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Abstract

We sharpen the notion of a quasi-uniform space to spaces which
carry with them functional means of approximating points, opens and
compacts. Assuming nothing but sobriety, the requirement of uniform
approximation ensures that such spaces are compact ordered (in the
sense of Nachbin). We study uniformly approximated spaces with the
means of topology, uniform topology, order theory and locale theory.
In each case it turns out that one can give a succinct and meaningful
characterization. This leads us to believe that uniform approximation
is indeed a concept of central importance.

1 Introduction

In this paper we re-visit the time-honored subject of compact ordered spaces,
first introduced by Leopoldo Nachbin in 1948 [Nac48]. These are compact
Hausdorff spaces endowed with a partial order relation which is closed as
a subset of the cartesian product of the space with itself. Both order and
topology can be recovered from the collection of open upper sets which in
itself forms a (typically non-Hausdorff) topology. The topological spaces
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arising in this fashion can be characterized independently and show many
similarities with compact Hausdorff spaces. Indeed, one may say that they
are the T0-analogue of compact Hausdorff spaces, and, going one step further,
that they occupy an even more canonical and central position in topology
than the former. Discussions of these and further connections may be found
in [GHK+80, Chapter VII-1] and [Law88].

In [JS96] we showed how these coherent spaces, as we chose to call them,
can be described via certain distributive lattices. The most striking feature
of that work is that a faithful and satisfactory algebraic representation can
be obtained by considering both open and compact upper sets.

Topology provides us with a notion of nearness and convergence but not
by itself with means of approximation. We will explore below a particu-
lar suggestion of what it means that a coherent space is uniformly approxi-
mated. Our definition is very simple and natural: we require that the canon-
ical quasi-uniformity be generated by continuous functions. We will show
that this stipulation leads to ordered structures which have arisen in the
denotational semantics of programming languages, the so-called FS-domains
[Jun90, AJ94]. This is our first main result. It places these structures, which
were developed with rather different motivations, in the context of classical
topology. We then go on to extend the framework of [JS96] to deal with
these quantitative aspects of coherent spaces. Rather pleasingly, the localic
treatment is also very smooth and elegant.

We have tried to keep this paper self-contained as much as possible but
since it draws together concepts from a number of different areas, the reader
may at times wish to get more background information. We recommend
[AJ94, Chapter 7] and [Joh82] for Stone-duality, [DP90] for order theory,
[AJ94, SHLG94] for domain theory, and [FL82] for quasi-uniform spaces.

2 Topology and order

Most topological spaces arising in Mathematics satisfy the Hausdorff Sepa-
ration Axiom and subsets of the plane generally suffice to illustrate Haus-
dorff topological concepts. T0-spaces, in contrast, appear to be anarchic and
strange at first sight. Yet, there is a simple way to develop just as useful and
general intuition about them as for their Hausdorff counterparts. The key to
understanding T0-spaces is provided by the specialization order, defined by

x vs y if x ∈ cl{y} .
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It is immediate that vs is indeed a partial order and that open sets are
always upper sets with respect to vs. Vice versa, sets of the form X \ ↓x are
always open, indeed ↓x = {y ∈ X | y vs x} equals cl{x}. Of course, there
may be more open sets around. Thus we may visualize T0-spaces as ordered
sets together with a topology of certain upper sets. Since X \ ↓x is always
open it follows that every upper set is equal to the intersection of all its open
neighborhoods.

Throughout this paper we will always assume that our spaces are sober.
This can be interpreted as either a certain completeness of the space of points
or as a certain richness in terms of open sets. Technically, a space is sober,
if every closed set is the closure of a unique point or the union of two proper
subsets. [GHK+80, Joh82, AJ94] give more details on this concept.

An ordered set, in which every directed subset has a supremum, is called a
directed complete partial order or dcpo, for short. We write directed suprema
as

⊔ ↑xi. It follows immediately from Stone-duality that a sober space is
directed complete in its specialization order. On a dcpo one defines the
Scott-topology whose closed sets are those which are closed under suprema of
directed sets. It is again immediate from Stone-duality that every open set
in a sober space is Scott-open with respect to the specialization order.

A map f between dcpo’s is called Scott-continuous if it is monotone and
preserves least upper bounds of directed sets. One can show that the con-
cept of Scott-continuity coincides with topological continuity in terms of the
respective Scott-topologies. On the other hand, a continuous map between
sober spaces is also Scott-continuous with respect to the specialization orders
even though the topology of a sober space may be weaker than the associated
Scott-topology. (The proof is the same as in [AJ94, Proposition 2.3.4].)

Besides open sets we will make crucial use of compact upper sets. Simple
examples are sets of the form ↑x. We denote the collection of all compact
upper sets of a topological space X by KX . When we think of this collection
as an ordered set in its own right then it is advantageous to use ⊇ rather
than ⊆ as the order relation.

