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Abstract

Probabilistic computation has proven to be a challengirdjiateresting area of re-
search, both from the theoretical perspective of denatatisemantics and the practi-
cal perspective of reasoning about probabilistic algorih On the theoretical side, the
probabilistic powerdomain of Jones and Plotkin represarggnificant advance. Fur-
ther work, especially by Alvarez-Manilla, has greatly imped our understanding of
the probabilistic powerdomain, and has helped clarify éation to classical measure
and integration theory. On the practical side, many redeascsuch as Kozen, Segala,
Desharnais, and Kwiatkowska, among others, study probtgnasrification for proba-
bilistic computation by defining various suitable logics flee classes of processes under
study. The work reported here begins to bridge the gap betwex domain theoretic
and verification (model checking) perspectives on probstuilcomputation by exhibit-
ing sound and complete logics for probabilistic powerdaradhat arise directly from
given logics for the underlying domains.

The category in which the construction is carried out gdimms Scott's Information
Systems by taking account of full classical sequents. \Ga&tuality, following Abram-
sky’s Domain Theory in Logical Form, all known interestingtegories of domains are
embedded as subcategories. So the results reported hpeglprgeneralize similar con-
structions on specific categories of domains. The categffeysoa promising universe
of semantic domains characterized by a very rich structndegmod preservation prop-
erties of standard constructions. Furthermore, becawséotical constructions make
use of full classical sequents, the morphisms have a nataratieterministic interpreta-
tion. Thus the category is a natural one in which to invegtighe relationship between
probabilistic and non-deterministic computation. We d#&scthe problem of integrat-
ing probabilistic and non-deterministic computation afieesenting the construction of
logics for probabilistic powerdomains.

1 Introduction

The probabilistic powerdomain construction of Jones awntkiti [JP89, Jon90] has proved to
have applications beyond its origins as a tool for modelirghabilistic algorithms within do-
main theory. Edalat [Eda95] employs the probabilistic pal@enain construction toward the
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study of fractals within a domain theoretic framework. Dasiais,et al [DEP98, DEP97,
DEPar] study problems of verification for labelled Markowpesses. And closer to the
construction’s origins, Mislove [Mis00] and Tix [Tix99] westigate how to integrate non-
deterministic choice and probabilistic algorithms smépothiclver [MclO1] looks at a similar
problem from a more applied perspective.

The work of Desharnaigt al, Mclver, as well as Morgaret al, [MMS96] are of particular
interest to us because they involve the development of $ofgic reasoning about various
probabilistic phenomena (such as labelled Markov pros@sskhey suggest that a uniform
treatment of how such logics may arise will prove to be uséfuthis work, we provide such
a treatment, showing how to construct a logical descriptibthe probabilistic powerspace
for any stably compact topological space.

Let us explain this last statement in some more detail. Athibart of our approach is
an equivalence between (logic#tteoriesand (denotationabnodels On the logical side this
means that we work with sets of axioms about concrete proponsiand universally valid
inference rules. On the semantic side we exhibit the strastwhich can be characterised by
a logical theory. The classical example of such a correspocelis theStone Representation
Theorem Every propositional theory corresponds uniquely to alypthsconnected compact
Hausdorff space. The insight, that Stone duality can be tsédk denotational semantics
and program logics, is due to Smyth. It forms the basis of Alsley’s Domain Theory in
Logical Formand was put to work in two substantial case studies, [Abr@it98]. Abramsky
does not work with full propositional logic and Stone spabas rather, he drops negation
and implication, and employs the equivalence between itbe@f the remaining positive
propositional logic and spectral spaces (which encompksdaasical semantic domains,
such as Scott-domains or bifinite domains). The class oftspespaces, however, does not
containcontinuousspaces, such as the unit interval, and it is therefore ngtrisimg that
the setting needs to be further expanded in order to accom@@dobabilities. Indeed, our
work [JKM99] is based on a further weakening of the logic bgpbing the reflexivity axiom
(¢ IF ¢) and by the correspondence between theories in this naxreflpositive logic and
stably compact spaces.

