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Abstract

Dcpos can be presented by preorders of generators and inequational
relations expressed as covers. Algebraic operations on the generators (pos-
sibly with their results being ideals of generators) can be extended to the
dcpo presented, provided the covers are “stable” for the operations. The
resulting dcpo algebra has a natural universal characterization and satis-
fies all the inequational laws satisfied by the generating algebra.

Applications include known “coverage theorems” from locale theory.

Keywords: Dcpo algebras, dcpo presentations, d-topology, µ-topology, cov-
erage theorems

1 Introduction

The importance of algebraic theories in semantics was first emphasized by Hen-
nessy and Plotkin in [4] and more recently — in the context of “computational
effects” — by Plotkin and Power, [9]. Mathematically, it necessitates the abil-
ity to construct free algebras over semantic spaces. For continuous domains,
a general theory was developed by Abramsky and the first author in [1, Sec-
tion 6] making use of the concept of an “abstract basis.” There it was also
stated that free algebras exist for the more general category DCPO; however,
the construction was not concrete but reference was made to the Freyd Adjoint
Functor Theorem. The results presented in this paper amend this situation and
allow us to give a fairly concrete description of free dcpo algebras.

In order to give an overview of the paper we need to fix some terminology
and notation. An algebraic theory is given by a set Ω of operation symbols, an
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arity function α : Ω → N, and a set E of equations. An algebra for a theory
(Ω, α, E) consists of a carrier set A together with maps ωA : Aα(ω) → A for
each ω ∈ Ω. We usually suppress the arity function and use “ω” for both
the operation symbol and the concrete operation on A. We call an algebra
preordered if A carries a preorder ⊏∼ with respect to which the operations are
monotone; we call it a dcpo algebra if (A;⊏∼) is a directed complete order and
the operations are Scott-continuous.

We are concerned with two questions: How to define a notion of presen-
tation for dcpo algebras, and how to compute the dcpo algebra defined by a
presentation. We begin by reviewing the classical case of ordinary algebras. A
presentation consists of a set G of generators and a set R of relations, expressed
as equations between terms built up from generators and function symbols. It
is to be understood in the context of an algebraic theory (Ω, E). For example, in
the context of groups, G = {a} and R = {a ◦ a ◦ a = e} presents the group Z3.

In the classical case, the construction of the presented algebra is quite simple;
one first generates all Ω-terms starting from G and then factors this algebra by
the smallest congruence containing all relations in R and all instances of equa-
tions in E . The technique works equally well for preordered algebras. Instead
of factoring by the smallest congruence one equips the set of terms with the
smallest preorder containing all inequational relations in R and all instances
of inequations from E . In addition, one forces all operations to preserve the
preorder. Note that in either case, the presented algebra is constructed from
the set of all Ω-terms over G.

For dcpo algebras the situation is quite different because for an ordered
set to be a dcpo requires the existence of certain elements. Hence we can not
hope to be able to make do with finitary terms alone. A reasonable strategy
is to construct first the generated preordered algebra and then to complete
the resulting preorder to a dcpo, for example by taking the ideal completion.
However, at this stage further requirements could be stipulated, for example,
one could require that two directed sets have the same supremum. This is indeed
what is needed in applications so in addition to R we allow a set C of covers to
be specified in a dcpo algebra presentation. Each cover has the form (x, S) with
the intended meaning that in the presented dcpo algebra x should be below the
directed supremum of S.

It is quite natural to believe that the free dcpo with respect to a set of covers
can be constructed as a quotient of the ideal completion. This, however, is the
wrong intuition; in the contrary, the more covers have been stipulated, the more
elements may need to be added to the given preorder to turn it into an ordered
structure that is both a dcpo and satisfies the covers. In general, the completion
becomes a transfinite process. Once this is realized, one might then begin to
worry about extending the operations to all these extra elements but our results
say that (subject to a compatibility condition) the order-theoretic completion is
in fact the only hurdle: not only can the operations be lifted to the completion,
they will also continue to satisfy the (in)equations of the theory.

The structure of the paper follows logically from these observations. In Sec-
tion 2 we study in detail the completion of a preorder with respect to a set of
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covers. The technique we employ is inspired by and very closely related to that
of [6], but we also include three alternative views on the construction, two of a
topological nature and one that makes precise the transfinite induction alluded
to above. In the next section we then show that finitary operations on the gen-
erating preordered algebra lift to the completion so that the dcpo constructed
in Section 2 already yields the dcpo algebra with the required universal prop-
erty. In Section 4 we show that the extended operations continue to satisfy the
inequations that hold in the generating algebra. Here the topological explana-
tions of the completion process allow for a very slick argument. In Section 5 we
consider the case where the given operations return ideals rather than elements.
This generalization is motivated by one of our applications and the reader may
wish to skip this part on first reading. In Section 6 we exhibit a number of
uses for dcpo algebra presentations, and it could be attractive to read this ma-
terial before attempting the technical development in sections 2–5. Particular
emphasis is placed on applications in locale theory, which is appropriate as we
are drawing heavily on the techniques pioneered for this special case.

2 DCPO presentations

We first show that dcpo presentations by generators and relations do indeed
present: in other words, there is a dcpo with the universal property specified
in the presentation. This was essentially proved in [11, Section 2.1], using the
techniques (originally used for preframes) of [6]. Our development here general-
izes theirs in two ways. First, we allow the generators to form a preorder rather
than a poset. Second, [11] used equational relations of the form, “directed join
= directed join.” We shall instead use inequational relations, of the form, “el-
ement ⊑ directed join.” This is equivalent to the equational relations in the
semilattice contexts of [11], but not more generally.

Definition 2.1 A dcpo presentation consists of

• a set P of generators;

• a preorder ⊏∼ on P ;

• a subset C of P × P(P ), whose elements are called covers and written
a ⊳ U , subject to the requirement that U is directed with respect to ⊏∼.
(Without the directedness requirement, we shall refer to C as a cover set.)

The goal is to show that every dcpo presentation gives rise to a dcpo with
the appropriate universal property.