The single most important property of sober spaces is the so-called Hof-
mann-Mislove Theorem [HM81, KP94, AJ94] which states that (KX ,⊇) is
isomorphic to the set of Scott-open filters on X. We will access it through
two of its consequences:

Proposition 1 Let (X, T ) be a sober space. Then

1. (KX ,⊇) is a dcpo;
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2. if the filtered intersection of compact upper sets Ki is contained in an
open set O, then some Ki is contained in O.

Lemma 2 Let f :X → Y be a continuous function where both X and Y are
sober. Define a function fK: KX → KY by fK(K) := ↑f(K). Then fK is
Scott-continuous.

Proof. Assume that (Ki)i∈I is a filtered family of compact upper subsets
of X. Let O be an open set in Y . We argue as follows to show that it is a
neighborhood of ↑f(

⋂
Ki) if and only if

⋂
↑f(Ki) is contained in O:

↑f(
⋂

Ki) ⊆ O ⇐⇒ f(
⋂

Ki) ⊆ O

⇐⇒
⋂

Ki ⊆ f−1(O)

(Proposition 1) ⇐⇒ ∃i. Ki ⊆ f−1(O)

⇐⇒ ∃i. f(Ki) ⊆ O

⇐⇒ ∃i. ↑f(Ki) ⊆ O

(Proposition 1) ⇐⇒
⋂
↑f(Ki) ⊆ O

This concludes the proof because every upper set equals the intersection of
its open neighborhoods.

In a dcpo we say that x approximates y (or x is way-below y), and we write
x� y, if every directed set A whose supremum is above y contains an element
above x. This concept arose in the theory of continuous lattices [GHK+80]
but it is also present in many arguments from topology and analysis, though
not always fully explicit.

Lemma 3 Let (X, T ) be a sober space. Then for O,O′ ∈ T , K,K ′ ∈ KX

we have
O ⊆ K ⊆ O′ implies O � O′ in (T ,⊆);
K ⊆ O ⊆ K ′ implies K ′ � K in (KX ,⊇).

If, in addition, X is locally compact then the converses also hold.

3 Coherent spaces and uniform approxima-

tion

We cite from [Nac65] the following definition.
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Definition 4 A compact ordered space is given by a set X together with a
compact Hausdorff topology and a partial order, which is closed in the product
topology.

It was observed by the authors of [GHK+80] that compact ordered spaces
can be characterized purely topologically as follows.

Definition 5 A topological space X which is sober, compact and locally com-
pact and in which K ∩K ′ is compact for all K,K ′ ∈ KX , is called coherent.

Note that since we do not require the T2 Separation Axiom we have to
require local compactness and the intersection property explicitly. For a
Hausdorff space these properties follow from compactness.

Definition 6 If (X, T ) is a topological space then the cocompact topology Tc
is generated by the collection of all sets of the form X \K, where K ∈ KX .
The patch topology Tp is the common refinement of T and Tc.

It is an easy consequence of Proposition 1 that for coherent spaces all
open sets in the cocompact topology have the form X \K, K ∈ KX .

We are now in a position to make the connection between coherent and
compact ordered spaces precise.

Theorem 7 1. Let (X, T ,≤) be a compact ordered space. The collection
of all open upper sets forms a topology T ↑ on X and (X, T ↑) is coherent.

2. Let (X, T ) be a coherent space. Then X together with the patch topology
and the specialization order is compact ordered.

3. The translations in (1) and (2) are inverses of each other.

The proof of (1) consists of showing that there are sufficiently many open
upper sets, while the main hurdle in (2) is to show that every compact upper
set is also compact with respect to the patch topology. See [GHK+80, VII.1
Exercises] for details.

We now come to our main topic, the problem of approximating a topolog-
ical space. The necessary quantitative information is traditionally captured
by uniformities, and, in the non-Hausdorff setting, by quasi-uniformities.
(For general information see [FL82].) For coherent spaces there is already a
smooth theory at hand, going back to Nachbin and later developed by Künzi
and Brümmer [KB87].
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Theorem 8 Every coherent space (X, T ) carries a unique quasi-uniformity U
such that T (U) = T and T (U−1) = Tc. It consists of all Tp×Tp-neighborhoods
of vs in X×X. This structure is also unique with regard to the properties
T (U∗) = Tp and ≤U = vs. ([KB87])

We propose to go a step further and to require that the space is equipped
with functions which yield uniform approximations to points, opens, and
compacts. We formalize this idea as follows.

