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Abstract

Based on the theory of frames we introduce a Stone duality for bitopo-
logical spaces. The central concept is that of a d-frame, which axiomatises
the two open set lattices.

Exploring the resulting concept of d-sobriety we find this to be a much
more inclusive concept than usual sobriety. Spatial d-frames suggest ad-
ditional axioms that lead us to define reasonable d-frames; these have an
alternative presentation as partial frames.

We explore natural notions of regularity and compactness for bitopologi-
cal spaces, and their manifestation in d-frames. This yields the machinery to
locate precisely within this general landscape a number of classical Stone-
type dualities, namely, those of Stone for Boolean algebras and bounded
distributive lattices, those of the present authors for strong proximity lattices
(with negation), and the duality of classical frames.

The general duality can be given a logical reading by viewing the open
sets of one topology as positive extents of formulas, and those of the other
topology as negative extents. This point of view emphasises the fact that for-
mulas may be undecidable in certain states and may be self-contradictory in
others. We also obtain two natural orders on the set of formulas, one related
to Scott’s information order and the other being the usual logical implica-
tion. The interplay between the two can be said to be the main organising
principle of this study.
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1 Introduction and overview

In his landmark paper — published in two parts as [Sto36] and [Sto37a] — Mar-
shall Stone showed that every Boolean algebra is isomorphic to a subalgebra of
a powerset. The powerset is that of the set of prime filters of the given algebra,
which in this paper we will call the spectrum. Stone also showed that when the
spectra are suitably topologised, homomorphisms between algebras correspond
exactly to continuous functions between the corresponding spectra (but the di-
rection is reversed). Furthermore, the spaces that arise as spectra are exactly the
compact totally disconnected spaces, now called Stone spaces. In modern termi-
nology, he thus established a dual equivalence between the category of Boolean
algebras and Boolean algebra homomorphisms, and the category of Stone spaces
and continuous functions. It was the first time that topology was used to resolve
a problem in algebra and Stone’s work can rightly be called a milestone in the
history of mathematics.

Observing that the representation of Boolean algebras by their spectra does
not require negation, Stone generalised his work to bounded distributive lattices in
[Sto37b], but the resulting topological spaces are no longer Hausdorff and satisfy
a list of axioms that must have seemed rather esoteric at the time. The morphisms,
too, are not just the continuous ones but it must be further required that inverse
images of compact open sets are compact. It is perhaps for these reasons that this
work did not receive much attention until Hilary Priestley showed in [Pri70, Pri72]
that the topology on the spectrum can be enriched in a natural way so that a com-
pact Hausdorff space is obtained. Furthermore, the spectra carry an order relation
and indeed the maps between spectra that are dual to lattice homomorphisms are
the continuous order-preserving ones.

To a topologist, this work offered the tantalising prospect of replacing the
second-order structure of topological spaces by the first-order structure of lattices,
except that the translation is only available for the very special spaces that appear
in the theorems of Stone and Priestley. However, the spirit of the representation
theorem can be maintained for a very large class of spaces if one axiomatises the
set of all open sets (and not just the clopen or compact-open ones). According to
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[Joh82, Notes on Chapter II] this step appears to have been first taken by Charles
Ehresmann and his student Jean Bénabou [Bén59], and it led to the development
of frame and locale theory, sometimes referred to as pointfree topology.

Although frame theory does succeed in replacing topology by algebra, it can
do so only by considering the infinitary operation of “arbitrary join of open sets”
and is therefore not first-order. Motivated by this fact and by applications in com-
puter science, Michael Smyth in [Smy92a] tried to extend the original Stone du-
ality without sacrificing the finitary nature of the algebras. He proposed to use
proximity lattices, where the algebraic structure of bounded distributive lattices
is extended with a “proximity relation” � . In the paper [JS96], the first author in
collaboration with Philipp Sünderhauf showed that when the definition of proxim-
ity lattices is augmented with one further axiom, one obtains a perfectly self-dual
algebraic structure for which the definition of the spectrum is furthermore much
simplified and is seen to be a direct generalisation of Stone’s approach. Nonethe-
less, the class of spaces that have a representation via strong proximity lattices
is the same as that studied by Smyth, namely, the class of stably compact spaces.
These cover all compact Hausdorff spaces plus most of the ��� spaces that appear in
Dana Scott’s domain theory for denotational semantics, [Sco72, AJ94, GHK � 03].

The representation of stably compact spaces via strong proximity lattices was
successfully used in subsequent work, [JKM99, JKM01, MJ02] to provide a
“continuous” version of Samson Abramsky’s Domain Theory in Logical Form,
[Abr91], but at the fundamental level some important questions were left unan-
swered. Foremost of these is the “correct” definition of a homomorphism between
strong proximity lattices, which should be structure-preserving in a natural way
and correspond to a topological morphism of some kind between spectra. At least
three possibilities appear in the papers cited above, and each leads to a duality
with certain topological morphisms, but in the absence of a clear understanding of
the meaning of the proximity relation � it is hard to choose between them. One
might also hope to be able to express the duality by considering the maps into
a dualising object (which is the set of truth values in the Boolean algebra case,
and the two-element lattice in the case of frames), but none of the three existing
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definitions works in this respect. Finally, one may wonder whether the duality
in [JS96] can be modified so that locally stably compact spaces are covered, but
despite several attempts no satisfying solution has so far emerged.

The principal purpose of the present paper is demonstrate that the dualities of
Stone, Ehresmann-Bénabou, and Jung-Sünderhauf are all special cases of a very
general and very straightforward duality between bitopological spaces and what
we will define below, d-frames. Priestley’s duality as such is not covered but her
work is one of the sources of inspiration for bringing a second topology into the
picture.

Bitopology may at first sound rather abstract and perhaps technical but in
fact there are at least three examples where two natural topologies coexist. The
most important of these is the real line where we know that the usual topology
is the join of the upper and the lower topologies (with open sets all intervals���	��
�

and
����
������

, respectively). The second example is given by the Vi-
etoris topologies for hyperspaces � ����� of a topological space

� ����� � ; one
is generated by the sets � � ! "$#&%'�)($#&�*�,+ , � %-� , and the other by. �&!/"$#&%'�)($#102�-3!�45+ . Finally, in Scott’s domain theory one has the Scott
topology and the weak lower topology, the join of which is known as the Lawson
topology.

An alternative and illuminating route to the constructions and results of this
paper is given by the logical reading of Stone duality. For this recall that any
Boolean algebra can be viewed as the set of formulas of a propositional theory
factored by interprovability. The elements of the spectrum are then nothing other
than the models of the theory and Stone’s representation theorem is equivalent to
the completeness of the proof calculus. The basic open sets 6 � ��78� of the topology
consist of those models in which the formula

7
holds, but the impact of this is less

clear, unless there is an independent interpretation of this structure. The examples
from computer science come in handy at this point, as domains bring a natural
notion of convergence with them, based on the approximation of computable ele-
ments (e.g., functions) by partial ones. The fact that the sets 6 � �97:� are open can
then be rephrased as saying that the property

7
holds for a computable element if
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and only if it holds for some finite approximating element already.
Smyth emphasised this reading by pointing out that a Scott-open set in a do-

main corresponds to a finitely observable property of states of a computational
system, [Smy83, Smy92b]. This is closely related to interpretations of open sets
as semi-decidable properties in recursion theory, or as “states of knowledge” in in-
tuitionistic logic. When motivating our definitions and constructions we will stick
to “(finitely) observable” throughout; note that some qualification is necessary, as
set-theoretically the extent of a predicate can be any subset of the state space.

In the duality of propositional logic (Boolean algebras), the extents of for-
mulas are clopen sets, in other words, both the extent and its complement are
open. This is appropriate because the complement is the extent of the negated
formula, but in general one would not expect the state space so neatly to separate
into those states where a formula observably holds and those where it observably
fails. To give an example from recursion theory, the set of halting Turing machines
is finitely observable but its complement is not. There are Turing machines for
which we can observe in finite time that they will run forever, namely those which
return to a previous state of computation, but by Turing’s famous theorem no such
finite observational criterion can exhaust all non-terminating machines.

We hope that at this stage it is natural to consider separate topologies, one for
the subsets of a state space where a property observably holds, and one whose
open sets are those where the property observably fails. For every proposition

7
we thus have the pair

� 6 � ��78�;� 6=< �978��� . In general, there are states where
7

can
neither be established to hold, nor to fail. As a simple example, consider the
proposition “ >@?BA ” for real numbers; if numbers are presented as streams of
decimal digits, then we will be able to affirm the property whenever > is indeed
greater than zero, and refute it for negative numbers, but for any initial segment
consisting of zeros we cannot affirm or refute.

It was phenomena such as these which led Stephen Kleene to consider three-
valued logic, where true and false are augmented with the value C , meaning that
the proposition is (perhaps currently) undecided. The phenomenon is also well-
known in knowledge representation, where an agent may not have enough infor-
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mation to decide a given proposition. In this latter setting it is equally conceiv-
able that an agent is provided with conflicting information, that is, that its state
of knowledge is contained in both 6 � ��78� and 6=< ��78� . Thus we are led to Nuel
Belnap’s four-valued logic, [Bel77], where there can be not only too little infor-
mation (denoted by C ), but also too much (denoted by D ). As it will turn out,
Belnap’s four-element lattice of truth values is the dualising object in our duality.
So from the logical perspective, we are again led to consider bitopologies. In ad-
dition, the logic suggests that the following two special cases are of importance:
some propositions

7
do not self-contradict, that is, the extents 6 � �978� and 6=< ��78�

on the state space are disjoint; we call such propositions consistent. Dually, some
propositions E are observable at every state, that is 6 � � E � and 6=< � E � cover the
state space; these will be called total. The algebraic abstraction of the situation
consists of two frames F � and F < plus two relations con and tot between them;
we call this a d-frame.

At this stage we hope we have given enough information to be able to outline
the contents of the paper. In Section 2 we review the classical dualities mentioned
above and present the mathematical machinery that underlies them. In Section 3
we begin our study of d-frames and the duality with bitopological spaces. The
definitions and constructions will turn out to be straightforward adaptations of
the duality of frames. We show that d-frames can be defined as algebraic struc-
tures on a single carrier set (to be thought of as F �HG F < ). The most important
outcome of this (mathematically simple) exercise is that d-frames carry an infor-
mation order I and a logical order J . Semantically, the former can be thought
of as increasing positive and negative extents of a formula, the latter as increasing
the positive and decreasing the negative. The two orders are connected via simple
algebraic laws.

In Section 4 we look at those bitopological spaces that are faithfully repre-
sented by d-frames, and find that this class is considerably wider than the class of
sober spaces. The dual concept, spatial d-frames, is examined in Section 5. These
satisfy a number of additional axioms (not necessary for the underlying duality)
and we select a subset which appears to be both natural and powerful. We show
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that for the resulting concept of a reasonable d-frame, free structures still exist.
Some attention is given to the relationship between (reasonable) d-frames and the
“biframes” of Banaschewski, Brümmer, and Hardie, [BBH83]. These are an al-
ternative to d-frames but formalise the two topologies together with their join.
Obviously, there is a forgetful functor from biframes to d-frames, and we show
that it has a left adjoint. An interesting open problem is whether the d-frames that
arise from biframes can be characterised independently.

Section 6 examines two special cases of d-frames which are of particular im-
portance to Stone duality, namely, the regular and compact regular ones. The
latter can be shown to be spatial (using the Axiom of Choice) and are the duals of
stably compact spaces. Many consequences of spatiality, however, can be shown
directly and without reference to the Axiom of Choice.

In Section 7 we demonstrate that the structure of a (reasonable) d-frame K is
completely captured by the subset �ML of consistent propositions. The axioma-
tisation makes crucial use of both the information and the logical structure. In
addition, the relation � of strong proximity lattices is employed to capture the
totality predicate. We call these structures partial frames. The equivalence with
d-frames could now be summarised in the slogan that there is no difference be-
tween three-valued and four-valued logic. An important result from the transition
to partial frames is a logical interpretation of

7 � E : It means that every (infor-
mation order) refinement

7ON
of
7

implies (in the logical order) every refinement E N
of E .

Sections 8 and 9 consider special cases of partial frames and their duality with
bitopological spaces to locate precisely the classical dualities. To start with, the
category of compact regular partial frames is equivalent to the category of strong
proximity lattices, where morphisms of the latter category are adjoint pairs of con-
sequence relations, first considered in [JKM01]. The necessity for these emerges
most naturally from the requirement to match partial frame homomorphisms. If
one assumes on top of compact regularity that the set of reflexive propositions
(that is, those

7
for which

7 � 7
) is dense in the partial frame, then one obtains

a category that is equivalent to bounded distributive lattices and lattice homomor-

8



phisms.
If the language of (partial) propositions includes a negation operation (as, for

example, considered by Belnap), then there is no distinction between positive and
negative extents and one expects the two topologies on the spectrum to coincide.
At the level of d-frames (or, equivalently, partial frames) the negation operation
must be specified explicitly, as the mere existence of an isomorphism between F �
and FH< is of little consequence. The theory then collapses to that of frames in the
usual sense as we are really only dealing with one topology. Once regularity is
assumed, there is at most one choice of negation on a d-frame, so here negation
is a structural property rather than additional structure. Compact regular d-frames
with negation then correspond to strong proximity lattices with negation, and these
were shown by the second author to be the Stone duals of compact Hausdorff
spaces, [Mos04]. If there is a sufficient supply of reflexive elements, finally, one
obtains a Boolean algebra and Stone’s original duality with Stone spaces. This
presentation of Stone dualities clarifies a number of issues, as promised at the
start of this introduction, and we look at this more carefully in the concluding
section.
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2 Review of some Stone-type dualities

For motivation and ease of reference we briefly review the main components of
some classical Stone-type dualities. This will allow us to point out how they
fit into the general picture that we are about to develop. We present them in a
formulation that is most convenient for this purpose, not one that is most accurate
historically.

2.1 The dualities of Stone and Priestley

Stone’s original papers, [Sto36, Sto37a], were concerned with the representation
of Boolean algebras as sub-algebras of powersets. Tarski and Lindenbaum had
shown that a Boolean algebra is isomorphic to a powerset if and only if it is com-
plete and atomic. In this case, the isomorphism is with the powerset of the set of
atoms. Atoms occupy a special position in the Boolean algebra (just above the
element A ) but it is their property of being prime which is used in the proof: An
element > is prime if >PJRQTSVU implies >WJ�Q or >WJXU . Seeing an analogy with
Kummer’s ideals in the theory of rings, Stone realised that it was the properties
of the set �ZY\[]>_^`!a"$QV(b>c3JQd+ that were important, not those of > itself, and,
crucially, that there were potentially many more of the former than of the latter.

The definitions don’t require the negation operation of Boolean algebras, so
we first state Stone’s representation theorem of 1937 for distributive lattices1 (pub-
lished as [Sto37b]).

Definition 2.1 A subset e of a lattice F is called a filter if it is an upper set that
is closed under finite meets (including fgfh!jik4 ). A filter is called prime if it is
inaccessible by finite joins: lk4m!Xn`n/o%pe , and if >qSrQW%pe then either >p%pe
or Qs%'e .

The notions ideal and prime ideal are defined dually.

1In this paper, “lattice” will mean bounded lattice: tvu�wyx8z|{8z~}�}�z����]� and “lattice morphisms”
will preserve this structure. Although Lemma 2.3 and Theorem 2.4 can be formulated without
boundedness, nothing in this paper is gained by the greater generality. We use }�} and ��� rather than�

and � because throughout the paper we are specifically interested in the connection with logic.
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We denote the set of all prime filters of F with ���5�`� � � F � and the set of prime
ideals with ������� � F � .
Proposition 2.2 In any lattice, the complement of a prime filter is a prime ideal
and vice versa.

The following is traditionally stated in terms of prime ideals and referred to as
the Prime Ideal Theorem or “PIT”. However, because of the previous proposition
there is no real difference between using ideals or filters.

Lemma 2.3 In any distributive lattice, if >X3J@Q then there is a prime filter con-
taining > but not Q .

Theorem 2.4 (Stone 1937) Every distributive lattice is isomorphic to a sub-
lattice of a powerset.

Proof. Consider the powerset of the set of prime filters, and map an element > of
the lattice to the set 6 � � > � of prime filters containing it.2 It is easily checked that
6 � � >���Q � !X6 � � > � 0q6 � � Q � and 6 � � >�S�Q � !X6 � � > ��� 6 � � Q � . By the definition
of prime filters, it is clear that 6 � � n�n � !R4 and 6 � � fgf � !����5��� � � F � .

This covers Boolean algebras also, as a prime filter on a Boolean algebra is the
same as an ultrafilter: it contains exactly one of > and ��> . From this it follows
that the subset of prime filters associated with > is exactly the complement of those
that are associated with ��> , and so the negation operation is faithfully modelled
by complement.

Stone did not stop here but realised that it was just as important to rep-
resent the homomorphisms between the algebras. In order to single out the
right set-theoretic maps between collections of prime filters, he employed topol-
ogy. The basic opens of the Stone topology on ���5��� � � F � are exactly the sets
6 � � > � ^�! "	e�%����5�`� � � F � (	>V%'e�+ which were used in the proof of the repre-
sentation theorem. The topological space so obtained is called the spectrum of F
(borrowing terminology from Ring Theory).

2The choice of notation �¡ ¡t£¢�� will become clearer later.
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Theorem 2.5 (Stone 1936, 1937)

1. The spectra of Boolean algebras are precisely the totally disconnected com-
pact Hausdorff spaces.

2. The spectra of distributive lattices are precisely those topological spaces
that

(i) satisfy the �8� separation axiom;

(ii) are compact;

(iii) have a basis consisting of compact open sets;

(iv) are coherent, that is, intersections of compact open sets are compact;3

(v) are well-filtered, that is, if the intersection of a filter base
�¥¤§¦���¦©¨«ª

of
compact open sets is contained in an open set, then so is some

¤=¦
already.

The spaces that appear in part (1) above are called Stone spaces and those in
part (2) spectral spaces. The word “precisely” in the theorem refers to the trans-
lation from these spaces back to algebraic structures. In the case of Stone spaces
one considers the collection of subsets that are both closed and open (“clopen”),
for spectral spaces those that are both compact and open. Since a subset of a com-
pact Hausdorff space is compact if and only if it is closed, (1) is a special case
of (2).

The characterisation of homomorphisms on the side of the spectrum works as
follows. For Boolean algebras one considers continuous functions between the
spectra in the opposite direction; for distributive lattices one uses perfect maps.4

These are continuous functions for which the inverse image of a compact open is
compact. Again, any continuous function between compact Hausdorff spaces is
perfect, so the Boolean algebra case is a special case.

In the language of Category Theory we have the following:
3This is also called stably compact.
4There is some variability regarding terminology here with some authors insisting that the right

adjective for these functions should be “proper”.
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Bool, the category of Boolean algebras and Boolean algebra homo-
morphisms;
dLat, the category of bounded distributive lattices and

� � � S � fgf � n`n � -
homomorphisms;
Stone, the category of Stone spaces and continuous functions;
Spec, the category of spectral spaces and perfect maps.

Theorem 2.6

1. The categories Bool and Stone are dually equivalent.

2. The categories dLat and Spec are dually equivalent.

As explained in the introduction, spectral spaces feature prominently in Scott’s
theory of semantic domains, but from a mathematical point of view they carry
rather a lot of conditions. Hilary Priestley recognised that there was an alternate
description as certain ordered spaces.

Definition 2.7 A Priestley space is a topological space with a (topologically
closed) partial order relation J¬ which is

(i) compact Hausdorff;

(ii) totally order disconnected, that is, for >_3J�¬MQ there is a clopen upper set ®
such that >¯%P® and Q¯3%P® .

The category Pries has Priestley spaces as objects and continuous order-
preserving maps as morphisms.

Theorem 2.8 (Priestley 1970) The categories dLat and Pries are dually equiva-
lent.

Proof. Stone’s topology on the spectrum of prime filters is enriched with open
sets

6=< � > � ^�!&"	e°%����5��� � � F � (b>±3%'e�+
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which clearly results in a Hausdorff topology. The order is inclusion between
prime filters.

In the reverse direction one considers the collection of clopen upper sets.

The sets 6 � � > � constitute a topological basis, and so do the sets 6< � > � sep-
arately. So Theorem 2.8 clearly suggests a bitopological view. Indeed, compact-
ness of the Priestley topology is established in two steps. Following Stone’s idea,
one first shows that each set 6§² � > � is compact with respect to the opposite ( ³ )
topology. Then one invokes the Alexander Sub-base Lemma to see that the join
of the two topologies is compact. So the “hard” part of the proof is located at the
transition from a bitopological setting to a topological one.

Instead of “prime filter of F ” we could have said “homomorphism from F
to ´^`!�"�n�n¯µXfgf¶+ ” because prime filters are exactly the inverse images of fgf under
such homomorphisms. Likewise, instead of “clopen subset of the Stone space � ”
we could have said “continuous function from � to · ^�! � "$¸ � Qd+ ��¹q� , where¹

is the discrete topology. For spectral spaces one uses Sierpinski space: º*^�!� "$¸ � Q�+ �¶»5� where "$Q�+ is the only nontrivial open of
»
, and for Priestley spaces one

uses the discrete topology together with the order ¸WµpQ .
The fact that ´ , · and º have the same number of elements is not a coinci-

dence. It follows from the fact that all five categories introduced so far are concrete
over Set, with the forgetful functor having a left adjoint. In such a situation, the
underlying set of a dual object is always given by the set of morphisms into a du-
alising object, and the dualising objects of the two categories involved have “the
same” underlying set. See [Joh82, SectionVI.4.1] for a concise discussion of this
phenomenon.

Let us also briefly review the logical reading of Stone duality. Every Boolean
algebra is the Lindenbaum algebra of a propositional theory. A prime filter on
the algebra corresponds to a model of the theory. The Prime Ideal Theorem (our
Lemma 2.3) then states the completeness of propositional logic. The duality of
bounded distributive lattices likewise corresponds to propositional logic without
negation, or positive logic.

To every proposition > one can associate the binary partition of the spectrum
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into those models in which the proposition is true (its positive extent 6 � � > � ) and
those where it is false (the negative extent 6�< � > � ). Stone duality equips the spec-
trum with a topology in which both extents are compact and open. With the Haus-
dorff assumption, this yields clopen extents for the Boolean algebra case. Priestley
duality renders the positive extent a compact open (hence clopen) upper set, the
negative extent a compact open (hence clopen) lower set.

2.2 Proximity lattices and (stably) compact spaces

Priestley duality associates a compact ordered space with a bounded distributive
lattice, whereas Stone duality provides a certain �¡� -space. The two are closely
linked as the underlying set in both cases is provided by the collection of prime
filters. The connection between a Priestley space and the corresponding spectral
space is, in fact, purely topological and holds more generally. We recall the main
points of this.

Definition 2.9 A compact ordered space is a set with a compact topology � and
an order relation J�¬ that is closed in the product topology.

Compact ordered spaces were studied by Leopoldo Nachbin in a systematic
fashion in [Nac65]. He established the following central property for these spaces.

Lemma 2.10 (Separation Lemma) For >�3J¬¼Q in a compact ordered space there
is an open upper set ® and an open lower set � such that >½%&® , Qp%R� , and
®p02�&!�4 .

One defines the upper topology � � as the collection of all open upper sets and
likewise the lower topology �¾< .

Proposition 2.11 The topology of a compact ordered space is the join of the upper
and lower topologies: �q!½� � S2�$< .

Proof. For �°%V� , the complement
¤ ^`!½��Y�� is compact. Consider >¯%¯� ; for

any Q¿% ¤ , either >13J�¬ Q or >13À ¬ Q , so the Separation Lemma can be employed.
The rest is standard.
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From the Separation Lemma it also follows that J¬ is the specialisation order
of the upper topology (and the reverse of the specialisation order of the lower
topology). A set that is closed in the lower topology is an upper set and therefore
saturated in the upper topology, that is, it is the intersection of upper open sets.
Furthermore, it is compact in the upper topology by the overall compactness of � .
The converse is again an easy consequence of separation. Thus:

Proposition 2.12 The sets that are upper and closed in a compact ordered space
are precisely the compact saturated sets with respect to the upper topology.

In preparation for our general development later, we note that the bitopological
space

� ����� � � �	< � is compact and regular. Here is the definition:

Definition 2.13 A bitopological space
� ����� � � �$< � is called compact if every

cover of � with elements from � � � �	< has a finite sub-cover.
Let ® � ® N be two elements of � � . We say that ® N is well-inside ® (and write

® N�Á ® ) if there is �°%¿�	< such that ® N 02�&!�4 and ® � �&!½� .
A bitopological space is called regular if every open of � � is the union of those

� � -opens well-inside it, and the analogous statement holds for the opens of �]< .

By Alexander’s Sub-base Lemma, a bitopological space is compact if and
only if it is compact in the join of the two topologies. However, since most of our
results do not depend on the Axiom of Choice, it makes sense to have a separate
notion that does not require the join topology.

Proposition 2.14 If
� ���~�:�ÂJ�¬ � is a compact ordered space then

� ����� � � �$< � is
compact and regular.

We will maintain that the bitopological point of view is the best one to un-
derstand Stone duality, but to complete our brief presentation of the link with
Priestley duality we observe that Proposition 2.12 suggests that the second topol-
ogy is actually redundant. Indeed, the topologies that arise as upper topologies of
compact ordered spaces can be characterised independently.
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Definition 2.15 A topological space is called stably compact5 if it is

(i) �O� ;
(ii) compact;

(iii) locally compact;

(iv) coherent, that is, intersections of compact saturated sets are compact;

(v) well-filtered, that is, if the intersection of a filter base
�¥¤§¦9�Ã¦©¨«ª

of compact
saturated sets is contained in an open set, then so is some

¤=¦
already.

Clearly, every spectral space, as characterised in Theorem 2.5, is stably com-
pact, but the latter class is much bigger since zero-dimensionality is not required;
for example, all compact Hausdorff spaces are included.

The following is an immediate consequence of the definitions.

Theorem 2.16 A topological space
� ����� � is stably compact if and only if the

bitopological space
� �c��� � �«Ä�Ä � is compact and regular, where �ÂÄ�Ä is the topology

whose closed sets are (generated by) the compact saturated sets with respect to � .

Theorem 2.17 A topological space is stably compact if and only if it is the upper
topology of a compact ordered space.

Proof. We have done most of the work for the “if” direction explicitly. For the
converse one considers the co-compact topology whose closed sets are defined as
the compact saturated sets of a given topology. It is easy to see that an ordered
Hausdorff space is obtained this way, but to establish compactness one needs to
call upon the Axiom of Choice in the form of Alexander’s Sub-base Lemma.

For more detail we refer to [AMJK04] and [GHK � 03, Section VI-6]. For our
present purposes we can say that the theorem establishes the topological link be-
tween the dualities of Stone and Priestley for bounded distributive lattices. The

5These spaces were called coherent in [JS96].

17



dualities themselves can be generalised to the setting of the theorem by consider-
ing a refinement of bounded distributive lattices. Following [JS96], we outline the
main results.