Definition 2.2 An order preserving map f : (P ;⊏∼, C) → D from a dcpo pre-
sentation to a dcpo D preserves covers if for all a ⊳ U in C it is true that
f(a) ⊑

⊔
↑
x∈U f(x).
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Definition 2.3 A dcpo P is freely generated by the dcpo presentation (P ;⊏∼, C)
if there is a map η : P → P that preserves covers, and every map f from P to
a dcpo D that preserves covers factors through η via a unique Scott-continuous
map f : P → D:

P ....................
f

- D

�
�

�
�

�

f

�

P

η
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Definition 2.4 Let (P ;⊏∼, C) be a preorder with cover set. A C-ideal I is a
subset of P which is downward closed and closed under all covers, to wit, U ⊆ I
implies a ∈ I for all a ⊳ U in C.

If S is any subset of P then 〈S〉 denotes the smallest C-ideal containing S.
The set of all C-ideals is denoted by C-Idl(P ).

This is the same definition as in [5, Section II-2.11], however, our presenting
preorder is not assumed to be a meet semilattice. Trivially, C-Idl(P ) is a com-
plete lattice as S 7→ 〈S〉 is a closure operator on the powerset of P . Specifically,⊔

k∈K Ik = 〈
⋃

k∈K Ik〉 for any set {Ik | k ∈ K} of C-ideals.
Now, C-Idl(P ) is not the free dcpo generated by a dcpo presentation (because

it is always a complete lattice, even if P is just a finite poset and C the empty set)
but it plays a crucial role in our construction. Indeed, we shall be particularly
interested in C-Idl(P ) as a sup-lattice (or complete join semilattice). As objects,
sup-lattices and complete lattices are the same, but sup-lattice homomorphisms
are only required to preserve all joins.

Proposition 2.5 Let (P,⊏∼) be a preorder and C a cover set on it. Then
C-Idl(P ) is the free sup-lattice generated by (P ;⊏∼, C).

Proof. (From [2]) If Q is a sup-lattice and f : P → Q a monotone function
that preserves covers, then define f : C-Idl(P ) → Q by

f(I) =
⊔

p∈I

f(p).

This is clearly monotone and satisfies f ◦ η = f , so only the preservation of
suprema needs to be shown. By monotonicity we have

f(
⊔

k∈K

Ik) =
⊔

p∈
F

Ik

f(p) ⊒
⊔

k∈K

⊔

p∈Ik

f(p) =: x

For the other inequality note that f−1(↓x) is downward closed by the mono-
tonicity of f , closed under covers because these are assumed to be preserved
by f , and a superset of all Ik. Hence

⊔
k∈K Ik = 〈

⋃
k∈K Ik〉 ⊆ f−1(↓x) and

f(
⊔

k∈K Ik) ⊑ x.

We shall also need the following lemma.
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Lemma 2.6 Let D be a dcpo. Then the sup-lattice Σ(D) of Scott closed subsets
of D is the free sup-lattice over D qua dcpo.

Proof. A proof was sketched in [11] but we can also apply the preceding
proposition by considering the dcpo presentation (D,⊑, C) where C contains
all covers a ⊳ U where a ⊑

⊔
↑U in D. Then the set of C-ideals coincides with

the set of Scott-closed subsets, and any monotone function f : D → E which
preserves covers is in fact Scott-continuous.

Note that for a constructive treatment we must define “Scott closed” to
mean down-closed and closed under directed joins, not the complement of a
Scott open.

Note also that η : D → C-Idl(D) = Σ(D) takes each a ∈ D to the correspond-
ing principal ideal ↓a, and therefore is an order embedding. In the following we
denote it by ↓, rather than η.

To return to the task of determining the dcpo generated by a given dcpo
presentation, we let P be the smallest sub-dcpo of C-Idl(P ) containing all 〈p〉
for p ∈ P , and define η : P → P as p 7→ 〈p〉. This is order-preserving because
C-ideals are lower sets. For the preservation of covers let a ⊳ U . Then U ⊆⋃↑

x∈U 〈x〉 ⊆ 〈
⋃↑

x∈U 〈x〉〉 =
⊔

↑
x∈U 〈x〉 and this contains a (and hence 〈a〉) because

C-ideals are closed under covers.

Theorem 2.7 P together with the map η : P → P is

dcpo〈P (qua preorder) | a ⊑
⊔

U whenever a ⊳ U〉.

Proof. Let D be a dcpo and f : P → D a monotone function that preserves
covers. The composite function ↓ ◦f : P → Σ(D) also preserves covers and
hence factors via a sup-lattice homomorphism f ′ : C-Idl(P ) → Σ(D). In other
words, we have the following commuting diagram

P
η - P ⊂ - C-Idl(P )

@
@

@
@

@
f

R
D ⊂

↓- Σ(D)

f ′

?

and the idea is to pull back f ′ along ↓. For this note that the image of ↓ is
a sub-dcpo of Σ(D) and since f ′ preserves suprema, Xf := f ′−1(↓(D)) is a
sub-dcpo of C-Idl(P ). Because the diagram commutes, η(P ) is a subset of Xf

and then the same is true for P . If follows that f ′ can be restricted to P giving
us a Scott-continuous map f ′′ from P to ↓(D) ⊆ Σ(D). Since ↓(D) is order-
isomorphic to D, f := ↓−1 ◦ f ′′ is a Scott-continuous map from P to D with
f = f ◦ η.

This is unique because if we had two such maps then their equalizer would
be a sub-dcpo of P that includes P and hence equal to P .
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It is worthwhile to point out that this result generalizes the usual ideal
completion of a preorder, which is obtained by letting the set of covers be empty.
Similarly to the ideal completion it is true in the general case that although the
empty set is always a C-ideal, it is never a member of P .

We conclude this section with the following result which will turn out to be
the crucial ingredient in our study of dcpo algebra presentations.

Proposition 2.8 Let (Pi,⊏∼, Ci), i = 1, . . . , n, be a finite family of dcpo pre-
sentations. Then

∏
i P i is the smallest sub-dcpo of

∏
i C-Idl(Pi) containing∏

i η(Pi).

Proof. Certainly
∏

i P i is a sub-dcpo of
∏

i C-Idl(Pi) that includes
∏

i η(Pi).
Now suppose D is any such sub-dcpo. Suppose for some i (0 ≤ i ≤ n) we have

η(P1) × · · · × η(Pi) × P i+1 × · · · × Pn ⊆ D.