Definition 9 Let (X, T ) be a topological space. A continuous function f :X →
X is said to be uniformly approximating if for all O ∈ T there exists K ∈ KX

such that f−1(O) ⊆ K ⊆ O and if for all K ∈ KX there exists O ∈ T such
that K ⊆ O ⊆ ↑f(K).

Note that this is a purely topological definition. It stipulates that f pro-
vides “neighborhoods” for opens and compacts alike. Since it is a function,
it also yields approximations to points. (Note that, by ↑x ∈ KX , we will
always have f(x) vs x.) Uniform approximation seems to be a desirable
property — if you can get it! Indeed, non-trivial connected T1 spaces will
never allow such maps; there the specialization order is trivial and the con-
dition K ⊆ O ⊆ ↑f(K) implies that f is constant and every point an open
set. If we give up on T1 separation then examples abound. For example, on
the unit interval with the upper topology {(a, 1] | 0 ≤ a ≤ 1} ∪ {[0, 1]} the
functions fε(x) = max {0, x− ε} are uniformly approximating for ε > 0.

The recent work of Abbas Edalat [Eda94, Eda95] illustrates quite clearly
the need to have an effective notion of approximation if one wants to perform
actual calculations (for example, integration) over a space. For his purposes,
Edalat replaces the unit interval by the space of all subintervals of the unit
interval. His work provided part of the motivation for the investigations
reported in the present paper.

We give two alternative formulations of uniform approximation, one in
the spirit of topology and one in the spirit of domain theory.

Definition 10 For a function f :X → Y between topological spaces we define
the hypergraph of f by Uf := {(x, y) | f(x) vs y}.

Lemma 11 1. Let X be a topological space and f :X → X be uniformly
approximating. Then the hypergraph of f ◦ f is a Tc × T -neighborhood
of vs in X ×X.
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2. Let X be coherent and f :X → X be a continuous function whose hy-
pergraph is a Tc×T -neighborhood of vs in X×X. Then f is uniformly
approximating.

Proof. (1) Assume x vs y. Since f is monotone with respect to the
specialization order we have ↑f(↑x) = ↑f(x) for the compact upper set ↑x.
By assumption, there is an open set W with x ∈ W ⊆ ↑f(x). This will
be the y-part of the Tc × T -neighborhood we are searching for. For the x-
part, observe that O := f−1(X \ ↓f(x)) does not contain x and again by
assumption there is a compact upper set K such that f−1(O) ⊆ K ⊆ O. We
let V := X \ K. Now each element of W is above f(x) and every element
of V is mapped below f(x) by f 2. Hence V ×W is contained in Uf◦f .

(2) For a single element x ∈ X we have (x, x) ∈ vs and so there is a
Tc × T basic open S := (X \K)× O which contains (x, x) and is contained
in Uf . This means f(a) vs b whenever (a, b) ∈ S. In particular, every
element of O is above f(x). Hence we have x ∈ O ⊆ ↑f(x). The extension
to arbitrary compact upper sets is straightforward.

Next let W be an open set in X. For every element x 6∈ W we let
S = (X \K) × O be a Tc × T basic open neighborhood of (x, x) contained
in Uf as before. Now we may conclude that for every element a in X \ K
we have f(a) vs x and hence f(a) 6∈ W . Dually, every element of f−1(W ) is
contained in K. The intersection of all such compact upper sets is contained
in W . It is compact because of coherence.

Now we employ order theory to describe uniform approximation. It is
clear that we can reformulate uniform approximation as f−1(O) � O in
(T ,⊆) and ↑f(K)� K in (KX ,⊇) because Lemma 3 applies. This requires
more concepts but once the order theoretic language is accepted, it also
amplifies the simplicity of our definition.

More in the spirit of order theory is the following concept:

Definition 12 A Scott-continuous function f on a dcpo D is said to be
finitely separated from idD, if there exists a finite subset M of D such that
for all x ∈ D there exists m ∈ M with f(x) ≤ m ≤ x. The same concept
applies to continuous functions between sober spaces because these are Scott-
continuous with respect to the specialization order. specialization orders.

Lemma 13 If D is a dcpo and f :D → D is finitely separated from idD then
for all x ∈ D we have f(x)� x.
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Proof. Let x ∈ D and A ⊆ D be directed such that x ≤
⊔ ↑A. Further

let M ⊆fin D be the finite separating set for f . For each m ∈ M let Am be
the set of those elements a of A for which f(a) ≤ m ≤ a. By assumption,
A =

⋃
m∈M Am and since A is directed, some Am0 is cofinal in A. Scott-

continuity of f yields f(x) = f(
⊔ ↑A) = f(

⊔ ↑Am0) =
⊔ ↑

a∈Am0
f(a) ≤ m0 ≤

a ∈ Am0 ⊆ A.