Definition 2.18 A strong proximity lattice6 is a structure Å consisting of a dis-
tributive lattice

� ����� � S � fgf � n�n � together with a transitive binary relation � such
that

( � – fgf ) > � fgf
(n�n – � ) n`n � >
( � – � ) > � Q � > � Q N Æ�Ç > � Q��¿Q N
( S – � ) > � Q � > N � Q Æ�Ç >�S2> N � Q
( � – � ) È�2> � Q ! Ç É È N %V�VÊ�È � È N and È N �Ë> � Q
( � – S ) > � Q�S¿È ! Ç É È N %V�VÊ�È N � È and > � Q�SVÈ N

By letting >c!-fgf in ( � – � ) one sees that the relation � is interpolative, that
is, > � Q implies that there is U such that > � U � Q . Strong proximity lattices
generalise distributive lattices in that the lattice order J on a distributive lattice
satisfies the definition. We will consider morphisms on strong proximity lattices
in Section 8.1.

Definition 2.19 An upper subset # of a strong proximity lattice is called round if
for every >¯%¯# there is > N %V# with > N � > . A round lower set is defined dually.

The carrier of the spectrum of a strong proximity lattice consists of all round
prime filters, the collection of which we denote by Ì¥���5�`� � � Å � . The following are
the analogues to Proposition 2.2 and Lemma 2.3:

Proposition 2.20 If e is a round prime filter on strong proximity lattice Å , thenÍ � �BYÎe � ^`!Ï"b>¯%V� ( É > N %V�ÐY=eÑÊ�> � > N + is a round prime ideal, and vice
versa. Furthermore, the translations are inverses of each other.

6The qualifier “strong” distinguishes the concept from its precursor in [Smy92a], where ( x – Ò )
was not a requirement.
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Lemma 2.21 In a strong proximity lattice, if e is a round filter not intersecting
an ideal Ó then e can be extended to a round prime filter still disjoint from Ó .

We topologise the spectrum as in Stone duality, that is, taking the sets 6 � � > � !"	eÔ%PÌ|���5�`� � � Å � (b>¯%'e�+ as the basic opens.

Theorem 2.22 The spectrum of a strong proximity lattice is a stably compact
space, and every stably compact space arises in this way.

Proof. The details of the first half are in [JS96]. For the second statement one
associates with a stably compact space all pairs ®&�½Õ where ® is open and Õ is
compact saturated. The lattice operations on these pairs are defined component-
wise and the proximity is given by

� ® � Õ � � � ® N9� Õ Ng� iff ÕÖ�X® N .
While this result establishes an interesting link between a wide class of topo-

logical spaces and certain algebraic structures, it is not clear what the represen-
tation problem is that is solved by it. Sure enough, it is still true that the map
>Ë×Ø 6 � � > � preserves the bounded lattice structure, but how is � modelled by it?
And do we have a prior idea what it should be modelled by? The paper [JS96] did
not address the second question, as the emphasis was on an algebraic (or logical)
description of certain given spaces.

The problem is also apparent when we look at morphisms. In [JS96] a duality
is established between continuous functions on the side of stably compact spaces
and certain approximable relations between strong proximity lattices. This choice
was motivated by applications in Domain Theory. In later work, [JKM99], we
introduced continuous consequence relations which correspond to certain contin-
uous relations between the spaces; this was motivated by the logical reading of the
duality. However, neither choice generalises Stone duality for bounded distribu-
tive lattices.

Another problem with Theorem 2.22 is that the functors are not given by the
set of morphisms into a dualising object. Indeed, the two types of morphism for
strong proximity lattices mentioned above are not even functions so there is no
forgetful functor into Set. Following the general methodology laid out in [Joh82,
SectionVI.4.1], we should find a dualising object by constructing the free stably
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compact space over the one-point set (which is the one-point topological space)
and dualise this. The construction outlined in the proof of Theorem 2.22 yields
a three-element proximity lattice n`nXµ-CÙµÚfgf with n`n � > � fgf for any > but
C 3� C . If we were dealing with a concrete duality, then the dualising object
among stably compact spaces would also have three elements but there is no such
space that yields the right proximity lattice.

Our answer to the riddles above is to suggest that the duality of stably com-
pact spaces and strong proximity lattices is a special case of a general duality
between certain algebraic structures, which we will introduce below, and bitopo-
logical spaces. Given the information above, the reader can perhaps guess the
general outline of how this might go. For example, in Stone duality one can look
at the bitopological space where one topology has the collection of 6 � � > � as its
basis, and the other is generated by the 6< � > � . Stone’s perfect maps between
spectral spaces are then nothing else but bicontinuous maps.

The duality of Theorem 2.22 is also bitopological in nature; instead of thinking
of the tokens

� ® � Õ � as consisting of an open and a compact saturated set, we
should view them as consisting of an open and a co-compact open �ZYTÕ . The
correct morphisms on the spatial side should again be bicontinuous maps and
whatever we choose as morphism between strong proximity lattices should mirror
these.

Finally, recall the logical reading of Stone duality as briefly outlined at the end
of Section 2.1. For strong proximity lattices we see that the positive extent 6 � � > �
of a lattice element > is disjoint from the negative extent 6�< � > � but it is not neces-
sarily the set-theoretic complement. Lattice elements can thus be seen as partial
predicates which are true in some models, false in others, and whose status is un-
known (or undecidable in finite time) in the remaining cases. A chief aim of the
present paper is to convince the reader that this is indeed a fruitful point of view.

2.3 Frames

The Stone dualities reviewed so far lead to rather special topological spaces. If
one is interested in a duality that applies to all spaces then frame theory is the
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answer. Although there is an excellent text available on the subject, [Joh82], we
review its main components as we will make constant use of frame-theoretic ideas
throughout the paper.

Definition 2.23 A frame is a complete lattice in which finite meets distribute over
arbitrary joins. We denote with I , Û , Ü , A , and Ý the order, finite meets, arbitrary
joins, least and largest element, respectively.7

A frame homomorphism preserves finite meets and arbitrary joins; thus we
have the category Frm.

For
� ����� � a topological space,

� �8�Â� � is a frame; for Þ�^ � ����� � Ø � � N �~� Nv�
a continuous function, Þ <àß ^8� N Ø � is a frame homomorphism. These are the
constituents of the contravariant functor áË^ Top Ø Frm. It is represented by
Top

���T� º � where º is Sierpinski space – the same space that arose in Theo-
rem 2.5(2). In this representation, an “open” is identified with a continuous map
from � to º . The frame operations on such maps are defined point-wise.

The collection â � È � of open neighbourhoods of a point È in a topological
space

� ����� � forms a completely prime filter in the frame áË� , that is, it is an
upper set, closed under finite intersections, and whenever ãRä&%±â � È � then äP0
â � È � 3!�4 . This leads one to consider the set of points (sometimes called “abstract
points” for emphasis) of a frame F to be the collection spec F of completely prime
filters. Abstract points are exactly the pre-images of "�Ý�+ under homomorphisms
from F to å�!Ï"	AæµRÝ�+ . So an alternative representation takes a point to be a
homomorphism from F to å .

A frame F induces a topology on spec F whose opens are of the form 6 � > � !
"	eÔ% spec FR(b>V%'e�+ with >V%'F . In the alternative representation, spec F takes
the weakest topology such that for each >�%ÔF , the evaluation map çR×Ø ç � > �
is continuous as a map from spec F to º . A frame homomorphism èÑ^:F�Ø F N
induces a continuous function spec è§^ spec F N Ø spec F by letting spec è � e � ^`!
è <àß � e � for eÏ% spec F N . These are the components of the contravariant func-
tor spec from Frm to Top, represented by Frm

���T� å � .
7This lattice notation is different from that chosen for distributive lattices. The reason for this

will become clear as our theory unfolds.
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Theorem 2.24 The functors á and spec constitute a dual adjunction between
Top and Frm.

The unit and co-unit of this adjunction are simply â and 6 . That is, for any
space

� ����� � the map é�êq^O� Ø spec áË� , given by ÈW×Ø â � È � , is continuous;
it is also open onto its image. Likewise, for any frame F the ë¶ìí^8FkØ á spec F ,
given by >Ë×Ø 6 � > � is a frame homomorphism; it is also surjective.

A brief comparison of the dual adjunction between frames and spaces and
Stone’s original theorems is instructive. In Stone’s duality for distributive lattices
and spectral spaces, the co-unit, >×Ø 6 � � > � , is clearly a surjective distributive
lattice homomorphism onto the compact opens of the spectrum. The prime ideal
theorem is used to show that if >±î&Q holds in a distributive lattice, then there is
a point in the spectrum (that is, a prime filter) showing that 6 � � > � is not a subset
of 6 � � Q � . This establishes that the co-unit is injective. Armed with this, one then
sees that the co-unit is in fact an isomorphism. The axioms for spectral spaces are
engineered to ensure that (a) compact opens form a distributive lattice (a minimal
requirement) (b) there are enough compact opens to distinguish points, so the unit
is also injective and (c) there are enough points so that the unit is also surjective.

For frames, the prime ideal theorem can not help us establish that the co-unit
is an isomorphism. The abstract points of a frame are completely prime filters,
not merely prime filters. But the complement of a completely prime filter is a
principle prime ideal, so the prime ideal theorem is powerless to find an abstract
point that would separate 6 � > � from 6 � Q � for >/3I@Q . So in general, the co-unit
of the áÙï spec adjunction may not be an isomorphism. Similarly, we have
not assumed any separation on spaces that would ensure that the unit is injective
(although this is easily remedied as injectivity is precisely the �¡� axiom) nor that
spaces have enough points to ensure that the unit is surjective.

We can ask when a frame F is spatial in the sense that it is isomorphic to áË�
for some space � . The adjunction transfers isomorphisms: Fð! áË� if and only
if � ð ! spec F . So F is spatial if and only if ë�ì is a frame isomorphism. Because
ë�ì is already a surjective frame homomorphism, this holds if and only if ë¶ì is
injective. Examples of non-spatial frames are found in [Joh82].
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Similarly, we can ask when a space � is sober in the sense that it is homeo-
morphic to spec F for some frame F . By the same reasoning as in frames, this
holds if and only if é¾ê is a homeomorphism. Because é�ê is already continuous
and open onto its image, it suffices for é�ê to be a bijection. As mentioned above,
injectivity is precisely the �:� axiom. Surjectivity says that every completely prime
filter of opens is the neighbourhood filter of a point.

Theorem 2.25 The functors á and spec restrict to a dual equivalence between
sober spaces and spatial frames.

A key property of Frm is the fact that free frames exist; the construction for
the free frame over a set of generators is described in [Joh82, Section II.1.2],
and for a presentation with generators and relations in [Joh82, Section II.2.11].
Existence of free frames, but not the details of construction, will be the basis for
various free constructions for d-frames in what follows.

A frame can alternatively be regarded as a “hybrid” structure: a distributive
lattice and directed complete partial order in which (a) the lattice operations are
Scott continuous (preserve directed suprema) and (b) the lattice order and the
directed complete order coincide. Then a frame homomorphism is a Scott con-
tinuous lattice homomorphism. So frames are special objects in the category of
dcpo distributive lattices. On this view, a frame “thinks about its data” in two
ways: first, as propositions of a positive propositional logic where finitary meets
and joins make sense; second, as data in an information order where accumulation
of directed joins makes sense. The following two important concepts in frames
highlight this distinction.

On any frame F , say that >�%/F is well-inside Qk%/F provided there exists
some ñÐ%kF so that >ËÛVñò!òA and QæóVñ@!-Ý . We write this as > Á Q . Notice
that this relation is meaningful in any lattice; it says nothing about directed joins.
On the other hand, with distributivity > Á Q implies >kIôQ . Also, for any Q the
set of all > Á Q is directed because > Á Q and > NõÁ Q implies >mó¿> NõÁ Q . So far,
this depends only on the fact that F is a distributive lattice. On the other hand,
in a frame the join of elements well-inside Q exists due to directed completeness,

23



and the join is always below or equal to Q . A frame is called regular if the join
of elements well-inside Q is always equal to Q . So one can take regularity to be a
condition on the interaction of logic and information within a frame.

Say that > is way below Q provided that for any directed set ö , if QcI Üh÷ ö
then >WI�ø for some øs%�ö . We write this as >¿ù Q . This relation is meaningful
in any dcpo, as it says nothing about finite meets and finite joins. On the other
hand, because a frame has finite joins, the set of all > such that >mùÏQ is directed.
A frame is called continuous if the join of elements way below Q is always equal
to Q . Again, continuity is a condition on the interaction of logic and information.

Topologically, well-inside and way-below have very different intuitions. In
á � , an open set is well-inside another provided that the closure of first is con-
tained in the second. This splits the definition of clopen in the sense that ® is
clopen if and only if ® Á ® . On the other hand, the way-below relation splits the
definition of compactness: ®½ù ú provided every open covering of ú contains a
finite sub-covering of ® . So ® is compact in the usual sense if and only if ®�ù ® .

Because a frame is a certain kind of dcpo, the Scott topology on a frame plays
an important role. A subset ® of a frame is Scott open if and only if ® is an upper
set and is inaccessible by directed joins: if ö is a directed subset of the frame,
then Üh÷;ö %�® implies öô0_® 3!Z4 . For example, a completely prime filter is
automatically Scott open.

One important application of the Scott topology on frames is the Hofmann-
Mislove Theorem. Because we will encounter bitopological versions of the the-
orem in Sections 5 and 6, we state it here for reference, along with its frame-
theoretic version.

Theorem 2.26 [HM81, KP94] In a sober space
� � � � � , there is a bijection be-

tween the set of compact saturated subsets of � and the set of Scott open filters
in � .

Theorem 2.27 [GHK � 03, Corollary V-5.4] A Scott-open filter in a frame is equal
to the intersection of the collection of completely prime filters containing it. More-
over, this collection is compact in the spectrum of the frame.
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In later sections, we will consider structures in which a bounded distributive
lattice and a dcpo interact but do not coincide in their orders. Indeed, we shall
see that the relationship between frames and the duality theorems of Sections 2.1
and 2.2 hinges on the interaction of logical structure and information structure,
and that bitopology allows us to make the needed distinction between the two.

3 Bitopological spaces and d-frames

We now begin to lay out the general framework within which the dualities re-
viewed above can all be seen as special cases. As mentioned several times, the
correct setting for this is bitopological spaces. So we first must establish a bitopo-
logical analogue of frames.

3.1 Stone duality for bitopological spaces

Our notation for the two topologies of a bitopological space is � � and �	< , which is
meant to suggest that the opens of � � are the positive extents of predicates, that is,
those models where a certain proposition is (perhaps observably) true. Likewise,
an open from �	< is the negative extent of a predicate, that is those models where
a certain proposition is false. With this understanding, pairs of opens

� ® � � ®û< � %� �HG �$< are the denotations of predicates; ® � is the set of models in which the
predicate is true, ®ü< the set in which the predicate is false.

Classically, a predicate takes a definite truth value in every model. Here we
allow a predicate to be undefined in a particular model ( >&o%® � 0c®û< ), or to be
over-defined ( >'%P® � 0r®û< ).

If ® � and ®ü< are disjoint, the predicate is consistent. That is, the predicate
can not be both true and false in the same model. Similarly, if ® � � ®û<2!*� , then
the predicate is total. It must be either true or false in any model, but of course it
may not be consistently so.

Note that in general no relationship between � � and �	< is assumed, nor is any
separation axiom for either topology.
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A bicontinuous map between bitopological spaces � and � N is a function from
� to � N which is continuous with respect to both topologies separately. Thus we
obtain the category biTop.

For the “Stone duals” of a bitopological spaces, we start with pairs of
frames

� F � � FH< � , and pairs of frame maps. That is, we start in the category
Frm G Frm. This is not enough, however, as it makes no provision for linking
the two frames; they are, after all, intended to describe the same set of points. For
this reason we add two relations con

�
tot �aF �HG F < with the intended meaning

that ýþ> � Q5ÿH% con indicates that the “opens” > and Q do not intersect. The intended
meaning of ýþ> � Q5ÿ�% tot is that > and Q cover the whole space. We will also refer
to these as the “disjointness” and “covering” relations.

As a preliminary (unofficial) definition, call a structure
� F§ß � F��b� con

�
tot
�

a d-
frame. Certainly, “biframe” would have been more appropriate but unfortunately
that terminology is already taken.8 Morphisms between d-frames K and K N are
pairs of frame homomorphisms è:ß ^�F ßûØ F N � and è���^�F��ÑØ F N � such that ýþ> � Q5ÿ %
con implies

� è8ß � > �;� è�� � Q �~� % con
N
and similarly for the tot relation.

As an aside, the biframes of Banaschewski, Brümmer, and Hardie, [BBH83]
consist of three frames Fü� � FHß , and F�� , where F ß and F�� are sub-frames of Fû�
and together form a generating set for it. Clearly, this is a frame-theoretic version
of the common refinement �Â�k^�! �$ß§S_��� for a bitopological space

� �����¾ß � ��� �
together with the two given topologies. In biframes, the relation between the
elements of FHß and F�� is made fully explicit by virtue of being included in the
common frame Fû� . D-frames, on the other hand, only encode when two “opens”
are disjoint and/or covering (consistent and/or total). We will study the connection
between these two approaches in greater detail later.

Because con and tot are subsets of the product F=ß G F�� , we visualise a d-frame
concretely as the product (see the right column of Figure 1 for examples). This is
much more than a heuristic aid, though, as the structure of the product frame itself
will play an important role in the theory. This leads us to our “official” definition.

8In fact, “d-” is the next best thing, as you can take it to abbreviate the Proto-Indo-European
word “dvô,” meaning “two.”
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If F ß and F�� are frames, then
� Ý � A � and

� A � Ý � are complements –
� Ý � A � Û� A � Ý � ! � A � A � and

� Ý � A � ó � A � Ý � ! � Ý � Ý � – in the product FHß G F�� , and the pairs of
frame homomorphisms

� Þ ���5� from FÑß to F N ß and from F�� to F N � are bijective with
the frame homomorphisms from FÑß G F�� to F N ß G F N � that preserve

� Ý � A � and
� A � Ý � .

Conversely, consider a frame
� FÑ� Ü � Û � C � D � with designated constants fgf and

n`n that are complementary: fgfTÛWn`nÚ! C and fgf�óWn`nÚ! D . Then F is iso-
morphic to the product of the two intervals 	�C � fgf�
 and 	�C � n`n�
 (both of which
are frames themselves). The isomorphism from F to 	 C � fgf�
 G 	 C � n`n�
 is given by ×Ø �  Ûrfgf �  Ûhn`n � . In the reverse direction, ýþ> � Q�ÿ�×Ø >VóPQ . It is also eas-
ily shown that if F N has designated complements fgf N and n`n N , then the frame ho-
momorphisms è§^8F&Ø F N that preserve the constants are bijective with pairs of
frame maps Þ�^�	 C � fgf�
�Ø 	�C � fgf N 
 and

� ^�	�C � n�n�
�Ø 	 C � n`n N 
 . All told, the category
Frm G Frm is equivalent to the category of frames equipped with complementary
pairs.

Thus we take a d-frame officially to be a structure
� FÑ�Âfgf � n`n�� con

�
tot
�

where F
is a frame, fgf and n`n are complements, and con

�
tot �*F . The foregoing discussion

shows that this is equivalent (categorically) to the “unofficial” version, but has
the advantage of constituting a concrete category. A d-frame homomorphism is a
frame homomorphism that preserves fgf , n`n , con and tot. We denote the category
of d-frames by dFrm.

Because a d-frame
� F§�«fgf � n�n�� con

�
tot
�

is determined up to isomorphism by
the two frames 	 C � fgf�
 and 	 C � n`n�
 together with con and tot, and because we of-
ten find it easier to consider the two frames separately, we continue on occa-
sion to use the “unofficial” notation

� FÑß � F��b� con
�
tot
�

to abbreviate the d-frame� FHß G F��b� � Ý � A �;�b� A � Ý � � con
�
tot
�
. This has the advantage of being more obviously

motivated by the two topologies on a bitopological space. Note that C-^`! � A � A �
and DÔ^`! � Ý � Ý � are the least and greatest elements of the product d-frame.

Since the underlying frame of a d-frame K as isomorphic to the concrete prod-
uct of frames, 	 C � fgf�
 G 	 C � n`n�
 , we will find that explicit notation for the isomor-
phism is needed. Specifically, let F � ^`!�	 C � fgf�
 and F <¯^�!�	�C � n`n�
 . The projections
from F to F � and F < are given by  ×Ø  ÛËfgf and  ×Ø  Ûn`n . The isomorphism
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from F �HG F < to F is given by ýþ> � Q5ÿ,×Ø >¿óWQ . We denote these operations as
follows, for  %¯F , >V%'F � and Qs%'F < :

 � ^`!  Û'fgf < ^`!  ÛÎn`n
ýþ> � Q5ÿ)^`! >�óËQ

Clearly, a d-frame homomorphism èÑ^¡K Ø K N is determined by its operation
on F � and F < . These restrictions, denoted by è � and èO< , are separately frame
homomorphisms into F N � and F N < . Together they preserve con and tot. That is, if
ýþ> � Q�ÿ % con, then ýyè � � > �¶� èO< � Q � ÿH% con, and similarly for tot.

The (contravariant) functor á from bitopological spaces to d-frames associates
a space

� �c��� � � �	< � with the d-frame
� � � � �$<�� con

�
tot
�

where
� ® � ú � % con if and

only if ®�0±ú ! 4 and
� ® � ú � % tot if and only if ® � úÙ!Z� . The functor

associates with a bicontinuous function the map determined by the two inverse
image maps. A trivial bit of set theory will convince the reader that the disjointness
and covering predicates are preserved. Figure 1 shows some small examples. The
bitopological space ºûÊ º , which looks like a product of two copies of Sierpinski
space9, allows us to represent the functor á as biTop

�Ã� � ºíÊ�º � . Note how the four
elements of ºüÊ º correspond to the four ways in which an element of the space can
be related to an open from � � and an open from �	< : it can be in one of the two but
not the other, it can be in both, or it can be in neither.

For a functor in the reverse direction, we continue to follow the theory of
frames by considering d-frame morphisms from K ! � F§�«fgf � n`n�� con

�
tot
�

to å Ê�å ,
depicted in the upper right corner of Figure 1. Such morphisms are determined
by pairs of frame homomorphisms ç � ^8F � Ø å and ç8<=^8F <_Ø å that together
preserve con and tot. So they correspond to pairs of completely prime filters
e ��� F � , eM< � F < such that

(dpcon)  % con ! Ç  � 3%'e � or  <c3%'eM<��
(dptot)  % tot ! Ç  � %re � or  <¿%'eM<õÊ

9We will make clear below in which sense ��� � can be seen as a product.
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3.3:
��� �

:

���

� �
���

� �
���

� �
� �

� �

2.2:

Figure 1: Some bitopological spaces and their concrete d-frames. (D-frame el-
ements in the con-predicate are indicated by an additional circle, those in the
tot-predicate are filled in.)
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On F itself, a point manifests itself as a pair
��!e � �"!eû< � of completely prime

filters on F that satisfy the analogue of (dpcon) and (dptot), plus

(dp � ) fgfÑ% !e � �
(dp < ) n`n¯% !eM<��

Figure 2 illustrates the idea that
��!e � �#!eM< � determines four “quadrants” so that

con does not intersect with the “upper quadrant” and tot does not intersect with
the ‘lower.”

1

0

n`nfgf
tot

con

e%$<

eû<e �

e $�

Figure 2: An abstract point in a d-frame.

In ordinary frame theory every point e is alternatively determined by the ele-
ment Ü1FæY�e ; the elements that arise in this fashion are exactly the Û -prime ones.
Translated to the setting of d-frames, we get elements &2%cF where &5�±^�!'&Tóæn`n
and & < ^�!(&�ó±fgf are Û -prime in F , no element ) below & is in tot, and any el-
ement

7
in con satisfies either

7 � I*& � or
7 <I+&5< . However, this is not very

helpful in actually finding points in a d-frame. A more “constructive” analysis of
the situation is possible if we add further axioms to the definition of a d-frame;
this will be presented in Section 5 below.

The set of d-points becomes a bitopological space by considering the collec-
tion of 6 � � > � ^`!�" � e � � eM< � (b>¯%'e � + , >'%rF � , as the first topology , � , and the
collection of 6\< � Q � ^�!�" � e � � eM< � (	Qs%'eM<¡+ , Qs%'F < , as the second topology ,í< .
Together, this is the spectrum of the d-frame K , which we denote as spec K , fol-
lowing the usual notation for frames. The construction for objects is extended to a
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(contravariant) functor spec ^ dFrm Ø biTop in the usual way, that is, by noting
that the inverse image of a point under a d-frame morphism is again a point.

Theorem 3.1 The functors á and spec establish a dual adjunction between
biTop and dFrm.

Our two categories are clearly concrete over Set. For bitopological spaces the
left adjoint to the forgetful functor equips a set with two copies of the discrete
topology. The free concrete d-frame over a given set is the product of the usual
free frame with itself. The two predicates are chosen minimally, that is, as 4 . It
follows that the dualising object in dFrm is given as á2e biTop Ý and that of biTop
as spec e dFrm Ý . Indeed, we obtain å Ê�å and ºíÊ�º this way.10

We note that the individual topologies on ºûÊ º are not even �¡� , only their join
distinguishes all four elements. This explains why there is no schizophrenic object
for the duality of strong proximity lattices and stably compact spaces, as ºûÊ�º is far
from being stably compact. This also gives a clue as to why biframes are not
suitable as the Stone duals of bitopological spaces. If a schizophrenic object were
to exist, on the biframe side it would be the biframe derived from e biTop Ý . But
this is

� å � å � å � . In other words, the schizophrenic object would have to be a two
element bitopological space. None of the ten non-bihomeomorphic candidates
yields the required representable functor.

3.2 Logical order on a d-frame

As mentioned above, in a d-frame
� FÑß � F��b� con

�
tot
�

given by two frames sepa-
rately, the structure of the product F �HG F < plays an important role in our devel-
opment. Recall that one can think of a frame as a logical structure (finite meets and
joins) with an information structure (directed joins) where the two orders coincide.
In a d-frame, a second distributive lattice that is “at 90 degrees” to the frame order
also exists. This structure is a completely general phenomenon, known at least
since [BK47]. Its proof is straightforward and can safely be left as an exercise.

10The free d-frame over the one-element set
�

looks like -.� - in Figure 1, except that no elements
should be marked as belonging to con and tot. The generator is the element in the middle.
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Proposition 3.2 Let
� FÑ� Û � ó � Ý � A � be a bounded distributive lattice, and

�0/¶� Þ � a
complemented pair in F , that is,

/ Û2Þ2!RA and
/ ó¿Þm!�Ý . Then by defining

>æ�2Q ^�! � >,Û¿Þ � ó � Q�Û¿Þ � ó � >�ÛsQ � ! � >,ó¿Þ � Û � QTó¿Þ � Û � >,óËQ �
>æS2Q ^�! � >,ó /~� Û � Q ó /~� Û � >,óËQ � ! � >�Û /~� ó � Q Û /~� ó � >,ÛËQ �

one obtains another bounded distributive lattice
� FÑ�¶� � S ��/¶� Þ � , in which

� Ý � A � is
a complemented pair. The original operations are recovered from it as

>,ÛËQ ! � >Î�VA � S � Q��2A � S � >��¿Q � ! � >�S¿A � � � Q�S¿A � � � >ÎS¿Q �
>,óËQ ! � >ÎSPÝ � � � Q�SrÝ � � � >�S¿Q � ! � >��WÝ � S � Q��WÝ � S � >Î�¿Q �

Furthermore, any two of the operations Û , ó , � , and S distribute over each other.
If F is a frame, then � and S are also Scott continuous.