This is certainly true for i = n. Let S = {a ∈ P i | η(P1)× · · ·× η(Pi−1)×{a}×
P i+1 × · · · × Pn ⊆ D}. S is a sub-dcpo of P i that includes η(Pi), and hence is
the whole of P i. We deduce that η(P1) × · · · × η(Pi−1) × P i × · · · × Pn ⊆ D,
and it follows by induction on n − i that

∏
i P i ⊆ D.

Since the transition from P to P (with respect to a set C of covers) is the
main operation in this paper, we give three alternative descriptions.

The d-topology Consider the d-topology on a dcpo having sub-dcpos as
its closed sets.1 Then obviously P is just the d-closure of the image η(P )
in C-Idl(P ). The two noteworthy properties of the d-topology are that it is
Hausdorff on any dcpo (as any set of the form ↓x is open and closed), and that
a map between dcpos is Scott-continuous if and only if it is d-continuous and
order-preserving.

The µ-topology Recall Keye Martin’s µ-topology of a dcpo, generated by
the subbasic open sets ↓x∩O with O a Scott-open subset, [7, Chapter 3]. Alter-
natively, µ is the join of the lower Alexandrov and the Scott topologies.2 Like
the d-topology, it is guaranteed to be Hausdorff on any dcpo, and for the same
reason: every set of the form ↓x is open and closed. Scott-continuous functions
are also µ-continuous; for the converse one needs to require monotonicity in
addition to µ-continuity to get Scott-continuity, [7, Prop. 3.2.1].

Proposition 2.9 The smallest sub-dcpo P of a subset P of a dcpo D is con-
tained in the µ-closure of P . Furthermore, for every element x ∈ P and Scott-
open set O containing x there exists x′ ∈ P with x′ ∈ O and x′ ⊑ x.

1This appears to have been considered first by Oswald Wyler in [12].
2Martin’s original definition was for continuous domains. In [8] it is defined for arbitrary

posets as the topology generated by the Scott-open and the Scott-closed subsets but the result
is the same.
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Proof. For the supremum of a directed set A to belong to a subbasic µ-open
set ↓x ∩ O, all elements of A must be below x. Because O is Scott-open, some
element of A must meet it and this element will then be in ↓x ∩O. This shows
that D \ (↓x∩O) is a sub-dcpo of D, and hence that P belongs to the µ-closure
of P .

The two need not be the same, even when the ambient dcpo D is continuous:

Example 2.10 Let D be the powerset of N. For the elements of P choose the
set of Ai, i ∈ N where Ai = N \ {i}. These are pairwise incomparable, so the
dcpo closure of P is P itself. On the other hand, every µ-neighbourhood of N,
the largest element of PN, contains a subset ↑F with F a finite set. Clearly, ↑F
contains almost all Ai, so N is in the µ-closure of P .

Iterated ideal completion For every preorder P we have the ideal com-
pletion Idl(P ) consisting of directed lower sets of P . It is the free dcpo
over P . Given a dcpo presentation (P ;⊏∼, C) we have the order-preserving map
η : P → C-Idl(P ) which therefore factors through the ideal completion Idl(P ):
η =

⊔
↑◦↓. Let’s call the image P1. It is not necessarily a sub-dcpo of C-Idl(P )

but the process can be repeated: the inclusion of P1 into C-Idl(P ) extends to
a continuous map from Idl(P1) to C-Idl(P ). The image of this we call P2. And
so on. At a limit ordinal λ we set Pλ :=

⋃
α<λ Pα. Eventually this sequence

stabilizes at P .
Each of these descriptions is useful in its own way but we must leave open

the general problem of finding an intrinsic characterization of those subsets of P
that are elements of P .

3 Operations

For (P ;⊏∼, C) a dcpo presentation, we now show how a monotone operation on P
can be lifted to a Scott-continuous operation on the presented dcpo P . As one
may suspect, this will require a compatibility condition between the operation
and the set of covers.

So let ω : Pn → P be an n-ary monotone operation on the preorder P .
We say that C is stable for ω (or simply ω-stable) if for every 1 ≤ i ≤ n,
ai ⊳ U in C, and a1, . . . , ai−1, ai+1, . . . , an ∈ P , the cover ω(a1, . . . , an) ⊳
{ω(a1, . . . , ai−1, x, ai+1, . . . , an) | x ∈ U} is also in C. All our results require
stability and so from now on this is always assumed even if it is not explicitly
stated.

The operation can be lifted to subsets in the obvious, pointwise fashion: For
Ai ⊆ P (1 ≤ i ≤ n) set

ω(A1, . . . , An) := {ω(a1, . . . , an) | ai ∈ Ai}.

Lifting it to C-ideals requires the application of the associated closure operator:
if Ii ∈ C-Idl(P ) (1 ≤ i ≤ n) set

ω(I1, . . . , In) := 〈{ω(a1, . . . , an) | ai ∈ Ii}〉.
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Proposition 3.1 For any a1, . . . , ai−1, ai+1, . . . , an ∈ P and T ⊆ P the follow-
ing holds

ω(a1, . . . , ai−1, 〈T 〉, ai+1, . . . , an) ⊆ 〈ω(a1, . . . , ai−1, T, ai+1, . . . , an)〉.

Proof. Let us write S for the right-hand side above, and let

T ′ = {x ∈ P | ω(a1, . . . , ai−1, x, ai+1, . . . , an) ∈ S}.

By definition of S, we have T ⊆ T ′. We show that T ′ is a C-ideal. Suppose
a ⊳ U is a cover in C and U ⊆ T ′. By stability, ω(a1, . . . , ai−1, a, ai+1, . . . , an) ⊳
ω(a1, . . . , ai−1, U, ai+1, . . . , an), and since the right-hand side belongs to the C-
ideal S, so does the left-hand side. It follows that a ∈ T ′ and therefore 〈T 〉 ⊆ T ′.

Proposition 3.2 As a function from C-Idl(P )n to C-Idl(P ), ω preserves all
joins in each argument.

Proof. Clearly, ω is monotone. Fixing some i, we must show

ω(I1, . . . ,
⊔

λ

Jλ, . . . , In) ⊑
⊔

λ

ω(I1, . . . , Jλ, . . . , In).