It appears that finite separation is slightly stronger than uniform approx-
imation:

Lemma 14 1. If (X, T ) is sober and locally compact and f :X → X is
finitely separated from idX then f is uniformly approximating.

2. If (X, T ) is coherent and f :X → X is uniformly approximating then
f ◦ f is finitely separated from idX .

Proof. (1) Let M ⊆fin X be the separating subset for f . If O is open
then one sees immediately that f−1(O) ⊆ ↑(M ∩ O) ⊆ O and ↑(M ∩ O)
is the interpolating compact upper set. For the corresponding property for
compact upper sets we use the fact that fK: KX → KX is Scott-continuous
and that {↑N | N ⊆M} is a finite separating set for fK. By the previous
lemma (since ⊇ is the order on KX), we infer that fK(K)� K in KX which
implies K ⊆ O ⊆ ↑f(K) = fK(K) for some O ∈ T by Lemma 3.

(2) For x ∈ X, ↑x is compact and ↑f(↑x) = ↑f(x) because f is monotone
with respect to the specialization order. By assumption there is an open
set U with x ∈ U ⊆ ↑f(x). Furthermore, O := f−1(X \ ↓f(x)) does not
contain x and again by assumption there is a compact upper set K such that
f−1(O) ⊆ K ⊆ O. The set U \K is open in the patch topology. It contains
x and for each of its elements y, f(x) separates between f 2(y) and y: The
inequality f(f(y)) vs f(x) holds because y 6∈ K ⊇ f−1(f−1(X \ ↓f(x)));
f(x) vs y is true because y ∈ U ⊆ ↑f(x). Because X is coherent it is
compact Hausdorff in the patch topology and finitely many such open sets
cover the whole space. The corresponding elements “f(x)” constitute a finite
separating set.

Definition 15 A sober space X is said to be uniformly approximated if
there exists a directed family of uniformly approximating functions (fi)i∈I
whose pointwise supremum (with respect to the specialization order) equals
the identity on X.
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Note that if
⊔ ↑

i∈I fi = idX then also
⊔ ↑

i∈I f
2
i = idX because composition

of functions is Scott-continuous. The slight differences showing up in Lem-
mas 11 and 14 are therefore of no importance when it comes to uniformly
approximated spaces.

The unit interval with the functions fε from above is an example of a
uniformly approximated space. A more systematic way to construct examples
of such spaces is described in the following theorem.

Theorem 16 If X is a compact Hausdorff space then KX \{∅} together with
the Scott-topology derived from ⊇ is a uniformly approximated space. The
function η:X → KX , x 7→ {x}, is a topological embedding.

This is a direct consequence of standard results in domain theory which
ensure that KX \ {∅} is a so-called bc-domain [AJ94, Definition 4.1.1(2)],
which in turn are FS-domains [AJ94, Proposition 4.2.12] and hence uniformly
approximated by Theorem 21 below.

It should also be mentioned that the Scott-topology on (KX \ {∅},⊇) is
nothing but the “upper topology” of Vietoris [Vie21], generated by sets of
the form 2O := {K ∈ KX \ {∅} | K ⊆ O}, O ∈ T . The claim about η being
an embedding is then obvious.

It is presently unknown which Hausdorff spaces allow an embedding into
a uniformly approximated space (as the set of maximal points), though
progress in that direction has recently been made by Lawson [Law95] and
Edalat and Heckmann [EH95].

Lemma 17 Let (X, T ) be uniformly approximated by the functions fi, i ∈ I.
Then

∀O ∈ T . O =
⋃
i∈I f

−1
i (O)

∀K ∈ KX . K =
⋂
i∈I ↑fi(K)

Proof. Every open set O in a sober space is Scott-open with respect to the
specialization order. If x ∈ O then by assumption x =

⊔ ↑
i∈I fi(x) and from

the definition of the Scott-topology it follows that some fi0(x) belongs to O.
Hence x ∈ f−1i0 (O).

Next let O be an open neighborhood of some K ∈ KX . For every x ∈ K
there is ix ∈ I with fix(x) ∈ O as we have just seen. Hence K ⊆

⋃
i∈I f

−1
i (O)

and by compactness it follows that K is contained in some f−1i0 (O). This is
tantamount to fi0(K) ⊆ O and since K equals the intersection of its open
neighborhoods it also equals

⋂
i∈I ↑fi(K).
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Theorem 18 A coherent space is uniformly approximated if and only if its
canonical quasi-uniformity has a base consisting of hypergraphs of continuous
functions.

Proof. First of all, observe that
⊔ ↑

i∈I fi = idX is equivalent to
⋂
i∈I Ufi =

vs. Now assume that a base for the canonical quasi-uniformity consisting
of hypergraphs of continuous functions is given for the coherent space X. It
follows from Theorem 8 that for every Tp×Tp-neighborhood U of vs, U ◦U ◦U
is a Tc × T -neighborhood. The claim now follows from Lemma 11(2).

