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Abstract

Stably compact spaces are a natural generalization of compact Hausdorff spaces in
the Ty setting. They have been studied intensively by a number of researchers and
from a variety of standpoints.

In this paper we let the morphisms between stably compact spaces be certain
“closed relations” and study the resulting categorical properties. Apart from ex-
tending ordinary continuous maps, these morphisms have a number of pleasing
properties, the most prominent, perhaps, being that they correspond to preframe
homomorphisms on the localic side. We exploit this Stone-type duality to establish
that the category of stably compact spaces and closed relations has bilimits.

1 Introduction

The research reported in this paper derives its motivation from two sources.
For some time, we have tried to extend Samson Abramsky’s Domain Theory

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs



JUNG, KEGELMANN AND MOSHIER

in Logical Form to continuous domains, [1,15,14,17]. This has led to a number
of insights, the most important perhaps being that in order to perform domain
constructions strictly logically, one can invoke a version of Gentzen’s cut elim-
ination theorem. This, however, requires that we consider a purer logic than
Abramsky did. Semantically, it then turns out that the notion of morphisms
so captured consists of certain relations, rather than functions, [14, Proposi-
tion 6.5]. This is quite in line with developments in denotational semantics,
where the need for (or the advantages of) relations has been noticed for some
time, [5,3].

Our second motivation stems from the desire to circumvent some of the
difficulties connected to classical domain theory. As is well known, in order
to get a cartesian closed category of continuous domains, one has to restrict
to a subcategory of FS-domains, [13,1]. Unlike general continuous domains,
a straightforward characterisation of FS-domains via their Stone dual, for
example, is not known. Perhaps as a result of the relative weakness of our
tools for F'S-domains, certain basic questions about them remain unresolved.
We still do not know whether they coincide with retracts of bifinite domains
or whether the probabilistic powerdomain can be restricted to this category,
[16].

The semantic spaces which we put forward in this paper, in contrast to
F'S-domains, are very well behaved and understood. They are the so-called
stably-compact spaces. Many equivalent characterisations are known and many
properties have been discovered for them. Also, they do encompass most cate-
gories of continuous domains which have played a role in denotational seman-
tics. As is clear from what we have said at the beginning, we are interested
in the category SCS™ of stably compact spaces with closed relations as mor-
phisms. Although a similar set-up has been considered some time ago, [26,
Prop. 11.2.5], the explicit relational presentation appears to be new.

The purpose of this paper is to examine the suitability of SCS™ as a se-
mantic universe. To this end we look at finitary closure properties and the
bilimit construction. The latter, to our great satisfaction, behaves in a very
natural and intuitive way. Specifically, we show that the bilimit coincides with
a classical topological limit although it is constructed order-theoretically.

2 The category of of stably compact spaces and closed
relations

2.1 The spaces

We assume standard domain theoretic notation as it is used in [8,1], for exam-
ple. Slightly less well known, perhaps, are the following notions and results.
If X is a topological space and A an arbitrary subset of X then the saturation
of A is defined as the intersection of all neighborhoods of A. For any 7j-
topological space X, the specialization order of X is the relation Cx given by
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x Cx y if every neighborhood of z is also a neighborhood of y. The saturation
of a subset A can then also be described as the upward closure with respect
to Cx. Open set are always upper, that is, saturated. An important fact is
that the saturation of a compact set is again compact, for a set A has exactly
the same open covers as its saturation.

For any topological space X the set of open subsets forms a complete
lattice (X)) with respect to subset inclusion. Vice versa, for every complete
lattice L the set of completely prime filters, denoted pt(L), carries the topology
{O, | a € L} where F € O, if a € F. A space is Ty if the assignment, which
associates with a point x € X the open neighborhood filter N(z), is injective.
A space is called sober if the assignment is bijective. See [1, Section 7] for a
detailed introduction to this topic. We are now ready to define the objects of
interest in this paper:

Definition 2.1 A topological space is called stably compact if it is sober,
compact, locally compact and finite intersections of compact saturated subsets
are again compact.

Stably compact spaces have been studied intensively (and under many
different names), [8,10,9,24,19,15] but, unfortunately, apart from [17] there
is no single comprehensive reference for their many properties. We therefore
state the main facts needed in the sequel. Our principal technical tool is the
Hofmann-Mislove Theorem, [11,18]:

Theorem 2.2 Let X be a sober space. There is an order-reversing bijection
between the set K(X) of compact saturated subsets of X (ordered by reversed
inclusion) and Scott-open filters in Q(X) (ordered by inclusion). It assigns to
a compact saturated set the filter of open neighborhoods and to a Scott-open
filter of open sets their intersection.

One consequence of this which we will need later is that every Scott-open
filter in Q(X) is equal to the intersection of all completely prime filters con-
taining it. Another is the fact that the set X(X) is a dcpo when equipped
with reversed inclusion. For stably compact spaces even more is true:

Proposition 2.3 Let X be a stably compact space.

(i) K(X) is a complete lattice in which suprema are calculated as intersec-
tions and finite infima as unions.

(i) Q(X) and K(X) are stably continuous frames.

(iii) In Q(X) we have O < O' if and only if there is K € K(X) with O C
KCO'.

(iv) In X(X) we have K < K' if and only if there is O€Q(X) with K' C
OCK.

As in [15] we use stably continuous frame to denote continuous distributive
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lattices in which the way-below relation is multiplicative, that is, in which
r < y,z implies x < y A z and in which 1 < 1. They are precisely the
Stone duals of stably compact spaces, see [10, Theorem 1.5]. Note that the
proposition tells us that the complements of compact saturated sets form
another topology on X, called the co-compact topology for X and denoted by

X,. Original and co-compact topology are closely related:
Proposition 2.4 Let X be a stably compact space.
(i) The open sets of X, are the complements of compact saturated sets in X .
(ii) The open sets of X are the complements of compact saturated sets in X.
(i) X, is stably compact and (X,), is identical to X .
)

The specialization order of X is the inverse of the specialization order
of X,.