This paper stresses the logical side of this correspondamdet is not necessary to be
an expert in the topological properties of stably compaeicep in order to appreciate the
results reported below. We will summarize the key propsrieSection 2 and the reader
interested in a fuller story should consult [JS96, Keg99%herforthcoming [GHK 02]. For
our present purposes it is sufficient to recall a crucialltesuhe thesis of Alvarez-Manilla
[AMO1], where the categor§CS stably compact spaces is shown to be closed under the prob-
abilistic powerspace construction. The only other closesegilts for this construction concern
dcpo’s (trivially), continuous domains [JP89, Jon90], dadvson-compact continuous do-
mains [JT98], but unlik&CS neither of these categories has a good logical descriptian (
Stone duality, as explained above) nor many other closuegpties as one needs for building
a denotational semantics.

The logic, as we have said before, is propositional logitricted to conjunction and
disjunction (including the nullary versions, true and &Jsand reflexivity is not assumed.
This has the consequence that a Hilbert-style presentatdhe best of our knowledge, is
not possible, and that instead Gentzen-style sequents
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become the basic syntactic unit (specificaltyjs part of the object syntax, as in Gentzen’s
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sequent calculus, and not a meta-symbol denoting protygbilihe logic was first presented
in [JKM97] and [JKM99], but it builds on the earlier [Smy92#96] and in essence is an
elaboration of Abramsky’s Domain Theory in Logical Form éontinuous spaces. Itis shown
in [JKM99] that despite non-reflexivity some standard prtiedoretic concepts, such as cut
elimination, still apply.

Under Stone duality, a propositiahcorresponds to an open sd]; it was argued by
Smyth [Smy83, Vic89, Smy92b] that this is in order: open setsespond tesemi-decidable
properties and these are precisely the ones which oughtdabreéevance in program logics.
In our setting, we observe that furthermore, a seqliehtA translates to a “strong contain-
ment”o[['] € o[A] of open sets which is itself “observable” or “semi-decidgbHowever,
we hasten to add that in the presence of non-determinismatwapilistic choice, the label
“observable” has to be taken with a grain of salt.

From a motivational point of view, the language of “obsetegtroperties” is, however,
useful for choosing the right primitives for a probabileskbgic. On the spatial side it is thus
natural to consider mapswhich assign a probability to all open subsets, and whicle llag
following properties:

1. [Continuity] For directed setf; }; of opensp(|J, U;) = sup;{v(U;)}.

2. [Strictnessp(0) = 0.

3. [Modularity] For all openg/ andV, v(U) +v(V) =v(UNV) +o(UUYV).
4. [Normalcy]v(X) = 1.

We call such functionprobability valuationgor sub-probability valuationg (4) is replaced
by v(X) < 1). They were first introduced into denotational semanticshigyseminal work
of Jones and Plotkin [JP89, Jon90], whereas earlier wogk,lB. Kozen [Koz81], employed
measures. The exact connection between valuations andireedss always been of inter-
est in Mathematics, we only mention [SD80, Law82, AMESDO®] aefer to [AMO1] for a
comprehensive treatment. For us it is reassuring to knotwothatably compact spaces, prob-
ability valuations extend uniquely to Radon measures aedyeRadon probability measure
arises in this way. More importantly for us, Alvarez-MaaiBhows that the set of (normal)
valuations over a stably compact space can be given a stabipact topology that lies be-
tween the Scott topology and the topology of weak convergeritis opens the prospect
that this probabilistic powerspace can be described ltgidaut even better, we now know
[AMJK] that the topology is actually equal to the weak topptawhich is generally finer
than the Scott topology). This is of relevance because iwvshbat Alvarez-Manilla’s topol-
ogy is precisely the weakest topology to make the integrat [ fdv a (Scott) continuous
operation for every semi-continuous real-valyedAs one then easily infers, the canonical
subbasic opens for the weak topology are the 6ets= {v € V(X) | v(O) > ¢} for O
open inX, ¢ a rational number between 0 and 1. In our probabilistic leggcshould there-
fore analogously work with basic propositions, interpreted as “propositios holds with
probability greater than”. This is indeed the approach that we shall take.