Let us write K for the right-hand side. Then we must show

ω(I1, . . . ,
⊔

λ

Jλ, . . . , In) ⊆ K:

in other words, if, for each j 6= i, we have aj ∈ Ij , then

ω(a1, . . . ,
⊔

λ

Jλ, . . . , an) ⊆ K.

Putting T =
⋃

λ Jλ in Proposition 3.1, we have

ω(a1, . . . ,
⊔

λ

Jλ, . . . , an) ⊆ 〈ω(a1, . . . ,
⋃

λ

Jλ, . . . , an)〉

= 〈
⋃

λ

ω(a1, . . . , Jλ, . . . , an)〉

Since K is a C-ideal and trivially for each λ,

ω(a1, . . . , Jλ, . . . , an) ⊆ ω(I1, . . . , Jλ, . . . , In) ⊆ K.

we have
〈
⋃

λ

ω(a1, . . . , Jλ, . . . , an)〉 ⊆ K

which completes the argument.

As a corollary, ω preserves all directed joins in each argument, and hence is
jointly Scott continuous, and hence Scott continuous.
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Lemma 3.3 If Ai ⊆ P (1 ≤ i ≤ n) then

ω(〈A1〉, . . . , 〈An〉) = 〈ω(A1, . . . , An)〉.

Proof. That the right-hand side is included in the left-hand side is just mono-
tonicity. For the other inclusion we apply Proposition 3.1 n times to get the
chain of inequalities

ω(〈A1〉, 〈A2〉, . . . , 〈An〉) ⊆ 〈ω(A1, 〈A2〉, . . . , 〈An〉)〉 ⊆ . . . ⊆ 〈ω(A1, . . . , An)〉

Applying the C-ideal closure operator to the leftmost and rightmost term gives
the result.

Corollary 3.4 The map η : P → C-Idl(P ) is a homomorphism with respect to
the operation ω, in other words, if a1, . . . , an ∈ P then

ω(η(a1), . . . , η(an)) = η(ω(a1, . . . , an)).

Proposition 3.5 ω maps P
n

to P .

Proof. We must show that P
n
⊆ ω−1(P ). Since ω is Scott continuous, ω−1(P )

is a sub-dcpo of C-Idl(P )n, and by Corollary 3.4 it includes (η(P ))n. Hence by
Proposition 2.8 it includes P

n
.

Theorem 3.6 Let D be a dcpo and let ωD : Dn → D be a continuous operation.
Let further f : P → D be a monotone and cover preserving homomorphism with
respect to ω. Then the extension f : P → D (defined in the proof of Theorem 2.7)
is also a homomorphism.

Proof. Consider the set

{(I1, . . . , In) ∈ P
n
| ωD(f(I1), . . . , f(In)) = f(ω(I1, . . . , In))}.

This is a sub-dcpo of P
n

because it is the equalizer of the two Scott-continuous
functions ωD ◦ f

n
and f ◦ ω. It includes the image of Pn under ηn since

ωD(f(η(a1)), . . . , f(η(an))) = ωD(f(a1), . . . , f(an))

(f is a homomorphism) = f(ω(a1, . . . , an))

= f(η(ω(a1, . . . , an)))

(Corollary 3.4) = f(ω(η(a1), . . . , η(an)))

Hence it equals P
n
.

From a topological point of view, we can say the following about the alge-
bra P .
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The d-topology Since a function between dcpos is Scott-continuous if and
only if it is monotone and d-continuous, it then follows from Proposition 3.2
that the extended operation ω is d-continuous in every argument. Although it
is also jointly Scott-continuous, it need not be jointly d-continuous, however,
since the d-topology on C-Idl(P )n may be weaker than the product topology.
This is nevertheless sufficient for us because a function f : Xn → Y that is only
continuous in each argument, still satisfies f(cl(An)) ⊆ cl(f(An)) for all A ⊆ X.
We apply this observation to the subalgebra η(P ) of C-Idl(P ) and conclude that
P , the d-closure of η(P ) is also a subalgebra.3

The µ-topology As with the d-topology, we get from Proposition 3.2 that
the operation ω is µ-continuous in each argument on C-Idl(P )n. Hence the

µ-closure P of η(P ) is also a subalgebra. By Proposition 2.9 it contains P .

4 Inequations

We are ready to embark on the main result of this paper, namely, that the
free dcpo algebra P satisfies all inequations that are valid in the preordered
algebra P . The setting is slightly more general than in the previous section:
we assume we are given a dcpo presentation (P ;⊏∼, C) and a signature Ω of
operation symbols, each of finite arity. We further assume that P is a preordered
Ω-algebra, which means that for every ω ∈ Ω with arity n a monotone map
ωP : Pn → P has been specified. (Below we will no longer distinguish between
the function symbol ω and the concrete operation ωP .) We also assume that C
is stable with respect to all operations ωP , ω ∈ Ω.

Definition 4.1 For Ω a set of function symbols, an inequation is a first-order
formula of the form (∀~x)t1 ⊑ t2, where t1 and t2 are Ω-terms whose variables
all appear in the vector ~x.

The notion of algebra (model) for an inequational theory can be defined in
any preorder-enriched category with products. For the purposes of this paper,
we are interested in the categories Pre (of preorders) and dcpo.

Proposition 4.2 Let (P ;⊏∼,Ω) be a preordered Ω algebra and C a set of covers
stable for all ω ∈ Ω. Let P be the dcpo algebra presented by (P ;⊏∼, C) with
Scott-continuous operations ω (ω ∈ Ω) as defined in the previous section. Then
any inequation that is valid in P also holds in P .

Proof. Let (∀~x)t1 ⊑ t2 be an inequation that is valid in P . The terms t1
and t2 define n-ary monotone operations on P , hence extend to n-ary Scott-
continuous operations t1, t2 on P by Proposition 3.5. The set X of tuples ~a
in P

n
for which t1(~a) ⊑ t2(~a) holds, is a sub-dcpo of P

n
. It includes (η(P ))n

because the inequation holds in P and η is a monotone homomorphism by
Corollary 3.4. By Proposition 2.8, X is the whole of P

n
.