Conversely, Lemma 11(1) shows that hypergraphs of uniformly approxi-
mating functions are entourages of the canonical quasi-uniformity. It remains
to prove that they constitute a base. Now for any continuous function f ,
its hypergraph equals (f×idX)−1(vs). Thus the hypergraphs are certainly
T ×Tc-closed in X×X and hence Tp×Tp-compact. We conclude, employing
Proposition 1, that every neighborhood of vs contains some Ufi .

Lemma 19 A uniformly approximated space is coherent and its topology co-
incides with the Scott-topology.

Proof. Let O be a Scott-open set in (X,vs) and x ∈ O. There must be an
index ix such that fix(x) ∈ O because x =

⊔ ↑
i∈I fi(x). Since fix is uniformly

approximating, ↑fix(x) is a compact neighborhood of ↑x. This shows that
every Scott-open set belongs to T and that the space is locally compact.
Compactness is trivial since there is at least one uniformly approximating
function on X.

For the intersection property assume K,K ′ ∈ KX . The set K ∩K ′ equals
the intersection of all O ∩ O′ where O is a neighborhood of K and O′ is a
neighborhood of K ′. Let i ∈ I be such that both fi(K) ⊆ O and fi(K

′) ⊆ O′.
Such an index must exist by Lemma 17. It follows that K ∩K ′ ⊆ f−1i (O) ∩
f−1i (O′) = f−1i (O ∩O′)� O ∩O′ and we see that K ∩K ′ equals the filtered
intersection of its compact neighborhoods. By Proposition 1(1) it is itself
compact.

Definition 20 A dcpo D is called an FS-domain if there exists a directed
family of Scott-continuous functions on D, each of which is finitely separated
from idD and whose pointwise supremum equals idD.

These domains were introduced in [Jun90]. They have a property which
is rather rare in topology, namely, they form a cartesian closed category. In
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[Jun90] it was shown that it is a maximal cartesian closed category among
certain dcpo’s (the so-called continuous domains).

Theorem 21 1. If (X, T ) is uniformly approximated, then (X,vs) is an
FS-domain.

2. If (D,v) is an FS-domain, then (D,Σ) is uniformly approximated
(where Σ is the Scott-topology on D).

3. The translations in (1) and (2) are inverses of each other.

Proof. Continuous functions on a sober space are Scott-continuous, so (1)
follows from the Lemma 14(2). The second part follows from the fact that FS-
domains are always coherent [AJ94, Theorem 4.2.18] and hence Lemma 14(1)
applies. The specialization order derived from the Scott-topology always
coincides with the original order. For uniformly approximated spaces we
have shown in Lemma 19 that the topology comprises all Scott-open sets.

Summing up the results of this section we may say that uniformly approx-
imated spaces and FS-domains are one and the same concept, one formulated
in the language of topology and the other in the language of order theory.

4 Quantitative proximity lattices

In [JS96] we showed how to represent coherent spaces through certain proxim-
ity lattices. We extend that theory to also deal with the quantitative aspects.
We start by recalling the main results from [JS96].

Definition 22 A strong proximity lattice is a distributive bounded lattice
(B;∨,∧, 0, 1) together with a binary relation ≺ on B satisfying ≺2 = ≺. The
two structures are connected through the following four axioms:

(∨-≺) ∀a ∈ B ∀M ⊆fin B. M ≺ a ⇐⇒
∨
M ≺ a ;

(≺-∧) ∀a ∈ B ∀M ⊆fin B. a ≺M ⇐⇒ a ≺
∧
M ;

(≺-∨) ∀a, x, y ∈ B. a ≺ x ∨ y =⇒ ∃x′, y′ ∈ B. x′ ≺ x, y′ ≺ y & a ≺ x′ ∨ y′.

(∧-≺) ∀a, x, y ∈ B. x ∧ y ≺ a =⇒ ∃x′, y′ ∈ B. x ≺ x′, y ≺ y′ & x′ ∧ y′ ≺ a.
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Here M ≺ a stands for ∀m ∈ M. m ≺ a and similarly for a ≺ M .
Moreover, we use the notation ↑A as before to denote the upwards closure
but now it refers to ≺ rather than the specialization order. Since ≺ is not
necessarily reflexive, ↑A need not contain A. But ↑ is still idempotent because
of ≺2=≺.