In order to complete this programme, one needs to find thef pubes for entailments
between propositions of this shape and show soundness ampleteness with respect to
the intended space of all probability valuations. The situlabecomes clearer by using a
modicum of categorical terminology. The stably compactcspantroduced above form a
subcategon$CS of the categorylop of topological spaces and continuous functions. Also
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of interest is the categoryCS* where the objects are the same but morphismschsed
relations(see Section 2 below for detail§CS can be identified with a subcategoryS(iS*.
On the logical side, every theory in our non-reflexive proposal logic is an object in the
categoryMLS, where morphisms between theories are entailment retatiovery similar
to the internal reasoning in a theory. The key result of [JKM8 thatSCS* and MLS are
equivalent. This equivalence cuts down to one betvé&@handMLS', where the entailment
relations satisfy an additional property.

In order more fully to exploit this equivalence between setica and logic, one then
strives to lift it toconstructionsthat is, given a constructicfi (possibly in several variables)
onSCS*, one seeks a “logical” constructi@hwhich respects the equivalence:

lan

SCS* MLS

spec
T T

lang

SCS* MLS

spec

Generally.T is defined via proof rules, and the commutativity of the abdiagram is shown
by establishingang o T ~ T o lang.

For the probabilistic powerspace the task is to difficultcoamplish in one go. Our proof
of completeness therefore borrows an idea of Reinhold Haokrs [Hec94] and, like him,
we carry out the construction in four stages. This producg&al descriptions for all of the
following:

e CQ(X), the space of Scott continuous functions frexiX) to [0, 1] with the compact-
open topology (which coincides with both the weak and thetSopology);

e C,Q(X), the subspace & (X) consisting of strict continuous functions;

e V(X), the subspace @2, (X) consisting of modular strict continuous functions, i.e.,
valuations;

e V!(X), the subspace &f(X) consisting of normal valuations.

2 Stably Compact Spaces

A subset of a topological spac€ is saturatedif and only if it is an intersection of opens.
In particular, every open is saturated and the saturatiansafbset is the intersection of its
neighborhood filter. A subset is compact if and only if itsusation is compact. Compact
saturated sets play a key role in our setting.

Definition 2.1. A topological space is callestably compacitf it is sober, locally compact
and stable (i.e., finite sets of compact saturated subset¢scloanpact intersection).

We insist on sobriety because our general framework is Stoakty and we want to rep-
resent spaces by (sublattices of) their frame of opens (wiie interpret as extensions of



logical propositions). In contrast to Geometric Logic, waoanatize the way-below relation
between open sets, rather than inclusion. Local compata@secisely the condition which
guarantees that the former is rich enough to reconstrudattes. Stability, finally, is conve-
nient because it allows us to deal with opens and compadt®isame logical framework.

Examples of stably compact spaces include various cladsésnoains in their Scott-
topologies, such as continuous lattices, Scott-domairfigjte domains, and FS-domains.
Also included are all compact Hausdorff spaces.

We denote the specialization order &nby <. Unlike with domains, the topology of a
stably compact space in general cannot be reconstructedtfi®order alone.

We denote with2(X') the frame of open sets (ordered by inclusion) and &X' the
lattice of compact saturated sets ordered by reversedsiociu For a stably compact space
both are continuous distributive lattices, in particul®,X) is the set of closed sets for a
topology onX, called theco-compact topologyWe denote the resulting space Ky. From
what we have said before it follows that b&.X') andX (X') are again stably compact when
equipped with their Scott-topologies.

For morphisms, there is some choice. The first to come to miadod course, the topo-
logically continuous functions, which give rise to the gairy SCS. However, we prefer to
work in SCS* where the morphisms frofii to Y are the compact saturated subset¥pk Y,
that is, certairclosed relations Composition is the usual relational product. Note thatry
relation R: X —+ Y can be closed up topologically to yield a morphismSieS* but this
process, in general, is not functorial.

For a continuous functiofi: X — Y thehypergraphR; := {(z,y) € X, xY | f(z) <y
y} is a closed relation and the assignmgnts R/ is a faithful functorSCS = SCS*. Hence
SCS can be identified with a subcategory ©€S*, which turns out to be co-reflective with
co-reflectionX which mapsX to X(X) andR: X =Y to {(K,K') € K(X) x X(Y) |
K' = [K]|R}.