(iv

For a stably compact space X, the patch topology of X is the common
refinement of the original topology and the co-compact topology. It is denoted
by X,. It is the key to making the connection to much earlier work by Leopoldo
Nachbin, [21]: A partially ordered space or pospace is a topological space X
with a partial order relation Cx such that the graph of Cx is a closed subset
of X x X. Such a space must be Hausdorff because the diagonal relation, i.e.,
the intersection of Cx and the opposite partial order Jy, is closed.

Theorem 2.5 For a stably compact space X the specialization order together
with the patch topology makes X, into a compact ordered space. Conversely,
for a compact ordered space (X,C) the open upper sets TU = U € Q(X)
form the topology for a stably compact space X', and the two operations are
mutually inverse.

Moreover, for a stably compact space X the upper closed sets of X, are
precisely the compact saturated sets of X.

Notice that for a compact Hausdorff space X, the diagonal relation Ay
is a closed (trivial) partial order. By applying Theorem 2.5 to the pospace
(X, Ax), we see that the upper opens and lower opens are just the opens of
the original topology. So X = X, = X. The converse also holds.

Corollary 2.6 A space X is compact Hausdorff if and only if it is a stably
compact space for which X = X,,.

Proof. The patch topology for any stably compact space is Hausdorff. In
the case of a stably compact space for which X = X, the patch topology is
simply the original. O

We can thus think of stably compact spaces as the T generalization of
compact Hausdorff spaces. The fact that X # X, in general forces us to tread
carefully in Section 2.2 as we generalize from closed relations between compact
Hausdorff spaces to closed relations between stably compact spaces.
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The importance of stably compact spaces for domain theory is that almost
all categories used in semantics are particular categories of stably compact
spaces.

Proposition 2.7 FS domains, and hence in particular Scott domains and
continuous lattices, equipped with their Scott topologies, are stably compact
spaces.

2.2 The morphisms

The obvious category of stably compact spaces is that of continuous functions,
i.e. the full subcategory SCS of the category of topological spaces Top. The
category that we are really interested in, however, is one that generalizes
KHaus™, the category of compact Hausdorff spaces and closed relations. We
quote the basic definitions and results from [14].

The specialization order of a stably compact space X is generally not closed
in X x X. Indeed, were it closed, X would be a pospace, hence would be
Hausdorff. Thus, specialization would be trivial. Specialization, on the other
hand, is reversed by taking the co-compact topology (again, in the Hausdorff
case X = X, so the “reversal” is trivial). Thus:

Proposition 2.8 The specialization order of a stably compact space X is
closed in X x X,..

Proof. Suppose that x [Zx y. Then there is an open set U containing x and
not y. By local compactness, we can assume that U is contained in a compact
saturated neighborhood K of x that also does not contain y. U is an upper
set containing . The complement of K is a lower set containing y. Thus
U x (X \ K) is a neighborhood of {x,y) in X x X, that does not meet C x.0O

For stably compact spaces X and Y, we call a closed subset R C X x Y} a
closed relation from X to Y and we write it as R: X —— Y. If we spell out
this condition then it means that for z € X and y € Y such that z R y we find
an open neighborhood U of x and a compact saturated set K C Y that doesn’t
contain y such that U x (Y \ K)NR = (. [cf. the proof Proposition 2.8.]
Note that every closed relation R satisfies the rule ' Cx 2 Ry Cy ¢y —
¥ Ry

The composition of closed relations is the usual relation product, R ; S =
{(:1:, 2) | (Qy) ¢ Ry and y S z}. Note that, following usual practice, we write
the composition of relations from left to right, whereas for functions it is from
right to left. To avoid ambiguity we use “;” to indicate left-to-right composi-
tion. Notice that the specialization order of any stably compact space X acts
as identity under taking the relation product with closed relations from or to
X and also that the composition of two closed relations is again closed. We
call the category of stably compact spaces with closed relations SCS*.
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The Hausdorff case is worth considering separately as it helps to illuminate
the definition of closed relations. As we have noted, a stably compact space is
Hausdorff if and only if its topology agrees with its co-compact topology. Thus
our closed relations from X to Y are simply closed subsets of X xY = X xY,
whenever Y is Hausdorff. Thus SCS* correctly generalizes KHaus™, in which
we could take the morphisms simply as closed subsets of X x Y. The fact
that we could get away with this apparently simpler notion of morphism in
the Hausdorff setting is due essentially to the fact that in compact Hausdorff
spaces the co-compact topology is “hidden from view.” In particular, KHaus"
is a full subcategory of SCS* (as well as being a subcategory of Rel).

Note that the obvious forgetful “functor” from SCS* to Rel, the category
of sets with relations, preserves composition but not identities. The only
stably compact spaces for which identity is preserved are those with trivial
specialization orders, i.e., the compact Hausdorff spaces.

Relations between sets can be understood as multi-functions. As the fol-
lowing proposition shows this carries over to our topological setting in an
interesting way.

Proposition 2.9 Let X and Y be stably compact spaces and R: X ——Y a
closed relation then

frlz) ={yeY |z Ry}

defines a continuous function from X to K(Y'), where the latter is equipped
with the Scott topology. Conversely, if f: X — K(Y') is continuous then

{(z,y) e X xY |y € f(z)}

15 a closed relation from X toY . Moreover, these two translations are mutually
imuverse.

To extend this correspondence to the composition of relations and multi-
functions, respectively, we first have to define a law of composition on the
latter. To this end recall that K(X) with its Scott topology is again a stably
compact space by Propositions 2.3 and 2.7. Hence we can make X into an
endofunctor on SCS by mapping a continuous function f: X — Y to the
function K(f): K(X) — K(Y) that takes a compact saturated subset K C X
to 1f[K]. This endofunctor is part of a monad whose unit takes the saturation
of points and whose multiplication is simply union [22]. Consequently, the
canonical composition of multi-functions is Kleisli composition which turns
out to be the analogue of ordinary relation product.