This justifies our choice of symbols fgf and n`n in a d-frame, and suggests that we
regard

� FÑ�¶� � S � fgf � n`n � as the logical structure of a d-frame. The logical structure
makes a d-frame into a distributive “bilattice.” See [Gin92, Fit91, MPS00] for
introductions to bilattices. Bilattices are motivated by Belnap’s four-valued logic
[Bel77].

We can easily compute conjunction and disjunction in terms of elements of
F � and FH< :

ýþ> � Q5ÿ¡��ýþ> N � Q N ÿ)^`! ýþ>�Ûq> N9� QTóËQ N ÿ
ýþ> � Q5ÿ¡S�ýþ> N � Q N ÿ)^`! ýþ>�óq> N � QTÛËQ N ÿ

Note the reversal of order in the second component. This makes sense, as we think
of the second frame as providing negative answers.

The translation from the logical operations back to Û and ó means that we
could have factored our definition of d-frames quite differently into a logical struc-
ture (a distributive lattice) and an information structure (a dcpo, not explicitly a
frame) together with con and tot, and the needed axioms to make our definition re-
coverable. This approach would clearly emphasise our point that the information
order is actually separate from logic, and that frames conflate the two. Separate
treatment of the two orders is the primary motivation of investigations into bilat-
tices. That research program, however, has not taken directed completeness of
information into account.
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4 Sobriety of bitopological spaces

Following the terminology of frames, we say that a bitopological space � is (d-)
sober if it is bihomeomorphic to spec K for some d-frame K . As with frames and
topological spaces, d-sobriety has an internal characterisation.

Theorem 4.1 For a bitopological space � , the following are equivalent:

1. � is d-sober;11

2. � is bihomeomorphic to spec áË� .

3. The unit map éí^O� Ø spec ám� given by >×Ø � â � � > �;� âæ< � > �~� is a bi-
homeomorphism.12

4. The unit is a bijection.

Proof. Clearly, (3) implies (2) and (2) implies (1). Furthermore, it is clear that
for any bitopological space

� ����� � � �	< � the map é is bicontinuous and bi-open
onto the image. So it is a bihomeomorphism if and only if it is a bijection. Thus
(4) and (3) are equivalent.

For (1) implies (4), assume � is bihomeomorphic to spec K . We prove that
for spec K , the unit é spec L is a one-to-one correspondence between points on the
given d-frame K and points on the second dual á spec K . Then by naturality of é
and the sobriety of � , é�ê is also one-to-one.

Let
� e � � eM< � be a point of K ; we calculate its image under é according to the

definitions:
�21 � �31 < � ! é � e � � eM< �! � â � � e � � eû< �¶� â,< � e � � eû< ���! � "	� � %4, � ( � e � � eû< � %¯� � + � "	� <¿%4,û<V( � e � � eM< � %'� <¡+ �! � "¾6 � � > � %4, � (b>¯%'e � + � "¾6=< � > � %4,û<V(b>V%'eû<�+ �
11We will usually leave out the qualifier “d-” when it is clear that we are talking about a bitopo-

logical space.
12“ 5 ” indicates the open neighbourhood filter.
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Injectivity of é is clear as different points on K will give rise to different sets of
open sets in at least one of the two canonical topologies on spec K . For surjectiv-
ity, we assume that

�61 � �71 < � is a point of á spec K . We claim that

e � ^�! "b>¯%'F � (¾6 � � > � % 1 � + eû< ^`! "$Qq%'F <�(¾6=< � Q � % 1 <O+
defines a point of K such that é � e � � eû< � ! �21 � �31 < � . Let’s check the details:

Both e � and eû< are completely prime filters because the maps 6 � � 6=< are
frame homomorphisms. Next assume that ýþ> � Q�ÿV% con; in this case, no point�28 � �78 < � can have >X% 8 � and Qk% 8 < , and so

�68 � �38 < � can not be both in
6 � � > � and 6\< � Q � . This means that 6 � � > � 0'6=< � Q � !�4 and hence 6 � � > � 3% 1 �
or 6=< � Q � 3% 1 < . This, finally, means that either >c3%re � or Q'3%reM< . The argument
for the tot-predicate is dual.

By the calculation at the beginning of the proof it is clear that
� e � � eM< � has no

neighbourhoods other than those in
�21 � �31 < � .

Example 4.2 All the bitopological spaces in Figure 1 are d-sober. For the one-
point space this is clear, as the associated d-frame admits only one point. For the
other four spaces one argues as follows: The underlying frame is the same in each
case and it admits four completely prime filters:

e ß� ^�! [�fgf e ß< ^�! [bn`n
e �� ^�! [ � � � � 4 � e �< ^�! [ � 4 � � < �

The notation already indicates which of these can be used as the first, respectively
second, component of a point. From this we get four possible combinations, and
these are indeed all available in the last example. In the other three examples,
the con/tot labelling of the element

� � � � � < � in the centre of the d-frame excludes
certain combinations: if it belongs to con, then e �� cannot be paired with e �< , and
if it belongs to tot then e ß� cannot be paired with e ß< .

4.1 Bitopological analogues of topological concepts

As the foregoing examples show, d-sobriety is a subtle constraint on the interac-
tion between � � and �	< . The remainder of this section explores this interaction,
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emphasising bitopological analogues of classical topological ideas.

Lemma 4.3 Let � � and �	< be two �O� topologies on a set � , and assume that
the bitopological space

� ����� � � �	< � is sober. Then the intersection of the two
specialisation preorders equals identity: J � 0WJ�<Ë! ‘ ! ’.

Proof. Assume >cJ � Q , >PJ�<VQ for two elements of � . Then
� â � � > �¶� â,< � Q ���

is a point of áË� . Indeed, if � � 0¯� <m!/4 then either QW3%P� � or QW3%P�h< . In the
first case, >c3%'� � follows because >¯J � Q .

Similarly, if � � � � <m!� then either >V%'� � or >¯%¯�h< . In the second case,
Qs%¯� < follows because >¯J�<sQ .

Sobriety implies that
� â � � > �¶� â,< � Q ��� must be a canonical point associated

with a single element È of � . However, the �¡� separation axiom says that different
points have different neighbourhood filters, so it must be the case that >m!RÈÎ!RQ .

Corollary 4.4 Let � be a topology on a set � such that
� ����� � � � is d-sober. Then

� satisfies the �õß separation axiom already.

Proof. Any abstract point
� e � � eû< � of a d-sober space is of the form� â � � > �;� âæ< � > ��� for some unique point > . So when the two topologies are the

same, it must be the case that e � ! eû< . Then if > and Q are two distinct
points of � it must be the case that their neighbourhood filters â � � > � !Ôâæ< � > �
and â � � Q � !½âæ< � Q � differ, in other words, the topology � must be �¡� . By the pre-
ceding lemma the specialisation order must be equality so the topology is even �Mß .

We take these results to indicate “bi- ��ß ” ought to mean that J � 0pJ�< is equal-
ity. We refer to a bitopological space

� � � � � � � as symmetric. Obviously, symme-
try makes the category of topological spaces equivalent to a full sub-category of
bitopological spaces. We will return to symmetric spaces in Section 9.

Counterexample 4.5 If
� ����� � is a sober space in the usual sense, then

� �c��� � � �
is not necessarily d-sober. Indeed, by the previous statement this can only happen
if
� ����� � is a �õß space, but sobriety does not imply this, the Sierpinski space being
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the smallest example of a sober non- ��ß space. Another way of expressing this is
to say that finite sets equipped with two �:� topologies are not necessarily d-sober.

Lemma 4.6 If
� ���~� � � �$< � is a d-sober space then

� ���~� � Sm�$< � is sober.

Proof. For e a completely prime filter in � � S*�$< , consider
� e � � eû< � ^�!� e0m� � � ek0m�	< � . We show that this is a d-point. Indeed, if � � 01� <ò! 4

then this intersection can not be an element of e . Therefore we can not have
� � %/e � � e and � <X%Xeû<��je at the same time. If � � � � <!j� then
because � %'e , we must have � � %'e or � <¯%'e by primality. Hence � � %'e �
or � <V%¯eû< .

Of course, the sobriety of
� ����� � S��	< � does not tell us anything about the

d-sobriety of
� ����� � � �	< � ; a counterexample is again provided by � � and �	< both

being equal to the Sierpinski topology on the two-element set.13 A more intricate
example is required to show that Lemma 4.3 can not be reversed:

Counterexample 4.7 Consider the set � ^�!:9 � "¾C � DÎ+ that can usefully be
visualised as follows: ;

<
As the positive topology on � we take all subsets of 9 plus all co-finite subsets
of � . This is �õß and sober, but not �=� . For the negative topology we take the weak
upper topology, whose closed sets are all of the form

Í?>
with

>
a finite subset

of � . This, too, is a sober topology. The specialisation order with respect to � � is
equality, and that with respect to �¾< is given in the diagram. Their intersection is,
of course, equality.

We claim that the bitopological space
� ����� � � �$< � is not sober. Consider the

pair
� â � � C �;� âæ< � D �~� . It satisfies the condition for total predicates because every

non-empty open set of �¾< contains D . The condition for consistent predicates is

13This differs from the theory of biframes where sobriety is taken to mean sobriety of @� {A@3B .
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also satisfied because every positive neighbourhood of C intersects with every
negative neighbourhood of D in co-finitely many natural numbers.

On the positive side we have:

Proposition 4.8 Let
� ����� � be a sober space. The following are all d-sober

bitopological spaces:

1.
� ����� �7Cb� and

� ��� C¾� � � , where
C

is the indiscriminate topology;

2.
� ����� �¶¹q� and

� ��� ¹m� � � , where
¹

is the discrete topology;

Proof. For the first claim, remember that the set "b�c+ is the only completely
prime filter in the indiscriminate topology, and when paired with a completely
prime filter of � always gives rise to a d-point: As

C
has only two open sets,

� � 0¯� <¯!�4 can only happen if � � !&4 or �h<¯!&4 . Likewise, � � � � <V!&�
can only happen if � � !� or � <s!½� .

For the second claim, we note that the discrete topology is Hausdorff
and hence guaranteed to be sober. Any d-point, therefore, has the form� â � � > �;� âæ< � Q �~� . The rest of the proof depends on � playing the role of � � (the
other case requiring a dual argument): If we had >X3J � Q then there would exist
�Ö%R� with >R%X� , QR3%X� . The complement of � is an open set in

¹
and so

belongs to â,< � Q � , contradicting (dpcon). Thus >¯J � Q and likewise QqJ � > .

We interpret these results about d-sober spaces as telling us that it is more
appropriate to consider J � 0 À < as the specialisation (pre-) order of a bitopo-
logical space, rather than J � 0°J�< . So “bi- �8� ” should mean that J � 0 À < is
a partial order. For this order the open sets of � � become upper sets, and those
of �	< , lower sets. The bitopological spaces in Figure 1 have been drawn in this
way. This view jibes with the situation in stably compact spaces where the spe-
cialisation order is opposite to that of the associated co-compact topology.

Let us pause to say a few more words about the bitopological space ºüÊ�º , the
dualising object in biTop. There is a forgetful functor from bitopological spaces
to Top D , the category of pairs of topological spaces, which maps

� �c��� � � �$< �
to
�~� ����� � �;�b� �����$< �~� . It has a right adjoint which maps a pair

���2E ��� �;�$�2EÎN ��� N£�~� to
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�2E G E N � !� � � !�$< � , where !� � ^�! " ® G E N ( ®�%V� � + and !�	<½^�!�" E G ® N ( ®&%¯�	<:+ .
We denote the resulting bitopological space with

E Ê EÎN . Notice that the usual Ty-
chonoff product topology on

E G EhN is precisely the join of !� � and !�	< . The natural
isomorphism between hom-sets Top D �~��� ����� � �;�$� �����$< ���¶�$���2E �~� �;�b�6ETN ��� Ng����� and
biTop

�~� ���~� � � �$< �¶�3E Ê ETN£� is obvious. The dualising bitopological space ºûÊ�º is ob-
tained in this way from two copies of Sierpinski space.

Definition 4.9 A bitopological space
� �c��� � � �	< � is called order-separated if

J½!&J � 0 À < is a partial order and >�3J°Q implies that there are disjoint open
sets � � %V� � and �h<¿%V�$< such that >V%'� � and Qs%'� < .

Lemma 4.10 In an order-separated bitopological space the following are true:

1. J � ! À < ;

2. J � 0PJ�<m! ‘ ! ’.

Proof. For the first claim assume >ò3J � Q . This implies >ò3J-Q and we get a
separating partial predicate

� � � � � < � . Since Q±%R�h< but >�3%�� < we conclude
>c3À <qQ . So 3J � !Ð3À < and this is equivalent to the first claim.

The second claim follows immediately from (1) and anti-symmetry of J .

D-sobriety is a surprisingly inclusive concept. We illustrate this with two ex-
amples.

Example 4.11 F with the usual upper and lower topology is d-sober. This is
seen as follows: Although eHG ^�! " ���$�¶
� ( � %IF§+ � "JFÑ+Ô! � � Y "	45+ is com-
pletely prime and not the neighbourhood filter of any real number, there is no
eM< such that the pair

� eHG � eM< � is a d-point. Indeed, all eü< have the form
e�¬r^�! " ����
������ ( � ?LK�+ or eû<?G ^`! �$<8Y�"	45+ ; e�¬ can not be paired with eHG
because

����
�� KNMôÝ � 0 � KOMôÝ �¶
� ! 4 but neither
����
�� KNMôÝ � 3%Ze¼¬ nor� K�MVÝ �¶
� 3%'e�G . The same argument shows that eü<?G can not be paired with eHG .

Example 4.12 Consider � !P	�A � Ý�
 Y�" ß� + with the usual upper and lower topol-
ogy. This is a d-sober space.
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Indeed, the only pair of completely prime filters that could cause trouble is

e � ^`! " �þ�$� Ý�
]Y�" ß� +�( � µ ß� + eû< ^�! "?	�A ��� � Y�" ß� +�( � ? ß� +
but this does not give rise to a d-point: ��!Q	�A � ß� �5�¿� ß� � Ý�
 but neither 	�A � ß� � %'eM<
nor

� ß� � Ý�
:%re � .

Both of these examples are order-separated. The fact that they are sober gen-
eralises to all such spaces.

Theorem 4.13 Order-separated bitopological spaces are sober.

Proof. Order separation clearly implies that the canonical map é ^¼� Ø
spec áË� is injective; the real issue is surjectivity. So assume that

� e � � eû< � is
a point of áË� . Consider the two sets

ú � ^`!RãR"	� � %V� � (¾� � 3%'e � + ú:< ^`!�ãR"	� <V%¿�	<P(	� <�3%¯eû<¡+
and their complements ú Ä�

� ú Ä< . Because of condition (dptot), ú � � ú:< cannot be
the whole space, in other words, the intersection ú Ä� 0¿ú Ä< is non-empty.

Next we show that every element of ú Ä� is below every element of ú Ä< in the
specialisation order JB!ÏJ � 0 À < . Indeed, if >Ô%Ôú Ä� , Q½%Ôú Ä< , and >Ð3J Q ,
then by order separation there is a partial predicate

� � � � � < � with >*%½� � and
Q2%c� < . By definition of ú � � ú8< we have � � %ce � and � <W%�eû< , contradicting
condition (dpcon) of d-points.

Finally, let È be an element in the intersection ú Ä� 0Wú Ä< . We show that e � is
the neighbourhood filter of È in � � . Assume ÈV%±� � ; this implies � � 3��ú � and
the latter is equivalent to � � %re � . For the converse we start at � � 3�Rú � , which
gives us an element Rm%Rú Ä� 0P� � about which we already know that RmJÐÈ . It
follows that RJ � È and hence Èq%'� � .

We see this result as being analogous to the well-known fact that � � spaces are
sober in the traditional sense.

Corollary 4.14 Compact regular bitopological spaces are d-sober.
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A perhaps less well-known (but easy to prove) fact is that sub-spaces of sober
��ß spaces are sober. Recalling our understanding of “bi- �¼ß ”, this, too, has an
analogue in the bitopological setting:

Theorem 4.15 Let
� ����� � � �	< � be d-sober and J � 0HJ�<'! ‘ ! ’. Let further

E
be

any subset of � . Then
�6E �~� �TSVU � �$< SWU � is d-sober, too.

Proof. (i) Let È be an element of � . Since cl � � È � ! Í
� È , cl < � È � ! Í < È , and

J � 0ÑJ�<*! ‘ ! ’, cl � � È � 0 cl < � È � ! "	Èà+ . Now, ú � ^`!Z��Y cl � � È � is in � � but
not in â � � È � . Likewise, ú:< � È � ^`!Ï�ÙY cl < � È � %ô�$<rYÎâ,< � È � . Furthermore,
ú � � È �¡� ú:< � È � !*�aY"	È�+ .

(ii) Assume Èq%V�ÐY E . Then ú � � È � S U !Xú � � È � 0 E %V� �TS U and ú:< � È � S U !ú8< � È � 0 E %¯�$< S U . Furthermore, ú � � È � S U � ú:< � È � S U ! E
.

(iii) Let
� e U� � e U< � be a d-point on

E
. Because of (ii), either ú � � È � S U %'e U� or

ú8< � È � S U %'e U< .
(iv) The embedding X¡^ E Ø � is bicontinuous, hence X <àß restricts to frame

homomorphisms � � Ø � �TS U and �	<RØ �	< S U . Concretely, X <àß � � � ! ��0 E
.

It follows that the inverse image map to the frame homomorphisms maps a com-
pletely prime filter e U� in � �TS U to a completely prime filter e � in � � . Concretely,
e � !/"	�°%V� � (	�*0 E %'e U� + .

(v) For the d-point
� e U� � e U< � consider

� e � � eM< � on � . This is again a d-point:
� � 0W� <±!Ð4 implies

� � � 0 Eh� 0 � � <q0 Eh� !Ð4 , so either � � 0 E 3%*e U� or
� <�3%'e � . The covering condition is proved analogously.

(vi) By the assumption of � being d-sober,
� e � � eû< � ! � â � � È �¶� â,< � È ��� for

some ÈP%1� . Case 1: È�% E
. Then e U� !ôâ � � È � SWU ! "	�0 E (¾�°%¯â � � È � +

because � %°e � can by definition only happen if ��0 E %°e U� . Conversely,
®Ö%�e U� implies that there exists � %X� � such that ® ! �&0 E

by definition
of the sub-space topology. This � then belongs to e � . It follows that e U� is the
neighbourhood filter of È in

E
. Likewise for e U< .

Case 2: È¯3% E . We know from (ii) that either ú � � È � 0 E %¯e U� or ú8< � È � 0 E %
e U< . This implies ú � � È � %e � or ú:< � È � %eM< . This is a contradiction, though,
because neither ú � � È � nor ú:< � È � are neighbourhoods of È in � .

40



(vii) The conclusion is that all d-points of á E are pairs of neighbourhood
filters of points in

E
.

It is tempting to conclude from this rather surprising result that every space
which satisfies J � 02J�<m! ‘ ! ’ is d-sober, as it can be rendered as a sub-space of
its d-sobrification. However, the condition does not survive d-sobrification:

Example 4.16 Consider the co-finite topology � on 9 . Its specialisation order is
trivial, yet the sobrification (in the usual sense) adds a new point Y (correspond-
ing to the filter Z of all non-empty co-finite subsets) which sits above all other
elements: [

The d-sobrification of
� 9=�~� � � � adds Y (represented as the d-point

� Z � Z � ) and
triplicates each natural number: apart from ¸@! � â � ¸ �;� â � ¸ �~� there are also
¸ ^�! � â � ¸ �¶� Z � and ¸±^�! � Z � â � ¸ �~� . The order J � 0RJ�< between these is quite
rich:

0 1 2 3

0 1

� ß� ß
$

Each sub-structure "\Y � ¸ � ¸ � ¸�+ carries the same bitopology as the space ºûÊ º on
the bottom of Figure 1.

4.2 Hofmann-Mislove

We conclude this section with a discussion of Hofmann-Mislove type theorems
for bitopological spaces. For motivation and comparison we look at an ordinary
topological space

� ����� � first. The collection â � # � of open neighbourhoods of
any subset # �Ð� is always a filter in the frame � , but in general there are far
more filters than neighbourhood filters. In three cases we can say more:
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1. If # is an open set then â � # � !�[�# , that is, the neighbourhood filter is
principal. All principal filters in � arise in this way.

2. If #½!½[]> for > an element of � then â � # � is completely prime. The space
is sober if and only if all completely prime filters arise uniquely in this way.

3. If # is compact then â � # � is Scott-open. The Hofmann-Mislove Theorem
states that in a sober space all Scott-open filters arise in this way.

Consider #&�k� for a bitopological space
� ����� � � �$< � . The collection

» � #&^�!]_^ ¨�` â � � È � is equal to the set of all � � -neighbourhoods of # , which from the
point of logic corresponds to all those predicates a for which every elements of #
satisfies a . On the negative side, one should consider b <d#/^`!Xã ^ ¨�` âæ< � È � which
is all those predicates a for which some element of # fails a . A moment’s consid-
eration will convince the reader that the pair

�|» � # � b�<�# � still satisfies the axioms
(dpcon) and (dptot) for d-points. However, the collection

» � # is merely a filter
in � � , while b�<�# is a completely prime upper set (but not necessarily a filter). As
with ordinary topological spaces we can ask which special cases of such pairs can
be characterised by properties of the subset # . D-sobriety, obviously, is case (2)
generalised to bitopological spaces; case (1) takes the following form:

Proposition 4.17 For any topological space
� ���~� � , there is a bijection between

closed sets and completely prime upper subsets of � .

Proof. For a closed set # , let b#cX^�!Ð"]ä&%±�1(ed&0�äÐ3!°45+ . For a completely
prime upper set b , let #Af¯^�!½�ÐY ã "	�°%V�r(	�Úo%Ib�+ .
Proposition 4.18 Let

� ���~� � � �	< � be a bitopological space. Let bT< be a com-
pletely prime upper set in �	< , and # the corresponding �¾< -closed set according to
the previous proposition. Then the � � -neighbourhood filter

» � of # satisfies:

(hmtot) for all � � %V� � � � <¿%V�$<V^� � � � <s!½� ! Ç � � % » � or � <¿%4b�<��
(hm

N
con) for all � � % » � ^ � � � ú:<Ë!*�

where ú:<V^�!*�ÐY§#R!RãR"	� <V%¿�	<P(¾� <c3%gb�<:+�Ê
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Moreover,
» � is uniquely determined by (hmtot) and (hm

N
con).

Proof. The first part is immediate.
For uniqueness suppose

» N
is a filter in � � satisfying (hmtot) and (hm

N
con). From

(hm
N
con), #T</�Ú� � holds for each � � % » N

. Hence
» N � » � . For the reverse

inclusion, suppose # <c�&� � . Therefore � � � ú8<r!/� , and since ú:<3%hb�< we
must have � � % »�N by (hmtot).

From the preceding discussion, the reader may have expected to find the fol-
lowing instead of (hm

N
con):

(hmcon) for all � � %¯� � � � <¿%V�$<¯^� � 0¿� <s!�4 ! Ç � � 3% » � or � <c3%gb�<¡Ê
However, this easily follows from (hmtot) and (hm

N
con): if � � % » � then � � � ú:<Ë!� and if also � � 0±� <X! 4 then �h<�� ú8< must follow. Without additional

assumptions on � , however, the stronger condition is needed for uniqueness.

Proposition 4.19 With the terminology of the previous proposition:

1.
» � is Scott-open if and only if sat � � #�< � is � � -compact.

2. If
� ����� � � �$< � satisfies J � � À < then #�<m! sat � � #T< � .

Proof. Part (1) is trivial. For the second claim assume >/% sat � � #�< � . Since
sat � � #T< � !*[ �

� #T< � there is Q�%¯#T< with > À � Q , so by assumption >VJT<qQ and
>V% cl < � Q � . This forces >¯%¯#T< .

We doubt that Proposition 4.18 together with part (1) of the preceding result
qualifies as a bitopological version of the Hofmann-Mislove Theorem, since its
proof is so easy and d-sobriety is not required. We obtain a more satisfactory
result when we assume regularity (Definition 2.13). First of all, it is not hard to
show that every regular bitopological space is order-separated and therefore sober.
The interesting bit for us, however, is that condition (hmcon i ) can be replaced
by (hmcon):

Theorem 4.20 Let
� ����� � � �$< � be a regular bitopological space. There is a one-

to-one correspondence between
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(i) subsets # of � which are �	< -closed and � � -compact; and

(ii) pairs
�¥» � � b�< � where

» � is a Scott-open filter in � � and b�< is a completely
prime upper set in �	< , satisfying (hmcon) and (hmtot).

Proof. We show that (hmcon i ) follows from regularity and (hmcon). To this end,
let � � % » � . It is the directed union of open sets well-inside it, and so by Scott-
openness some � N�

Á � � belongs to
» � , too. The witness �h<°%ò�$< satisfies

� N� 0W� <r!ò4 , so by (hmcon) cannot belong to bT< , in other words, it is a subset
of ú:<p!jã_�$<mYjb�< . By definition, we also have � � � � <p!Ð� and therefore
� � � ú8<Ë!*� as required.

5 Reasonable d-frames and spatiality

We say that a d-frame K is spatial if K is isomorphic to áË� for some bitopological
space � . As with d-sobriety, spatiality has internal characterisations.

For any d-frame K! � FÑ�Âfgf � n`nõ� con
�
tot
�
, the co-unit ë�L is determined by the

two frame homomorphisms ë � ^OF � Ø � á spec K � � and ë;<\^�F <¿Ø � á spec K � <
defined by >'×Ø 6 � � > � and Qq×Ø 6\< � Q � . Clearly, both of these are surjective and
so ë~L itself is surjective.

Theorem 5.1 For a d-frame K , the following are equivalent:

1. K is spatial.

2. K is isomorphic to á spec K .

3. The co-unit ë�L is an isomorphism.

4. The co-unit is injective and reflects con and tot.

5. K satisfies the following four conditions:

(s � ) kd>�3Ik> N %'F � É¡� e � � eû< � % spec K�Ê >'%'e � � > N 3%'e � �
(s < ) kOQ'3IQ N %'F < É¡� e � � eM< � % spec K�Ê]Qs%'eû< � Q N 3%'eM<��

(scon) k  3% con
É¡� e � � eM< � % spec K�Ê  � %¯e � �  <V%'eû<��

(stot) k  3% tot
É¡� e � � eM< � % spec K�Ê  � 3%¯e � �  <�3%'eû<õ�
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Proof. Clearly, the d-frame ám� associated with a bitopological space � satisfies
the four other conditions. So (1)

Ç
(5). Also (3)

Ç
(2)

Ç
(1) are trivial. As ë�L is

a surjective frame homomorphism that preserves con and tot, if it is also injective
and reflects con and tot, then it is an isomorphism.