Definition 23 Suppose (B;∨,∧, 0, 1;≺) is a strong proximity lattice. We
define the set of all ideals on B:

Idl(B) = {I ⊆ B | I = ↓I, M ⊆fin I =⇒
∨

M ∈ I} ;

the set of all filters on B:

filt(B) = {F ⊆ B | F = ↑F, M ⊆fin F =⇒
∧

M ∈ F} ;

the spectrum of B, which comprises all prime filters of B:

spec(B) = {F ∈ filt(B) | (M ⊆fin B &
∨

M ∈ F ) =⇒M ∩ F 6= ∅} ;

and for x ∈ B the basic open set

Ox = {F ∈ spec(B) | x ∈ F} .

Finally, let TB denote the topology on spec(B) generated by the sets Ox,
x ∈ B. We refer to it as the canonical topology.

Theorem 24 ([JS96]) Let (B;∨,∧, 0, 1;≺) be a strong proximity lattice.
Then X = spec(B) with the canonical topology is a coherent space, the
topology on X is isomorphic to (Idl(B),⊆), and (KX ,⊇) is isomorphic to
(filt(B),⊆). Furthermore, the map ↓:B → Idl(B) is a lattice homomorphism
and ↑:B → filt(B) is an anti-homomorphism.

We refine Definition 22 to deal with the quantitative aspect of coherent
spaces as follows.

Definition 25 A quantitative proximity lattice is given by a distributive
bounded lattice (B;∨,∧, 0, 1) together with a directed (wrt ⊆) family of tran-
sitive relations (≺i)i∈I which satisfy the interpolation axiom

(INT) ∀i ∈ I ∃j ∈ I. ≺i ⊆ ≺j ◦ ≺j.
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(≺-∨) and (∧-≺) are satisfied by ≺=
⋃
i∈I ≺i. In place of the other two

axioms in Definition 23, we require their adaptations to the quantitative set-
ting:

(∨-≺i) ∀i ∈ I ∀a ∈ B ∀M ⊆fin B. M ≺i a ⇐⇒
∨
M ≺i a;

(≺i-∧) ∀i ∈ I ∀a ∈ B ∀M ⊆fin B. a ≺i M ⇐⇒ a ≺i
∧
M ;

Finally, all relations ≺i have to satisfy the following condition of finiteness:

(FIN) ∀i ∈ I ∃M ⊆fin B ∀a, b ∈ B. a ≺i b =⇒ ∃m ∈M. a ≺ m ≺ b.

Remark. The reader might have noticed the resemblence between quan-
titative proximity lattices and syntopologies. These are systems of strong
inclusions on powersets introduced by Á. Császár in [Csá63] as a foundation
for general topology. In fact, Császár suggests that his work could be a start-
ing point for pointless topology; one might understand the present paper to
move in this direction.

Proposition 26 For every quantitative proximity lattice (B;∨,∧, 0, 1; (≺i)i∈I),
we have that (B;∨,∧, 0, 1;≺) is a strong proximity lattice.

Proof. Transitivity of the ≺i together with directedness implies ≺2 ⊆ ≺,
Axiom (INT) implies ≺ ⊆ ≺2. The axioms (∨-≺) and (≺-∧) are immediate
consequences of their quantitative counterparts.

Definition 27 Suppose (B;∨,∧, 0, 1; (≺i)i∈I) is a quantitative proximity lat-
tice and i ∈ I. We define a binary relation Ui on spec(B) by

F Ui G ⇐⇒ ↑iF ⊆ G,

where ↑iF = {x ∈ B | ∃a ∈ F. a ≺i x}. The filter on spec(B)× spec(B) gen-
erated by this collection is denoted by U .

Proposition 28 The relations Ui form a base for U . Furthermore, U is a
quasi-uniformity on spec(B).

Proof. Clearly, F Ui F holds for all i ∈ I and all F ∈ spec(B). Moreover,
≺i ⊆ ≺j implies Ui ⊇ Uj. Thus the Ui form indeed a filterbase and axiom
(INT) gives us for any i ∈ I an index j ∈ I with U2

j ⊆ Ui.
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Theorem 29 Let (B;∨,∧, 0, 1; (≺i)i∈I) be a quantitative proximity lattice
and U as in Definition 27. Then U is the unique quasi-uniformity with the
property that T (U) is the canonical topology and T (U∗) is the patch topology
on the coherent space spec(B).

Proof. To see that T (U) refines the canonical topology on spec(B), suppose
F ∈ Oa, i.e. a ∈ F . Since F = ↑F , there is b ∈ F with b ≺ a. This means
that there is some i ∈ I with b ≺i a ∈ F implying a ∈ ↑iF . Hence G ∈ Oa

whenever F Ui G. This shows [F ]Ui ⊆ Oa. Conversely, fix i ∈ I. By (FIN),
(∧-≺), and the property of F being a filter, there is some a ∈ F satisfying
↑iF ⊆ ↑a. Now for all G ∈ spec(B), surely a ∈ G implies ↑a ⊆ G, hence
F Ui G. Therefore, F ∈ Oa ⊆ [F ]Ui.