Proposition 2.10 The category of closed relations SCS* is isomorphic to the
Kleisli category SCSqc.

It is generally the case that a category C with a monad 7T is embedded in
the Kleisli category Cy simply by post-composing with the unit of the monad.
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Moreover, if the units of the monad are monic, then the embedding is faithful.
Hence, SCS is a subcategory of SCSg and thus also of SCS*. Concretely,
this embedding works by taking the hypergraph of a function. The following
proposition characterizes those relations that are really embedded functions:

Proposition 2.11 If f: X — Y is a continuous function then the hypergraph

{(x,y> e X xY ‘ f(z) Ey}

is a closed relation from X to Y. Conversely, if R: X ——Y is a closed
relation such that for all x € X the set fr(x) has a least element r(z) then
r: X = Y is a continuous function, and this operation is the inverse of the
Previous.

Again, the Hausdorff case may help to illuminate this. If f: X — Y is a
continuous function with Y a compact Hausdorff space, then the hypergraph
is simply the graph of f. This is a closed relation just as classical topology
tells us it should be. Conversely, suppose that a closed relation from X to Y
is the graph of a function g. Then clearly fr(x) has a least element g(z) for
each x. Thus ¢ is a continuous function.

2.3 The category

The left adjoint from SCS to the Kleisli category SCSq =2 SCS* preserves
coproducts. Hence, they are given in SCS* simply as topological coproducts,
i.e., as disjoint unions.

In the category Rel of sets and relations for every relation R: X —— Y
there is the reciprocal relation R, that is given by y R, * <= = R y. Thisis
the main ingredient that makes Rel into an allegory [7]. Our category SCS* fails
to be an allegory exactly because, as we shall see, it lacks a true reciprocation
operation. On the other hand, if R: X —— Y is a closed relation between
stably compact spaces then R,: Y, —— X, is a closed relation between the
co-compact topologies, and (-), is an involution on SCS*. The problem is that
it doesn’t fix objects. We can think of X, as an upside-down version of X
since the specialization order Cy, for the co-compact topology is simply Jy,
i.e. the dual of the one for the original space.

Nonetheless, the maps X +— X, and R — R, comprise a contravariant
functor, showing that SCS* is a self-dual category. Consequently, categorical
products (denoted here by X x* Y to avoid conflict with topological products
X xY) are also given by disjoint union:

XX Y (X4 V)= (X, UV = (X ) U (V) =XUY =X 4.

If a self-dual category is cartesian closed then all objects are isomorphic and
hence the category is equivalent to the category with only one (identity) mor-
phism. This shows that SCS* cannot be cartesian closed.
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Since categorical products in SCS* are the same as co-products, let us
look at cartesian products. In SCS they are the categorical product and we
can lift them to SCS* to make SCS* into a symmetric monoidal category.
The tensor product takes the cartesian product of the spaces with the prod-
uct topology and we also embed the morphisms needed for the symmetric
monoidal structure from SCS as described in Proposition 2.11. The defini-
tion of the tensor product of two closed relations R and S is pointwise, i,e,
(x,y) R®S (2',y") : <= x R yand 2’ R y'. This defines a closed rela-
tion and extends to products of continuous functions; for the details see [17,
Section 3.2.4].

With respect to ®, the category SCS™ is closed: Because of (X x Y), =
X, xY, we see that closed subsets of (X xY) x Z, are the same thing as closed
subsets of X x (Y, x Z), which proves SCS*(X ® Y, Z) = SCS*(X,Y, ® 2).
This internal homset Y, ® Z, however, does not correspond to the “real”
homset SCS*(Y, Z).

The homset SCS*(Y, Z) consists of the closed subsets of Y x Z, which by
Theorem 2.5 are precisely the compact saturated subsets of the dual (Y x Z,.),.
Hence, we can write the relation space as [Y = Z] := K(Y,, x Z). With this
definition and Proposition 2.10 we get

SCSH (X @Y, Z) =2 SCS*(X,Y, ® Z) = SCS(X, K(Y, ® Z)) =SCS(X,[Y = Z]).

So, we see that (—®Y') and [Y = —] are almost adjoint. The problem is that
the induced morphism X —— [V = 7] is not uniquely determined.

The canonical evaluation morphism is a functional closed relation and for
the induced morphism we can always choose a functional one, and as such it is
unique, i.e. these morphisms come from SCS rather than SCS*. In [23] such a
situation is called a Kleisli exponential. There is an alternative description of
the relation space by observing SCS*(Y, Z) & SCS(Y, K (Z)). Thus the normal
function space [Y — K(Z)] with the compact-open topology, which is simply
the Scott topology, yields a space that is homeomorphic to [Y = Z|. This
construction was first studied in [25], although it seems that some of subtleties
concerning the fact that this is only a Kleisli exponential were overlooked.

3 Stone Duality

Next we develop the Stone duality of closed relations. The morphisms between
open set, lattices corresponding to closed relations turn out to be preframe
homomorphisms, [2], preserving finite meets and directed suprema. They
have been studied in a similar framework before, see [26, Prop. 11.2.5], but
the duality with relations seems to be new.
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3.1 Relational preimage

If R: X —+— Y is a relation and A C X a subset, then we write
[AR:={yecY |(@reAd)zRy}

for the usual forward image. The definition of the preimage of a subset B C Y
under the relation R is a bit more tricky as there are several candidates. Here,
we are only interested in the universal preimage given by

(VR)[B]:={zx € X |(WeY)z Ry=>y € B}.
This definition is useful because VR turns out to be the right adjoint to [-]R:

Lemma 3.1 If R C X XY is a relation and A and B are subsets of X and
Y, respectively, then we have

[AJRC B « AC (YR)[B].

In the usual functional setting the situation is analogous; preimage is right
adjoint to direct image. The connection between relational and functional
preimage is the following.

Lemma 3.2 If f: X — Y is a continuous function between stably compact
spaces and F': X —— Y the corresponding closed relation given by the hyper-
graph, then for all upper sets A =1A CY we have

F7HA] = (VE)[A]

We now describe the translation from topological spaces to frames in the
relational setting.