For (5)
Ç

(4), observe that conditions (s � ) and (s < ) imply that the assign-
ments >-×Ø 6 � � > � and Q@×Ø 6\< � Q � are injective. Thus ë�L is injective, and
we only need to check that the two predicates are reflected. If we assume that
6 � �  � � 0p6=< �  < � ! 4 then we know that for every abstract point

� e � � eû< � ,
either e � 3% 6 � �  � � or eM<j3% 6=< �  < � , which by definition means  � 3%òe �
or  <c3%'eM< . By Rule (scon) it follows that  must belong to con. Reflection of tot

is shown analogously.

We collect some properties of the con- and tot-predicate on spatial d-frames.

Lemma 5.2 Let
� FÑ�Âfgf � n`n�� con

�
tot
�

be a spatial d-frame, and  IL) . Then

 % tot ! Ç )�% tot)�% con ! Ç  % con

Proof. We show the contrapositive: )Ú3% tot implies by (stot) that there is an
abstract point

� e � � eû< � with ) � 3%1e � and ):<R3%keû< , so the same is true for  �
and  < , which shows that  can not belong to tot.

The proof for con is analogous.

Lemma 5.3 Let
� FÑ�Âfgf � n`nõ� con

�
tot
�

be a spatial d-frame. Then fgf% con, fgf�% tot,
n`nV% con, n`nV% tot and

 � )W% tot ! Ç �  �g) � % tot and
�  Sg) � % tot � )�% con ! Ç �  �g) � % con and
�  Sl) � % con

Proof. Suppose fgfpo% con. Then there is a d-point
� e � � eM< � such that fgf;<X!

Ac%Reû< . This is impossible as eû< is a completely prime filter. The other three
memberships are proved similarly.

For closure of tot under S (and by a symmetric argument, � ), we show the
contrapositive: Suppose  !Úý�> � Q�ÿ and )k!Úýþ> N � Q N ÿ and assume  Sm)k! ýþ>Ëó
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> N � QíÛ�Q N ÿ�3% tot, then by (stot) there is an abstract point
� e � � eû< � with >\ó�> N 3%re � ,

Q�ÛmQ N 3%reM< from which we get that both > and > N do not belong to e � and either
Q or Q N does not belong to eû< . It follows that either ýþ> � Q�ÿæ3% tot or ýþ> N � Q N ÿæ3% tot.
The proofs for con are analogous, using the primality of e � and eû< .

Lemma 5.4 Let K be a spatial d-frame. Then con is Scott closed with respect
to I .

Proof. If ö were a directed subset of con with Ü ÷ ö o% con, there would be an
abstract point

� e � � eû< � with
� Ü ÷ ö � � %_e � and

� Ü ÷ ö � <±%_eû< . Both filters are
completely prime. So for some  %rö ,  � %We � and for some )c%Wö , ):<'%Weû< .
But ö is directed, so we can choose  !n) . This contradicts the definition of
abstract points. We already checked that con is closed downward.

Lemma 5.5 Let
� FÑ�Âfgf � n`n�� con

�
tot
�

be a spatial d-frame,  % con and )°% tot.
Then  � !o) � ! Ç  IL) <m!o)8< ! Ç  IL)
Proof. Toward a contradiction for the first implication suppose  <�3Ip)8< . By
spatialilty, there is an abstract point

� e � � eM< � for which  <�%_eM< and )8<�o%_eû< .
But  % con implies  � o%°e � and )ô% tot implies ) � %@e � ; so ) � 3I  � ,
contradicting the assumption.

We believe that the properties expressed in the lemmas in this section are in-
dependent of each other (except for the trivial fact that con being Scott closed
implies con is closed downward), but we do not have a proof for it.

5.1 Reasonable d-frames

The properties stated in Lemmas 5.2 through 5.5 constitute a good restriction on
general d-frames without necessarily requiring spatiality. All of them, except for
Lemma 5.4 are first-order properties. The one non-first-order property is never-
theless constructive, as it simply involves closure of con under directed suprema.
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(con–
Í
)  IL)4qr)�% con ! Ç  % con

(tot– [ )  IL)4q  % tot ! Ç )P% tot

(con– fgf ) fgfÑ% con

(con– n`n ) n`n¯% con

(con– � )  % con qr)c% con ! Ç �  �s) � % con

(con– S )  % con qr)c% con ! Ç �  Ss) � % con

(tot– fgf ) fgfÑ% tot

(tot– n`n ) n`n¯% tot

(tot– � )  % tot qt)P% tot ! Ç �  �l) � % tot

(tot– S )  % tot qt)P% tot ! Ç �  Sl) � % tot

(con– Ü ÷ ) #&� con directed w.r.t. I ! Ç Ü ÷ #/% con

(con– tot)  % con
� )�% tot

� �  � !r) � or  <m!o)8< � ! Ç  Io)
Table 1: The defining properties of reasonable d-frames.

From now on, we will generally concentrate on d-frames that satisfy these condi-
tions.

Definition 5.6 A d-frame which satisfies the properties stated in Lemmas 5.2
through 5.5, is called reasonable. For ease of reference they are collected and
named in Table 1. The category of reasonable d-frames is denoted by rdFrm.

Taking Lemmas 5.2 through 5.5 together, we see that the adjunction between
bitopological spaces and d-frames co-restricts to reasonable d-frames. So there is
no real loss in restricting our attention to rdFrm.

A reasonable d-frame need not be spatial: take a frame F without any points
and consider

� F � FÑ� con
�
tot
�

where ýþ> � Q�ÿ% con if >sÛ¿Qm!°A , and ý�> � Q�ÿ% tot if
>æómQæ!�Ý . It is a trivial exercise to prove that the resulting d-frame is reasonable,
but it obviously can’t have any points. Below we will combine reasonableness
with compactness and regularity, and then spatiality will follow.

Proposition 5.7 The forgetful functor from rdFrm to Set has a left adjoint.
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Proof. The free reasonable d-frame over a set # is
� eT# � eT# � con

�
tot
�

where e�#
is the free frame over # . Generators are the pairs

� È � È � , Èq%¯# . The two relations
are chosen minimally: ýþ> � Q�ÿ�% con if and only if >¯!ÔA or QË!�A ; ýþ> � Q5ÿ�% tot if
and only if >P!ÐÝ or QV!aÝ . The conditions for a reasonable d-frame are proved
by case analysis.

As an example, the structure labelled u5Êvu in Figure 1 is the free reasonable
d-frame generated by a one-element set.

5.2 Biframes

We return to the question of how d-frames are related to the biframes of Ba-
naschewski, Brümmer, and Hardie. If

� Fí� � F ß � F�� � is a biframe then we can define
a d-frame by setting w � Fû� � F ß � F�� � to be

� F ß � F��b� con
�
tot
�

where ýþ> � Q�ÿ % con ^ x
>ËÛ'Q'!ôA , and ýþ> � Q5ÿ�% tot ^ x >2óVQr! Ý , exploiting the fact that FÑß and F��
are subsets of the frame Fü� . Clearly, this extends to a functor w from biframes to
d-frames. The following is an easy exercise:

Proposition 5.8 Every d-frame derived from a biframe is reasonable.

One can think of w as a forgetful functor from biframes to d-frames. Specif-
ically, it forgets everything about Fí� except for the pairs of elements in FÑß G F��
that meet at A or join at Ý .
Theorem 5.9 The functor w has a left adjoint.

Proof. Given K*! � FÑ�Âfgf � n`nõ� con
�
tot
�
, we generate a frame Fí� using the set8 ^`!&"zy¾>�{m(b>¯%¯F � � F <�+

subject to the relations

y¾>�{ I y¾> N { for all >¯Ik> N %rF � or >¯Ik> N %'F <|}^ ¨�~ y È�{ I y | > { for all
> ���3�F � or

> ���3�\FH<y]Üp#T{ I Ü ^ ¨�` y È�{ for all #��*F � or #��*F <y¾>�{Ûsy�Q�{ I A for all ýþ> � Q5ÿ % con

Ý I y¾>�{ósy�Q�{ for all ýþ> � Q5ÿ % tot
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Note the similarity of this construction with the coproduct of frames; the only dif-
ference is in the last two rules which ensure that the two predicates are respected.
As with the coproduct, here too we find that Fí� contains subframes y F � { andy F <�{ given by the equivalence classes of the generators from F � and FH< . Thus
the triple

� FM� � y F � { � y F <�{ � is a biframe, and >@×Ø y¾>�{ restricts to frame ho-
momorphisms from F � to y F � { and from F < to y F <�{ . By the last two rules,
these maps preserve con and tot, so we have a d-frame homomorphism from K tow � FM� � y F � { � y FH<�{ � .

If
� Õ�� � ÕËß � Õ}� � is a biframe and è a d-frame homomorphism è from K tow � Õ,� � ÕËß � Õ�� � we get a map from the set of generators of Fü� to Õ�� by settingy¾>�{&×Ø è � > � . Since this map clearly respects the above relations, it extends

uniquely to a frame homomorphism; the result sends equivalence classes of gen-
erators from FHß to Õmß and similarly for F�� .

An alternative construction of the free biframe highlights, once again, the in-
terplay between logic and information. For this we use a known folk theorem that
a cartesian product FÑß G F�� of frames is also a coproduct of FÑß and F�� in the cat-
egory of meet semilattices. In terms of a d-frame, the injections from F � and F <
take the form >m×Ø)>�óhn`n and Qæ×ØÏQTó'fgf , respectively.

For a given d-frame K! � FÑ�Âfgf � n`n�� con
�
tot
�
, we consider the collection � � of

subsets #/�*F satisfying

(bif–con) con �# �
(bif– tot)  % tot

� ý  � Û�) � � )8<OÿÑ%¯# � ý2) � � )8<æÛ  <OÿH%'# ! Ç )�%'#h�
(bif– I ) # is Scott closed with respect to with respect to I �
(bif– J ) # is a sub-lattice with respect to J �

Considering F as a Û -semi-lattice, we define families
¤��  � of subsets of F in-

dexed by members of F as follows:

1.  % con and )�I  implies 4,% ¤q� ) � ;
2.  % tot implies " ý  � Û�) � � )8<Oÿ � ý6) � � )8<æÛ  <8ÿ;+ % ¤�� ) � ;
3.  IRÜ ÷�� implies "�)ËÛ  (�)P% � +Î% ¤q�  � ;
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4. 4,% ¤�� fgf � ;
5. 4,% ¤�� n�n � ;
6. " ýþ> � Q5ÿ � ýþ> Nv� Q5ÿ;+T% ¤q� ýþ>,óq> N9� Q5ÿ � ;
7. " ýþ> � Q5ÿ � ýþ> � Q N ÿ;+ % ¤q� ýþ> � QTósQ N ÿ � ;

These families form a covering as per [Joh82, Section II.2.11]. That is, they are
stable under meets: �_% ¤��  � implies that "��sÛs)p(.�r%m� +Î% ¤q�  ÛT) � . Define a¤

-ideal to be a subset Ó of F which is closed downward and for which �_�*Ó and�±% ¤q�  � imply  %¯Ó . Consider #�%h��� . By definition it is downward closed and
satisfies the closure conditions for

¤
-ideals – the last two conditions being special

cases of the closure under S and � . So ��� is contained in the collection of
¤

-
ideals. Conversely, the first three conditions on

¤
-ideals are essentially (bif–con),

(bif– tot), and (bif– I ). To see that a
¤

-ideal is also closed under (bif– J ), recall
that ýþ> � Q�ÿ]S,ýþ> N � Q N ÿü!Ôýþ>Ñó�> N9� QüÛ�Q N ÿ and that a

¤
-ideal is closed downward. Thus�]� is the collection of

¤
-ideals.

Following Johnstone’s general construction, the set � � of
¤

-ideals is guar-
anteed to form a frame with three useful properties: First, letting # �  � denote
the principle

¤
-ideal containing  , the resulting frame is generated by the sets

# �  � . Second, the map  ×Ø # �  � preserves the finite meets of F . Third, � �
is free with respect to transferring covers to joins. That is, if Õ is a frame and
è is a meet semi-lattice morphism from F to Õ for which �Ú% ¤��  � implies
Ükè � � � !Xè �  � , then è extends uniquely to a frame homomorphism ��^�� �HØ Õ
so that è �  � !�� � # �  ��� for all  %rF .

Because F , as a meet semi-lattice, is a coproduct of F � and F < , it is generated
by the sub-semilattices Fí� and F < , where Fû� consists of elements of the form �c^`!  óæn`n and similarly for F < . Define �5ß and ��� to be the images of Fü� and
F < with respect to # ����� . The last five clauses in the definition of

¤
ensure that�5ß and ��� are subframes of ��� , and the map >Ë×Ø # � >O� � from F � to �5ß is a frame

homomorphism, and similarly for ��� . Thus
� �]� � � ß � ��� � is a biframe. The first two

clauses ensure that the map  ×Ø � # �  � �;� # �  < ��� is a d-frame homomorphism
from K to w � �]� � � ß � ��� � .
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Given a biframe
� Õq� � Õmß � Õ}� � and a d-frame homomorphism è from K tow � Õ,� � ÕËß � Õ�� � , the map è cuts down to two semilattice homomorphisms from

Fû� and F < into Õ�� . So these extend uniquely to a semilattice homomorphism è N
from F to Õ�� . Specifically, è N9� ýþ> � Q5ÿ � !Rè � � > � Û¿èO< � Q � .

Now it is fairly easy to check that è N transfers covers to joins. For example,
ýþ> � Q�ÿ % con implies that è � � > � Û§èO< � Q � !RA (in Õ�� ), so for )�I�ýþ> � Q5ÿ , è N�� ) � !�A .
The other conditions are just as routine, except perhaps the condition involving
tot. Suppose  !Ïýþ> � Q5ÿs% tot. So, è � � > � ó�èO< � Q � !ÙÝ in Õ�� . For any other)¯!°ýþ> N � Q N ÿ , we have

è N � ý  � Û�) � � )8<dÿ � ! è � � > � Ûmè � � >
N � Û2è8< � Q N �

è N � ý2) � �  <,Û�)8<Oÿ � ! è � � >
N � Û2èO< � Q � Ûmè8< � Q N � Ê

So the join of these is simply è � � > Ng� ó¿èO< � Q N£� !Xè N9� ) � .
Finally, because è N is a semilattice homomorphism from F to Õs� that transfers

covers to joins, it extends uniquely to a frame homomorphism � from � � to Õ,� .
This sends >&%�F � to � � # � ýþ> � Ý$ÿ ��� !�è N � > � Ý � !�è � � > � %�Õmß . Likewise, �
sends elements of FÑ< to Õ�� , so it is a biframe homomorphism.

One can wonder whether the d-frame that one obtains from
� � � � � ß � ��� � (equiv-

alently,
� Fû� � y F � { � y F <�{ � ) is isomorphic to the original K! � FÑ�Âfgf � n`nõ� con

�
tot
�
.

This need not be the case, even if K is reasonable:

Lemma 5.10 Let K be (isomorphic to) w �2�T� for a biframe
�

. Then K satisfies
the cut rules14 listed in Table 2.

Proof. The cut rules in w �2� � are simply instances of laws that hold in any frame.

Counterexample 5.11 The finitary cut rule (cuttot) does not follow from reason-
ableness. Consider the d-frame in which both F � and F < are the powersets
� � "	A � Ý�+ � . We take ý�> � Q�ÿ2% con if and only if ( >M(\Ma( Qõ(íJBå and ýþ> � Q5ÿ¿% tot

14The “logical” terminology for } } and ��� and for the operations x and { was justified by Propo-
sition 3.2. Similar terminology here will be justified in Section 7.
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(cuttot) ýþ>,ómÈ � Q�ÿ % tot q@ýþ> � QTósR;ÿÑ% tot q°ý|È � R;ÿÑ% con

! Ç ýþ> � Q5ÿÑ% tot

(cutcon) ýþ>,ÛmÈ � Q�ÿ % con q@ýþ> � QTÛlR;ÿÑ% con qÔý|È � R;ÿ§% tot

! Ç ýþ> � Q5ÿÑ% con

(CUT � ) ýþ> � QTó Ü ¦©¨«ª R ¦ ÿÑ% tot q�k��û%¯Ó�Êdýþ>æómÈ ¦�� Q5ÿ % tot q@ý|È ¦|� R ¦ ÿH% con

! Ç ýþ> � Q5ÿÑ% tot

(CUT � ) ýþ>,ó2Ü ¦©¨«ª È ¦y� Q�ÿ % tot q�k��í%¯Ó�Ê�ý�> � Q ósR ¦ ÿH% tot q@ý|È ¦|� R ¦ ÿH% con

! Ç ýþ> � Q5ÿÑ% tot

Table 2: The finitary and infinitary cut rules.

if and only if >m!/"	A � Ý�+ or Q�!&"	A � Ý�+ . The axioms (con– S ) and (con– � ) can be
checked by a case analysis. To see that (con– tot) holds, note that if ( >M(�M�( Q�(�J�å
and >�! "	A � Ý¾+ , then Q*!Ù4 and similarly for their roles reversed. The other
axioms are trivially satisfied. So this d-frame is reasonable.

Now consider the pairs
� "	A +hó±"�Ý�+ � "�Ý�+ � , � "	A�+ � "	A +hó±"�Ý¾+ � and

� "�Ý�+ � "	A + � .
These meet the pre-conditions of the cut rule, which would require

� "	A + � "�Ý�+ � %
tot. On the other hand, it is easy to check that the other finitary cut rule, (cutcon),
holds in this d-frame.

The order dual of this example shows that (cutcon) also does not follow from
reasonableness. Together, these show that the two finitary cut rules are indepen-
dent of each other.

Counterexample 5.12 To show that the infinitary cut rules are independent and
strictly stronger than (cuttot) requires a more subtle counter-example. Consider
the d-frame consisting of pairs

� ® � ú � where ® is an open in the relative Sor-
genfrey topology on the interval 	�A � Ý�
 and ú is an open in the standard topology
on 	�A � Ý�
 . So ® is a disjoint union of sets of the forms 	�È � R � , � È � R � and

� È � Ý�

where A±JZÈpµ�R¯JBÝ Take

� ® � ú � % con if and only if ®�0�ú !Ú4 and take� ® � ú � % tot if and only if there exists a pair
� # � � � % con so that ® � #X!�	�A � Ý�


and ú � � !�	�A � Ý�
 . Clearly, con is exactly the same as in the spectrum of 	�A � Ý�

with the two given topologies, so it satisfies the conditions for reasonableness.
Also, tot is closed upward and

� ® � ú � % tot implies ® � úa!(	�A � Ý�
 . So con and
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tot satisfy the axiom (con– tot). Finally, tot is closed under the logical operations:
if
� ® � ú �¶�$� ® N©� ú N£� % tot, then there exist pairs

� # � � � and
� # N9� � Ng� in con as wit-

nesses; thus
� #R0P# N9� � � � N£� witnesses that

� ® � ® N � ú&0cú Nv� also belongs to
tot.

Furthermore, suppose
� � � # �3EÎ�¶�$� � �3E�� � � % tot. Let

�þ¤T� ö �;�$�þ¤ N�� ö Ng� %
con be the needed witnesses. Then

� # �V¤ � 0 ¤TN and
� � �¯¤�Ng� 0¯ö N are disjoint

and witness that ýþ� �7E ÿ\% tot. So this d-frame satisfies the first of the finitary cut
rules.

Next, consider � !(	 ß� � Ý�
 , E !(	�A � ß� � , #A�Ë!�	�A � � � ß��� � and � �s! � �	<àß��� � Ý�
 for
positive integers ¸ . Clearly, � � ã � #�� !�	�A � Ý�
 and for each ¸ ,

Ek� � � !Q	�A � Ý�
 .
So these fulfil the conditions for the rule (CUT � ). But we claim that ý�� �3E ÿho% tot.
Consider any open ö in the standard topology for which

E&� ö !n	�A � Ý�
 . Then
ö must cover some open set of the form

� ß� � ë � Ý�
 . No open
¤

in the Sorgenfrey
topology that is disjoint from ö can cover the complement of � .

This example does double duty by showing that the two infinitary cut rules
are independent: because the standard topology is compact, (CUT � ) reduces to
(cuttot).

Spatiality is respected by the translation to biframes and back. For this dis-
cussion, we need to consider the dual adjoint functors between biTop and biFrm.
We use subscripts ø and R to distinguish these from the dual adjunction between
biTop and dFrm. That is, á�� � ����� � � �$< � ! � � � SW�$< � � � � �$< � yields a biframe,
whereas á�� � ���~� � � �	< � yields a d-frame, similarly for spec.

Checking definitions, one sees immediately that á��2!�w+�há#� . An equally
easy exercise in type checking for the adjunctions involved shows that spec � is
naturally isomorphic to spec � ��� . This leads to the following corollary.

Corollary 5.13 If a d-frame K is spatial, then it is derived from a biframe.

This also provides an alternative proof of Lemma 4.6.
We have found no application for (cutcon) in anything that follows, but note

that in the alternative construction of the free biframe over a d-frame, the condition
(bif– tot) in the definition of the elements of ��� is formally similar to (cutcon). In
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fact, if a reasonable d-frame satisfies (cutcon), then the set con itself is the least
element of ��� . So for a reasonable d-frame K , (cutcon) is a necessary and sufficient
condition for con to be reflected in the translation from K to a biframe and back.
It is tempting to claim “by symmetry” that (cuttot) is likewise sufficient for the
reflection of tot, but a closer look shows that the Scott closure of con is needed.
Since tot is an upper set and can not be Scott closed (except in a trivial d-frame),
the symmetry fails.

6 Regularity and compactness

Definition 2.13 can easily be adapted for d-frames:

Definition 6.1 Let
� F§�«fgf � n�n�� con

�
tot
�

be a reasonable d-frame. For two elements
> � > N %F � we say that > N is well-inside > (and write > NõÁ > ) if there is Q�%F <
such that ý�> N9� Q5ÿ�% con and ý�> � Q�ÿ�% tot. To avoid lengthy verbiage, we will
usually write

���3�¡ ¢�
for the “witnessing” element Q (although it is not uniquely

determined). On FH< the well-inside relation is defined analogously.
A d-frame is called regular if every >'%¯F � is the supremum of elements well-

inside it, and similarly for elements of F§< .

We note that the elements well-inside a fixed element > of a reasonable d-
frame form a directed set; this follows from (con– S ) and (tot– S ). That they are
all below > is a consequence of (con– tot). Finally, Ý Á Ý is always true.

As an exercise in reasoning with the logical structure of a d-frame K , consider
the following definition: for elements  and ) , say that  is well-inside ) (and
write  Á ) ) if and only if  � Á ) � and  < Á )8< . Then one can easily show
that the elements well-inside ) form a directed set with ) as an upper bound, and
that L is regular if and only if every ) is the supremum of elements well-inside ) .
Moreover,  Á ) holds if and only if there is a

7
so that  � 7 % con,  S 7 % con,)s� 7 % tot and )qS 7 % tot.

Regularity allows us to derive a lot more information about d-points. This will
come in handy later, so it is useful to formulate a couple of lemmas.
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Lemma 6.2 Let K be a reasonable d-frame and >¯%¯F � . Define

P
� > � ^`!/".R�%rF <�( É È¯3Ik>�ÊOý|È � R;ÿH% con + and C

� > � ^`!&".R�%'FH<P( ýþ> � R;ÿT3% tot +
1. P

� > � � C
� > � ;

2. If K is regular then Ü P
� > � !�Ü C

� > � .
Proof. (1) is a direct consequence of (con– tot): if we have ý|È � R;ÿ/% con

and ýþ> � R;ÿH% tot then ÈqIk> follows.
For (2) let R N�Á R�% C

� > � . The witness
� � �   � cannot be below > as otherwise we

could conclude ýþ> � R;ÿ�% tot from ý � � �v  � � R;ÿ�% tot. We also have ý � � �v  � � R N ÿ�% con

and so find that R N % P
� > � . By regularity, Ü P

� > � is above R itself. It follows that
Ü P

� > �¤£ Ü C
� > � , and by (1) the two suprema are in fact the same.

Lemma 6.3 Let K*! � FÑ�Âfgf � n`n�� con
�
tot
�

be a reasonable d-frame and ¥ � %RF � ,¥]<¯%¯FH< . Consider the following statements:

(i) ¥]<Ë!o¦�§.¨ C
� ¥ � � and ¥ � !r¦�§.¨ C

� ¥]< � ;
(ii)

� F � Y Í ¥ � � F <ÎY Í ¥]< � is a d-point;

(iii) ý2¥ � � ¥�<Oÿ�3% tot, ¥�< £ Üh÷ P � ¥ � � , and ¥ � £ Üh÷ P � ¥�< � ;
(iv) ý6¥ � � ¥�<Oÿ�3% tot and ¥�< £ Ü ÷ P � ¥ � � ;
(v) ý6¥ � � ¥�<Oÿ is a maximal element of

� F �ÑG F < � Y tot.

The following are true:

1. (i)
Ç

(ii)
Ç

(iii)
Ç

(iv), and (i)
Ç

(v).

2. If K is regular then (iv)
Ç

(i).

3. If K satisfies the (cuttot) rule then (v)
Ç

(ii).
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Proof. Part (1), (i)
Ç

(ii): If ýþ> � Q�ÿm% tot then either >Ð3I©¥ � or Q�3Iª¥�< as
otherwise we would have ý6¥ � � ¥�<Oÿ�% tot by (tot– [ ). If ýþ> � Q5ÿ% con and >*3I«¥ �
then QW% P

� ¥ � � � C
� ¥ � � by the previous lemma; hence Q�I�¥�< . Thus we have

shown that the pair
� F � Y Í ¥ � � F < Y Í ¥]< � satisfies conditions (dptot) and (dpcon) for

d-points and it remains to show that we have two completely prime filters. This
will hold if ¥ � and ¥�< are Û -irreducible. So let ¥�<1!-QæÛrQ N ; by (tot– S ) either
ý6¥ � � Q5ÿTo% tot or ý6¥ � � Q N ÿho% tot, which means that either Qæ!r¥�< or Q N !o¥]< .

(ii)
Ç

(iii): If >k3I'¥ � and ý�> � Q�ÿ% con then QVI¬¥�< by (dpcon). So we have¥]< £ Ü P
� ¥ � � . ý6¥ � � ¥]<Oÿ�3% tot follows from (dptot). The set P

� ¥ � � is directed
because F � Y Í ¥ � is a filter and (con– � ) is assumed for reasonable d-frames.