We will also consideSCSP where morphisms are (hypergraphs of) functions which are
continuous with respect to both the original and the co-aachfopology. These are known
asperfect mapsSCS* is order enriched if we consider reversed inclusion betwkemraphs
of closed relations. It then turns out that a relation is dgm¢ifunction if and only if it is an
upper adjoint.

In previous work [JKM99, Keg99, JKMO01] we have shown tB&S* enjoys a number
of closure properties, to wit, disjoint union (product amgboduct inSCS*), cartesian prod-
uct (product inSCS), relation space (Kleisli exponential BCS*), lifting, and bilimits. The
purpose of the present note is to discuss the closure unel@rdibabilistic powerspace con-
struction.

Proposition 2.2 ([AMJK]). For a stably compact spac#, the setV'(X) of probability
valuations equipped with the weak topology, is stably carnpa

Here, the weak topology is generated by sets of the foym= {v € V' (X) | v(O) > p},
whereO € Q(X) and0 < p < 1. For a closed relatio®?: X — Y it is natural to set
v VHR)V = VU € Q(Y).v(R'[U]) <v'(U)". One observes:

Proposition 2.3. In general,V'! (—) does not preserve compositiondaS*. It is, however, a
functor fromSCS to SCS, which furthermore restricts and corestricts36SP.

For a closed relatio®: X —+Y wesetR™'(U) :={r € X |Vy € Y.2Ry = y € U}.



3 The Multilingual Sequent Calculus

In this section we review the basic ideas of [JKM99], where tategory of multilingual
sequent calculiNILS) was first introduced. An algebra for two binary operationd &vo
constants is calledtaken algebraFor example, any lattice; A, T, V, 1) is atoken algebra,
as is the appropriate term algelifaG) generated from a sét. For two token algebras
and M, aconsequence relation froh to M is a relation— C Biin(L) X Prin (M) obeying
Gentzen'’s rules of positive sequent calculus:

'EA
1L FA, L
$(LT) — (RT)
T,IFA =T
0, F A I'E A, I'F A,
L LA ¢ w(R/\)
oNY,T'EA FEAOAY
JTFA JTFA I'E A, o,
¢ 4 Lv %(Rv)
oV, T FA CEA VY
A
I'T'EAA

The double lines in the above figures indicate that the ruf#iepin both directions. This
differs from the usual presentation of a sequent calculusvanimportant ways. First, the
tokens (formulas) on either side of a sequent are drawn fiiffereht sets. This immediately
precludes closing unde€(t), and from including the usual identity axiomst ¢. Second,
in proof theory one typically only requires closure undemmfard application of the rules.
However, in the presence of identity axioms and tBatf rule, such a relation is in fact
also closed under backward application. Because we do sotreseither identity axioms or
closure underQut), we make the closure under backward application expliithird, less
important difference, is that we allow token algebras to ®e-free. As it happens, this is just
a convenience as the categdfy S is equivalent to its full subcategory consisting of objects
defined on free token algebras (which we will examine in the section). Consequence
relations are the morphisms of the categbtyS. Composition is defined by the following
impoverished version of Gentzen’s Cut rule. Given two cqasece relations: L — M
and-'": M — N, definet-; -’ by the rule:

I'-o¢ ¢|—'A
L =F A

(S-Cut)
This composition is associative, and consequence retasianclosed under it. In case domain
and target algebra are the same, one can consider Gentagimabrule:

THFAG  ¢,O0IFA
7,0 IFol A,A

(Cut)
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We employ it to define the objects (or, rather, identitiex)ufcategory. Acontinuous sequent
calculus onL is a consequence relatidn, from L to L satisfyinglt;, = Ik, o IF;. (Note
that we distinguish notationally between composition ByGQut) and Cut), and between
general and endo-relations.) We are now ready to define tegayMLS: An object of the
categoryMLS is a token algebra equipped with a continuous sequent caléu:= (L, I-p).
A morphism fromL to M is a consequence relation L — M that iscompatiblewith L
andM:

bk = F = Kby
This leads to the major result of [JKM99]:

Theorem 3.1. The categorie$ILS andSCS* are equivalent.