Proposition 3.3 If R: X —— Y s a closed relation then VR is a continuous
semilattice homomorphism from Q(Y) to Q(X), i.e. it preserves finite infima
and directed suprema.

Proof. First, we have to check that for any open V' C Y the preimage (VR)[V]
is open. Solet z € (VR)[V], or equivalently fr(z) = [z]R C V. We know from
Proposition 2.9 that f is continuous and thus Proposition 2.3 gives us an open
neighborhood U of x such that fr(z') C V for all 2’ € U. We conclude x €
U C (VR)[V], thus showing that for a closed relation the universal preimage
of an open set is open.

As we have seen in Lemma 3.1, VR as a function between the full powersets
is a right adjoint. As such it preserves all intersections and thus the finite meets
in Q(Y).

Thus, it is a monotone map and, consequently, to show that it also pre-
serves directed suprema we only have to verify (VR) [UTV;} c UN(vR)[Vj]. So,
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we consider an = € (VR) [UTV;] which means fr(z) C J'V;. But as fz(z) is
compact we can find an index ¢ such that fr(x) C V; and, equivalently, such
that z € (VR)[V}]. 0

We call Q*R the restriction and co-restriction of VR to the open subsets
of X and Y to simplify notation. Going from a relation to the forward im-
age function is well-known to be functorial, and so is taking adjoints. By
Lemma 3.1 this implies that universal preimage is also functorial. Clearly,
Q*Cx is the identity on Q*(X) = Q(X) as all open sets are upper sets. Thus
Q* is a contravariant functor from SCS* to the category of stably continuous
frames and Scott continuous semilattice homomorphisms which we denote
by SCF*.

Just like €2 we also have to adjust the functor pt to the relational setting.
Consider a homomorphism ¢: L — M. We define the relation pt*(¢): pt* (M) —— pt*(L)
by

Qpt' () P:e= ¢7'[QIC P

where pt* on objects behaves just like the usual pt, i.e., P and () are com-
pletely prime filters in L and M, respectively. Alternatively, we can identify
completely prime filters with their characteristic functions which are frame
morphisms to 2, the two-element lattice. For two such points p: L — 2 and
q: M — 2 the above definition becomes

qpt (@) p: <= qoopCp.

Proposition 3.4 If ¢: L — M is a continuous semilattice homomorphism,
then pt*(¢): pt* (M) —— pt*(L) is a closed relation.

Proof. Suppose ) C M and P C L are completely prime filters such that
¢~ Q] € P. As ¢ is Scott continuous and @ completely prime and thus, in
particular, Scott open, the set ¢ 1[Q] is also Scott open. Because it is also
not contained in P and L is a continuous lattice we can find an z € ¢ 1[Q]\ P
such that 2 ¢ P. On the other hand @, as an upper set, is the union of
principal filters 1y for y € @ and hence we get ¢~'[Q] = ¢~ [U{ty | y € Q}] =
U{o~"[1y] ‘ y € Q} > z. This means that we can find a y € @ such that
z € ¢~ [1yl.

As L is stably continuous, the set fz is a Scott open filter which corresponds
to the compact saturated subset {P € pt*(L) ‘ tx C P} of pt*(L) by the
Hofmann-Mislove theorem. Now, we consider the open subset of pt*(M) x
pt*(L), which is given as the product of the open set corresponding to y and
to the complement of the compact saturated set corresponding to fx, and we
claim that this is a neighborhood of (@, P) that doesn’t meet R,. Clearly,
(@, P) is in this set, and if @' € pt*(M) and P’ € pt*(L) are such that y € @’
and tz ¢ P’ we get ¢7'[Q'] 2 ¢7'[ty] 2 z and thus ¢~'[Q’] D fz which
implies ¢~ '[Q] € P O

10
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Now we have all the ingredients for a duality between SCS* and SCF*. It
remains to check that the categorical conditions are indeed met.

Theorem 3.5 The contravariant functors Q2* and pt* are part of a dual equiv-
alence between the categories SCF* and SCS*.

Proof. We begin by showing that pt* is indeed a functor. Clearly, pt*(id;) =
Cpe=(z), the identity closed relation on pt*(L). The interesting direction for
functoriality is to show that pt* (¢ o0 @) C pt*(¢); pt*(¢), where ¢: L — M and
t: M — N are continuous semilattice morphisms. Let P € pt*(/N) and P’ €
pt*(L) be such that P (pt*(1) o ¢)) P', or equivalently that ¢~'[¢~'[P]] C P
We need to find a completely prime filter Q C M that satisfies ¢ 1[P] C Q
and ¢ ![Q] C P'. Unfortunately, ¢/ }[P] in general is only a Scott open filter,
not a point in M.

However, by the Hofmann-Mislove Theorem, 2.2, we have ~'[P] = N{Q €
pt*(M) | ¥ [P] C Q}. So for the sake of contradiction, assume there exists
zg € ¢ Q] \ P’ for all @ D ¢ '[P]. Then the supremum \/ ¢ of all these
elements does not belong to P’ because P’ is completely prime; on the other
hand, ¢(\/ zg) belongs to all @ 2 ¢~'[P] by monotonicity of ¢, hence to
¢~ '[P]. This contradicts the assumption ¢~'[¢)~'[P]] C P'.