(iii)
Ç

(iv) and (i)
Ç

(v) are trivial.
Part (2), (iv)

Ç
(i): On the side of FÑ< we already have ¥�< £ Ü C

� ¥ � � by
the previous lemma. For the other side side, assume >k3It¥ � . By regularity there
is > NíÁ > with > N 3I©¥ � . Because of ýþ> N �����3�¡ .� ÿ2% con we have

���3�¡ .� I©¥�< by
assumption, and then from ý�> ���J�3�¡ .� ÿ,% tot we infer ýþ> � ¥�<8ÿæ% tot by (tot– [ ). It
follows that C

� ¥�< � � Í ¥ � . Together with ý6¥ � � ¥]<Oÿ�3% tot this is exactly (i).
Part (3), (v)

Ç
(ii): As in (i)

Ç
(ii) we get that ¥ � and ¥]< are Û -prime, and

that condition (dptot) is satisfied for
� F � Y Í ¥ � � F <ÑY Í ¥]< � . In order to show (dpcon)

assume ýþ> � Q�ÿ % con. If we had >R3IQ¥ � and Qp3IQ¥�< then by (the contrapositive
of) the (cuttot) rule we would have either ý2¥ � � ¥]<æómQ�ÿ�3% tot or ý6¥ � óË> � ¥]<Oÿ�3% tot,
contradicting the maximality of ý6¥ � � ¥�<Oÿ .
Proposition 6.4 For K a regular d-frame, the bitopological space spec K is
order-separated (cf. Definition 4.9).

Proof. The specialisation orders J � and J�< on the spectrum are given by inclu-
sion of first, respectively, second component of d-points. Let

� e � � eû< � , �28 � �38 < �
be two points with e � 3� 8 � . There is some >�%Ôe � Y 8 � and by regularity
some > N�Á > also belongs to e � Y 8 � . The corresponding witness

�J� �  z�
must

lie in
8 <PYqeM< because of (dpcon) and (dptot). So J � and

À < agree. Also,
the same witnesses show that

� e � � eM< � %&6 � � > Nv� , �68 � �38 < � %&6=< �þ���3�v .�	� , and
6 � � > Nv� 0¯6=< �����3�¡ z�	� !½4 .
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The frame-theoretic version of the Hofmann-Mislove Theorem, cf. [GHK � 03,
Corollary V-5.4], states that a Scott-open filter in a frame is equal to the intersec-
tion of a compact collection of completely prime filters. Assuming regularity and
one of the infinitary cut rules, we have an analogue for d-frames:

Lemma 6.5 Let K be a regular d-frame that satisfies the infinitary rule (CUT � ).
Assume that

» � is a Scott-open filter in F � and b�<P!°F <�Y Íe < is a completely
prime upper set in FH< such that:

(hmcon)  % con ! Ç  � o% » � or  <po%Ib�<
(hmtot)  % tot ! Ç  � % » � or  <V%Ib�<

Then the following are true:

1.
 <�! Ü ÷ ".R ( É Èq% » � Ê$ý|È � R;ÿH% con + , that is, b�< is uniquely determined
by
» � .

2.
» � !&"	È¿( ý|È �  <dÿÑ% tot + , that is,

» � is uniquely determined by b�< .

3. >¯I » � x � > �  < � % con.

4. For any point
� e � � eM< � % spec K ,

» � �*e � x eM<¯��b�< .

5.
» � is the intersection of all e � where

� e � � eû< � is a point and
» � �*e � .

6. b�< is the union of all eü< where
� e � � eû< � is a point and eü<V��b�< .

7. The set # ^�! " � e � � eû< � ( » � �½e � + ! " � e � � eM< � (¾eû<¿�Lb�<:+
is , � -compact saturated and ,í< -closed in the bitopological space�
spec KT��, � � ,ü< � .

Proof. (1) The element
 < can not be any smaller because of (hmcon). For

the converse assume Q Á  < . The corresponding witness
��®¯ .° � belongs to

» �
by (hmtot) and so Q�%j".R ( É Èq% » � Êbý|È � R;ÿÑ% con + . By regularity, then,

 <òI
Üh÷Â".R ( É Ès% » � Ê$ý|È � R;ÿH% con + .

(2) Because of (hmtot) it is clear that
» � must contain all È�%'F � with ý|È �  <dÿH%

tot. For the converse let >½% » � . By regularity and Scott-openness of
» � there
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is > N Á > still in
» � . The corresponding witness

�J�3�¡ z�
must be below

 < because
of (hmcon), but then ýþ> �  <OÿH% tot by (tot– [ ).

(3) Assume >kIòÈ for all ÈP% » � . By (con–
Í
) we have

� > � R � % con for allRh%p".R ( É Èq% » � Ê � È � R � % con + , so
� > �  < � % con by (con– ÜÎ÷ ) and part (1). For

the converse, remember that
� È �  < � % tot for all ÈË% » � by (2), so

� > �  < � % con

implies >¯I*È by (con– tot).
(4) Let ¥ � ! Ü � F � YÎe � � . From

» � �Be � and (hmcon) we get P
� ¥ � �I±� FH<ÎY#b�< � , so ¥�<s!XÜ P

� ¥ � �¤£  < and hence eü<V��b�< .
Starting with the right hand side, eí<P�²b�< , we let ¥�<¯!ÔÜ � F <,Y�eM< � . From

(hmcon) we get P
� ¥]< � 0 » � !�4 . So ¥ � !RÜÎ÷ P � ¥�< � 3% » � and hence

» � �*e � .
(5) Assume that >@3% » � . Because

» � is assumed to be Scott-open, we can
apply Zorn’s Lemma to obtain a maximal element ¥ � above > that does not be-
long to

» � . The set e � ^�! F � Y Í ¥ � is a completely prime filter that sepa-
rates > from

» � , and it remains to show that it is the first component of a d-
point. According to Lemma 6.3 the right candidate is eí<�!)F <VY Í ¥�< where¥]<2!&Ü ÷ P � ¥ � � !/Ü C

� ¥ � � . Note that
 <¯Ir¥]< as

 <'% C
� ¥ � � by (hmtot). Using

Lemma 6.3(iv) we only need to show that ý6¥ � � ¥]<Oÿc3% tot. For this we employ
(CUT � ): for all ý|È � R;ÿ�% con with ÈP%e � we have ý6¥ � ó'È � ¥�<OÿÎ% tot by (2); if
it was the case that ý6¥ � � ¥�<dÿ�!Ùý6¥ � �  <móPÜh÷ P � ¥ � � ÿq% tot, then ý6¥ � �  <Oÿq% tot

would follow, contradicting (hmtot).
For part (6) let Qk%²b�< . By regularity and the assumption that bT< is com-

pletely prime, some Q N Á Q also belongs to b�< . The witness
��® �  .®

is not in
» �

because of ý ��®��³ .®	� Q N ÿ*% con and assumption (hmcon). By part (5) there is a
point

� e � � eû< � that separates
��® �  z®

from
» � . By (4) we have that eü<p��b�< and

because of ý ��®��v .®�� Q�ÿ % tot it must also be the case that Qs%'eü< .
Finally, consider the last claim; the two descriptions of # are equal because

of (4). Any , � -open neighbourhood of # has the form 6 � � > � with >¯% » � by (5).
It follows that # is , � -compact. Only the maximality of

 < in FH<üY�b�< is required
to see that # is the complement of 6�< �  < � .
Theorem 6.6 For a regular d-frame K�! � FÑ�Âfgf � n`n�� con

�
tot
�

that satisfies the in-
finitary cut rule (CUT � ) there is a one-to-one correspondence between
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1. maps ´ from F to the four-element d-frame å Ê`å which preserve fgf , ÜÎ÷ , con,
tot, and the logical operation � , and

2. subsets # of spec K which are compact saturated in the positive and closed
in the negative topology.

Proof. Given a map ´ as described in part (1), consider
» � !«´ <àß � fgf � 0¯F � andb�<¯!«´ <àß � n�n � 0¯F < . It is straightforward to show that the pair

�|» � � b�< � satisfies
the assumptions of Lemma 6.5. The translation in the opposite direction is equally
easy.

A few comments on this result are in order: Given a consistent predicate a ,
that is, a±% con, then the value of ´ at a can only be fgf , n`n , or C . The first outcome
indicates that all elements of # satisfy a , the second that some element of #
fails a , and the last that neither holds (which is a possibility because a consistent
predicate does not need to be Boolean). This means that ´ acts like a universal
quantifier for partial predicates.

Generally, one would expect a universal quantifier to preserve fgf but not neces-
sarily n`n , because # could be the empty set. Also, one would expect it to preserve
conjunction ( � ) but not disjunction ( S ), and certainly one would not want it to be
inconsistent (returning D ) for a consistent predicate, or to be undecided (return-
ing C ) for a total predicate, that is, one expects it to preserve con and tot.

The preservation of Ü ÷ can be seen as a computability condition on the uni-
versal quantifier: If a (partial) predicate a is the directed supremum of (partial)
predicates a ¦ , and if the universal quantifier applied to a returns a definite answer,
that is, either fgf or n�n , then computability requires the same answer to be obtained
from an approximant a ¦ already.

All in all, then, Theorem 6.6 is a generalisation of Martı́n Escardó’s theory
of computable quantification on topological spaces, [Esc04], to a logic in which
predicates are allowed to have value n`n as well as fgf .

Let us now turn to a notion of compactness for d-frames.

Definition 6.7 A d-frame is called compact if whenever ý�Üp� � Ü E ÿh% tot, then
ýyÜ±� N � Ü E�N ÿÑ% tot for some finite subsets � N �k� and

E N � E
.
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Lemma 6.8 A reasonable d-frame K is compact if and only if the set tot is Scott-
open in F .

Definition 6.9 A distributive continuous lattice is called stably continuous if its
way-below relation is multiplicative, that is, Ý¯ù Ý and >ù Q � Q N Ç >ù
Q�ÛmQ N .15

Lemma 6.10 For K a compact regular d-frame, the well-inside relation on F �
(respectively, FH< ) is the same as the way-below relation. Furthermore, F � and F <
are stably continuous lattices.

Proof. Let > NdÁ > ; we show that > N ù > also holds. Indeed, assume >�IÔÜ ÷ # ;
then ý Ü ÷�# �����3�¡ z� ÿ§% tot by (tot– [ ). Compactness implies that ý|È � �����3�v .� ÿH% tot for
some È��=%¯# , and since ýþ> N �����3�¡ .� ÿH% con, > N I*È]� follows from (con– tot).

On the other hand, > N ù)> implies > N I*È for some È Á > because of regularity,
so > N Á > as well.

Closure of the well-inside relation against infima on the right follows from
(con– � ) and (tot– � ); Ý Á Ý holds in any d-frame.

Theorem 6.11 Compact regular d-frames are spatial.

Proof. We check the conditions (s � ), (s < ), (scon), and (stot) of Theorem 5.1.
Let > N 3Ia>R%/F � . Since F � is a continuous lattice, there is a Scott-open filter» � that contains > N but not > . Let ¥ � be maximal above > outside

» � , and set¥]<W!@Ü ÷ P � ¥ � � . As the complement of tot is Scott-closed, and "�¥ � + G P
� ¥ � � is a

directed subset of it, we have ý6¥ � � ¥]<Oÿ�3% tot. By Lemma 6.3(iv) we have a d-point
that separates > N from > .

For the condition (stot) assume that ýþ> � Q5ÿs3% tot. Pick a maximal element ¥ �
above > such that ý6¥ � � Q5ÿ'3% tot. As in the paragraph above, the element ¥5<*!
Üh÷ P � ¥ � � partners up with ¥ � to define a d-point. By construction, >¯IL¥ � and QsI¥]< .

For (scon) let ýþ> � Q5ÿ�3% con. By regularity and the fact that con is Scott-closed,
(con– Üh÷ ), we must have > N well-inside > with ý�> N � Q5ÿs3% con. The witness

���3�¡ z�
15These structures were called arithmetic lattices in [JS96].
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can’t be above Q as otherwise ýþ> N � Q�ÿ,% con would follow by (con–
Í
). So Q�3I��� �  .�

and we can apply the first part of the proof to obtain a d-point
� e � � eû< � with

Q_%XeM< ,
��� �  z� 3%�eû< . The latter fact implies that > must belong to e � because

ýþ> �����3�v .� ÿH% tot.

Corollary 6.12 The spectra of compact regular d-frames are exactly the compact
regular bitopological spaces.

The next three results are an immediate consequence of spatiality but it is of
some interest that they can in fact be derived without using the Axiom of Choice.

Proposition 6.13 Compact regular d-frames satisfy the cut rules (cuttot), (CUT � ),
and (CUT � ).
Proof. First of all, the two infinitary cut rules reduce to (cuttot) because of com-
pactness, so this is all that we need to show. Assume, then, that ýþ>só¿È � Q5ÿ�% tot,
ýþ> � QTólR;ÿ=% tot, and ý|È � R;ÿ=% con. By regularity and compactness there are > N5Á >
and Q N\Á Q such that ýþ> N ócÈ � Q5ÿr% tot and ýþ> � Q N óµR;ÿP% tot are still valid. A
semi-formal derivation is best suited for the somewhat involved argument that
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follows:

Ý ýþ> N ómÈ � Q5ÿÑ% tot assumption
å ýþ> � Q N ósR;ÿ§% tot assumptionu ý|È � R;ÿ§% con assumption¶ ýþ> ��� <OÿÑ% tot regularity,

� <Ë! ���3�¡ z�· ýþ> N ��� <�ÿ§% con regularity¸ ý � � � Q5ÿ % tot regularity,
� � ! ��®��v .®¹ ý � � � Q N ÿ§% con regularityº ýþ> ��� <æómQ N ÿÑ% tot from (4) by (tot– [ )» ýþ> � Q N ó � RûÛ � < � ÿ§% tot from (8) and (2) by (tot– S )

ÝbA ý � > N ómÈ � Û � � � Q5ÿ % tot from (1) and (6) by (tot– � )
Ý Ý ý|È�Û � � � Q N ólR;ÿ§% con from (3) and (7) by (con– � )
Ý$å ýþ> N Û � � � Q N ó � <OÿÑ% con from (5) and (7) by (con– � )
ÝJu ý � È�óË> N ÿõÛ � � � Q N ó � RMÛ � < �~� % con from (11) and (12) by (con– S )
Ý ¶ ý|È�óË> N ÿõÛ � � Ik> from (13) and (9) by (con– tot)
Ý · ýþ> � Q5ÿÑ% tot from (14) and (10) by (tot– [ )

Lemma 6.14 Let K be a compact regular d-frame.

1. To every Scott-open filter
» � in F � there exists a unique completely

prime upper set b�< in FH< such that the conditions (hmcon) and (hmtot) of
Lemma 6.5 are satisfied.

2. To every completely prime upper set bT< in F < there exists a unique Scott-
open filter

» � in F � such that (hmcon) and (hmtot) are satisfied.

3. The translations in (1) and (2) are inverses of each other.

Proof. Lemma 6.5(1) states that there is a unique candidate for bh< , namely
F <�Y Íe < , where

 <r!°Üh÷Â".R�%'F <P( É Èq% » � Êdý¥È � R ÿH% con + . Condition (hmcon)
is satisfied by construction, so let us look at (hmtot). If ýþ> � Q5ÿ�% tot with QVI  < ,
then let Q NhÁ Q with ýþ> � Q N ÿp% tot, too. The existence of Q N is guaranteed by
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regularity and compactness. By Lemma 6.10, we have Q N ù Q , and so Q N I²R for
some RT%p".R�%'F <c( É Èq% » � Êdý|È � R;ÿÑ% con + . Now we know that ý|È � R;ÿ% con for
some Èq% » � , and since ÈqIk> by (con– tot), we obtain >V% » � as required.

For the second statement let
 < ! Ü � F </Yµb�< � and define

» � !
"	È,%rF � ( ý|È �  <dÿÑ% tot + as prescribed by 6.5(2). This is a filter by (tot– � ); it
is Scott-open because of compactness. If ý|È � Q5ÿ2% con for some È*% » � , then
QsI  < by (con– tot).

Part (3) is an immediate consequence of uniqueness.

The preceding lemma allows us to conclude a frame-theoretic analogue of
Theorem 2.16 characterising stably compact spaces in bitopological terms:

Theorem 6.15 A d-frame K*! � FÑ�Âfgf � n`nõ� con
�
tot
�

is compact regular if and only
if the following conditions are satisfied:

(i) F � is a stably continuous lattice;

(ii) F < is isomorphic to the Lawson dual of F � , that is, the set of Scott-open
filters of F � ordered by inclusion;

(iii) ý�> � Q�ÿÑ% con if and only if >rI�È for all Ès%Pe ® , where e ® is the Scott-open
filter associated with Q according to (ii);

(iv) ýþ> � Q5ÿ % tot if and only if >V%'e ® .
Furthermore, d-frame homomorphisms from K to another compact regular d-
frame K N are in one-to-one correspondence to frame maps from F � to F N � which
preserve the way-below relation.

Proof. “Only if:” We showed in Lemma 6.10 that F � is a stably continu-
ous lattice. From the preceding lemma we get the order-reversing bijections
Q½¼ b�< � Q � ^`!F � Y Í Q and b�< � Q � ¼ » � � Q � which together establish an order-
preserving bijection between F � and its Lawson dual. If ý�> � Q�ÿË% con then by
studying the construction in the proof of 6.14(2) one sees that for all ÈV% » � � Q � ,ý|È � Q5ÿ=% tot, so >WIXÈ by (con– tot). Conversely, >WI�È for all Èm% » � � Q � implies
ýþ> � R ÿÑ% con for all R belonging to ".R�%'FH<�( É Èq% » � Êdý|È � R;ÿH% con + , by (con–

Í
).
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This in turn implies ýþ> � Q�ÿÑ% con by (con– ÜÎ÷ ). The equivalence in (iv) is true by
construction of

» � � Q � .
“If:” In order to show regularity, assume that >Ô3IÐ> N in F � . By continuity,

there is È±ù > with È/3I-> N , so there is a Scott-open filter e such that >/%&e
and È2IXe , in other words, ýþ> � Q5ÿ\% tot and ý¥È � Q�ÿ\% con for the element Q¿%PF§<
associated with e . Compactness is trivial as the filter associated to Üh÷ Q�¾ is the
directed union of the filters associated with each Q�¾ .

Regarding morphisms, we have that the two components of d-frame homo-
morphisms preserve

Á
, so by 6.10 they preserve ù . For the converse, let è � be a

ù -preserving frame homomorphism from F � to F N � , the first components of two
compact regular d-frames K and K N . We set è8< � Q � ^�!*[ è � � e ®Â� . The result is again
a Scott-open filter by the preservation of ù . The frame operations of F=< viewed
as the collection of Scott-open filters of F � are: intersection for Û , directed union
for Ü ÷ , and "	È�Û2È N (	Èq%'e � È N %'e N + for ó (multiplicativity of ù is used in this
formula). With this knowledge, their preservation by è¡< is easily checked.

7 Partial frames

We have alluded several times to the fact that con corresponds to the consistent
predicates on the spectrum of the d-frame. From a logical point of view, these are
preferable to general elements of the d-frame as they do not give conflicting an-
swers. In this section we will demonstrate that it is possible to replace a reasonable
d-frame by its set of consistent predicates without any loss of expressivity.

To emphasise that we are dealing with a new structure in its own right, we will
denote the set con by ¿�L (and the resulting structure by �¼L ).

Clearly, the totality relation tot has been just as important as con so far, and
we need a way to represent it within ¿�L . This is the rationale behind the following
definition. For a ��À %Á¿�L we set

a � À ^ x � aû<æó À � � % tot

and say that a strongly implies
À

. In the context of pairs, ý6¥ � ñ�ÿ � ýþ> � Q5ÿ holds if
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n`nfgf
logical order

information order

C

7
7 <m! 7 Û�n`n7 � ! 7 Ûrfgf

F <F �

Figure 3: The structure of the set of partial predicates associated with a d-frame.

and only if ýþ> � ñ�ÿH% tot. Altogether, there is quite a bit of structure on ¿¼L :

Â Binary infima ( Û ) are inherited from K ; they stay in ¿�L because of (con–
Í
).

Â By (con– Ü ÷ ), ¿õL is closed under directed sups Ü ÷ .
Â Because of (con– fgf ), (con– n�n ), (con– � ) and (con– S ), ¿¼L contains the two

constants and is closed under � and S .

Â We also have the constant C°%Á¿�L .

Â Û and Ü ÷ induce the information order I ; � and S induce the logical or-
der J . The strong implication � was introduced above.

Figure 3 presents a graphical representation of the set of consistent predicates
as a sub-structure of a d-frame.

Proposition 7.1 Let K*! � FÑ�Âfgf � n`n�� con
�
tot
�

be a reasonable d-frame.

1.
� ¿õL��ÂI � has binary meets, directed suprema, and a least element (denoted
by Û , Üh÷ , and C , respectively). Meets distribute over directed suprema.

2.
� ¿õL��¶� � S � fgf � n`n � is a distributive lattice.
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3. The relation � is contained in J ; it is transitive and interacts with the
logical operations as follows:16

(n`n – � ) n`n � 7
( � – fgf ) 7 � fgf
( S – � )

7 � E �û7 N � E ÆqÇ 7 S 7 N � E
( � – � )

7 � E �û7 � E N ÆqÇ 7 � EÑ�2E N

4. The following mixed laws hold:

( Û – ! )
7 ÛmE�! ��7 �VC � S � EÑ�¯C � S ��7 �VE �

( � – I )
7 I 7dN � EÎI*E N �M7 � E ! Ç 7�N � E N

Proof. (1) We have a dcpo by (con– Ü ÷ ). The element C is a member of ¿�L
because CÔI/fgfÑ% con. Meet-continuity is inherited from the frame F .

(2) This is immediate from the “logical” axioms.
Regarding (3), let

7 � E ; so ý|E � ��7 <OÿT! 7 <mórE � % tot by definition. Since7 % con,
7 � IÏE � follows from (con– tot). In the same way, one concludes7 < £ E$< from E2% con. Transitivity uses a similar argument: if

7 � E � ë then
E � I*ë � and

7 <,óËE � % tot. So
7 <æó2ë � % tot by (tot– [ ).

Since n`np! tot in any reasonable d-frame, we have ý 7 � � Ý$ÿ�% tot by (tot– [ ).
This shows (n`n – � ). Regarding ( S – � ), assume

7 � E and
78N � E . This means7 <æó2E � % tot and

7 N< ó2E � % tot by definition. By (tot– S ) and distributivity of ó
and Û over S , we have

��7 S 7 N � <sóVE � % tot as well. The reverse direction is an
application of (tot– [ ). The proofs of the other rules are similar.

(4) The first law is precisely the second part of Proposition 3.2. The other law
follows from (tot– [ ).

For two partial predicates a and a N to be related in the information order, that
is, a�Ipa N , means that a N will always give the same answer as a , whenever the
latter gives an answer at all, and may answer where a doesn’t. Rule ( � – I ) can

16We re-use the labels of Definition 2.18 because the axioms are formally the same, but note
that in the present situation we neither have ( Ò – { ) nor ( x – Ò ). On the other hand, here we haveÒhÃÅÄ which is not a requirement for strong proximity lattices. The exact relationship between
the two is explored in Section 8.1.
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therefore be read as saying that with a � À
, every (information order) refinement

of a implies every refinement of
À

. Hence the terminology “strong implication.”

Definition 7.2 A structure �-! � ¿,� Û � Ü ÷ � Cæ��� � S � fgf � n�n�� � � which satisfies the
properties of Proposition 7.1 is called a partial frame. Morphisms between partial
frames preserve all operations and the strong implication relation. The resulting
category is denoted by pFrm.

Before we embark on the proof that every partial frame arises as the struc-
ture ��L of a reasonable d-frame, we note some consequences of the axioms.

Lemma 7.3 Let � be a partial frame.

1. Whenever
7 � E , then also

7 � 7 N � EÑSVE N for arbitrary
7 N � E N .

2. Any one of the operations Û , � , and S distributes over any other.

3. The operations � and S are I -monotone in each argument, and Û is J -
monotone.

4. If a �7À I 7
then

� a¯S 7:� � �0À S 78� � � aVS À � is the least upper bound of
"za �7À + in the information order, denoted by Æ�ÇÉÈ Ê�"za �7À + . Furthermore, for
any E , E=ÛsÆ¯Ç�È Ê "za �7À +!rÆ¯Ç�È Ê "	E=Ûga � E§Û À + .

5.
� ¿æ�ÂI � is bounded-complete, that is, every bounded subset has a supremum.
Furthermore, for every

7 %m¿ , the set
Í Ê 7 !&"	Eq(	EhI 7 + is a frame.

6. In the frame
Í Ê fgf , logical order and information order coincide; in particu-

lar, the � coincides with Û , and S with Æ�Ç�È�Ê . In the frame
Í Ê]n`n , the logical

order is the opposite of the information order; in particular, � coincides
with Æ¯Ç�È=Ê , and S with Û .

7. The logical constants fgf and n`n satisfy the laws:7 ÛrfgfÖ! 7 S¯C7 ÛÎn`n ! 7 �¯C
C ! fgf�Û�n`n7 ! Æ�Ç�È Ê " 7 Ûrfgf �M7 Ûhn`n�+
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8. Information order and strong implication are related by:

7 � E �û7 N � E ! Ç 7 Û 7 N � E7 � E �û7 � E N ! Ç 7 � E§Û2E N7 � E Æ�Ç 7 Ûhn`n � E=Û'fgf
9.
7 J½E if and only if

7 Û¯fgfÑI*E\Û'fgf and
7 Ûhn`n £ E=ÛÎn`n .

10. The operations � and S are Scott-continuous in each argument.

Proof. The first statement is a consequence of ( S – � ) and ( � – � ), because
7 !7 S ��7 � 7�N£� and E�!REH� � EÑS2E Nv� .

The second statement is part of Proposition 3.2 but in any case only requires
some straightforward computations in the distributive lattice

� ¿,��� � S � .
The third statement holds because of (2), e.g., if

7 I 7 N
then

7 Û 7 N ! 7
and7 �¿E�! �97 Û 7 N � �2E�! �97 �¿E � Û ��7 N �VE � , hence

7 �¿EÎI 7 N �VE .
(4) To see that the given expression is an upper bound, compute

aVÛ ��� amS 7:� � �2À S 7:� � � amS À ��� !��� a¿Ûga � S � a¿Û 78�~� � ��� a¿Û ÀH� S � a¿Û 78��� � ��� aVÛla � S � aVÛ ÀH�~� !� amS4a � � ��� a¿Û À � SIa � � � amS � a¿Û ÀH�~� !²am� ��� a2Û À � S4a � !²a
Next, if E is an upper bound for a and

À
, then

� aWS 78� � �0À S 78� � � a'S À � I� E¼S 7:� � � E¼S 7:� � � E¼SæE � ! � E¼� 78� S,E�!½E . Finally, let E be an arbitrary element
of ¿ ; we get

E§ÛsÆ�Ç�È Ê "za �7À +!�E=Û ��� a2S 7:� � �2À S 7:� � � amS À ��� !�~� E=Ûsa � S � E=Û 78��� � ��� E§Û ÀH� S � E=Û 7:�~� � �~� E=Ûga � S � E\Û ÀH�~� !Æ¯Ç�È Ê "	E=Ûga � E§Û À +
where the last step holds because E\Û 7 is an upper bound for "	E§Ûga � E=Û À + .

(5) The supremum of the empty set is C . A nonempty set is the directed
union of its finite subsets, so bounded-completeness follows from the previous
item and the fact that

� ¿æ�ÂI � is a dcpo. It is then automatic that the elements
below some fixed bound form a complete lattice; the frame distributivity law is
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satisfied because infima distribute over directed suprema by assumption, and over
finite suprema by the previous item.