In one direction, the isomorphism is given bgec: MLS = SCS*, which assigns to a
continuous sequent calculus the set of prime round filtepglbgized in the usual way. We
describe the inverse at the beginning of Section 5.

Like SCS*, MLS is order-enriched (by inclusion between graphs). The edgice pre-
serves this enrichment and hence it restricts and corestoi8CSP andMLS", the category of
upper adjoint consequence relations. We will exhibit a ganaethod for defining adjoints
in MLS below.

Closed relations which are hypergraphs of general contisfianctions can also be char-
acterized on th&ILS side, see [Keg99, Thm 3.1.44].

4 Free token algebras

In Logic, formulas are normally built up freely from a set ébmic propositions. The analo-
gous situation for a token algebfais given whenl is the free term algebr&(G) over a set
of generatorssy. We will now explore how far the concepts of the multilingsabjuent calcu-
lus can be expressed solely in terms of generators. Thipvallide us with the basic toolkit
for doing domain constructions in a proof-theoretic faghi&irst we note that consequence
relations are completely determined by their behavior aregators.

Lemma 4.1 ([Keg99]). Let . = T(G) and M = T(H) be free token algebras ani C
Biin(G) x Piin(H) be a relation. Denote wittkR* the closure ofR under weakening with
generators and?* the further closure under the forward logical rules.

1. R* is a consequence relation.
2. R*, when restricted to generators, equal¥.

3. For an arbitrary consequence relationfrom L to M, - = R* whereR is the restric-
tion of - to generators.

In general, a cut formula can not be restricted to generétatrsvith the following slight
generalization we do succeed. For aGetiefine aliagonal pair onG to be a pai{C;}i, {D;},),
both sets of subsets 6f, provided that for each choice functigne [ [, C; and choice func-
tion g € [[; D;, there exists and;j so thatf(i) = g(j). Given two consequence relations



F: L — T(G)andH": T(G) — N, define; - by the rule:

' A O, A
A, O, FH A
(Cut*)
L (HE)A

subject to the condition th&{A;}12,, {©,}}_,) is a diagonal pair ol
The following justifies re-using “;” for composition:

Lemma 4.2 ([Keg99]). In the presence of the logical rule§-Cut) and Cut*) are interde-
finable.

For the identities we need to simulate the stronger requrgraf idempotence with re-
spect to Cut).

Lemma 4.3. For a consequence relatidh on a free token algebra = T'(G) the following
are equivalent.

1. F = kol
2. |k IF C Ik, and[L-Int] and[R-Int] where

[L-Int] If ¢,T" I A, then there exists a diagonal paf{A,;};,{©;};) in G so that
¢ I A; holds for each, and©;,I" I A holds for eacly.

[R-Int] If T" IF A, 4, then there exists a diagonal paf{A;};, {O;};) in G so that
I' IF A, A; holds for each, and©, I ¢ holds for eacly.

Employing free token algebras, our general strategy fonaefifunctorsF': A = MLS
will be the following:

1. [Basic tokens] For object, define a set’r(A) and let the token algebrid(A) be the
term algebrd’ (Gr(A)) overGr(A).

2. [Proof rules] For a morphisnfi: A — B, define F°(f) to be a relation from finite
subsets of7r(A) to finite subsets off(B), and letF'(f) be (F°(f))".

3. [Composition] Show thak'(g o f) = F(f); F(g). Becausé'(—) is determined by its
restriction to generators, this reduces to

(@) [(Cut*) elimination] F°(f); F°(g) C [F°(g o f)]*; and
(b) [(Cut*) introduction]F°(g o f) C [F°(f); F°(g)]“.

4. [ldentities] Show thaf’ preserves identities. In light ofQut*) elimination] above, this
reduces tdL-Int] and[R-Int].