To show that * and pt* give rise to a duality between SCF* and SCS*
we have to check that their actions on morphisms are mutually inverse. So,
suppose R: X —— Y is a closed relation and N(z) and N(y) are the open
neighborhood filters of two points z € X and y € Y. We get

N(=) (pt*(YR)) N(y) <= (VR)™'[N(z)] € N(y)
(VV e QY ) Ve (VR) ! [N(x)] =V € N(y)

— (WeQ}))ze (VR)|V]=yeV

— (WeQ(Y))|[z]RCV =yeV
Clearly, x R y implies this last condition and the converse follows from the

fact that [z]R is saturated.
Finally, we take a continuous semilattice morphism ¢: L — M and show

that (Q*(pt*(¢))) ({P € pt*(L) | z € P}) = {Q € pt*(M) | ¢(z) € Q} for any
x € L:

(vt () ({P ept'(L) |z € P})
={Qepr ()| (P pt'(L)) Q (pt'(¢)) P =z € P}

—{Qepr (M) | (WP epr(L) 67'QIC P = a e P

As before we use the fact that ¢—'[Q)] is a Scott-open filter and hence by the
Hofmann-Mislove Theorem equal to the intersection of all completely prime
filters containing it. The expression then re-writes to {Q € pt*(M) | = €

~1Q]} which is equal to {Q € pt*(M) | ¢(x) € Q} as desired. O
It is interesting to consider the Stone dual of the involution on SCS* that we
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discussed in Section 2.3. The co-compact topology on a stably compact space
has precisely the compact saturated subsets of the original space as closed
sets which implies Q*(X,) = Q(X,) = K(X). From the Hofmann-Mislove
Theorem we know that K(X) is in one-to-one correspondence to the Scott
open filters in (X). The latter can also be understood via their characteristic
functions which are precisely the continuous semilattice homomorphisms to 2,
the two-element lattice. Putting it all together we get Q(X,) & K(X) =
SCF*(Q(X),2) and we see that this self-duality in localic terms is exactly the
Lawson duality of stably continuous semilattices [20].

3.2  Functions revisited

We know from Proposition 2.11 that SCS embeds faithfully in SCS* and also
how to recognize the morphisms that arise from this embedding as hypergraphs
of functions. We refer to a closed relation as functional if it is the hypergraph
of a continuous function. Similarly the category SCF* contains a subcategory
of functional arrows.

Proposition 3.6 If R: X —— Y is a functional closed relation then Q*(R)
preserves finite (and consequently all) suprema. Conversely, if ¢: L — M is
a frame homomorphism then pt*(L) is functional.

Proof. If ¢ is a frame homomorphism then for any completely prime filter
Q@ C M the preimage ¢ '[Q] is completely prime. Hence, this is the least
completely prime filter P C L such that ¢ '[Q] C P.

For the converse observe that the forward image [z|R of any point x has a
least element and hence will be contained in either U or V iff it is contained
in U U V. This shows that VR preserves finite suprema. O

This result, of course, is very similar to the classical Stone duality be-
tween SCS, the category of stably compact spaces with continuous functions,
and SCF*, stably continuous lattices with frame homomorphisms. There the
functors 2 and pt act on morphisms as follows: Q(f) is simply the preim-
age function f~'[-] and similarly pt(¢) takes a completely prime filter P to
the completely prime filter ¢~'[P]. As a corollary of the previous proposi-
tion we get that pt* and 2* commute with the embeddings of the functional
subcategories.

12
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Corollary 3.7 The diagram of functors

Q
SCS Frm
pt
i J
Q*
SCS* SCF*
pt*

commutes in the sense that j o Q = Q* o1 and 1 o pt* = pto j.

Proof. The first equality was proved in Lemma 3.2. For the second, take a
frame morphism ¢: L — M. It is mapped by 7 o pt to the hypergraph of the
preimage function, i.e. the closed relation that relates Q € pt(M) = pt*(M)
to P € pt(L) = pt*(L) if and only if 7' [Q] C P which is precisely pt*(j(¢)).O

As a consequence of this corollary the operation which extracts from a
functional relation the underlying continuous function (which exists by Propo-
sition 2.11) is just the composition pt o Q*. It follows that this is functorial.
We denote it by U.

There is a more categorical way to identify the functional morphisms in the
two dual categories. As we have seen in Section 2.3, the products on the func-
tional subcategory give rise to a symmetric monoidal structure on the larger
relational category. In addition, the diagonals Ay: A — A x A and mor-
phisms !4 to the terminal object induce a diagonal structure. The functional
morphisms are then characterized as the total and deterministic morphisms,
i.e. the ones for which ! and A, respectively, are natural transformations. For
more details see [17, Section 3.3].

4 Subspaces

There are a number of different concepts of “good subspace” in Topology as
often simply carrying the induced topology is too weak. One very useful one
that is well-known in domain theory is that of an embedding-projection pair.
It combines the categorical notion of section retraction pair with the order
theoretic notion of adjunction. It is then an immediate corollary that the
space that is the codomain of the section carries the subspace topology. In
the following we will generalize this to the relational setting.

4.1 Perfect relations

We start by defining a special class of relations that will be important when
we characterize relations that have adjoints.

13
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Definition 4.1 We say that a closed relation R: X —— Y is perfect if for
all compact saturated sets K C Y the preimage (VR)[K] is compact.

Perfect relations can alternatively be characterized in terms of their Stone
duals.

Proposition 4.2 A closed relation R: X —+— Y s perfect if and only if
Q*(R) preserves the way-below relation.

Proof. Let us assume that R is perfect and U < V are open subsets of Y.
Then there is a compact saturated set K C Y such that U C K C V and we
get Q*(R)(U) = (VR)[U] C (VR)[K] C (YR)[V] = Q*(R)(V). By assumption
(VR)[K] is compact and hence we conclude Q*(R)(U) < Q*(R)(V).

Conversely, suppose Q*(R) preserves way-below and K C Y is compact
saturated. As a saturated set, K it is the intersection of all the open sets that
contain it and we compute

(VR)IK] = (VR)[ {U e (V) | K cU}] =) {(VR)[U] | K C U}

where the last equality follows because, by Lemma 3.1, VR is a right adjoint
and hence preserves arbitrary intersections in B(Y"). Now we claim that this
last intersection is taken over a filterbase for a Scott open filter in Q*(X) =
Q(X). The set {(VR)[U] | K C U} is clearly filtered. To see that it is
generates a Scott open filter take U € Q(Y) that contains K. Since Y is
locally compact, the neighborhood filter of the compact set K has a basis
of compact saturated sets. This means that there is an open set V and a
compact set K’ such that K CV C K’ C U. This implies V < U and hence
by assumption (VR)[V] < (VR)[U].