(6) Let a � a N IÖfgf . By (4) we have Æ�Ç�È�ÊT"za � a N +P! � aPSkfgf � � � a N S1fgf � �� aWSËa Nv� !�fgfü�pfgfü� � aPSÅa N£� !ªaWSËa N and we can conclude that information
order and logical order coincide. In the frame

Í Ê]n`n the analogous calculation readsÆ¯Ç�È Ê "za � a N +�! � aæS�n`n � � � a N S�n`n � � � aæS�a N£� !²a���a N � � aæS�a N£� !taæ��a N from
which it follows that the logical order is the opposite of the information order.

For (7) we only need to compute according to ( Û – ! ):
7 Û±fgfæ! �97 �¯C � S� fgf��¯C � S �97 �Wfgf � ! ��7 �VC � SpC°S 7 ! 7 S1C , etc. The last equation re-

quires the formula for the supremum given in (4), with
7

as the upper bound:Æ¯Ç�È Ê " 7 Ûrfgf ��7 ÛÎn`n�+ ! ���97 S¯C � � 78� S ���97 �'C � � 78� S ���97 S¯C � � �97 �¯C � !7 S ��7 �VC � ! 7 .
(8) One first uses (1) to obtain

7 �,C � E , 7dN �æC � E , and
7 � 7�N � E from the

assumptions. The left hand sides are put together by ( S – � ), and one obtains the
expression for

7 Û 7dN there. The second implication is completely analogous if one
remembers the equality

��7 ��C � S � E���C � S ��7 �,E � ! �97 S,C � � � E�S,C � � �97 SæE �
quoted in Proposition 3.2.

In the last law in (8), the direction from left to right is an application of what
we just showed plus (n`n – � ) and ( � – fgf ). The other direction follows from ( � – I ).

(9) The direction from left to right is trivial by (3) and (6). For the converse
we use (6) to get

��7 �VE � Û'fgf ! ��7 Û'fgf � � � E=Ûrfgf � ! �97 Ûrfgf � Û � E\Û'fgf � ! 7 Ûrfgf
and

��7 �WE � Û�n`n_! �97 Û�n`n � � � E�Ûsn`n � !*Æ¯Ç�È=ÊT" 7 ÛÎn�n � E=ÛÎn`n�+Ë! 7 Ûqn`n . Two
applications of the last law in (7) complete the proof.

(10) Let Ì be a I -directed set of elements of ¿ . We have

fgf�Û2Ü ÷vÍ ¨�Î � a2� 78� ! ( Û distributes over Ü ÷ and � )
Ü ÷¡Í ¨�Î ��� fgf�Ûla � � � fgf�Û 78�~� ! (6)
ÜÎ÷ Í ¨�Î ��� fgf�Ûla � Û � fgf�Û 78�~� ! (distributivity)� fgf�Ûsa � Û � fgfõÛ2Ü ÷vÍ ¨�Î 78� ! (6)� fgf�Ûsa � � � fgfõÛ2Üh÷ Í ¨�Î 78� ! (distributivity)
fgf�Û � a2�VÜ ÷¡Í ¨�Î 78�

A similar computation shows n`n ÛsÜ ÷ÏÍ ¨�Î � aæ� 78� !±n`n Û � a��qÜ ÷ÏÍ ¨�Î 78� and the last
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law in (7) completes the argument.

Proposition 7.4 For � a partial frame consider the structure KjÐ ^�!� F � � F <�� con
�
tot
�

where

F � ^�! 	 C � fgf�
d!�"zac%Á¿ô(�CÔIoa�I/fgf;+
F < ^�! 	 C � n`n�
O!�" À %Á¿ô(�CÔI À Icn`n�+� a �7ÀH� % con ^ x É 7 %4¿§Ê�a �7À I 7� a �7ÀH� % tot ^ x À � a

Then

1. K�Ð is a reasonable d-frame and �ML�Ñ ð ! � .

2. If K is a reasonable d-frame then KAÐ\Ò�ð! K .

Proof. (1) F � and F < are frames by Lemma 7.3(5). The pairs ý�fgf � CTÿ and ýyC � n`n8ÿ
are in con because "�fgf � CÎ+ and "¾C � n�nõ+ are (trivially) bounded. They are in tot by
( fgf – � ) and ( � – n�n ). Condition (con–

Í
) is trivially satisfied, and (tot– [ ) reduces

to ( � – I ). For (con– � ) assume that "za �7À + is bounded by
7

and "za N ��ÀüN + by
7dN

.
Then aPÛha N !©ar�Åa N I 7 � 7 N as a and a N are elements below fgf . Likewise,Æ¯Ç�È=Ê�" À\��À N +�! À � À N I 7 � 7 N . So

7 � 7 N is a bound for "zaVÛsa N � Æ¯Ç�È=Ê�" À\��À N +]+ .
Condition (con– S ) is shown in the same way. For (tot– � ) assume

À � a andÀûN � a N . We get Æ¯Ç�È=Ê " À=�7ÀûN + � a and Æ�Ç�È=ÊT" À\��ÀüN + � a N by ( � – I ), and
then Æ�Ç�È Ê " À=�7ÀüN + � a¯ÛIa N by 7.3(8). Next consider (con– ÜÎ÷ ); by assumption,
each pair

�97�� E � in # is bounded, and since we are in a bounded-complete dcpo,
the suprema exist and form a directed set. The supremum of the latter is an up-
per bound for Ü ÷ #�! � Ü ÷ " 7 ( É EbÊ8ý 7�� E�ÿH%¯#T+ � Ü ÷ "	E�( É 7 Êdý 7õ� E�ÿH%¯#T+ � . Finally,
consider (con– tot), so let ý�a ��À ÿË% tot and ý�a N©�7À ÿË% con. This means

À � a
and that the supremum of

À
and a N exists. We get Æ�Ç�È Ê " À\� a N + � a by ( � – I )

which implies Æ¯Ç�È�ÊT" À=� a N +ÎJoa or Æ�Ç�È=ÊT" À\� a N +��}aP!�Æ�Ç�È=ÊT" À=� a N + . Taking the
meet with fgf on both sides yields for the left hand side

� Æ�Ç�È Ê " À\� a N +H�4a � Ûrfgfí!� Æ�Ç�È Ê " À=� a N +¼Ûqfgf � � � aæÛ�fgf � !rÆ¯Ç�È Ê "¾C � a N +õ�_aW!²a N �_a and for the right hand
side just a N , so indeed a N Ioa as desired.
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To see that the structure �¼L�Ñ is isomorphic to � , consider the translations

eP^d��Ø ��L�Ñ � 7 ×Ø ý 7 Ûrfgf ��7 Û�n`n8ÿ8 ^O��L�ÑhØ � � ý�a �7À ÿû×Ø Æ¯Ç�È=ÊT"za �7À +8
is well-defined because the pairs

� a �7À � % con are bounded and Lemma 7.3(4)
applies. We have

8 �\e�! Id Ó by 7.3(7), and e�� 8 ! Id Ô�Õ³Ó�Ö³× by 7.3(4) and (7).
e and

8
preserve the information order, so C , Û , and Ü ÷ are preserved by e�� 8

and
8 �Îe . They also preserve the logical order:

7 J�E in � is equivalent to7 �EÔ! 7
, so e ��78� ! �97 ÛRfgf ��7 Û�n�n � ! ���97 �½E � ÛRfgf �$��7 �E � ÛWn`n � !�~��7 Û�fgf � � � E�Û�fgf �;�$�97 Û�n`n � � � EàÛ�n`n ��� ! �~��7 Û�fgf � Û � E�Û�fgf �;� Æ¯Ç�È�ÊT" 7 Ûhn`n � E§ÛÎn`n�+ � !

e ��78� ��e � E � , in other words, e �978� JZe � E � . For
8

, assume
� a �7À � J � a N �7ÀûN£�

which is equivalent to a1I²a N and
Ào£«ÀûN

. We get Æ�ÇÉÈ�Ê�"za ��À +,JtÆ¯Ç�È=ÊT"za N ��ÀüN +
by the characterisation of J in 7.3(9). Finally, consider strong implication:� a �7À � � � a N �7À N � in ��L�Ñ is by definition equivalent to

� a N �7ÀH� % tot in K�Ð
which is, again by definition, equivalent to

À � a N in � . The latter impliesÆ¯Ç�È Ê "za �7À + � Æ¯Ç�È Ê "za N ��À N + by ( � – I ), and is also implied by it because of
Lemma 7.3(8):

À !_n`n�Û�Æ�Ç�È Ê "za ��À + � fgf�ÛsÆ¯Ç�È Ê "za N ��ÀüN +�!ta N .
(2) It is clear that K�Ð\Ò returns F �ÑG F < which is isomorphic to F , so we only

need to check the two relations. Now, in �ML we have ýþ> � Q�ÿ%o	�C � fgf�
 if and only
if Q�!RA , and ý�> � Q�ÿH%Ø	�C � n`n�
 if and only if >Ë!RA . The pair

� ýþ> � A]ÿ � ý|A � Q5ÿ � belongs
to con in K�Ð Ò if and only if it is bounded in �ML , which happens if and only if
ýþ> � Q�ÿ§% con in K . For the covering relation,

� ý�> � A]ÿ � ý¥A � Q5ÿ � belongs to tot in KTÐ Ò
if and only if ý¥A � Q5ÿ � ýþ> � A]ÿ in �¼L , which happens if and only if ýþ> � Q5ÿH% tot in K .

Theorem 7.5 The categories rdFrm and pFrm are equivalent.

Proof. We extend the construction of the previous proposition to morphisms, so
let èm! � è � � è8< � be a d-frame map from K to K N . For  % con we set � � è �«�  � !
ýyè � �  � �;� èO< �  < � ÿ . This is a well-defined function from �ML to �¼L � because è
preserves the con-relation. It is easy to check that it preserves all partial frame
operations, and the preservation of � follows because è preserves tot. Thus � � è �
is a morphism in pFrm.
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fgf
C
n`nC

n�nfgf
JI

Figure 4: The dualising object å Ê�å as the partial frame ´�Ù ^�! �H��Ú � . Note
that strong implication contains only those pairs that are required by (n`n – � )
and ( � – fgf ), in particular, C � C does not hold.

Vice versa, if èÑ^��BØ � N in pFrm, we let è � and èO< be the restrictions
to 	�C � fgf�
 and 	�C � n`n�
 , respectively. Apart from C , fgf , n�n , Û , and Ü ÷ they also pre-
serve Æ�Ç�È=Ê because of Lemma 7.3(4), so they are frame homomorphisms. Since è
is monotone with respect to I , bounded pairs are mapped to bounded pairs, hence� è � � èO< � preserves the con-relation on KAÐ . The preservation of the tot-relation is
consequence of � being preserved by è .

The translations are inverses of each other because every element
7

of a partial
frame is the supremum of

7 ÛWfgf and
7 Û�n`n by 7.3(7), and suprema are preserved

because they are computed from the logical operations, 7.3(4).

Because of this equivalence we can from now on pretend that any partial frame
is given concretely as the set con of a reasonable d-frame with the operations
defined as at the beginning of this section.

The effect of the equivalence on the dualising object å Ê`å in dFrm is to chop
off the top element. Figure 4 depicts the resulting partial frame ´�Ù1^�!/�H��Ú � in the
information order and the logical order.

Points on a d-frame K are given by pairs
� e � � eM< � or by dFrm-maps into the

dualising object; the equivalent for the partial frame �ûL is a pair
�28 � �38 < � of

subsets of ¿õL that satisfies:

Â 8 � and
8 < are disjoint, non-empty, and Scott-open with respect to I .

Â With respect to J ,
8 � is a prime filter and

8 < a prime ideal.

Â Whenever a � À
then either ac% 8 < or

À % 8 � .
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These properties follow immediately from the characterisation of
8 � and

8 < as
the inverse image of fgf and n�n , respectively, under the pFrm-equivalent to the
morphism into å Ê�å . It is also clear that every pair of subsets with these properties
defines a pFrm-morphism into ����Ú � .

The forgetful functor from pFrm to Set does not factor through the equiv-
alence with d-frames, as the underlying set in general is smaller. Nonethe-
less, the construction of a left adjoint is similar to that in the proof of Propo-
sition 5.7. For a set # we again consider the free frame e�# and the d-frame
K � # � ^�! � e�# � e�#h� con

�
tot
�

where tot is chosen minimally to satisfy (tot– fgf ),
(tot– n`n ) and (tot– [ ), that is ýþ> � Q5ÿæ% tot iff >p!ÚÝ or QW! Ý , but con is now the
smallest Scott-closed subset of eT# G e�# that contains all pairs

� È � È � , È�%¯# , and
is closed under the logical operations. It is obvious that the axioms for a reason-
able d-frame are satisfied, except possibly (con– tot). For this we need to analyse
e�# and K � # � more carefully.

First of all, the set eT#ÔY2"�Ý�+ contains the generators and is closed under
all frame operations except empty meet. One sees this by studying the concrete
construction of the free frame or by considering the extension of the assignment
#R×Ø A from eT# to the two-element frame åÎ^�!�A�µXÝ ; only the top element of eT#
is mapped to 1 by it. In the frame e�# G eT# the subset �p^�!�" ýþ> � Q5ÿ�(b>�3!�Ý,3!RQ�+
is likewise closed under binary meets and arbitrary sups, and it contains the diag-
onal elements

� È � È � , ÈP%k# . In particular, it is Scott-closed. � is further closed
under the logical operations but lacks the constants fgf�! � Ý � A � and n`nk! � A � Ý � .
Adding them does not change Scott-closedness (think of taking the union withÍ fgf � Í n`n ) but binary suprema can no longer be taken. The logical operations are
fine, though, as one can check by a case distinction. By this consideration we see
that the only elements of con that lie above an element of tot are fgf and n`n . So
(con– tot) is valid.

For the extension property let � be any partial frame and Þ a function from
# to ¿ in Set. We also have Þ � ^OÈ2×Ø Þ � È � ÛPfgf and Þ]<=^8È2×Ø Þ � È � Û,n`n . These
lift to frame homomorphisms è � ^deT#�Ø 	�C � fgf¯
 and èO<=^8e�#&Ø 	 C � n`n�
 , respec-
tively. The pair

� è � � èO< � is a d-frame homomorphism from K � # � to the d-frame
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ß
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� �
Figure 5: The free partial frame over one generator and its Stone dual.

associated with � , because
� è �HG èO< � <àß � ç � is Scott-closed, contains the diagonal

elements, and is closed under the logical operations, and so preserves con; it pre-
serves tot because this was chosen minimally.

Figure 5 shows the free partial frame over the one-element set #R!�" � + on the
left. Its Stone dual is the three-element bitopological space shown on the right.
As we should expect, it has the same number of elements as the dualising partial
frame shown in Figure 4.

We conclude this section with a characterisation of three special cases of d-
frames.

Proposition 7.6 The equivalence of Theorem 7.5 cuts down to one between rea-
sonable d-frames that satisfy axioms (cuttot), (Cut � ) or (Cut � ) and partial frames
that satisfy the following corresponding Gentzen-style cut rules:

(G-cuttot)
7 � EHSIa and a2� 7dN � E N

! Ç 7 � 7 N � EÑS2E N
(G-Cut � ) 7 � EHS � Ü6 � and k�a�%r6�Ê³a¿� 7 N � E N

! Ç 7 � 7�N � EÑS2E N
(G-Cut � ) k�a�%r6�Ê 7 � EÑS4a and

� Ü6 � � 7�N � E N
! Ç 7 � 7�N � EÑS2E N

Proof. Start with a d-frame K that satisfies (cuttot), and assume the two hypothe-
ses in Gentzen’s rule for elements

7õ��7ON � E � E N9� a/%�¿�L . Unwinding the definition
of � and using (tot– [ ), we get

7 � EÎSàa x ý|E � óØa � ��7 <OÿW% tot
Ç

ý|E � ó¯E N� óÁa � ��7 <só 7 N< ÿh% tot and a'� 7 � E x ý|E � � aû<só 7 <dÿh% tot
Ç

ý|E � ócE N�
� aû<Vó 7 <¯ó 7 N< ÿr% tot. Since aj% con, we conclude by (cuttot) that

ý|E � ómE N�
�~7 <�ó 7dN< ÿ§% tot or

7 � 7dN � EÑS2E N .
74



For the converse assume that the partial frame � satisfies Gentzen’s (finitary)
cut rule, and let

À=�  I&fgf and a � )PIcn`n , and assume ý À ó  � a¼ÿH% tot, ý À\� a�ó#)�ÿ %
tot and ý  � )�ÿ\% con. By definition of the two predicates on KjÐ , Proposition 7.4,
this means a � À S  , a2�g) � À

and  � )cI 7 for some
7 %h¿ . By ( � – I ) we

infer a � À S 7 , aË� 7 � À
from which Gentzen’s cut rule allows us to concludea � À

, or, equivalently,
�2À � � aû< � % tot.

The proofs for the infinitary rules are similar, noting that
7 � E¼S � Ü16 � if and

only if ý|E � ó � Ü6 � �;�~7 <dÿÑ% tot and similarly for Ü on the left.

Next we characterise partial frames that arise from regular d-frames (Defini-
tion 6.1). We begin with the following observation which is an immediate conse-
quence of the definitions.

Lemma 7.7 Let � be a partial frame. The following are equivalent:

1. a � À
2. a � ÁáÀ � with witness aû<
3.

À < Á aû< with witness
À �

The following technical lemma relates logical order to information order, and
is used in the characterisation of regularity in partial frames and later in Section 9
when we consider symmetric d-frames.

Lemma 7.8 In any d-frame, if Ó is directed and e is filtered with respect to J ,
and for each  %�Ó and )1%pe ,  J«) , then "  Û�)p(  %'Ó � )W%'eæ+ is directed
with respect to I .

Proof. First note that  J«) implies  Ûg)±!aý  � � )8<Oÿ . Next, if  �  N J«) � ) N ,
then

�  S  N � Û � )T�â) N � !  � ó  N � ó%)8<�ó%) N< £  Û%) �  N Û%) N by Proposition 3.2.

Lemma 7.9 For any
7

in a partial frame, the set "zaVÛ À (¢a � 7 � À + is di-
rected. Hence the supremum exists (denoted by

7�ã
). Moreover,

7Éã I 7 .
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Proof. Because a � a N � 7 � À\��À N
implies aWSÅa N � 7 � À � À N by ( S – � )

and ( � – � ), Lemma 7.8 applies. From a � 7 � À
we obtain a � I 7 � I À � andÀ <¯I 7 <¿Iraû< , so aVÛ À !°ý�a � �7À <OÿÑI 7 .

Proposition 7.10 A d-frame K is regular if and only if
7 ! 7�ã for every element

7
of the associated partial frame �ML .

Proof. By Lemma 7.7, we have that the sets "za � (za � 7 + and "za � (za � Á�7 � +
are the same, and likewise " À <P( 7 � À +c!Ù" À <�( À < Á�7 <¡+ . The equivalence
between regularity and

7 ! 7�ã is now obvious.

Now, compactness (Definition 6.7):

Proposition 7.11 A reasonable d-frame K is compact if and only if for any two
I -directed collections

� a ¦þ��¦©¨Âª and
�0À ¾ � ¾ ¨Jä of elements in the associated partial

frame �¼L it is true that Üh÷ ¦©¨Âª a ¦ � Üh÷ ¾ ¨�ä À ¾ implies a ¦ � À ¾ for some �q%&Ó ,å %Å� .

Proof. The forward direction follows because Üh÷ ¦©¨«ª a ¦ � Üh÷ ¾ ¨�ä À ¾ is equiva-
lent to ý�Ü ÷ ¾ ¨Jä �2À ¾ � � � Ü ÷ ¦�¨Âª � a ¦�� <OÿW% tot. For the reverse direction note that in-
stead of arbitrary suprema in the definition of compactness we can always use
directed suprema, and that the assumption ý Ü ÷ # � Üh÷æ� ÿÑ% tot can be rephrased as
Ü ÷ � ¨�ç ý|A � R ÿ � Ü ÷ ^ ¨�` ý|È � A]ÿ .

Another way of expressing the characterisation in this proposition is to say
that � as a subset of ¿õL G ¿õL is Scott-open.

8 From partial frames to distributive lattices

8.1 Removing the information order

As Proposition 7.1 and Lemma 7.3 demonstrate, partial frames have a very rich
algebraic-relational structure. It is desirable to explore under which conditions a
simpler structure can take their place without any loss of expressivity. Specifi-
cally, we will aim to get rid of all aspects of the information order, that is, binary
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n`nfgf

C
I
77

F
7 7 <a �

7 �

aM<� spec �
Figure 6: Representing the elements of a partial frame by ideal-filter pairs.

meets Û , directed joins Ü ÷ , and the least element C , leaving only the logic-related
structure (including strong implication).

We take our cue from Proposition 7.10 and define for an element
7

of a partial
frame � ,

I
7 ^`!/"za±%4¿ô(za � 7 + F

7 ^`!�" À %m¿ô( 7 � À +
It is clear that I

7
is an ideal (in the logical sense), that is, a J -lower set that is

closed under S , and that F
7

is a filter, that is, a J -upper set that is closed under � .
By ( � – I ) it is also clear that

7 I 7dN implies I
7 � I

7dN
and F

7 � F
7dN

, and by 7.10
the converse holds if and only if the partial frame is regular. Figure 6 illustrates
the situation. It is worthwhile to note that the positive part

7 � of a partial predicate
is captured by I

7
, which is located on the negative side of � . The sketch of the

spectrum in Figure 6 indicates why this is the right approach, in that a � 7 is the
condition that guarantees that a � I 7 � .

So under the assumption of regularity the problem that we set ourselves ap-
pears to be solved; the operations � , S , fgf , and n`n , and the relation � encode all
information about the partial frame. However, it would be very cumbersome to
write down the conditions under which a given structure

� ¿æ�¶� � S � fgf � n`nõ� � � can
be guaranteed to have been derived from a partial frame, and would amount to
a re-introduction of the information order via the sets I

7
and F

7
. Specifying the

morphisms would also require that the conditions that pertain to the information
order be encoded.

Instead, our strategy is different; we will use the fact that there is a construc-
tion that, when given a strong proximity lattice (Definition 2.18), always returns
a compact regular partial frame, and define morphisms between strong proximity
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lattices that always yield homomorphisms between the associated partial frames.
Furthermore, every compact regular partial frame can be shown to arise in this way
(up to isomorphism), and overall this will lead to an equivalence of categories.

Lemma 8.1 If � is a compact regular partial frame, then ÅAÐ ^�!� ¿,�¶� � S � fgf � n�n�� � � is a strong proximity lattice that additionally satisfies � �/J .

Proof. Comparing Definition 2.18 with Proposition 7.1(3), we see that there are
only two additional conditions to check, ( � – � ) and ( � – S ). We show the first:

Assume  � 7 � E ; by regularity we can write  as Ü ÷ "za¿Û À (\a �  � À + ,
so by compactness

� acÛ ÀH� � 7 � E for some a �  � À
, which by ( � – I )

implies that
À

is an interpolant.

Recall that a round ideal of a strong proximity lattice � is a nonempty sub-
set ÓX��� which is closed under S , downward closed with respect to � , and
which contains an element a Néè a for every aÐ%�Ó . A round filter is defined
dually. It was shown in [JS96] that the set of round ideals (respectively, round fil-
ters) forms a stably continuous lattice. For our purposes we will need the concrete
definition of infimum and supremum in these lattices:

ÓTÛmÓ N !½Ó0¿Ó N ÓTósÓ N !�" 7 ( É a�%'Ó � a N %¯Ó N Ê 7 � amSIa N +
e½Û2e N !½e0¿e N e½óme N !&" 7 ( É a�%'e � a N %'e N Ê 7Áè am�4a N +

We say that
� Ó � e � is a round ideal-filter pair if for all aÔ%½Ó ,

À %Re , a � À
.

Because of interpolation and transitivity of � ,
�
I
7õ�

F
78�

is a round ideal-filter pair
for any

7 %V� .

Proposition 8.2 Let
� ���¶� � S � fgf � n`n�� � � be a strong proximity lattice. The set �¤ê
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of round ideal-filter pairs carries the structure of a compact regular partial frame:

C ^�! �
In`n � F fgf �� Ó � e � Û � Ó N9� e N`� ^�! � Ó�0¿Ó N � ek0Ve N£�

Ü ÷³ë ¨�ì � Ó ë � e ë � ^�! � ã ÷³ë ¨�ì Ó ë � ã ÷³ë ¨�ì e ë �� Ó � e � � � Ó N9� e N`� ^�! � Ó�0¿Ó N � e*ó2e N£�� Ó � e � S � Ó N9� e N`� ^�! � ÓTómÓ N � ek0Ve N£�
fgfÏ^�! � � � F fgf �
n`n ^�! �

In`n � � �� Ó � e � � � Ó N � e N � ^�! e02Ó N 3!R4
Proof. This is very easy to show, except perhaps regularity. For this observe
that for a given round ideal-filter pair

� Ó � e � and elements a %°Ó ,
À %òe we

have
�
I a � F a � � � Ó � e � � �

I
À=�

F
À �

because of roundness, and hence
�
I a � F a � Û�

I
À\�

F
ÀH� ! �

I a � F À � . The (directed) supremum of these pairs yields
� Ó � e � , again

by roundness.

We remark that the characterisation of � can also be given as
� Ó � e � � � Ó N � e Ng� ^�! É a�%'e �7À %¯Ó N Êæa � À

Proposition 8.3 Every compact regular partial frame � is isomorphic to its par-
tial frame of round ideal-filter pairs.

Proof. We begin by showing that every round ideal-filter pair
� Ó � e � is of the

form
�
I
7õ�

F
78�

for some
7 %�¿ . For this let

7 ^�! ÜÎ÷ "za¿Û À (za±%¯Ó �7À %'eæ+ . Ifa N � 7
then by compactness a N � a�Û À I(a for some aÔ%RÓ , hence a N %RÓ

already. This shows I
7 ��Ó . To see that the other inclusion holds, let aj%°Ó

and a N¤è a by roundness. For any
À %½e we have a � À

, so a � a N Û À by
Lemma 7.3(8). Since a N Û À I 7 , we get a�% I

7
by ( � – I ).

The proof is complete if we can show that the function
7 ×Ø �

I
7õ�

F
78�

preserves
the partial frame structure. We check each line of the definition in Proposition 8.2:Â a � C implies a � n`n because CÔIcn`n , and a � n`n implies a � n`n\Ûæfgfí!�C

by ( � – fgf ) and 7.3(8).

Â a � 7 ÛËE if and only if a � 7 and a � E by 7.3(8) and ( � – I ).
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Â a � Üh÷vë ¨�ì 7 ë if and only if a � 7 ë for some í�% Õ by compactness
and ( � – I ).

Â a � 7 �2E if and only if a � 7 and a � E by ( � – � ).

Â a � 7 ShE if and only if there exist
7ON � 7 , E N � E with a � 7dN ShE N . The “if”

direction is ( S – � ), ( � – S ), and transitivity of � , “only if” is Lemma 8.1
and axiom ( � – S ) of strong proximity lattices.

Â n�n � a and a � fgf are always true.

Â 7 � E if and only if there is a with
7 � a � E .