It remains to prove that the T (U−1)-open sets on spec(B) are exactly the
complements of compact upper sets. The latter sets correspond via K 7→

⋂
K

and K 7→ {F ∈ spec(B) | K ⊆ F} to filt(B), the set of all filters on B
[JS96, Theorem 27]. Suppose F ∈ spec(B) \ K for a compact upper set K,
i.e. K 6⊆ F for some K ∈ filt(B). Then there is a point a ∈ K with a 6∈ F .
Since K = ↑K, there is some i ∈ I and some b ∈ K with b ≺i a. Then
Ui[F ] ⊆ spec(B) \ K: If ↑iG ⊆ F , then b ∈ G implies a ∈ F , contradicting
the construction. Hence G ∈ Ui[F ] implies b 6∈ G which implies K 6⊆ G and
this means G ∈ spec(B) \ K.

To verify the reverse inclusion of topologies, the goal is, given an in-
dex i ∈ I and some F ∈ spec(B), to find K ∈ filt(B) such that

F ∈ {G ∈ spec(B) | K 6⊆ G} ⊆ Ui[F ] .

To this end let M be the finite interpolating set associated with ≺i whose
existence is guaranteed by (FIN) and define N := {m ∈M | ∃a ∈ B\F. m ≺
a} and n :=

∨
N . Since N is finite and F is a prime filter, the supremum

n is not contained in F . Furthermore, N is contained in ↓(B \ F ) and so
is n. We let K := ↑n. From what we just said, it follows that K is not
contained in F . Next let G be any prime filter which does not belong to
Ui[F ]. Then ↑iG 6⊆ F and hence there are elements a ≺i b such that a ∈ G
and b 6∈ F . Because of (INT) some element of M interpolates between a
and b. It belongs to N and therefore n ∈ G.

As mentioned above (Theorem 8), every coherent space carries a canonical
quasi-uniformity which may be constructed from the topology. On the localic
side of the world, this construction is even more transparent:
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Theorem 30 Suppose (B;∨,∧, 0, 1;≺) is a strong proximity lattice. Denote
the set of all finite 0-1-sublattices of (B;∨,∧, 0, 1) by F. For every F ∈ F,
we define the relation ≺F on B by

x ≺F y ⇐⇒ ∃a, b ∈ F. x ≺ a ≺ b ≺ y.

Then (B;∨,∧, 0, 1; (≺F )F∈F) is a quantitative proximity lattice with
⋃
F∈F
≺F =

≺.

Proof. By distributivity, finitely generated sublattices are finite, hence the
set of all ≺F is directed. If x ≺ y, then there are a, b ∈ B with x ≺ a ≺ b ≺ y,
hence x ≺F y for F = 〈a, b〉. Therefore,

⋃
≺F = ≺.

By the nature of our construction, the relations ≺F are clearly transitive
and satisfy (FIN). To prove (INT), suppose a sublattice F is given. Whenever
a, b ∈ F with a ≺ b, interpolate twice to get a′, b′ ∈ B such that a ≺ a′ ≺
b′ ≺ b. The sublattice G generated by F together with all these new elements
is finite. To see that ≺F ⊆ ≺G ◦ ≺G, suppose x ≺F y. Then there are
a, b ∈ F with x ≺ a ≺ b ≺ y, by construction there are a′, b′ ∈ G such
that a ≺ a′ ≺ b′ ≺ b. Interpolating between a′ and b′, we get z ∈ B
with a′ ≺ z ≺ b′. Then x ≺G z ≺G y, thus (INT) holds.

Now for (∨-≺F ). If M ≺F x, then for all m ∈ M , there are am, bm ∈ F
with m ≺ am ≺ bm ≺ x. With a =

∨
m∈M am ∈ F and b =

∨
m∈M bm ∈ F ,

we have
∨
M ≺ a ≺ b ≺ x, thus

∨
M ≺F x. The reverse implication is

trivial. This is ensured by the assumption 0 ∈ F . Axiom (≺F -∧) follows by
symmetry.

In order to achieve uniform approximation we have to change the axioms
as follows.

Definition 31 A finitary proximity lattice (B;∨,∧, 0, 1; (≺i)i∈I) is a quan-
titative proximity lattice which satisfies the following quantitative version of
(≺-∨):

(≺i-∨) ∀i ∈ I ∀a, x, y ∈ B. a ≺i x∨y =⇒ ∃x′, y′ ∈ B. x′ ≺i x, y′ ≺i y & a ≺
x′ ∨ y′.

Moreover, transitivity of the ≺i is strengthened to

(≺i-≺) ∀i ∈ I. ≺i ◦ ≺ = ≺i.

