G

"

i2I

G

"

k�i;j

�

j

Æ  

jk

(

G

x2X

�

ki

Æ  

i

(x))

�

j

's are ontinuous &

�

ki

's are lower adjoints

=

G

"

j2I

G

"

i2I

G

"

k�i;j

�

k

Æ �

kj

Æ  

jk

(

G

x2X

�

ki

Æ  

ik

Æ  

k

(x)) (o)one ondition

�

G

"

j2I

G

"

i2I

G

"

k�i;j

�

k

(

G

x2X

 

k

(x)) adjointness of � and  

=

G

"

k2I

�

k

(

G

x2X

 

k

(x))

redundant indies

=

G

"

k2I

G

x2X

�

k

Æ  

k

(x) �

k

's are frame maps

=

G

x2X

G

"

k2I

�

k

Æ  

k

(x)

assoiativity

=

G

x2X

�(x) de�nition of �

2

Theorem 5.3 The funtor U from SCS

�

u

to SCS preserves inverse limits.

Proof. The dual equivalene between SCS

�

u

and SCF

�

l

transforms inverse lim-

its into diret olimits. The latter are preserved by the inlusion of SCF

�

l

into

Frm aording to the preeding lemma. Stone duality translates them into

inverse limits in Top. 2

The reader may still feel a bit numb from all these alulations and not

immediately reognize the fore of this theorem. Let us therefore elaborate on

its ontent a little bit. Top is a omplete ategory and limits are alulated

in the usual way: If D : I ! Top is a funtor (for any diagram D) then the

points of limD are given by threads:

limD =

�

(x

i

)

i2obj(I)

2

Y

i2obj(I)

D(i)

�

�

(8(f : i! j) 2 mor(I)) D(f)(x

i

) = x

j
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The topology is inherited from the produt spae

Q

i2obj(I)

D(i). Upper adjoint

relations between stably ompat spaes are funtional and the funtor U asso-

iates with every suh relation the generating (perfet) funtion. Theorem 5.3

then states that a bilimit in N

�

is alulated topologially as the limit of the

orresponding inverse diagram of perfet maps. One an turn this around and

say that the ontent of the theorem is to reognize inverse limits of perfet

maps as bilimits in an order-enrihed setting, yielding a limit-olimit oin-

idene with respet to losed relations. This appears to be an important

�rst step in making stably ompat spaes a suitable universe for semanti

interpretations.
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