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Abstract
A series of representation theorems (some of which discovered very recently) present an alternative view of many classes of
algebras related to non-classical logics (e.g. bilattices, semi-De Morgan, Nelson and quasi-Nelson algebras) as two-sorted
algebras in the sense of many-sorted universal algebra. In all the above-mentioned examples, we are in fact dealing with a pair
of lattices related by two meet-preserving maps. We use this insight to develop a Priestley-style duality for such structures,
mainly building on the duality for meet-semilattices of G. Bezhanishvili and R. Jansana. Our approach simplifies all the
existing dualities for these algebras and is applicable more generally; in particular, we show how it specialises to the class of
quasi-Nelson algebras, which has not yet been studied from a duality point of view.
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1 Introduction

Many classes of algebras related to non-classical logics—
e.g. bilattices, Nelson algebras and the more recently intro-
duced quasi-Nelson algebras (see the next section for the
relevant definitions and references)—can be conveniently
represented through a product-like construction, known,
among other names, as twist-structure (used already by, for
example, Vakarelov 1977; but similar constructions have
been studied since at least the 1950s: see, for example, Davey
2013). In this representation, one embeds an arbitrary alge-
bra belonging to one of the above-mentioned classes (say, a
Nelson algebra A) into a special power of some other
(say, Heyting) algebra H, which is usually built using some
extra structure on H (typically, a filter on H); one says that
A is (isomorphic to) a twist-structure over H.
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The main interest and usefulness of the twist-structure
representation lie, of course, in the possibility of reducing,
to a certain extent, the study of a somewhat esoteric class
of algebras to more tame and well-known ones; as shown in
the papers (Jansana and Rivieccio 2014; Jung and Riviec-
cio 2013; Rivieccio et al. 2017), such a strategy has already
given its fruits in the field of duality, and indeed, the present
paper may be seen as a continuation of the line of research
of Jansana and Rivieccio (2014), Jung and Rivieccio (2013)
and Rivieccio et al. (2017). In most cases, the twist-structure
representation yields in fact a (covariant) categorical equiva-
lence between the algebraic category of, for example, Nelson
algebras and an algebraic category based on, for example,
Heyting algebras with extra structure (Jansana and Rivieccio
2014, Section 2); in some cases, one only obtains an adjunc-
tion (Rivieccio 2014).

In all the above-mentioned examples, once such an equiv-
alence of categories has been established, it is possible (and
we will indeed do so, from a certain point on in this paper)
to disregard the details of the concrete representation (i.e.
how a Nelson algebra is constructed from the correspond-
ing Heyting algebra, and vice versa) to focus only on the
bijective correspondence between (say) Nelson algebras on
the one side and (enriched) Heyting algebras on the other.
This more abstract perspective will allow us to include yet
another class of algebras in the framework we shall propose,
namely Sankappanavar’s semi-DeMorgan algebras; for this,
we will rely on the recent paper (Greco et al. 2017), which
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shows that semi-De Morgan algebras are representable via
a construction that (while not being product-like) has strong
analogies with twist-structures.

The essential element common to both representations
(or rather categorical equivalences) is that they deal, on the
one side, with (single-sorted) abstract algebras (Nelson alge-
bras, semi-De Morgan algebras, etc.) and, on the other, with
tuples of type 〈L+,L−, n, p〉 where L+ and L− are (usu-
ally, distributive) lattices, perhaps endowed with additional
operations (e.g. implications, modalities) and structure, and
n : L+ → L− and p : L− → L+ are meet-preserving maps,
in each case satisfying different additional requirements.1

In fact, each such tuple 〈L+,L−, n, p〉 can be viewed as
one many-sorted abstract algebra in the standard sense of
many-sorted universal algebra (see, for example, Birkhoff
and Lipson 1970): the maps n and p are then viewed as
unary many-sorted algebraic operations, whereas the lattice
operations of L+ and L− (as well as the additional ones such
as implications or modalities) act within a single sort.

We will call tuples of type 〈L+,L−, n, p〉, in their most
general form, two-sorted lattices. Imposing specific restric-
tions on the structure of the two lattices and/or the maps, we
shall then obtain (tuples corresponding to) the various classes
of the above-mentioned algebras.

The main idea inspiring the present paper (as well as
its relatives (Jung and Rivieccio 2013; Jansana and Riv-
ieccio 2014; Rivieccio et al. 2017) mentioned earlier) is
to exploit the many-sorted analysis of non-classical alge-
bras sketched above in order to obtain a topological duality.
This strategy has two main advantages: (1) it provides a
uniform treatment (independent of algebraic language) for
a number of non-classical algebras, namely (involutive and
non-involutive) bilattices,Nelson and quasi-Nelson algebras,
N4-lattices and semi-De Morgan algebras and (2) the dual-
ities thus obtained and the topological spaces involved are
in all known cases (in our opinion) simpler than the existing
(uni-sorted) ones available for the same classes of algebras
(see, for example, Cignoli 1986; Hobby 1996; Celani 1999;
Odintsov 2010); in the cases of non-involutive bilattices and
quasi-Nelson algebras, they are indeed the only dualities cur-
rently available. Furthermore, as new representation results
are established for other classes of algebras [ongoing research
of ours is on Kleene algebras (Rivieccio 2020b) and Kleene
algebras with a weak pseudo-complement (Rivieccio 2020a;
Rivieccio et al. 2020)], we will be able to apply the same
strategy, with no essential modifications, to these as well.