We label step (2) [Proof rules] becauB®( f) can typically be presented in the form:

P(f: A— B,T,A)
TF(f)A
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whereP is some predicate on morphismséfind finite sets of generators. The first two steps
of the method are purely formal. The third and fourth stepsstitute the verification that we
have defined a functor. Also note that the conditio@uf() introduction], L-Int] and [R-Int]
are quite natural in traditional proof theory. They amounthe requirement that derivable
sequents can always arise as the resul€ot{) of a specific form. This sort of meta-theorem
is used, for example, to derive the Craig Interpolation Taeo If I' = A, then there is a
formula ¢ involving only non-logical symbols occurring in bothand A so thatl’ = ¢ and
¢ = A. Thus the conditions on functors amount to a formalizatibfgood” behavior for
constructions in the logiMLS.

Our principle tool for showing that two objects BILS are isomorphic is the following.

Lemma 4.4. Supposed. and M are continuous sequent calculi aid M — L is a map
between the underlying token algebras. Consider the fatigwroperties

[hom] A is a homomorphism.

[smooth] Wheneverl" I, h(¢) then there exist®’ € M such thaty’ Ik, ¢ andT I+, h(¢).
Likewise, withh(¢) I, T we havep |-y, ¢' such thath(¢') Ik, T.

[IF-preserving] A Iy, A’ impliesh(A) Ik, h(A') (whereh(A) is short forha(i), . .. , h(v,) whenever
A:wl,... ,'Q/}n)

[IF-reflecting] A(A) Ik h(A’) impliesA -y, A'.
[dense]T Ik, T" implies that there existgs € M with T I, h(¢) I, TV,
Define relations-" C Pein(L) x Prin(M) andt;, C Brn(M) x Biin (L) by setting
T F' Aif T I, h(A), andA F, T if A(A) I T.
1. If h is a smooth homomorphism thef andt;, are compatible consequence relations.

2. If his a smooth homomorphism which is alsgreserving ther-" is the upper adjoint
tory. Thatis,(F";+,) C Ik andlky C (B E).

3. If his a smooth homomorphism which is alseeflecting then(,; -") C IFy,.

4. If h is a smooth homomorphism which is also dense thei (-";+).

We observe that in the presencellofpreservation, the homomorphism condition is not
needed. In practice, howevel/ is often a free token algebrA(G) and i is defined as
the homomorphic extension of a map framto L. In this situation it is sufficient to check
smoothnesgi--preservation and reflection for lists of generators only.

Also note that in the presence lbfreflection, smoothness is subsumed by density. With
these two observations, the following extension from aigjéz functors becomes a straight-
forward corollary.

Lemma 4.5. SupposeF': A = MLS andG: A = MLS are functors, and for each object
A€ A, ha: G(A) — F(A) is a dense map between token algebras. If for eacid — B
in A,

I G(f) Aifandonly ifha(T) F(f) hp(A)

then"4 is a natural isomorphism fromt’ to G with inverse-, , .
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5 Domain constructions in logical form

We will now illustrate how the general techniques of the prag section can be used for
proving that an endofunctor functdr in MLS is a logical description of an endofunctér
in SCS*. We start by defining a functdang from SCS* to MLS (which is in fact one half of
the equivalence stated in Theorem 3.1). We set

Glang(X) == {(0,K) € Q(X) x X(X) | O C K}

and letlang(X) be the free term algebra over these generators. For eadckdctekation
R: X—-Y, definet-p = lang(R) by the rule:

[ﬁ KilR C LnJ o

=1

j:} ' ' / (lang)
(01, Kl)a cee (Oma Km) l_R (017 Kl)? Tt (Om Kn)

We refer the reader to [JKM99] for the proof thedec andlang determine an equivalence.

By a constructionover spaces we mean a funcibr SCS* = SCS*. We seek to find
an analogudl on the side ofMLS, that is, we wish to show that the two functdesg o
T and T o lang are naturally isomorphic. For this we will employ the gethéezhnique
described in the previous section, adapted to this spatualt®n. Consider the objects first:
Becaus&CS* andMLS are isomorphic categories, we can repliegy (X)) by an isomorphic
“concrete” sequent calculus where the isomorphism is witnessed in the style of Lemma 4.4
To wit, we assume that we are given a nfag): L — lang(X), consisting of components
or[-]: L — Q(X) andk[-]: L — K(X) such that

° V¢ € L. OL[[¢]] C HL[[¢]],
o Vo, € L. ¢ Ik opifand only if kp[6] C o [¢];
e VK e X(X),0€Q(X). KCO = Jp€ L. K Coro] andr,[¢] C O.