Strong proximity lattices don’t have to be isomorphic (in the straightforward
sense) if their associated partial frames of round ideal-filter pairs are isomorphic.
Indeed, any

� � � S � -sub-lattice � of a given compact regular partial frame � that
is dense, in the sense that for any

7 � E in � , there is a±%V� with
7 � a � E , will

produce a partial frame of round ideal-filter pairs that is isomorphic to � . This is
actually a good thing because it allows us not only to drop the information order
but also to restrict to a “basis” of a given compact regular partial frame.

If è§^õ��Ø � N is a homomorphism of partial frames and if � and � N are
dense sub-lattices of � and � N , respectively, then the restriction of è to � has no
reason to return results in � N . However, because of density (and regularity), an
image è ��78� in ¿ N can still be written as Ü ÷ "za¿Û À (za �7À %¯� N � a � è ��78� � À + ,
so this suggests to replace è by a relation that associates with a given

7 %�� the
sets � N 0 I è ��78� and � N 0 F è ��78� . From previous work, [MJ02, JKM01], we know
that the situation is well captured by consequence relations:

Definition 8.4 Let Å � Å N be strong proximity lattices. A subset îÐ��� G � N is
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called a consequence relation if the following conditions are satisfied:

( î – � ) î¯! � �áî and î¯!rî4� � N
(n`n – î ) n`nsîVE
( î – fgf ) 7 îWfgf
( S – î )

7 î¿E �û7�N î2E ÆqÇ 7 S 7dN îVE
( î – � )

7 î¿E �û7 î¿E N ÆqÇ 7 îVEH�¿E N
( î – S )

7 î¿EÑS À ! Ç ÉÉÀüN %V� N Ê ÀûN � N�À and
7 îVEÑS ÀüN

( � – î )
7 �gahî2E ! Ç É a N %¿�¯Ê�a � a N and

7 �4a N î¿E
A pair of consequence relations î�ï¿�Ð� N G � , î ï �Ð� G � N is called adjoint if� �oî ï �æî ï and î ï �3î ï � � N , where “ � ” denotes relational composition.

The category Prox has strong proximity lattices as objects and adjoint pairs of
consequence relations as morphisms. We choose the direction of a pair

� î ï � î ï � as
going from Å to Å N , that is, with the direction of î ï and opposite to the direction
of î ï . Identities are given by the pairs

� � � � � , and composition is component-
wise relational product.

Proposition 8.5 Let � � � N be compact regular partial frames and èÑ^���Ø � N a
homomorphism. Define relations î ð ��¿ N G ¿ and î ð ��¿ G ¿ N by

E�î�ð 7 ^ x E � N è ��78�7 î ð E ^ x è ��78� � N E
This is an adjoint pair of consequence relations between the associated strong
proximity lattices Å�Ð and Å#Ð � .

The assignments � ×Ø ÅñÐ , èÔ×Ø � î ð � î ð � constitute a functor Å from the
category cr-pFrm of compact regular partial frames to Prox.

Proof. The conditions for consequence relations follow straightforwardly from
the analogous properties of strong implication � . Of some interest, perhaps, is
the argument for the interpolation part of ( î – � ): In E�î�ð 7 , or equivalently,
E � N è ��78� , we are allowed to replace

7
by ÜÎ÷«"za¿Û À (¢a � 7 � À + because � is

regular. Then Scott-continuity of è and compactness of � N allow us to conclude
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that E � N è � a � Û�è �2À � for some a � 7 � À
, and consequently E � N è � a � or

E�î ð a � 7 by ( � – I ).
The adjointness conditions follow from transitivity and interpolativity of � N ,

and the assumption that è preserve � .
For functoriality assume

� ^O�*Ø � N and è§^8� N Ø � N N . Then a � N N è�� �8��78� is
equivalent to aoî ð �:�978� . Using ( î – � ) this is equivalent to arî ð E � N��8�97:� for
some EÎ%Á¿ N , which is equivalent to ahî ð �æî=ò 7 as required.

For a functor � from Prox to cr-pFrm we assign to a strong proximity lat-
tice Å the compact regular partial frame �óê of round ideal-filter pairs, following
Proposition 8.2. If

� î�ï � î ï � is an adjoint pair of consequence relations between
strong proximity lattices Å and Å N then we let � � î ï � î ï � be the function è which
assigns to a round ideal-filter pair

� Ó � e � on Å the pair

� "za1( ÉÉÀ %¯Ó�Ê�ahî ï À + � "	E�( É 7 %¯e§Ê 7 î ï E]+ �
in other words, the inverse image of Ó under the relation î ï , and the forward image
of e under î ï . From the properties of consequence relations one readily derives
that the result consists of a round ideal and a round filter. Regarding the connection
between the two, let a½î�ï À for some

À %�Ó , and
7 î ï E for some

7 %�e . SinceÀ � 7 , we get a�î=ï 7 î ï E and hence a � N E by the second adjointness condition.
The conditions for a homomorphism of partial frames are easily checked, given
the characterisations in Proposition 8.2. For example, if

� Ó � e � !@CÐ! �
In`n � F fgf �

in ��ê one shows that "za1( ÉÉÀ � n`nõÊ�amî ï À +2! In`n : containment of the latter in
the former is clear because In`n is the smallest round ideal. For the other inclusion
one uses that aªî ï n`n implies a�î ï n`nPî ï n�n , hence a � N n`n by the second
adjointness condition. The analogous fact about F fgf is proved similarly. Another
case of some interest is the preservation of � ; assume

� Ó � e � � � Ó N � e Ng� , that is,
e02Ó N 3!X4 . By roundness one finds a � À

in e*0¿Ó N which implies a�î ï 7 î�ï À
for some

7 %V� N . This element is the witness that è � Ó � e � � è � Ó N � e N � .
Theorem 8.6 The functors Åm^ cr-pFrm Ø Prox and ��^ Prox Ø cr-pFrm con-
stitute an equivalence of categories.
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Proof. The natural isomorphism between a compact regular partial frame �
and its collection of round ideal-filter pairs was presented in 8.3. For a strong
proximity lattice Å , consider the map èÑ^�ÅjØ ÅñÐ�ô ,

7 ×Ø �
I
7õ�

F
78�

, and defineî ð and î ð as before. We already have � �õî ð �æî ð , so let
7 î ð � Ó � e � î ð E ,

which by definition reduces to
�
I
7õ�

F
78� !Ïè �97:� � � Ó � e � � è � E � ! �

I E � F E � .
This in turn is equivalent to having elements

78N %PÓ�0 F
7

, E N %�e*0 I E , and since7�N � E N is guaranteed, we get
7 � E by transitivity. On the other side we knowî ð �æî ð � � , so consider

� Ó � e � � � Ó N9� e Ng� which means that there is
7 %ce*0¯Ó N .

By roundness we can expand this to a � 7 � À
within eÔ0cÓ N which proves� Ó � e � � è ��78� ! �

I
7õ�

F
78� � � Ó N � e N � or

� Ó � e � î�ð �æî ð � Ó N � e N � .
We note that the composition Ål�û�æ^ Prox Ø Prox has a “normalising” effect

on a strong proximity lattice Å ; while � � J is not required to hold in Å , it is
true in Å#Ð ô . Nonetheless, our experience in working with strong proximity lattices
for describing stably compact spaces has been that the extra freedom afforded by
Definition 2.18 is essential. For more detail see [Keg02].

Let us also have a look at how d-points manifest themselves in the cate-
gory Prox. The dualising partial frame (depicted in Figure 4 on page 72) has
a dense sub-lattice consisting of fgf and n`n only; we denote it with ´ . For a
Prox-morphism

� î ï � î ï � from a strong proximity lattice Å to ´ , we consider
e ! "zac%V� (�fgfóî ï aû+ and Ó*! "za�%V� (¢a�î ï n`n�+ . Although this looks su-
perficially similar to the action of � � î ï � î ï � on the ideal-filter pair

� "�n`n�+ � "�fgf¶+ � , in
fact we are transporting

� "�n�nõ+ � "�fgf¶+ � in the opposite direction, and while it is still
true that Ó is a round ideal and e a round filter, Ó � e can not be shown. Instead
we have the following properties, generalising Proposition 2.2:

Proposition 8.7 Let e and Ó be subsets of a strong proximity lattice Å . The
following are equivalent:

1. There is a Prox-morphism
� î ï � î ï � from Å to ´ such that e !

"zac%V� (�fgfóî ï aû+ and ÓÎ!�"zac%V� (za�î ï n`n�+ ;
2. e is a round filter and Ó is a round ideal disjoint from e such that a � À

implies a�%¯Ó or
À %'e ;
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3. among disjoint pairs of a round filter and a round ideal,
� e � Ó � is maximal

with respect to component-wise inclusion;

4. e is a round prime filter and Ó�!&"zak( ÉÉÀ 3%¯e§Ê�a � À + ;
5. Ó is a round prime ideal and e/!�" À ( É a3%'Ó�Êea � À + .

Proof. (1)
Ç

(2): a � À
implies amî ï �æî ï À , so either a�î ï n`n or fgfóî ï À , hencea1%PÓ or

À %�e . For disjointness assume
7 %�ÓT0¯e . This implies fgfñî ï 7 î ï n`n

and hence fgf � n`n by the second adjointness condition, but this is not valid in the
dualising proximity lattice ´ , and so no such

7
exists.

(2)
Ç

(3): Assume Ó N is a round ideal containing Ó and disjoint from e . Ifac%¯Ó N YõÓ then there is also a N�è a in Ó N YõÓ by roundness. By disjointness, neitherac%¯Ó , nor a N %¯e , contradicting (2).
(3)

Ç
(4): Assume amS À %re , and let e N !�" 7 (zamS 7 %'e�+ . Then eò�Re N

and
À %�e N . Furthermore, e N is a round filter: a¿S 7 %ce implies E � a¿S 7 for

some E�%We , and by ( � – S ), E � amS 7dN for some
7dN � 7 . By definition,

7ON %We N ,
too. Closure under meets is shown by a simple application of the distributivity
law. If e N is disjoint from Ó then we can conclude e N !Ze , and hence

À %/e
as desired. If, on the other hand, a�S 7 %�e for some

7 %&Ó , then repeat the
construction of e N with

7
replacing a , and a replacing

À
. This e N is guaranteed

to be disjoint from Ó , and a�%'e is shown.
The set "zak( ÉÉÀ 3%'eÑÊ�a � À + is a round ideal because e is prime. It is also

disjoint from e , and so it must be contained in Ó because the latter is maxi-
mal. On the other hand, every element of Ó is below some other element of Ó
by roundness, which by disjointness does not belong to e . This shows that
Ó��X"za( ÉÉÀ 3%'eÑÊ�a � À + .

(4) x (5) is Proposition 2.20. The argument for (5)
Ç

(2) is straightforward.
For (2)

Ç
(1) we let fgf}î ï a if and only if aò%&e (and n`noî ï a always), andaàî ï n`n if and only if aR%±Ó (and aöî ï fgf always). The axioms for consequence

relations are easy to check, so let us focus on the adjointness conditions. If a � À
then a½%�Ó or

À %±e , hence either aöî ï fgfjî ï À or aàî ï n`nmî ï À . If  î ï �æî ï )
then it can not be that  !òfgf and )P!kn�n as otherwise there would be an element
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in the intersection of Ó and e . In the three other cases  � ) holds in ´ .

Since Prox-morphisms into ´ are in one-to-one correspondence to pFrm-
morphisms into ´�Ù , and since the latter are in one-to-one correspondence to d-
frame homomorphisms into å Ê�å , we see that the duality between strong proximity
lattices and stably compact spaces, Theorem 2.22, is a special case of the duality
of d-frames and bitopological spaces.

It may also be helpful to identify the topology on the spectrum in the current
setting. If È*! � e � Ó � is a point of a strong proximity lattice according to the
proposition, and if

7 ! � Ó N � e N � is a round ideal-filter pair encoding a partial
predicate on the spectrum, then È±%�6 � �97:� if and only if e/0WÓ N 3!-4 , and È±%
6=< �978� if and only if Ó0Ve N 3!R4 .

8.2 Reflexivity: Distributive Lattices

Definition 8.8 An element a of a partial frame � is called a total predicate or
reflexive element if a � a . The set of all reflexive elements is denoted by ÷éÐ .

This terminology is justified because a � a in the partial frame is equivalent
to a�% con 0 tot in the associated d-frame, so these are elements which always
return an answer, and never give conflicting information. Yet another way of
putting this is to say that they are classical Boolean predicates.

It follows from Axiom (con– tot) that with respect to the information order a
total predicate is always a maximal element in a partial frame, but not all maximal
elements need to be total. Axioms (con– � ), (con– S ), (tot– � ), and (tot– S ) imply
that ÷jÐ is a sub-lattice of

� ¿,�¶� � S � fgf � n�n � . Strong implication restricted to ÷�Ð
is the same as ordinary implication: The inclusion � �ÏJ always holds for a
partial frame, and for the reverse we use that aÔJ À

implies a � a/!©aW� À ,
which implies a � À

by ( � – � ). A partial frame homomorphism maps total
predicates to total predicates because it is required to respect � . Hence, restriction
to reflexive elements yields a functor ø from pFrm to dLat.

Definition 8.9 A Stone partial frame is a compact regular partial frame � for
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which the set of reflexive elements is dense. In other words, for every a � À
in �

there is
7 %4÷TÐ such that a � 7 � À

.

The density condition for Stone partial frames can be translated to d-frames
using the fact that ÷jÐ corresponds to con 0 tot in the associated d-frame, but
the result is cumbersome and does not seem to shed any additional light on the
situation.

Theorem 8.10 Define a functor � N from dLat to pFrm by setting

� N�� ö � ^`! " � Ó � e � ( � Ó � e � is an ideal-filter pair in ö¿+ for objects, and
� N � è � ^`! � "	È¿( É È N %'ÓdÊ�È�J½è � È N � + � ".RT( É R N %'eÑÊ¶è � R N � JoRÂ+ � for morphisms

Then

1. � N is left adjoint to ø ;

2. øØ�\� N ð! id;

3. The image of � N is contained in SpFrm and restricted to SpFrm, � N �\ø ð ! id.

Proof. A distributive lattice can be viewed as a strong proximity lattice where� !ôJ . The definition of � N on objects, then, coincides with that of � in Propo-
sition 8.2, and we obtain that � N�� ö � is a compact regular partial frame. Given the
concrete description of the operations on � N9� ö � in 8.2, it is also clear that � N�� è � is
a partial frame homomorphism.

For any ÈË%Wö , the pair
� Í È � [�È � is a reflexive element of � N � ö � and there are

no others. Thus we have shown (2).
The reflexive elements of � Nþ� ö � are dense, because

� Ó � e � � � Ó N � e N£� means
by definition that there is È2%We*0VÓ N , so

� Ó � e � � � Í È � [�È � � � Ó N � e N � . Hence the
image of � N is contained in SpFrm. Part (3) now follows from Proposition 8.3.

For Part (1), let è be a distributive lattice homomorphism from ö to F � � �
where � is any partial frame. We get a homomorphism of partial frames è $ from
� N�� ö � to � by setting è $ � Ó � e � ^�! Üh÷ "¾è � È � Û2è � R � (¾Èq%¯Ó � R=%reæ+ . Restricting
è $ to the reflexive elements of � N�� ö � , that is, to the ideal-filter pairs

� Í È � [�È � , we
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recover è , as ÜÎ÷b"¾è � È N � Û¿è � R � (	È N J½È � R À È�+V! è � È � in this case. Vice versa,
starting with a partial frame homomorphism Þ�^d� N�� ö � Ø � , denote the restriction
to the reflexive elements by Þ�$ . We already know that this is a distributive lattice
homomorphism from ö to F � � � . Extending Þ�$ to ideal-filter pairs we obtain

� Þ�$ � $ � Ó � e � ! Ü ÷ "¾Þ�$ � È � Û¿Þ=$ � R � (	Èq%¯Ó � R�%'e�+
! Üh÷ "¾Þ � Í È � [�È � Û¿Þ � Í R � [�R � (	È�%¯Ó � R�%'e�+
! Þ � Ü ÷ " � Í È � [�È � Û � Í R � [�R � (	Èq%¯Ó � R�%'e�+
! Þ � Ó � e �

where the last step uses the fact that � N�� ö � is a Stone partial frame. Thus
pFrm

� � N�� ö �;� � � and dLat
� ö � F � � �~� are (naturally) isomorphic.

Corollary 8.11 The categories dLat and SpFrm are equivalent.

An alternate view of a distributive lattice is as a special proximity lattice,
namely, one in which � ! J . To a partial frame map èÑ^õ�ÐØ ù one would
then associate the adjoint pair

� î ð � î ð � . There is no real difference between this
and a distributive lattice homomorphism, however, as we can show that the graph
of è (restricted to ÷TÐ and co-restricted to ÷éú ) is equal to

� î�ð � <àß 0éî ð : For ac%m÷jÐ
we have è � a � J è � a � , so arî ð è � a � and è � a � î ð a . For the reverse inclusion
one assumes ahî ð À and

À î�ð�a and obtains è � a � J À J½è � a � by definition and
the fact that � !�J .

The dualising object ´HÙ in pFrm is a Stone partial frame, and its set of re-
flexive elements consists of fgf and n`n . Adapting Proposition 8.7 to the reflexive
setting, we see that Stone’s duality of bounded distributive lattices is a special
case of our bitopological duality.

Definition 8.12 Say that a bitopological space
� ����� � � �	< � is totally order discon-

nected if J � ! À < and whenever >*3J � Q , there is an upper open neighbourhood
® of > and lower open neighbourhood ú of Q so that ®¯0æú�!½4 and ® � ú�!*� .

Corollary 8.13 The category dLat is dually equivalent to the category of com-
pact totally order disconnected bitopological spaces.
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Proof. Stone partial frames are spatial and the category SpFrm is equivalent to
dLat. So it suffices to show that the spectra of Stone partial frames are precisely
the compact totally order disconnected spaces. Consider points

� e � � eû< � 3J ��28 � �78 < � of a Stone partial frame. By (partial frame) compact regularity, the
order is inclusion in the first component and (equivalently) reverse inclusion in
the second. So there is a token aZ%òe � Y 8 � . Because e � is round and the
reflexive elements are dense, a can be chosen to be reflexive, from which a�% 8 <
follows. Thus 6 � � a � and 6\< � a � are the desired opens.

Now consider a compact totally order disconnected space
� ����� � � �$< � . We

show that the reflexive elements of con û ��ü û � are dense. For two consistent pairs of
opens

� ® � ú �¶�$� ® N � ú N � %V� � G �$< ,
� ® � ú � � � ® N � ú N � holds if and only if ® N � ú&!

� . If ú&!½� , then
� ® � ú � � � ����4 � � � ® N9� ú N£� and

� � � 4 � is reflexive. Similarly,
if ® N !½� , then

� ® � ú � � � 4 � � � � � ® N9� ú Ng� . If neither of these holds, then ��YMú
and �kY¡® N are non-empty, and for each >'%V�kY8ú and Qs%¿�Y:® N , we have >c3J½Q .
For each such pair of points, choose a disjoint pair

�2E=��ý ®$�3þ���ý ® � %V� �HG �$< according
to total order disconnectedness. For each >�%��-Yú , the sets

þó��ý ®
together with

® N cover � . By compactness, finitely many
þ

’s suffice to cover ��YM® N . Let
þ=N�

be
the finite union of these

þ���ý ®
’s and let

EhN�
be the intersection of the correspondingE���ý ®

’s. Then
E N�

and
þ N�

are disjoint and cover � . Moreover, >°% E N�
. So the

sets
E N�

together with ú cover � . Again by compactness, finitely many of them
suffice. So we can let

E $ be the union of these and
þ $ the intersection of the

corresponding sets
þ N�

. Since each
þ N�

covers �òYÑ® N , we have
þ $ � ® N !½� . And

clearly
E $ � úZ!a� . Putting this together,

� ® � ú � � �6E $ �3þ $ � � � ® N9� ú N£� and�2E $ �æþ $ � is reflexive.

Of course, from Stone’s original duality theorem we know that the upper
topology of a compact totally order disconnected bitopological space is a spec-
tral space. Notice, however, that Stone’s characterisation requires that we restrict
to perfect maps, so that the topological category Spec is not a full sub-category
of Top. In contrast, the corollary establishes a duality between the category of
distributive lattices and a full sub-category of BiTop.
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9 Negation

9.1 Negation as additional structure

9.1.1 Symmetric d-frames

Negation exchanges true for false and false for true. Where the truth value is
unknown it remains unknown, and where a contradiction occurs it remains a con-
tradiction. This is the approach taken by Belnap [Bel77], and it defines an op-
eration � on the four-element lattice å Ê`å of truth values (depicted in Figure 1 on
page 29).

The effect on the bitopological space of models is that the positive ex-
tent 6 � �  � of a formula  is exchanged with the negative extent 6�< �  � , in other
words, 6 � � �  � !X6=< �  � and 6=< � �  � !X6 � �  � . Since the positive extents com-
prise the topology , � , and the negative extents the topology , < , we see that in
the presence of negation the two topologies must coincide, or, in the language of
Section 4.1, that the bitopological space

�
spec KT��, � � ,û< � is symmetric.

In order to add negation to the abstract setting of d-frames F�! F �ÑG F < ,
we therefore require that the frames F � and F < are isomorphic via an explicit
bijection ��^:FH<kØ F � . The associated negation operation maps  !Öý  � �  <Oÿ
to ý6� �  < �¶� � <àß �  � � ÿ , and will be looked at below. For the moment, we tentatively
define a symmetric d-frame to be a structure K*! � F � � F <�� con

�
tot �7� � and require

that homomorphisms preserve the symmetry operation � . The latter requirement
is necessary as there may be many different isomorphisms between F=< and F � ,
and we must make sure that homomorphisms respect the chosen exchange of true
and false.

In general, an abstract point of a d-frame K is given as a homomorphism from
K to å Ê�å ; since now we require that it additionally preserve the symmetry, there
will in general be fewer “symmetric points” than general ones. We denote the
resulting bitopological space as spec

¦ K . One shows without difficulty that this is
a symmetric bitopological space.

However, there is little else one can show about symmetric d-frames and we
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doubt that there is much use for the concept at this level of generality. The problem
is that there is no link between the symmetry operation and the predicates con

and tot. Indeed, from a semantic point of view it seems natural further to require
the laws

(icon)
� > � Q � % con

ÆqÇ >�Û�� � Q � !�A
(itot)

� > � Q � % tot
ÆqÇ >�ó�� � Q � !�Ý

We take this as our official definition.

Definition 9.1 A symmetric d-frame is a d-frame equipped with an isomorphism� ^�F <mØ F � satisfying (icon) and (itot). The isomorphism � will also be referred to
as the symmetry operation.

Homomorphisms of symmetric d-frames are required to preserve the symmetry
operation.

At first glance, symmetric d-frames appear to be quite rich structures, but in
actual fact, they are nothing else but ordinary frames; the first component F � com-
pletely specifies (up to isomorphism) the whole structure. This correspondence
allows us to compare the concepts introduced in this paper with their classical
frame-theoretic counterparts. For example, the following observations are easily
checked:

Proposition 9.2 Let K*! � F � � F <��Âfgf � n`n�� con
�
tot �7� � be a symmetric d-frame.

1. e is a completely prime filter of F � iff
� e � � <àß � e �~� is a symmetric d-point

of K .

2. K is reasonable and satisfies all cut rules.

3. K is spatial (regular, compact) if and only if F � is a spatial (regular, com-
pact) frame.

We can also show that Lemma 6.5 specialises to the usual Hofmann-Mislove
Theorem for frames, in the sense that any Scott-open filter

»
on a frame F has a

partner b which satisfies conditions (hmcon) and (hmtot) of 6.5. As shown there,
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we should examine F§Y Íe where
 !/Üh÷Â".R ( É Èq% » Ê�È�ÛlRH!RA + . By construction,

(hmcon) holds, and we check (hmtot): Assume >só  !ôÝq% » , then there are È � R
with È¿% » and È ÛgR�!�A such that >qógR % » , because

»
is Scott-open. Now we

have ÈTÛË>2! � ÈTÛË> � ó � È�ÛlR � !�È�Û � >,ólR � % » because
»

is a filter. It follows
that > belongs to

»
as required by (hmtot).

From a semantic point of view, the universal way for obtaining a symmetric
space from a general bitopological space

� >��~� � � �$< � is to construct the common
refinement � � SP�	< . The d-frame analogue of this is the free biframe over a d-
frame, for which we gave two constructions in Section 5.2. This yields a left
adjoint to the forgetful functor from symmetric d-frames to dFrm as follows:

Let K*! � F � � F <�� con
�
tot
�

be a d-frame and ès! � è � � è8< � a dFrm morphism
from K to a symmetric d-frame ÿ ! � > � � > <�� con

N �
tot
N �7� Ng� . Let Fû� be the frame

defined by generators and relations as in the proof of Theorem 5.9. We interpret
the generators in

> � by setting � y¾>�{�� !Xè � � > � for >¯%'F � , and � y�Q�{��Ñ!o� � èO< � Q ���
for QÏ% F < , and check the relations. For example, if ýþ> � Q5ÿò% con then
ýyè � � > �;� èO< � Q � ÿ % con

N
which by symmetry is equivalent to è � � > � ÛA� N|� è8< � Q ��� !�A

and from this we read � y¾>�{�Ûgy�Q�{���!�� y¾>�{�� Û�� y�QÉ{��T!òè � � > � ÛI� Nþ� èO< � Q �~� !°A .
Hence �	�
� extends to a unique frame homomorphism èd�à^dFû� Ø > � .

From Fû� we obtain the symmetric d-frame K\�Ñ! � FM� � FM�Â� con � � tot �Â� id � , where
con � and tot � are equal to Û <àß � A � and ó <àß � Ý � , respectively, and èà� we extend to
the symmetric d-frame homomorphism

� è�� � � N <àß �Tè�� � from K§� to ÿ : è��#� id !
è��Ë!©� N � � � N <àß � èà� � . It extends the dFrm morphism

� è � � èO< � we started with
because è � � > � !�� y¾>�{��q!Úè���	¡y¾>�{z
\!Úè��"�Té � � > � and è8< � Q � !©� N <àß � � y�QÉ{�� � !� N <àß � è���	¡y�Q�{z
 � !(� N <àß �hè��#��é�< � Q � where é � ^¡F � Ø FM� and é�<\^8FH<Ø FM� are
the frame homomorphisms that map an element to (the equivalence class of) the
corresponding generator of Fü� .
9.1.2 D-frames with negation

Instead of symmetry one can alternatively axiomatise the operation ýþ> � Q5ÿp×Ø
ý6� � Q �;� � <àß � > � ÿ on Fò!ÚF �HG F < . This, of course, is the d-frame version of Bel-
nap’s negation discussed at the beginning of this section; we denote it by � . One
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sees without difficulties that it satisfies the following axioms:
7 I*E Ç � 7 I½�ME
�I�=� ! id ì7 % con x 7 Û¿� 7 !XC7 % tot x 7 ó¿� 7 !XD

We call a map � with these properties on a reasonable d-frame F°!jF � G F < a
negation. It is again easy to see that a negation gives rise to a symmetry between
F < and F � when restricted to FH< : It preserves the frame structure because it is
monotone and its own inverse. Further, the element n`n is mapped to fgf , which is
the only element which makes the last two rules true for

7 !�n�n . It follows that
the interval 	�C � n`n�
O!�FH< is mapped isomorphically to 	�C � fgf�
O!RF � .