3We acknowledge the anonymous referee who pointed out a gap in our original argument.
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Note that the analogous statement for the ambient algebra C-Idl(P ) is false
in general. An example is easily given. Let P be trivially ordered and carry
a binary operation that satisfies x ∗ x = x; let the set C of covers be empty.
The set of C-ideals consists of all subsets of P . Clearly, forming the product
A ∗A of a subset A ⊆ P with more than one element may contain elements not
belonging to A.

Definition 4.3 For Ω a set of function symbols, an inequational theory is sim-
ply a set E of inequations over Ω. A preordered algebra supporting all operations
in Ω is called a (Ω, E)-algebra if it satisfies the inequations in E. We often ab-
breviate the pair (Ω, E) to T.

Theorem 4.4 Let T = (Ω, E) be an inequational theory and P a preordered T-
algebra. Let C be a set of covers stable for all operations in Ω. Then η : P → P
makes P freely generated as a dcpo-T-algebra that respects the T-algebra struc-
ture of P and preserves the C-covers.

Proof. That P is a dcpo-T-algebra follows from the preceding proposition.
Freeness was shown in Theorem 3.6.

The phenomenon reported in this theorem was first noted by Abramsky
and Vickers for a special algebraic theory; it is the essence of their “coverage
theorem” in [2]. We believe that it is the “general unifying account” that is
asked for in [11, page 301]. We will examine how the various coverage theorems
in the literature follow from it in Section 6 below. In the remainder of the
present section we indicate how Theorem 4.4 could have been established by
other means.

The d-topology C-Idl(P ) is almost a topological algebra with respect to the
d-topology, except that in general the operations are only continuous in each
argument. This is sufficient, however, to conclude that the inequations that
hold in η(P ) also hold in cl(η(P )) = P because the d-topology is Hausdorff.

The µ-topology The µ-topology is also Hausdorff and hence the closure P
of η(P ) with respect to it yields a subalgebra that also satisfies the inequations
holding in P but in general is larger than P . This shows that P can not be
characterized as the largest extension of η(P ) belonging to the same variety
as P .

Iterated ideal completion Yet another way to establish our main theorem
is via the transfinite generation process described at the end of Section 2. One
first shows the following result directly (rather than relying on the fact that it
is the special case C = ∅ in Proposition 4.2):

Proposition 4.5 An inequational law that is valid in P also holds in Idl(P ).

Then it is easy to see that inequations are preserved at every stage of the
transfinite process.
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5 Extensions

The phenomenon we are reporting in this paper is very robust and can be
extended in a number of ways. First of all, the restriction to single-sorted
algebras was purely for the sake of expository simplicity — the results of sections
3 and 4 hold equally well in the many-sorted case. Of course, one then deals
with a dcpo presentation for each sort separately.

More interesting is the case where we are given an operation that takes values
in Idl(P ) rather than P . This situation arises frequently in domain theory and
also in the “flat site” coverage theorem at the end of this paper. We show
how this case can be reduced to the standard one, so let ω : Pn → Idl(P ) be a
monotone map. By setting

ω′( ~A) :=
⋃

{ω(~a) | ~a ∈ ~A}

we obtain a monotone operation of the usual kind on the ordered set Idl(P ).
The idea is now to complete Idl(P ), rather than P itself. We lift the given set C
of covers to a set C ′ of covers on Idl(P ) through the following two rules:

(a ⊳ U) ∈ C
(lift)

(↓a ⊳ {↓U}) ∈ C ′

A =
⊔

↑

i∈I

Ai in Idl(P )

(cont)
(A ⊳ {Ai | i ∈ I}) ∈ C ′

Proposition 5.1 The dcpo P presented by (P ;⊏∼, C) is isomorphic to Idl(P )
presented by (Idl(P );⊆, C ′).

Proof. We show that Idl(P ) has the required extension property. Consider
the following diagram:

P
↓- Idl(P )

η- Idl(P )

@
@

@
@

@
f

R 	�
�

�
�

�

f ′

D

f ′

?

where we assume that D is a dcpo and f preserves covers. The function f ′ is the
unique Scott-continuous map for which f = f ′ ◦ ↓. We show that it preserves
the covers in C ′. For covers created by the (lift)-rule, we compute:

f ′(↓a) = f(a)
(f preserves covers in C) ⊑

⊔
↑{f(x) | x ∈ U}

=
⊔

↑{f(x) | x ∈ ↓U}
=

⊔
↑{f ′(↓x) | x ∈ ↓U}

(f ′ is continuous) = f ′(
⊔

↑{↓x | x ∈ ↓U})
= f ′(↓U)

12



Covers created by the (cont)-rule are preserved because f ′ is continuous. It
follows that the extension f ′ exists and satisfies

f ′ ◦ (η ◦ ↓) = f ′ ◦ ↓ = f

If we had another continuous map g : Idl(P ) → D with g ◦ (η ◦ ↓) = f , then g ◦ η
would be another continuous map into D extending ↓ and so would have to be
equal to f ′. (Here we are using that η is Scott-continuous, which is enforced by
the covers created through the (cont)-rule.) However, g ◦ η = f ′ forces g = f ′

by the universal property of Idl(P ).

In order to apply our theory of Section 3 we need to find a suitable re-
quirement on C that ensures that C ′ is ω′-stable. Since ω′ is Scott-continuous,
stability for the covers created by the (cont)-rule is automatic.

Ensuring stability for the covers created by the (lift)-rule would lead to an
awkward condition on ω, but luckily, the situation becomes much more malleable
through the following concept:

Definition 5.2 For C a set of covers on a preorder (P ;⊏∼) define the satura-
tion sat(C) of C by the following rules:

(a ⊳ U) ∈ C
(inc)

(a ⊳ U) ∈ sat(C)

a′ ⊏∼ a (a ⊳ U) ∈ sat(C) ↓U ⊆ ↓U ′

(mon)
(a′ ⊳ U ′) ∈ sat(C)

(a ⊳ U) ∈ sat(C) ∀b ∈ U.(b ⊳ V ) ∈ sat(C)
(trans)

(a ⊳ V ) ∈ sat(C)

It is clear that a monotone function that preserves the covers in C also preserves
those in the saturation, and therefore that (P ;⊏∼, C) and (P ;⊏∼, sat(C)) present
the same dcpo P .