By the Hofmann-Mislove Theorem the intersection over a Scott open fil-
ter of open sets, and hence also of a filterbase for such a filter, is compact
saturated. This shows that (VR)[K] is compact and finishes the proof. O

This extends the classical situation of functions between stably compact
spaces (or, more generally, locally compact sober spaces), [10, Remark 1.3].
Since the Stone dual of a function has an upper adjoint, perfectness in that
situation can be further characterized by the adjoint being Scott-continuous
(loc. cit.). Because of Corollary 3.7 we have that a continuous function be-
tween stably compact spaces is perfect in the classical sense if and only if the
corresponding relation given by the hypergraph is perfect in our sense.

It may be worthwhile to add a few words about terminology here. As we
quoted, perfect maps have (at least) three different characterizations and fur-
thermore many useful properties. Depending on what is considered essential
in a given situation, additional assumptions are made in order to preserve
certain key properties in the absence of local compactness, sobriety or both.
This has led to an abundance of different concepts for which it now appears
impossible to establish a coherent terminology. Either of “proper” [4,10] or

14
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“perfect” [12,9,6] is usually used but it is not clear where the boundary be-
tween the two ought to be drawn. Our choice of “perfect” follows the more
recent, custom of reserving “proper” for slightly stronger requirements even in
the case of locally compact sober spaces.

We also note that perfect functions between stably compact spaces are ex-
actly those which are continuous with respect to both original and co-compact
topology. This implies that they are exactly those maps which are monotone
and patch continuous. To summarize:

Proposition 4.3 Let f: X — Y be a function between stably compact spaces
and R: X —— Y the corresponding hypergraph. Then the following are equiv-
alent:

(i) R is perfect;
(i) f is perfect with respect to the original topologies;
(iii) f is perfect with respect to the co-compact topologies;
)

(iv) f is monotone and patch continuous.

There is yet another approach to perfectness via uniform continuity: For
every stably compact space there is a unique quasi-uniformity U such that U
induces the topology and U~! induces the co-compact topology. A continuous
function f: X — Y between stably compact spaces is perfect if and only if it
is uniformly continuous with respect to these unique quasi-uniformities on X
and Y. For details see [25, Theorem 3].

In a way, perfect continuous functions seem to be a better notion of mor-
phisms for the category SCS than just continuous ones, as open and compact
saturated sets play similarly important roles. Moreover, with these morphisms
we can explain in which way the patch topology is a “natural” construction:
Every continuous function between compact Hausdorff spaces is perfect, and
hence this category embeds fully and faithfully into SCS with perfect maps.
Now, taking the patch topology is simply the right adjoint, i.e. the co-reflector,
for this inclusion functor, [6].

Returning to closed relations again, perfectness is linked to openness. We
say that a closed relation R: X —— Y is open if for all open sets U C X the
forward image [U]R is open.

For the next proposition we need the following observation which relates
forward image, universal preimage, complementation and reciprocation:

Lemma 4.4 If R: X —— Y s a relation in Rel and M C X is an arbitrary
subset then [X \ MR =Y \ (VR,)[M].

Proof. For y € Y we have
15
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y€eE[X\MR < (Jre X\ M)z Ry
= y ¢ (VR)[M]
> y e Y\ (VR)[M].
O

Proposition 4.5 A closed relation R: X —— Y s open if and only if the
reciprocal relation R, : Y, —— X, is perfect.

Proof. Let us assume that R is open. We take a compact saturated set
K € X(X,) and have to show that (VR,)[K] is compact in Y,. By Theorem 2.5
the condition K € K(X,) is equivalent to X \ K € Q(X) and the openness of
R means that [X \ K]R is open. By the previous lemma we have [X \ KR =
Y\ (VR,)[K] € Q(Y,) which, again by Theorem 2.5, implies that (VR,)[K] is
a compact saturated subset of Y.

Conversely, if R, is perfect and U € Q(X) then X \ U is compact saturated
in X,.. From the previous lemma we get (VR,)[X \ U] =Y \ Y \ (VR,)[X \U] =
Y\[X\(X\U)R =Y \[U]R which is a compact saturated subset of Y be-
cause of the perfectness of R,. Consequently, its complement [U]R is an open
subset of Y. a

4.2 Adjunctions

As usual in an order-enriched category, we say that for two closed relations
R: X —— Y is the left or lower adjoint of S: Y —— X if S; R: X 4+ X
is below the identity and if R;S: Y —— Y is above the identity on Y.
Likewise, S is called the right or upper adjoint of R. The question is what
is the right order on the homsets SCS*(X,Y"). One choice is subset inclusion
but it turns out to be better to use the one induced from the corresponding
homsets SCS (X,JC(Y)), in keeping with Proposition 2.10. Since X(Y) is
ordered by reverse inclusion this means that the relations in the homsets for
SCS* are also ordered by reverse inclusion of their graphs. Note that adjoints
determine each other uniquely as is the case in any order-enriched category.

Lemma 4.6 The functors Q* and pt* preserve the order on the homsets, thus
making SCS™ and SCF* dually equivalent as order-enriched categories. Conse-

quently, we have R 4 S for closed relations if and only if Q*(S) 4 Q*(R).

Proof. The first claim can easily be verified from the definition of the two
functors. Then the second is an immediate consequence. Note, however, that
because of contravariance the role of lower and upper adjoint are reversed. O

Upper adjoints have a very concise characterization:

Theorem 4.7 A closed relation R: X —— Y has a lower adjoint if and only
if it is perfect and functional.

16
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Proof. From the previous lemma we know that R has a lower adjoint if and
only if Q*(R) has an upper adjoint. As we know, Q*(R) is a continuous
semilattice homomorphism and as a monotone function between the complete
lattices Q*(Y) = Q(Y) and Q*(X) = Q(X) it is a lower adjoint if and only if
it preserves all suprema. By Proposition 3.6 this is the case precisely when R
is functional.