The task, then, is to define a sequent calcTiiifs) isomorphic tdango T(X). We will do this

by exhibiting a set of generato€s;, for T(L) together with interpretations; ;,[-[: G1 —
Q(T(X)) and kg [-]: G — K(T(X)) such that the three conditions above are again
satisfied.

For morphisms, the task is almost the same. We assumeap@p$, .. [—] andox[—],
kx[—] which witness the isomorphism betweérandlang(X'), and M andlang(Y), re-
spectively. We also assume that the compatible consequela®nt: . — M represents
theSCS* relationR: X——Y in the sense that

e Vopec Lype M ¢t ifandonlyif (ki [o]|R C o]
This property must be preserved by the spatial and the |bgicestruction:
o VI C Gy A C Gy D T(H) Aifand only if [yep sy [61T(R) € Uyes oran [¥]-
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6 The probabilistic powerspace construction

We are now ready to embark on our logical characterisatidgheprobabilistic powerspace
of a stably compact space. Since a direct proof, despiteothle &bove, is still too compli-
cated, we perform the construction in four stages, staxtiitig the function spac€Q(X) =
[Q2(X) — [0, 1]]. This follows the strategy in [Hec94].

We first observe that because b6thX') and[0, 1] are continuous lattice€Q(X) is also
a continuous lattice and therefore stably compact in itdtS8opology. The latter coincides
with the weak topology generated by sets of the form

0, = {v e CQX) | v(0) > p}

We therefore choose as generators@6X( L) tokensep, where¢ € L and0 < p < 1 with the
following interpretation function for open sets:

ocaldy] = {v € CQX) | v(oL[9]) > p}
For the compact interpretation we defineX(X) — [0, 1] by
u(K) :=inf{v(U) |U D K}
and set
tealdy] == {v € CQUX) | v(k[¢]) > p}
The consequence relation @f2(L) is generated by the single proof rule

plFpy  p>q
¢p”_CQ'Q/}q

Using the general technique outlined in the previous segcttas now not too hard to show
that this indeed is a logical description©f2(X):

(CQ)

Proposition 6.1. CQ(I) andlang(CQ (X)) are isomorphic.
The extension to morphisms is straightforward:

oY p>gq
¢p CQF) ¥y

and together with the previous proposition this yields:

(CQ)

Theorem 6.2. The functorCQ2 o lang is naturally isomorphic tdang o C, in other words,
CQ: MLS = MLS is a logical description of the constructidf2: SCS* = SCS*.

We refine the isomorphism established in the preceding Emedny restricting the con-
struction to more specialized function spaces. Let us fossitler the general situation. Sup-
pose already have a logical descriptibrof a spaceX and seek a logical description for a
subspacd” C X. The idea is to keep the token algelirdbut to strengthen the internal rea-
soningt with additional proof rules, resulting in a consequencatiehl-". This is in analogy
to locale theory where a sublocale is defined as a congruantieedframe. In our setting,
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we intend to use Lemma 4.4 withbeing theidentityon L. It is then immediate that (hom)
and (--preservation) are satisfied, and thatreflection) cannot hold unless = X. What
needs to be shown is smoothness and density, which can besergras-; IH = I = IH; Il
Sincell-’" is given by an additional proof rule, the inclusidhst+’ C I andI+'; I+ C IF hold
by convention, and it all boils down to showing the other clikens. In the situation at hand,
this will not be difficult.

Once this work is done, we conclude from Lemma 4.4 Hpedtc (L, ') is a perfect sub-
space obpec(L,IF) = X, and it remains to show that this subspace is indeed theedidsir
To this end, one shows that fore X, the neighborhood filter is closed under the new proof
rule if and only ifz € Y. This will complete the argument.

To restrict to those functions B (X') which assign 0 to the empty set, we add the rule

F (Str)
The resulting construction is still functorial on all 8€S* andMLS, respectively.