Definition 5.3 Let ω : Pn → Idl(P ) be a monotone operation. A set of covers C
is called ω-stable if whenever we have p ∈ ω(a1, . . . , an) and ai ⊳ U belongs to C,
then p ⊳ U ′ for some U ′ ⊆ ω(a1, . . . , U, . . . an).

Proposition 5.4 If C is ω-stable for ω : Pn → Idl(P ) then sat(C ′) is ω′-stable
for ω′ : Idl(P )n → Idl(P ).

Proof. Let ↓a ⊳ {↓U} be a cover in C ′ created by the (lift)-rule. Given any
vector of directed ideals A1, . . . , Ai−1, Ai+1, . . . , An we need to show that

ω′(A1, . . . , ↓a, . . . , An) ⊳ ω′(A1, . . . , ↓U, . . . , An)

belongs to sat(C ′). This will follow from (cont) and (trans) if we can show

↓p ⊳ ω′(A1, . . . , ↓U, . . . , An)

for every p ∈ ω′(A1, . . . , ↓a, . . . , An) =
⋃

ak∈Ak
ω(a1, . . . , a, . . . , an). How-

ever, by ω-stability of C we have p ⊳ U ′ for some directed set U ′ ⊆

13



ω(a1, . . . , U, . . . , an) ⊆ ω′(A1, . . . , ↓U, . . . , An) and the desired cover belongs to
sat(C ′) by rules (mon), (lift), and (cont).

To complete the translation from P to Idl(P ) observe that if an inequa-
tion (∀~x)t1 ⊑ t2 is valid in P then it also holds in Idl(P ). By the extension
Theorem 4.4 it will then also hold in the presented dcpo-algebra Idl(P ).

6 Applications

6.1 Quotients and colimits in DCPO

Given a dcpo D we may wish to force certain inequalities to hold. The results of
Section 2 show how this can be done, namely by collecting the inequations into
a set of covers C, but they also show that the process of forming the quotient is
non-trivial; this is because the naive (preorder) quotient may contain directed
sets that did not exist before.

One application of quotienting is the construction of the coequalizer in
DCPO. Coproducts are just disjoint unions, so together we have a fairly con-
crete description of colimits in DCPO.

6.2 Free dcpo algebras

Let T be an inequational theory. One of our main results, Theorem 4.4, shows
that from a T-algebra (P ;⊏∼) in Pre, equipped with a dcpo presentation that is
stable for the operations in T, the dcpo P presented is a free T-algebra in dcpo

over P . In this section we shall use the result to construct, given a dcpo D, a
free T-algebra over D in dcpo. In other words, we are constructing a left adjoin
to the forgetful functor Alg

T
(dcpo) → dcpo. (For simplicity we are assuming

here that T is single-sorted. However, the extension to many-sorted theories is
easy. It will give a left adjoint to the forgetful functor Alg

T
(dcpo) → dcpoSort,

where Sort is the set of sorts for T.)
Let D be a dcpo. We shall assume D is presented as P for some given dcpo

presentation (P ;⊏∼, C). In a sense this is unnecessary, since D has a canonical
presentation in which P = D and C has a cover for every directed subset of
D. However, there is some advantage in knowing how the construction can be
made in terms of presentations. We proceed in a number of steps.

First, let PT be the term algebra, the set of all terms made from elements of
P and operators in T.

Second, let ⊏∼T
be the smallest congruence preorder on PT that includes ⊏∼

and satisfies the inequational laws in T. By congruence preorder, we mean a
preorder with respect to which the operations are monotone. That is to say, if
b ⊏∼T

c then ω(a1, . . . , b, . . . , an) ⊏∼T
ω(a1, . . . , c, . . . , an) for any operator ω and

elements ai. (PT;⊏∼T
) is a T-algebra in Pre.

Third, let CT be the smallest dcpo presentation on PT that includes C and
is stable for all the operators in T.

14



Theorem 6.1 Let (PT, ⊏∼T
, CT) be as above. Then P T is the free dcpoT-algebra

over D.

Proof. Let E be a dcpoT-algebra, and let f : D → E be a continuous
map. By definition of dcpo presentation, f is equivalent to a monotone, cover-
preserving function f : P → E. This extends uniquely to a homomorphism fT :
PT → E. The inverse image of ⊑E is a congruence preorder on PT that includes
⊏∼ and satisfies the inequational laws in T, and it follows that fT is monotone
with respect to ⊏∼T

. Similarly, by considering those pairs (a, U) ∈ PT × PPT,

with U directed, such that fT(a) ⊑
⊔↑

u∈U fT(u), we see that fT preserves the
CT-covers. Hence by Theorem 4.4 fT extends uniquely to a homomorphism
f

T
: P T → E.

6.3 Coverage theorems

The content of Theorem 4.4 is that it shows that the same structure (P ) can be
presented by generators and relations in two different ways: either as a dcpo,

dcpo〈P | a ⊑
∨↑

U (a ⊳ U)〉

or as a dcpo-T-algebra,

dcpoT〈P (qua T-algebra) | a ⊑
∨↑

U (a ⊳ U)〉.

Presenting as a dcpo-T algebra would, other things being equal, create a larger
structure since all the T-terms have to be generated. But this is compensated
for by the “qua T-algebra”, in effect extra relations, which constrain the newly
generated terms to relate to what already exists in P .

This is the typical pattern of the “coverage theorems” known from locale
theory. In fact the underlying question is seen more widely in mathematics.
One example from ring theory is the basic property of ideals. If R is a ring and
I an ideal, then we have

Ring〈R (qua ring) | a = 0 (a ∈ I)〉
∼= Ab〈R (qua Abelian group) | a = 0 (a ∈ I)〉.

The ideal property RIR ⊆ I may be seen as a “multiplication stability” of the
subgroup I.