In this case we have an upper adjoint u: Q*(X) — Q*(Y), but it need not
be a continuous semilattice homomorphism. As an upper adjoint it preserves
all infima, but it is Scott continuous if and only if its adjoint Q*(R) preserves
the way-below relation (see [1, Proposition 3.1.14]). From Proposition 4.2 we
know that this is equivalent to R being perfect. O

Using Proposition 4.3 above we can rephrase this as follows.

Corollary 4.8 A closed relation has a lower adjoint if and only if it is func-
tional and the corresponding function is patch continuous, i.e. continuous with
respect to the patch topologies.

In the case of Hausdorff spaces the last condition is trivially true since the
patch topology is simply the original topology. Hence, we get the following
result.

Corollary 4.9 A closed relation between compact Hausdorff spaces is a con-
tinuous function if and only if it has a lower adjoint in SCS*.

S B

1 U a b

Fig. 1. A non-functional embedding retraction pair.

Consider the two posets given in Figure 1. We define two closed relations
L := {0} x BU{1} x{a,b} and U := {L} x S U {a,b} x {1} which is the
hypergraph of the function that maps L to 0 and identifies @ and b by mapping
them to 1. We have L ;U = idg and also U ; L C idg which shows that they
form a embedding-projection pair in the sense that L is a lower adjoint section
and U the corresponding upper adjoint retraction. This example shows that
embeddings need not be functional.

We can, however, say explicitly what this lower adjoint does. Essentially
it is just taking preimages under the function corresponding to its adjoint:

Proposition 4.10 Let u: X — Y be a perfect continuous function between
stably compact spaces, U: X ——Y its hypergraph and L the lower adjoint.

17
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Then we have
yLzx < xze€ (YU)1y] <= y <u(x)

and the corresponding multi-function fr:Y — K(X) satisfies

fuly) = u ' [1y].

Proof. Note that we have z € (VU)[ty] < z € v '[ty] by Lemma 3.2,
and hence the descriptions of the adjoint given in the proposition agree.
We begin by showing that L is a closed relation. The easiest proof is to

show that fr is continuous: It factorizes as Y’ S K(Y) 2 K(X) where
the first function is already known to be continuous. The spaces K(Y) and
K(X) carry the Scott topology and directed suprema are given by filtered
intersections which are preserved by the preimage function v~ *[-]. So, fr, is a
composition of continuous functions.

To show L 4 U we have to check Cx =idy C U; L and L;U Cidy = Cy
since the order on the homsets is reversed inclusion. So, for x C 2’ we have
xz U u(x) L 2’ since u(x) C u(z'). For the second inclusion, y L x U y' implies
yCu(z) Ty

(Il

5 Bilimits

As our final topic we consider bilimits in SCS*. In domain theory such bilimits
are usually taken over directed diagrams of embedding-projection pairs. As
pointed out in [1] the construction doesn’t depend on the fact that the mor-
phisms are sections and retractions but exclusively on the properties of the
adjunctions. Hence, we discuss the construction of bilimits using this setup.

Both SCS* and SCF* are order enriched categories and support the notion
of an adjoint pair. We denote the subcategories of lower adjoints by SCS; and
SCF;, respectively. The dual categories of upper adjoints are denoted by SCS’
and SCF; .

In the following we discuss bilimits of directed diagrams of adjoint closed
relations between stably compact spaces, or to be more precise, colimits for
functors from a directed poset I to the subcategory of lower adjoint closed
relations SCS;.

Theorem 5.1 Fuvery directed diagram in SCS] has a bilimit.

This means that it has a colimit which is also a colimit for the whole
category SCS*. Moreover, the corresponding upper adjoints for the colimiting
cocone make it into limit for the upper adjoints of the diagram and this is also
a limit in the ambient category SCS*.

Proof. We prove this via the Stone dual. So let I be a directed set and
18
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D: I — SCS; adirected diagram. We consider the composition 2*oD — SCF;,
where we denote the objects as L; := Q*(D(i)) and the morphisms as ¢;; and
their upper adjoints as 1;;. Such a diagram can be considered to consist
of depo’s and Scott-continuous maps. Hence the general domain theoretic
machinery can be brought to bear, cf. [1, Section 3.3] and [8, Section IV-3].
From this we know that the (domain-theoretic) bilimit is given by

{i)ier € [[ Li | (Vi < j) () = 23}
i€l
and that the (Scott-continuous) maps ¢;: L — L, ;((x;)ier) = x; form a lim-
iting cone over the diagram ((L;);cr, (¢j)i<;) in the category DCPO. Further-
more, the (Scott-continuous) maps ¢;: L; — L, ¢;(x) = (l—lTkZi,j,IVZ)jk(d)ki(x)))je[
form a colimiting cocone of the diagram ((L;)icr, (¢ji)i<;) in DCPO. The fol-
lowing relationships hold:

(i) For all i € I, ¢; is a lower adjoint of ;.

(ii) idp = |_|Tig[¢i o 1;.

(iii) (¥i,j € T) vy 0 ¢ = LU o sk © P

(iv) For any cone (M, (1;)icr) (of Scott-continuous maps) over the diagram
((Ly)ier, (¥ij)i<;) the mediating morphism p: M — L is given by p =
|_|Tie[¢i O M-

(v) For any cocone (M, (u;)ier) (of Scott-continuous maps) over the diagram
((Li)ier, (¢ji)i<j) the mediating morphism p: L — M is given by p =
LlTie[/Li o ,[7/}2

The objects and morphisms of the category SCF* have additional structure,
so we need to show the following:

(a) L is a complete lattice.

(b
(c) L is distributive.
(

) L is continuous.
)

d) The way-below relation on L is multiplicative and 1 < 1.
)
)

(e) For all i € I, ¢; and ¢; preserve finite infima.

(f) Assuming that the cone (resp. cocone) maps preserve finite infima, so do
the mediating morphisms.