We define the category dFrm  to consist of objects
� FÑ�Âfgf � n`nõ� con

�
tot �¶� �

where
� FÑ�Âfgf � n`nõ� con

�
tot
�

is a reasonable d-frame and � is a negation on it. The
morphisms are d-frame morphisms that preserve � . We stress that it follows from
the discussion above that dFrm  is equivalent to Frm, the category of frames.
Nonetheless, we are interested how negation manifests itself on partial frames.

Definition 9.3 A partial frame with negation is a structure� ¿,� Û � Ü ÷ � C��¶� � S � � � fgf � n`nõ� � � which satisfies the conditions for a partial
frame (Definition 7.2) and also

( � – I )
7 I*E ! Ç � 7 I½�ME

( � – � ) �4�=�c! id Ó
( � – � ) ��� 7 � E ÆqÇ � � EÑS¯� 7
( � – Û )

7 Ûm�ME�!XC ÆqÇ " 7õ� E�+ is bounded w.r.t. I
As well as the other operations, homomorphisms must also respect negation.

Theorem 9.4 The category dFrm  is equivalent to the category of partial frames
with negation.

Proof. The constructions are the same as the ones we used to prove Proposi-
tion 7.4 and Theorem 7.5, and we only need to check that the two notions of
negation agree.
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Regarding the translation from dFrm  to partial frames, note that a nega-
tion on a d-frame can be restricted to the subset of elements that satisfy the con-
predicate. This is so because with

7 Û=� 7 !XC one also has � ��7 Û\� 78� !X� 7 Û 7 !
C . From the axioms only ( � – � ) and ( � – Û ) can be in doubt. For the former con-
sider �Î� 7 � E ; by definition, this is equivalent to

� �h� 78� <æómE � % tot, which by
symmetry and the distributivity laws is equivalent to

�:<æó 7 <æó2E � ó2� � �:< � ó¿� ��7 < � ó2� � E � � !XD�Ê
The right hand side in ( � – � ), � � EõS�� 7 , rewrites to the same equality using the
fact that

� � 78� � ! 7 < .
In order to check that ( � – Û ) is valid, let

7 Û\�ME�!XC . To show that
7 ó§EÎ% con

we must show
��7 óûE � Ûü� ��7 óûE � !XC . Rewriting the left-hand side by distributivity,

we obtain the join of four terms:
�97 ÛV� 78� , E\ÛV�ME , 7 Û2�ûE and E\ÛV� 7 . The first

two equal C because
7�� E,% con, the second two equal C by assumption. For the

reverse implication assume
7õ� EËI��±% con. Then

7 Û'�ME2I��sÛ'���P!òC since
�¿% con.

As a homomorphism of symmetric d-frames “does the same” on the two con-
stituent frames F � and F < , the corresponding partial frame homomorphism re-
spects exchange of the two components

7 � ��7 < of an element
7

.
In the reverse direction we associate with a given partial frame the (product of

the) two frames F � !�	�C � fgf�
 and F <P!(	�C � n�n�
 . Negation establishes a bijection
between these: First of all, C is the smallest element, so C I �üC , but then
�ûC IÔ�û�ûCa!òC by the (information order) monotonicity of negation. Second,
fgf � fgf�!-fgf�SËn`n implies �Hfgf�!-fgfM�r�Hfgf � n`n by ( � – � ), and n`nq��fgf�!Xn`n � n`n
implies n`n � n`næSV�Hfgfí!X�Hfgf . Since � ��J , we can conclude �Hfgfí!_n`n , and hence
fgfü!R�ü�Hfgfí!��8n`n , too.

Next we check that the con and tot predicates, as defined in Proposition 7.4, are
derived from the frame structure, say of F � , alone. Assume a*Iòfgf , À In`n . By
definition, we have

� a �7ÀH� % con if and only if "za �7À + is bounded, and by ( � – Û )
this happens if and only if aWÛr� À !ôC . Regarding tot, we have

� a �7ÀH� % tot if
and only if

À � a by definition. Using ( � – � ) this is equivalent to fgf � a¿S¯� À ,
and this happens if and only if fgfü!ta2SV� À .
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If è§^õ� Ø � N is a homomorphism of partial frames with negation then the
restriction to 	�C � fgf�
 and 	�C � n`n�
 , respectively, is a pair of frame homomorphisms
as required for a map of d-frames. They respect the symmetry operation because
that is just negation restricted to 	�C � n`n�
 , and è is required to preserve it.

It may be worthwhile to point out that both directions of ( � – Û ) are indis-
pensable for the equivalence proof. Consider the free partial frame over one
generator depicted in Figure 5 on page 74. Reflection at the vertical axis of
symmetry satisfies ( � – I ), ( � – � ), and ( � – � ) but not ( � – Û ), and indeed, this
structure does not arise from a symmetric d-frame. Next let F � !RF < be the four-
element Boolean algebra and let the symmetry operation be identity. The subset¿/!&" ýþ> � Q5ÿ %'F�(b>m!�A or QÎ!�A + is a partial frame and exchanging the compo-
nents of a pair satisfies all conditions of Definition 9.3 except the direction from
left to right in ( � – Û ).

9.2 Negation as a structural property

9.2.1 Negation on regular d-frames

Let us compare the treatment of negation in d-frames with the classical situation.
There, the existence of a negation operation is a purely structural property of the
logic; in the language of bounded distributive lattices, it is expressed by the (first-
order) formula kd> É > N Ê~>æ�m> N !±n�n and >æSË> N !&fgf
One shows that there can be only one > N that is related to a given > in this way,
and so if the formula holds in a bounded distributive lattice F , then a negation
operation can be defined by setting �¼>W^�!�> N . The laws of Boolean algebras hold
and furthermore, homomorphisms of bounded lattices preserve negation.

For general d-frames the situation is quite different. The mere existence of an
isomorphism between F � and F < , even when it satisfies (icon) and (itot), does not
mean that it is uniquely determined or that it will be preserved by dFrm homo-
morphisms. Consequently, the usual spectrum spec K of such a d-frame need not
even be a symmetric bitopological space. An example is shown in the lower right
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hand corner of Figure 1 on page 29, where both F � and F < are the three-element
chain, con and tot are minimal (while reasonable), and (icon) and (itot) are satisfied,
but � � and �$< on å Ê�å�! spec u5Êvu are quite different.

Indeed, any frame F gives rise to an example of this nature: add new bottom A N
and top Ý N to F to obtain F N , and define con and tot minimally:

� > � Q � % con ^ x >m!RA N or QÎ!�A N� > � Q � % tot ^ x >m!�Ý N or QÎ!�Ý N
This yields a (reasonable) d-frame K N ^�! � F N � F N � con

�
tot
�

that is symmetric. This
example also shows that the symmetry operation � is not uniquely determined by
(icon) and (itot): any automorphism of F gives rise to a symmetry on K N .

The example works because of the paucity of con and tot in K N . Regularity is
the exact opposite of this situation, and so the following result should not be too
much of a surprise:

Proposition 9.5 Let K be a symmetric regular d-frame. Then,

1. F � and FH< are regular as individual frames;

2. the symmetry operation is uniquely determined;

3. the spectrum of K is a symmetric bitopological space.

Furthermore, dFrm homomorphisms between symmetric regular d-frames pre-
serve the symmetry operation.

Proof. In the context of this proof, we write
Á � for the well-inside relation of the

d-frame, and
Á � for the well-inside relation of the individual frame F � .

(1) For two elements > N9� > of F � we have > N�Á �W> iff
É5� %-F <�Ê � > N ����� %

con
�b� > ����� % tot which by (icon) and (itot) is equivalent to

É5� %½FH<�Ê�> N Û4� ��� � !
A � >,ó�� �þ��� !�Ý and this just says > N�Á � > with witness � ��� � (in F � ).

(2) Let � N be a symmetry operation satisfying (icon) and (itot). We have > Á �� N � Q � iff
É5� %PF � Ê�>,Û � !/A � � N � Q � ó � !°Ý iff

É5� %WF � Ê~>�Û � !/A �$�þ�$� Q � % tot iffÉ5� %�F � Ê~>�Û � !&A � � � Q � ó � !°Ý . The last formula implies that >WIo� � Q � and by
regularity � N9� Q � IL� � Q � follows.
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(3) Let
� e � � eû< � be an abstract point of K . We have

� e � � eû< � %�6 � � � � Q ���
iff � � Q � %&e � iff

É > NüÁ � � � Q � Ê�> N %&e � . If
� %&F � is a witness for > NüÁ � � � Q �

then because of
� ÛË> N !XA we must have

� 3%Pe � and so Qm%�eû< follows because� ó#� � Q � !�Ý is equivalent to
�þ�$� Q � % tot. In other words, we obtain that the abstract

point
� e � � eM< � belongs to 6\< � Q � .

In order to show that in the presence of regularity, homomorphisms preserve
symmetry, let ès! � è � � èO< � ^ � F � � F <�� con

�
tot �7� � Ø � > � � > <¡� con

N �
tot
N ��� Nv� be a

d-frame homomorphism. We use an argument similar to that in (2) to show that
è � �ñ��!r� N �\èO< . Let Qs%'F < be arbitrary. For any Èq%'F � such that È Á � � � Q � we
have a witness

� %'F � such that È:Û � !½A and � � Q � ó � !&Ý . The latter is equivalent
to
�þ�$� Q � % tot, so we get è � � È � Û2è � �þ��� !�A and

� è � �þ���;� èO< � Q �~� % tot
N
in ÿ . The

latter is equivalent to � N�� è8< � Q ��� óqè � �þ��� !�Ý and we conclude è � � È � IL� Nþ� è8< � Q ��� .
Taking the supremum of all such Èq%'F � we obtain

è � � � � Q ��� IL� N � èO< � Q ��� Ê
By exploiting the regularity of FH< , one shows in exactly the same way that
èO< � � <àß � > �~� I+� N <àß � è � � > ��� for all >%*F � . This allows us to compute the other
inequality

� N � èO< � Q ��� !�� N � èO< � � <àß � � � Q �����~� IL� N � � N <àß � è � � � � Q �����~� !Xè � � � � Q ���
and thus complete the proof.

On partial frames, the assumption of regularity renders negation a purely log-
ical concept:

Proposition 9.6 If � is a regular partial frame and �æ^ ¿ Ø ¿ is a map that
satisfies ( � – � ) and ( � – � ), then ( � – I ) and ( � – Û ) also hold. Furthermore, the
de Morgan rule � ��7 S2E � !X� 7 �¯�ME is valid.

Proof. Throughout this proof we make heavy use of the fact (shown in Propo-
sition 7.4) that every partial frame can be seen as the set of pairs satisfying the
con-predicate in a concrete d-frame, and with the partial frame structure given
concretely as described at the beginning of Section 7.
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( � – I ): In a regular partial frame,
7 I*E is equivalent to I

7 � I E and F
7 � F E .

In any partial frame satisfying ( � – � )and ( � – � ),
7 � E is equivalent to �ûE � � 7 .

So I
7 � I E is equivalent to F � 7 � F �ME .
Regarding ( � – Û ) we begin by showing that �sÛ'���P!ôC is always true in a

regular partial frame. From a � � we get aW����� � n`n , so aP�c���XJ°n`n and
hence

� aq�m��� � � !ta � Û � ��� � � !RA by Lemma 7.3(9). Likewise, � � À
implies

fgf � À S���� , so A¿! �0À SW��� � <�! À <mÛ � ��� � < . Using the characterisation of
regularity in Proposition 7.10, we thus get �mÛW���±!ZÜ ÷���������� � aWÛ À ÛW��� � !
Ü ÷ � a � Û � ��� � � �7À <ËÛ � ��� � < � ! � A � A � !ôC . Now if

7õ� EVI�� then we just use
( � – I ) and obtain

7 Û2�MEÎI��æÛ¿���Ë!RC .
For the reverse direction assume

7 ÛV�MEÎ!�C , and also a � E � À
. We have

the following relationships:

1.
7 � Û � �ME � � !½A in the frame 	�C � fgf¯
 by assumption;

2.
7 <�Û � �ME � <m!½A in the frame 	�C � n`n�
 by assumption;

3. a � I À � because a � À
implies a�J À

;
4. aû< £oÀ < for the same reason;
5.

À � ó � �ME � � !�Ý in the frame 	 C � fgf¯
 because fgf � À S¯�ME by ( � – � );
6. aû<,ó � �ME � <Ë!�Ý in the frame 	�C � n`n�
 because am�¯�ME � n`n by ( � – � );
7.
7 � ! 7 � ÛæÝ�! 7 � Û �2À � ó � �ME � � � ! ��7 � Û À � � ó ��7 � Û � �ME � � � ! 7 � Û À � ,
using (5) and (1);

8.
7 <s! 7 <§ÛæÝ�! 7 <\Û � aû<=ó � �ME � < � ! ��7 <\Û%aû< � ó ��7 <§Û � �ûE � < � ! 7 <=Ûáaû< ,
using (6) and (2);

9. 	 �97 � À � SlaôÛ ��7 S�a � � À 
 � ! �~��7 � Û À � � ó�a � � Û ���97 � ó�a � � Û À � � !�97 � óga � � Û �~��7 � Û À � � ó � a � Û À � �~� ! 7 � ósa � , using (3) and (7);
10. 	 �97 � ÀH� SsaÐÛ ��7 S�a � � À 
þ<Ë! �~��7 <hó À < � Û�aû< � Û ���97 < Û�aû< � ó À < � !�~��7 <�Ûgaû< � ó �2À <�Ûlaû< �~� Û ��7 <æó À < � ! 7 <,ó À < , using (4) and (8).

It follows that the collection " �97 � À � S4ajÛ �97 S4a � � À (za � E � À + !
" �97 � óla � ��7 <�ó À < � (za � E � À + is directed and that the supremum is above7

and E .
The de Morgan rule is a simple sequence of equivalences, exploiting regular-

ity: a � � 7 �r�ûE x a � � 7 q a � �ME x 7 � ��a q E � �óa x7 S¿E � ��a x a � � �97 S¿E � .
97



In the compact regular case we would like to replace the partial frame � by the
strong proximity lattice structure on a dense subset � , as explained in Section 8.1.
The negation operation need not map basis elements to basis elements but this
should not disturb us as the idempotency of � means that it is enough to add the
image � � � � to � . Because the de Morgan rules are valid, the result will again be
a sub-lattice of � . So we define:

Definition 9.7 A unary operation � on a strong proximity lattice is called a nega-
tion if it satisfies ( � – � ) and ( � – � ).

Theorem 9.8 The category of compact regular partial frames with negation is
equivalent to the category of strong proximity lattices with negation.

Proof. We examine how the constructions that led to Theorem 8.6 interact with
negation. Starting with a strong proximity lattice we define a negation on the set of
round ideal-filter pairs by setting � � Ó � e � ^�! � �Me � �MÓ � . Repeated use of ( � – � )
shows that this is again a round ideal-filter pair; for example, if � 7�� �ûEc%��Me ,
then by roundness there is �_%e such that � � 7 �rE , so � � 7

and � � E ; it
follows that � 7 S¯�ME � ���V%r�Me .

By Proposition 9.6 it remains to check ( � – � ):
� Ó � e � � � Ó N � e N£� � � Ó N N©� e N N£�

means that there is an element
7

in
� e�óWe Ng� 0PÓ N N . By the formula for the join

of two round filters there must exist Ek%òe , E N %òe N with E �_E N � 7
, which

is equivalent to E � 7 S1�ME N . Thus E is an element of e°0 � Ó N N ó_�ûe N � , and� Ó � e � � � Ó N N � e N N � S � �Me N � �¼Ó N � is established.

Proposition 9.9 A Prox morphism
� î ï � î ï � between strong proximity lattices with

negation satisfies amî ï À x � À î=ïÑ��a .

Proof. We exploit the equivalence between Prox and the category of compact
regular d-frames. The desired result follows from the fact that a dFrm morphism è
between regular d-frames respects negation, as shown in Proposition 9.5. For the
associated Prox morphism

� î ð � î ð � we compute
À î ð a x À � è � a � !

�ûè � ��a � x è � �óa � � � À x �óa�î ð � À .
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Corollary 9.10 (Moshier 2004) The category of strong proximity lattices with
negation is dually equivalent to the category of compact Hausdorff spaces.

Proof. By Proposition 6.4 the spectrum of a strong proximity lattice is order-
separated, and since the two topologies are the same in the symmetric setting, this
means that it is a Hausdorff space. Everything else remains the same as in the
general (i.e., non-symmetric) case.

9.2.2 A proof-theoretic characterisation of negation

The existence of a negation operation can be deduced from a structural property
of strong implication. This was first discovered for strong proximity lattices by
the second author in [Mos04] but it holds in the more general context of regular
partial frames. Recall once again that an element

7
of a regular partial frame � is

completely determined by the sets I
7 !a"zak(¢a � 7 + and F

7 !a" À ( 7 � À + , in
the sense that

7 ! Ü ÷ "za¿Û À (¢ac% I
7õ�7À % F

7 + . If there is a negation operation
on � and if we want to capture an element � 7 in this way, then by ( � – � ) we
can express I � 7 and F � 7 alternatively by "za1(za2� 7 � n`n�+ and " À (�fgf � 7 S À + .
Now, these sets can be defined in any partial frame, whether there is a negation or
not, so let us call the first one I

7
and the second F

7
. If we assume that Gentzen’s

cut rule is valid (cf. Proposition 7.6) then for every a±% I
7

,
À % F

7
, a � À

holds.
We can then form 7 ^�!�� ÷ "za¿Û À (¢ac% I

7õ�7À % F
7 +

which is directed by Lemma 7.8. As in the proof of 7.10 we know that
7 !

ýyÜh÷
� ¨ I ÍHa � � Ü ÷
� ¨ F Í À <8ÿ .
As an aside, this provides an alternative proof for the fact that negation on a

regular partial frame is unique if it exists.
In general, there is not much that we can say about the operation

7 ×Ø 7
but

with a few more assumptions it moves closer to being a proper negation:

Lemma 9.11 Let � be a partial frame satisfying the infinitary Gentzen cut rules
(G-CUT � ) and (G-CUT � ) (cf. Table 2). Then for all

7 %r� ,
7 I 7 .
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Proof. Suppose
À % F

7
, that is, fgf � À S 7 . By definition of

7
as a directed

supremum of meets plus ( � – I ), fgf � À S � Ü ÷ I 78� holds. Also by definition, for
each a@% I

7
, aP� 7 � n`n holds. So (G-Cut � ) implies

7 � À
. Thus F

7 � F
7

.
Similarly, I

7 � I
7

by (G-Cut � ). Hence,
7 I 7Éã I 7 .

Next we observe that in the presence of interpolativity of � and negation,
Gentzen’s cut rule can be inverted: Whenever

7 � 78N � EæS1E N then this can
be rewritten as

7 �±�ME � � 7dN S�E N ; by interpolation there is some a such that7 ���ME � a � � 7 N ScE N , and another application of ( � – � ) yields
7 � ETSµa

and a2� 7dN � E N . This motivates our main result on the matter:

Theorem 9.12 Let � be a regular partial frame. The following are equivalent:

(i) The infinitary Gentzen cut rules (G-CUT � ) and (G-CUT � ) hold, and
Gentzen’s finitary cut rule can be inverted.

(ii) The operation
7 ×Ø 7

is a negation on � , and � � � � � .

Proof. (i)
Ç

(ii): We already know
7 I 7

by the preceding lemma. For the
converse, consider a�% I

7
, which is equivalent to fgf«�ña � 7 S�n`n . By an application

of (G–cut) <àß we obtain an element
À

such that fgf � 7 S À and a¯� À � n`n . By
regularity,  � n`n holds if and only if  !½n`n . Because we have aV� À � n`n andaË��n`n � n`n , it follows that am� �0À Ûhn`n � � n�n . But

À % F
7

and n�n¯% I
7

, so ( � – I )
implies aP� 7 � n`n . Thus Ó 7 � I

7
, and similarly e 7 � F

7
. So by regularity,7 ! 7?ã I 7 .

(ii)
Ç

(i): The validity of all cut rules was stated already as Proposition 9.2.
Invertibility of Gentzen’s cut rule was presented above.

Proposition 6.13 and Lemma 8.1 provide us with the following special case:

Corollary 9.13 A compact regular partial frame carries a negation if and only if
Gentzen’s cut rule is invertible.

Corollary 9.14 The full subcategory of pFrm consisting of compact regular par-
tial frames in which Gentzen’s cut rule is invertible is dually equivalent to the
category of compact Hausdorff spaces.
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9.2.3 Boolean algebras

We are ready to take the final step towards Boolean algebras.

Definition 9.15 A partial frame is called Boolean if in addition to satisfying the
conditions of a Stone partial frame, it admits a negation.

Theorem 9.16 The category of Boolean partial frames is equivalent to the cate-
gory of Boolean algebras.

Proof. We already know that the set of reflexive elements forms a sub-lattice;
negation restricts to this because

7 � 7
implies � 7 � � 7 . We showed in Propo-

sition 9.6 that de Morgan’s laws hold and this is sufficient to prove that the set
of reflexive elements is a Boolean algebra. Everything else is a special case of
Theorem 8.10.

10 Discussion

In Figure 7 we have listed the main dualities discussed in the paper. It illustrates
our central contention that the classical Stone dualities are best understood as
special cases of the dual adjunction between bitopological spaces and d-frames.
The accompanying Figure 8 displays the dualising objects as sub-structures of å Ê�å ,
with or without symmetry. It shows quite clearly that the dualiser ´*!Ô"�fgf � n`n�+ in
the bottom row is different from the dualiser å�!Ô"	A � Ý¾+ for frames, and thus that
the duality of Boolean algebras is not a special case of that of frames.

In the traditional understanding of the situation, expounded for example
in [Joh82], the connection between the finitary structures of Boolean algebras and
distributive lattices is given by ideal completion of the logical order, and by se-
lecting the sub-poset of compact elements, in the other. This works up to a point,
but note that one must restrict frame homomorphisms to those that preserve ù , a
condition that is not really justified when considering a single topology.

Indeed, this methodology breaks down when one tries to apply it to the middle
layer of strong proximity lattices in Figure 7. While (round) ideal completion
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infinitary structure:
information order and logic

finitary structure:
logic operations and strong implication

frames

strong proximity lattices with negation

Boolean algebras

distributive lattices

strong proximity lattices

d-frames, or partial frames

vs. spectral spaces

vs. topological spaces

vs. compact Hausdorff spaces

vs. Stone spaces

with symmetry without symmetry

vs. compact regular
bispaces

algebraic structure: logic operations

vs. bitopological spaces

Figure 7: A hierarchy of Stone-type dualities.
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C/! � A � A �
n`nË! � A � Ý �� Ý � A � !�fgf

D/! � Ý � Ý �

Figure 8: The dualising d-frames for the dualities of Figure 7. In the second row,
solid lines and filled elements indicate the dualising compact regular partial frame.
In the third row, filled elements indicate the dualising distributive lattice (in the
“logical” order). Double arrows indicate negation.
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can still be applied, there is no way to recover the finitary structure as a sub-
structure of the associated stably continuous frame. We believe that it is the (rather
amazing) fact that a compact regular d-frame is completely determined by its first
component, Theorem 6.15, that has obscured the bitopological character of Stone
duality for so long. The coincidence of the well-inside relation

Á
with the way-

below relation ù in a compact regular d-frame, Lemma 6.10, also pointed us
in the wrong direction. As the bitopological treatment makes clear, the strong
implication � of partial frames in general captures the former and not the latter.

With this paper we have not answered all questions that naturally present
themselves when one generalises from frames to d-frames. We consider the fol-
lowing as the most important open problems that remain.

Open Problem 1 Does the Hofmann-Mislove Theorem 6.6 hold for general d-
frames, or under more general assumptions than those made in 6.6?

We have invested a considerable amount of energy on this question and now
believe the answer to be “no.”

Open Problem 2 Is every reasonable d-frame that satisfies the infinitary cut rules
derived from a biframe?

We included some thoughts on this question in Section 5, after Proposition 5.8;
our conjecture is that this is true.

Open Problem 3 Develop a notion of “locally compact d-frame.”

Not just any notion will do; we would expect that with the right definition a lo-
cally compact d-frame would be spatial. If things work really well, then one could
also hope for a link between local compactness and exponentiability in dFrm.

Open Problem 4 Develop a “generators and relations” method of constructing
d-frames.
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In the construction of a free biframe from a d-frame, we employed the tech-
nique of covers on a semi-lattice. This same construction yields the symmetri-
sation of a d-frame. But as noted in Section 5.2, the resulting elements of the
constructed frame are characterised as sub-lattices with respect to J and as being
Scott closed with respect to I (along with other conditions particular to this con-
struction). This suggests that objects may be constructed from generators and a
combination of logical and informational relations. The separate roles that logic
and information play in such a construction should help illuminate their relation-
ships more generally.

Priestley duality considers the join of the two natural topologies on the spec-
trum of a distributive lattice. By also keeping the specialisation order as explicit
data, it manages to faithfully capture the underlying bitopology. This works
equally well for strong proximity lattices (Proposition 2.12) but one wonders
whether there is a more general principle available. Ultimately, one will need
biframes, which essentially add the two basic topologies explicitly. Since we now
understand how free biframes arise from d-frames, a more finitistic construction
may be possible. Again, logic and information are likely to play distinct roles in
such a construction.

In this study, we have defined d-frames and shown that they constitute the
Stone duals of bitopological spaces. As a result, we are able to see several known
Stone-type duality results as special cases of this. D-frames also open up the
study of bitopological spaces to the “point-free” techniques that have become so
useful in topology. In particular, studies of d-sobriety for bitopological spaces
and spatiality for d-frames show that these concepts are quite rich. Bitopological
analogues of the Hofmann-Mislove Theorem are available and find very natural
ties to Escardó’s approach to quantification over subsets of a topological space. D-
frames also yield many “choice-free” proofs of classical results and have helped
to further illuminate the relationship between regularity and continuity.

Perhaps the most surprising feature of d-frames is the natural split they make
between logic and information. This was only partly anticipated when we began
this investigation nearly two years ago, and yet has turned out to be an organising
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theme throughout this paper. Many proofs are significantly simplified, particularly
for reasonable d-frames, by maintaining logic and information as separate, but
interacting, notions. Indeed, one indication that logical aspects of d-frames are
“naturally occurring” is the repeated appearance of Gentzen’s cut rules, and their
reflection in d-frames, in unexpected places.

Partial frames provide a general topological theory of partial propositional
logic that accounts for partiality in terms of information order where accumulation
of information is the main operation, and logic where conjunction and disjunction
are the main operations, and strong implication is distinct from J . In this regard,
one can regard partial frames as the Lindenbaum algebras for a generalised form
of Kleene’s three-valued logic. This generalisation points out the importance of
treating information as well as strong implication as distinct concepts.
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mann, 1957/58, pages exp. no. 2, 27. Faculté des Sciences de Paris,
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