The original locale-theoretic coverage theorem is that of [5], which describes
the construction of the frame of C-ideals on a site, a meet-semilattice equipped
with a meet-stable coverage (not necessarily a dcpo presentation). It was also
shown that the frame of C-ideals was freely generated over the semilattice, with
respect to transforming covers to joins. In fact the constructions there underlie
much of the present paper. However, something that was not explicit in [5]
was the fact that, even without the meets structure, the set of C-ideals could
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be presented as a sup-lattice (complete join semilattice). This was stated and
exploited in [2]. If (S,C) is the site, then

Fr〈S (qua ∧ -semilattice) | a ⊑
∨

U (a ⊳ U)〉

∼= SupLat〈S (qua poset) | a ⊑
∨

U (a ⊳ U)〉,

with both isomorphic to the set of C-ideals. There are two directions in which
this can be used. One is that if a frame is presented by generators and relations
(in other words, it is the Lindenbaum algebra for a propositional geometric
theory), then the presentation can be manipulated into site form and then the
result shows how to define sup-lattice homomorphisms from the frame. This was
particularly useful in the context of [2], which involved quantales and modules
over them, which are sup-lattices but not frames in general. The other direction
was that it shows how to generalize the coverage theorem to get presentations
for structures other than frames, specifically quantales and their modules.

A specific aspect of the technique is that once the existence of the sup-lattice
SupLat〈S (qua poset)| a ⊑

∨
U (a ⊳ U)〉 is known, one can forget its concrete

representation as a set of C-ideals. Its universal property as sup-lattice can be
used to define meet on it as a bilinear (with respect to joins) operation, and
then show that the operation gives meet with respect to the sup-lattice order.
This is similar to the way in which we here extend operations from the preorder
to the dcpo.

In [6] those same ideas were developed with sup-lattices replaced by pre-
frames – a preframe is a dcpo with finite meets, binary meet distributing over
directed joins. It was shown how frame presentations in a certain form could be
reduced to preframe presentations. This time, the set of generators was a join-
semilattice. The relations were all of the form

∧
S ≤

∨↑

i

∧
Ti, with a certain

join-stability property. Again, once the presented preframe was known to exist
(this was a substantial result of the paper), its frame structure could be proved
from the universal properties.

[11] combines those “sup-lattice” and “preframe” coverage theorems to prove
a “double” coverage theorem that relates frame presentations to dcpo presenta-
tions. In fact it is a direct corollary of our Theorem 4.4.
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[11] summarizes the coverage theorems in a cubical diagram

∨-SemiLat � DL

I@
@

@
@

@ �
�

�
�

��

SupLat � Fr

dcpo
?

� PreFr
?

	�
�

�
�

� @
@

@
@

@R
Poset

?
� ∧-SemiLat

?

Each arrow here represents a forgetful functor that has a left adjoint, a free
algebra functor. Note that some of the arrows are between finitary theories,
and there are already non-trivial coverage theorems for those. However, our
main Theorem, 4.4, is about dcpos and the coverage theorems for the central
square.

6.3.1 Immediate applications

The following two results in [11] are immediate corollaries of Theorem 4.4. Note
that [11] deals with equations: each “directed relation” is an equation between
two joins of directed families. Our inequational form is normally more general,
but in the case of semilattices each inequation can be expressed as an equation.

Proposition 6.2 Let P be a join semilattice and R a join-stable set of directed
relations on it. Then

Sup〈P (qua ∨ -SemiLat) | R〉 ∼= dcpo〈P (qua poset) | R〉.

Proof. [11] says, “The standard technique applies.” What is meant by this
is that once the RHS is known to exist then its universal property can be used
to define ∨. The task then is to show that the operation so obtained turns the
RHS into a sup-lattice, and to prove the sup-lattice universal property required
by the left-hand side. Our Theorem 4.4 works differently; the operation ∨ on P
extends to an operation ∨ for the general reasons explained in Section 3, and
it satisfies all inequations that ∨ satisfies. This is enough to show that ∨ is the
sup-operation on the ordered set P , or more precisely, that A ⊆ B holds if and
only if A∨B = B for all C-ideals A,B ∈ P .

Assume A ⊆ B. Then A∨B ⊆ B∨B = B by monotonicity and idempotence,
and B ⊆ A∨B holds because it holds for ∨ on P .
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Conversely, assume A∨B = B. Then A ⊆ A∨B = B, again using that
(∀x, y)x ≤ x ∨ y holds in the sup-lattice P .

Theorem 6.3 (Double Coverage Theorem) If (P,R, ...) is a DL-site, then

Fr〈P (qua DL) | R〉 ∼= dcpo〈P (qua poset) | R〉

Proof. “DL-site” means that P is a distributive lattice and each relation
in R is in the form of an equation between two joins of directed families in
P . Moreover, the equation set is join- and meet-stable. Each equation can be
expressed as a pair of inequations, so the whole site can be rephrased as a join-
and meet-stable dcpo presentation.

The order on P is linked to the join operation as in the previous proposition,
and to meet by equations. Hence the order on P is linked to ∨ as before and
also to ∧ because the equations are preserved.

Proposition 6.4 Let P be a meet semilattice and R a meet-stable set of directed
relations on it. Then

PreFr〈P (qua ∧ -SemiLat) | R〉 ∼= dcpo〈P (qua poset) | R〉.

Proof. The proof that the order on P is given by ∧ is analogous to the one
given for ∨ above.

As a corollary of Proposition 6.2, we get the following. It illustrates a typical
technique of expanding the generator set with operations that are preserved, and
expanding the relation set to ensure stability.

Corollary 6.5 Let P be a preorder and C a coverage on it (not necessarily
directed). Then

Sup〈P (qua preorder) | a ⊑
∨

U (a ⊳ U)〉

is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳ U)〉.

Here FP is the finite powerset, and the lower preorder ⊏∼L is defined by A ⊏∼L B
if for every a ∈ A there is some b ∈ B with a ⊏∼ b.

Proof. One first shows that Sup〈P (qua preorder)| a ⊑
∨

U (a ⊳ U)〉 is
isomorphic to

SupLat〈FP (qua ∪ -semilattice) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳ U)〉.

This uses straightforward calculations with presentations. In one direction a
maps to {a}, while in the other A maps to

∨
A. The relations are ∪-stable, and

then Proposition 6.2 can be applied.
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6.3.2 The standard coverage theorems

The original coverage theorem was that if (S,C) is the site, then

Fr〈S (qua ∧ -semilattice) | a ⊑
∨

U (a ⊳ U)〉

∼= SupLat〈S (qua poset) | a ⊑
∨

U (a ⊳ U)〉.