For the sake of brevity, we will from now on write z for a sequence (z;)ic;
wherever possible.

(a) The v, as upper adjoints, preserve all infima. Hence these are calcu-
lated pointwise in L.

(b) Continuity follows for dcpo’s already, see Theorem 3.3.11 in [1]. How-
ever, it will be necessary for the remaining claims to have a characterization
of the way-below relation on L at hand. For this observe that the ¢; preserve
way-below, [1, Proposition 3.1.14(2)]; we can therefore employ property 2

19



JUNG, KEGELMANN AND MOSHIER

above to get x < y iff there exists an index j € I and elements © < y in L;
such that z < ¢;(r) < ¢;(y) < v.

We need to do (e) next: The 1); preserve infima because they are upper
adjoints. For the lower adjoints we exploit the fact that finite meets commute
with directed joints in continuous lattices, [8, Corollary I-2.2]. The claim then
follows directly from the formula for the ¢;.

(c) We need to invoke the continuity of L for this: Assume a < z A (y V
z). Using the continuity of supremum and infimum we know that there are
additional sequences ¢, b and ¢ such that a < d’A(bVc) and ¢/ < z, b < y and
¢ < z. By our characterization of way-below on L it follows that we can find
elements z, y, z in some approximating lattice L; such that ¢’ < ¢;(z) < z, etc.
Now we can calculate a < a’A(bVe) < () A (¢;(y)V;(2)) = ¢j(xA(yVz)) =
oi((z Ay V(A z) = (9i(z) A di(y) V (9() A gj(2)) < (2 Ay) V(2 Az).

(d) This is similar to the previous item: For z < y,z find x € y, 2’ < 2
in some L; such that 2 < ¢;(z) < ¢;(y) <y and z < ¢;(2') < ¢;(2) < 2.
The claim then follows from multiplicativity of < in L;: z < ¢;(2) A ¢;(2) =
di(x Na') L iy A z) = gi(y) A gi(z) <y Az

For 1 < 1 just observe that 1 < 1 holds in each L; and the lower adjoints
are SCF* maps, that is, they preserve the empty meet.

(f) Like (e), this follows from the defining formulas for mediating mor-
phisms and the fact that finite meets commute with directed suprema. O

The limit-colimit coincidence for SCF* which we established in the pre-
ceding proof says (among other things) that directed colimits in SCF*; are
also colimits in the original category of semilattice homomorphisms. Both the
diagram maps ¢;; and the cocone maps ¢; are in fact lower adjoints and conse-
quently sup-preserving, which means that they are frame maps. Frame maps
between continuous semilattices, however, are not necessarily lower adjoints.
Nonetheless, directed colimits in SCF*; are also colimits of frames, as our next
lemma shows.

Lemma 5.2 The embedding of SCF*, into the category Frm of frames and
frame homomorphisms preserves directed colimits.

Proof. The colimit L of a directed diagram ((L;)ier, (¢5i)i<;) in SCF*; as con-
structed in the proof of the previous theorem yields a distributive continuous
lattice, hence a (spatial) frame, [8, Theorem 5.5]. The colimiting maps ¢; are
lower adjoints in addition to being SCF* morphisms, so they are frame homo-
morphisms. What needs to be shown is that the mediating morphism u for
a cocone (fi;);er of frame homomorphisms is again a frame homomorphism.
Since we already know that p will be a continuous semilattice homomorphisms
all that remains to be shown is preservation of (finite) suprema. The proof
of this property is a beautiful interplay between formulas 2 and 3 from the
preceding theorem. Let X be a set of elements of the colimit L. We calculate
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trivial inequality:

|_|Tﬂj o ¢(| | X)
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L 'm0 ws(| ][ 60 via))

jeI zeX icl

LT[ o[ ] 61 0ws(w))

jeI el zeX

LT[ o0 0u(] | witw))

jeI el zeX

TR )

jel icl k>i,j zEX

|_|T |_|T |_|Tﬂj o k(| | dri 0 ti())

jeI el k>ij zEX

definition of p
formula 2
associativity

¢;’s are lower adjoints

formula 3

ft;’s are continuous &
or;’s are lower adjoints

|_|T |_|T |_|T 11 © Prj © Wy |_| Gri © Yir © Yr(x)) (co)cone condition

jeI el k>ij zEX

L L)L ] )

jer iel k>ij  zeX

[ (| ] i)

kel zeX

|_|T |_| Mg © wk(l)

kel zeX

|_| |_|T,Uk o Yy (l)

zeX kel

| | n)

zeX

adjointness of ¢ and 1
redundant indices
ii’s are frame maps
associativity

definition of p

Theorem 5.3 The functor U from SCS;, to SCS preserves inverse limits.

Proof. The dual equivalence between SCS;, and SCF*; transforms inverse lim-
its into direct colimits. The latter are preserved by the inclusion of SCF*; into
Frm according to the preceding lemma. Stone duality translates them into
inverse limits in Top.

O

The reader may still feel a bit numb from all these calculations and not
immediately recognize the force of this theorem. Let us therefore elaborate on
its content a little bit. Top is a complete category and limits are calculated
in the usual way: If D: 1 — Top is a functor (for any diagram D) then the
points of lim D are given by threads:

limD = {(2:)iconjy € [[ DG) | (V(f:i— j) € mor(1) D(f)(x) = x;}

icobj(l)
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The topology is inherited from the product space HZ.EObj(l) D(i). Upper adjoint
relations between stably compact spaces are functional and the functor U asso-
ciates with every such relation the generating (perfect) function. Theorem 5.3
then states that a bilimit in N* is calculated topologically as the limit of the
corresponding inverse diagram of perfect maps. One can turn this around and
say that the content of the theorem is to recognize inverse limits of perfect
maps as bilimits in an order-enriched setting, yielding a limit-colimit coin-
cidence with respect to closed relations. This appears to be an important
first step in making stably compact spaces a suitable universe for semantic
interpretations.
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