For modularity, note that our tokens stipulate lower boumly. So we must break mod-
ularity into its constituent inequalities. Say thatQ(X) — [0, 1] is sub-modulaiif

v(U)+o(V) <o(UUV)+0(UNV)
and that is super-modularf

v(U)4+o(V)>o(UUV)+0(UNV)
These two properties are characterised by the followingfandes. For sub-modularity add:

dlbrp ViFLp ¢ UlFLo pHg>r+s
¢pa¢q H‘V(L) Pr,0s
and for super-modularity add:
ok p ol o Yl po p+qg>r+s
Ppy Vg “_V(L) Pr,Os

(Sub-mod)

(Super-mod)

We note that the resulting constructibhis functorial only forSCS andMLS', respectively.
This restriction is not too surprising becaues ™ is the Kleisli category o6CS with respect
to the monadk, which on domains is known to be the Smyth-powerdomain [AJd¥m
6.2.14]. HavingV” functorial onSCS* would therefore amount to a combination of nondeter-
minism and probabilistic choice. It has become clear régé¢hat this problem cannot have
a simple solution because there is no distributive law bebhabese two constructions. We
refer the reader to [Mis00, Tix99, Var02] for a more detaiistussion.

To complete our construction we consider the conditiohi) = 1 for normal valuations.
In L, o[¢] = X if and only if -, ¢ (if and only if ¢ is logically equivalent tol with respect
tol-7). Solky(z, restricts further to normal valuations by adding the rule:

—— (Norm)
H_VI(L) Tq

All rules necessary to characterizé(X) are collected together in Figure 1.
We conclude by stating a result which is shown with very défé methods than the ones
employed in the present note, and which we cannot fully spelfor lack of space:

Theorem 6.3. Assuming the continuous sequent calculus decidable, then so ' (L).
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plbLy  p>q
Gp I 1g

(CQ)

— (Str — (Norm
1, IF ( ) I=T, ( )

ol p Ylpp ¢lbpo p+g>r+s
¢p: wq = pryos

(Sub-mod)

ol p oo Yl p,o p+qg>r+s
Pps Vg I pry 0

[p,q,7,s € QN (0,1), ¢,v, p,0 € (L,IF;). The entailmentt- in the conclusions refers to the
continuous sequent calcul@é(L).]

(Super-mod)

Figure 1: The proof rules for Probabilistic Domain Logic.

7 Conclusions and further work

The papers [JKM99, Keg99, JKMO01] and the present note confirraur opinion, that the
categorySCS* offers a flexible and convenient universe of semantic spakgsve have em-
phasized all along, one of its key features is its intimatati@ship with (very standard!)
logic via Stone duality. This allows us to describe spacescamstructions spatially, locali-
cally, and logically in a straightforward and elegant fashi

Trying to establish the equivalence of logical and spat@hdin constructions on the
logical side has shown that this requires concepts and igobs from Proof Theory such
as cut elimination and interpolation, a connection which hdherto — to the best of our
knowledge — not been observed.

SCS* strictly extends all common classes of algebraic and cootis domains, and con-
tains classical spaces such as the unit interval in its Hatfstpology. The probabilistic
powerdomain shows that this extension is necessary, asighap other suitably closed cat-
egory available to us which accommodates this construciitve modularity axioms of our
logical characterisation of the probabilistic powerdomaliso demonstrate that the extension
of domain logic to full (rather than intuitionistic) sequsis advantageous.

As a semantic univers&CS* takes the notion of a non-deterministic (rather than func-
tional) computation as basic, which is, of course, remengof traditional work in program-
ming languages [Dij76], but which has also more recentlyndeend to be fundamental to
exact real number computation [Lon99]. This provides antxcprospect for future work.

In previous work, [Jon90, Hec96, Tix99], the probabiligimverdomain has been charac-
terised as a free cone over the spacdt is would be interesting to see if this characterization
can be used to prove completeness of our axiomatizatiorouttieferring to the spatial side
at all. Such an approach was carried out successfully ing8gfpr the more “categorical”
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constructions o5CS™.

Having laid the groundwork, it should now be possible tolgigth the precise connection
to work in probabilistic verification. More speculativepgrhaps, one could also try to extend
the present work so as to capture more accurately truly eliskr properties of probabilistic
programs, that is, to model the Bayesian view of probability
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