Using Corollary 6.5, the RHS can be reduced to a dcpo presentation in which
the generators are FP preordered by ⊏∼L. These already form a distributive
lattice, with A∧B = {a∧ b | a ∈ A, b ∈ B}, and this allows us to deduce by the
same means that the dcpo presented can be given a frame presentation, which
can then be proved isomorphic to the LHS.

[6] proves a preframe coverage theorem.

Theorem 6.6 Let S be a ∨-semilattice, and let R be a set of preframe relations
of the form

∧
A ⊑

∨↑

i∈I

∧
Bi, where the Bis form a directed family with respect

to the upper order ⊏∼U . (A ⊏∼U B if for every b ∈ B there is some a ∈ A with
a ⊑ b.) Suppose also that the set of relations is ∨-stable, in the sense that if∧

A ⊑
∨↑

i∈I

∧
Bi is in R, and x ∈ S, then the relation

∧
{x ∨ y | y ∈ A} ⊑

∨↑

i∈I

∧
{x ∨ y | y ∈ Bi}

is also in R. Then

Fr〈S (qua ∨ -semilattice) | R〉 ∼= PreFr〈S (qua poset) | R〉.

Proof. We have PreFr〈S (qua poset)| R〉 ∼= PreFr〈FS (qua ∪ = ∧-
semilattice)| R〉, and FS/ ⊏∼U is a distributive lattice. The preframe presented
is in turn isomorphic to

PreFr〈FS (qua ∪ = ∧-semilattice) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉,

and the relations here are both ∧-stable and ∨-stable. We can now use Theo-
rem 4.4 to see that

dcpo〈FS (qua ⊏∼U -preorder) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉

is isomorphic both to the preframe presented above and to the frame

Fr〈FS (preserving ∪ and ∧ ) | C ∪
m⋃

j=1

Aj ⊑
∨↑

{C ∪
m⋃

j=1

Bij
| ij ∈ Ij}

(C ∈ FS,
∧

Aj ⊑
∨↑

i∈Ij

∧
Bi in R〉
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which in turn is isomorphic to Fr〈S (qua ∨-semilattice)| R〉.

6.3.3 Flat sites

We discuss here the original sup-lattice coverage theorem in a slightly general-
ized form.

A flat site is defined in [10] as a triple (P,⊏∼, ⊳0) where (P,⊏∼) is a preorder
and ⊳0 is a subset of P × PP such that if a ⊳0 U and b ⊏∼ a, then b ⊳0 V for
some V ⊆ b ↓ U . (We write A ↓ B for (↓ A) ∩ (↓ B), ↓ A for the down-closure
of A.)

In fact, this is just re-notation for the inductively generated formal topologies
of [3]. Each flat site presents a frame Fr〈P,⊏∼, ⊳0〉, defined as

Fr〈P (qua preorder) | 1 ⊑
∨

P

a ∧ b ⊑
∨

(a ↓ b)

a ⊑
∨

U (a ⊳0 U)〉.

This generalizes the [5] notion of site, though in a way that is already understood
from the way Grothendieck topologies are used in topos theory. If P is a meet-
semilattice then the condition on the coverage is equivalent to meet stability,
and the first two relations given, together with “qua preorder”, are equivalent
to preservation of finite meets of P .

Theorem 6.7

Fr〈P,⊏∼, ⊳0〉 ∼= SupLat〈P (qua preorder) | a ⊑
∨

U (a ⊳0 U)〉.

Proof. By Corollary 6.5, the RHS in the statement is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ FU} (B ∈ FP, a ⊳0 U)〉.

FP is already a semilattice, with ∪ providing a join with respect to ⊏∼L. But
it also has a meet operation ∧ : FP ×FP → Idl(FP ),

A ∧ B = {S ∈ FP | (∀s ∈ S)(∃a ∈ A)(∃b ∈ B)s ∈ a ↓ b}

= {S ∈ FP | S ⊏∼L A,S ⊏∼L B}.

Extending these to operations on Idl(FP ), we find they make it a distributive
lattice. Notably, A ∧ (B1 ∨ B2) = (A ∧ B1) ∨ (A ∧ B2). For if S ⊏∼L A and
S ⊏∼L B1 ∪B2 then we can find S = S1 ∪ S2 with Si

⊏∼L Bi, and this suffices to
show S ∈ (A ∧ B1) ∨ (A ∧ B2).

The coverage as it stands is obviously ∨-stable. However, for ∨-stability we
shall need to extend it. By induction on n one sees that the dcpo as presented
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is isomorphic to

dcpo〈FP (qua ⊏∼L -preorder) |

B ∪ {a1, . . . , an} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ F(
n⋃

i=1

Ui)}

(B ∈ FP, n ≥ 0, ai ⊳0 Ui for 1 ≤ i ≤ n)〉.

This is still ∨-stable. For ∧-stability, suppose we have B ∪ {a1, . . . , an} ⊳ {B ∪
U ′ | U ′ ∈ F(

⋃n

i=1 Ui)}, deriving from B ∈ FP and ai ⊳0 Ui. Suppose S ∈
C ∧ (B ∪ {a1, . . . , an}) = (C ∧ B) ∨ (C ∧ {a1, . . . , an}), so S = S1 ∪ S2 with
S1

⊏∼L B and S2
⊏∼L {a1, . . . , an}. If S2 = {b1, . . . , bm} then for each j we have

bj
⊏∼ ai for some i, so bj ⊳0 Vj ⊆ bj ↓ Ui. Then

{B ∪ V ′ | V ′ ∈ F(

m⋃

j=1

Vj)} ⊆ C ∧ {B ∪ U ′ | U ′ ∈ F(

n⋃

i=1

Ui)}

as required for ∧-stability.
We can now apply Theorem 4.4 to see that this dcpo is isomorphic to

Fr〈FP (qua ⊏∼L -preorder) | ∨, ∧ , 1 and 0 preserved,

B ∪ {a1, . . . , an} ⊑
∨↑

{B ∪ U ′ | U ′ ∈ F(

n⋃

i=1

Ui)}

(B ∈ FP, n ≥ 0, ai ⊳0 Ui for 1 ≤ i ≤ n)〉,

which in turn is isomorphic to Fr〈P,⊏∼, ⊳0〉.
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