(≺-≺i) ∀i ∈ I. ≺ ◦ ≺i = ≺i.

15



While we could have required (≺i-≺) and (≺-≺i) for quantitative prox-
imity lattices already without losing any generality (that is to say, these two
axioms are satisfied by the relations ≺F constructed in Theorem 30), the
change from (≺-∨) to its quantitative version (≺i-∨) is crucial. Its effect is
that each approximating relation defines a function on the spectrum which
yields the desired uniform approximations to points, opens, and compacts.
For each i ∈ I we can define the corresponding function explicitly as follows

fi: spec(B)→ spec(B), F 7→ ↑iF = {a ∈ B | ∃b ∈ F. b ≺i a} .

It is straightforward to check that this map is well-defined and that it is con-
tinuous with respect to the canonical topology. We may point out, however,
that it is precisely the new axiom (≺i-∨) which allows us to conclude that
↑iF is prime.

We have cited in Theorem 24 the fact that Idl(B) is isomorphic to the
canonical topology and that filt(B) is isomorphic to Kspec(B). Using these iso-
morphisms one calculates without difficulty the following concrete pendants
to f−1i and fiK:

fiO: Idl(B)→ Idl(B), I 7→ ↓iI
fiK: filt(B)→ filt(B), F 7→ ↑iF

The way-below relation on Idl(B) (and similarly on filt(B)) is characterized
by

I � I ′ if and only if ∃a ∈ I ′. I ⊆ ↓a .

Because of the condition of finiteness in Definition 25 we see immediately
that fiO(I) � O and fiK(F ) � F . Combining this observation with the
results in the previous section we conclude:

Theorem 32 The spectrum of a finitary proximity lattice is a uniformly
approximated space.

It remains to see that every uniformly approximated space arises as the
spectrum of some finitary proximity lattice. The construction is very similar
to the construction of representing strong proximity lattices for arbitrary
coherent spaces which we gave in [JS96]. Suppose (X, T ) is a uniformly
approximated space. Let (fi)i∈I be a directed family of continuous functions
on X, each finitely separated from idX such that

∨ ↑
I fi = idX . (The order-

theoretic point of view makes the following proof easier.) We define:
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• B := {(O,K) ∈ T × KX | O ⊆ K}

• (O,K) ∨ (O′, K ′) := (O ∪O′, K ∪K ′)

• (O,K) ∧ (O′, K ′) := (O ∩O′, K ∩K ′)

• 0 := (∅, ∅); 1 := (X,X)

• (O,K) ≺i (O′, K ′) :⇐⇒ f 2
i (K) ⊆ O′ ⇐⇒ K ⊆ f−2i (O′)

where we work with fi◦fi rather than fi as we have done before on several
occasions.

Theorem 33 If (X, T ) is a uniformly approximated space, then the above
defined structure is a finitary proximity lattice with spec(B) ∼= X.

Proof. Clearly, the strong proximity lattice constructed in this fashion
is the same as the one constructed in Section 6 of [JS96]. Hence we get a
strong proximity lattice B with spec(B) ∼= D. It is a trivial observation
that (∨-≺i) and (≺i-∧) hold. We also know (≺-∨) to hold and from this
we deduce (≺i-∨) by the following trick: If (O,K) ≺i (O1, K1) ∨ (O2, K2),
then certainly (O,K) ≺ (f−2i (O1), K1)∨ (f−2i (O2), K2). Now we apply (≺-∨)
to get interpolating tokens x1 and x2 with (O,K) ≺ x1 ∨ x2 and x1/2 ≺
(f−2i (O1/2), K1/2). The latter is equivalent to x1/2 ≺i (O1/2, K1/2).

Directedness, (≺i-≺), and (≺-≺i) are trivial. To see (INT), pick for a
given i ∈ I an index j ∈ I such that f 4

j (m) ≥ fi(m) for all m ∈ Mi where
Mi is the separating set for fi. Such an fj must exist because of Lemma 13.
It is then obvious that (fj ◦ fj)2 ≥ fi ◦ fi and that the associated relations
obey ≺i ⊆ ≺j ◦ ≺j.

Finally, (FIN) is seen as follows. For each N ⊆ Mi we have a compact
upper set ↑N and a Scott-open set ↑↑N := {x ∈ D | ∃n ∈ N. n� x}. Now,
if f 2

i (K) ⊆ O′, then for N := Mi ∩O′ we have ↑N ⊆ O′. Moreover, for every
x ∈ K there is some n ∈ Mi with f 2

i (x) ≤ n ≤ fi(x). Then n ∈ N and
n � x by Lemma 13. Hence K ⊆ ↑↑N . So the token (↑↑N, ↑N) interpolates
between (O,K) and (O′, K ′). Since Mi is finite there are only finitely many
of these tokens.
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