1 The notation 〈L+,L−, n, p〉 originates in the literature on bilattices
and bitopology (Jakl et al. 2016), in which L+ and L− are viewed
as truth value spaces corresponding to (resp.) positive and negative
information concerning, say, a proposition. Thus, the map n (which
has the lattice L+ as source and L− as target) allows one to “translate”
positive information into negative, and likewise, p provides a translation
the other way round.

From a technical point of view, the main novelty and
challenge of the present paper (if compared, for example,
to Jansana and Rivieccio 2014; Jung and Rivieccio 2013;
Rivieccio et al. 2017) stem from the observation that in
the topological part of our study, we need to go beyond
standard Priestley duality for distributive lattices. This is
because the maps n and p appearing in a general two-sorted
lattice 〈L+,L−, n, p〉 need not be lattice homomorphisms
(although L+ and L− are indeed bounded distributive lat-
tices); thus, n and p do not exist asmorphisms in the standard
category of distributive lattices and would not be repre-
sentable as Priestley functions in the dual category. From this
observation arises the insight thatwe should instead be taking
the category ofmeet-semilattices withmeet-preservingmaps
as our “base category”, and accordingly, we should look for
a topological duality for meet-semilattices as one of the main
ingredients in our approach.

Among the various dualities for meet-semilattices avail-
able in the literature (see the references given in Bezhan-
ishvili and Jansana 2011), we have chosen to use the one(s)
introduced byBezhanishvili and Jansana (2011) andBezhan-
ishvili and Jansana (2013). Indeed, their approach turns out
to be particularly convenient for us, because, on the one hand,
we can build on their duality for meet-semilattices (Bezhan-
ishvili and Jansana 2011) to deal with the implication-less
algebras we are interested in (bilattices, semi-De Morgan
algebras), and on the other, we may use the subsequent
paper (Bezhanishvili and Jansana 2013) which extends their
results to implicative semilattices in order to obtain duali-
ties for bilatticeswith implication and quasi-Nelson algebras.
Besides these papers (aswewill indicate in the next sections),
our results also rely on Cornish and Fowler’s duality for De
Morgan algebras (Cornish and Fowler 1977) and Esakia’s
duality (Esakia 1974) for Heyting algebras (both of them in
turn obviously relying on Priestley’s work on distributive lat-
tices). The duality for lattices with a negation operator due
to Celani (1999), though not often cited in the next sections,
has also been very useful to us during the preparation of the
paper.

The rest of the paper is organised as follows. Section 2
introduces and presents the principal results on the relevant
classes of algebras: (non-involutive) bilattices (Sect. 2.1),
semi-De Morgan (2.2) and quasi-Nelson algebras (2.3). We
focus, in particular, on the representation theorems that allow
us to view each member of these classes of algebras as a
two-sorted lattice. In Sect. 3, we recall the basics of Priest-
ley duality for distributive meet-semilattices as introduced
by Bezhanishvili and Jansana, which is the main frame-
work into which our dualities are placed. In Sect. 4, we
formally introduce two-sorted lattices in their most general
form and explain how the Bezhanishvili–Jansana duality can
be adapted to obtain a duality for them. Finally, Sect. 5 shows
how the general duality specialises to the different subclasses
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of two-sorted lattices corresponding to the classes of algebras
introduced in Sect. 2.

2 Bilattices, semi-DeMorgan and
quasi-Nelson algebras

In this section, we introduce the classes of algebras we are
interested in. For each class of algebras, we give an abstract
(equational) presentation and an equivalent one by means of
tuples; we will rely on the latter for our duality.

2.1 Non-involutive bilattices and their
representation

For further details and proofs of results about bilattices, we
refer the reader to Bou et al. (2011) and Rivieccio et al.
(2020).

Definition 2.1 (Interlaced pre-bilattice) An interlaced pre-
bilattice is an algebraB = 〈B,∧,∨,�,�〉 of type 〈2, 2, 2, 2〉
such that 〈B,∧,∨〉 and 〈B,�,�〉 are lattices, and each one of
the four operations {∨,∧,�,�} is monotonic with respect to
both lattice orders.B is distributive if 〈B,∧,∨〉 and 〈B,�,�〉
are both distributive lattices.

We denote the lattice orderings of 〈B,∧,∨〉 and 〈B,�,�〉
by ≤ and 
, respectively. If present, the lattice bounds of
〈B,∧,∨〉 are denoted by f (minimum) and t (maximum).
Likewise,we denote by⊥ and� theminimumandmaximum
(if present) of 〈B,�,�〉.

From now on, we write x ≡+ y as a shorthand for the
identity x ∧ y = x � y, and x ≡− y as a shorthand for the
identity x ∧ y = x � y. We shall be interested in the two
(equivalence) relations determined by the preceding iden-
tities on a (pre-)bilattice; our notation is meant to suggest
that the “positive information lattice” of the desired twist-
representation (see, for example, Definition 2.3) is obtained
as a (partial) quotient via the relation determined by≡+, and
likewise, the relation associatedwith≡− allows us to recover
the “negative information lattice”.

Following a terminology introduced by M. Fitting (and
followed byO. Arieli, A. Avron, B. Davey, H. Priestley, etc.),
we speak of pre-bilattices when the negation operator is not
present, reserving the termbilattice to algebraswith negation.

Definition 2.2 (Non-involutive bilattice) A non-involutive
bilattice is an interlaced pre-bilatticeB = 〈B,∧,∨,�,�,¬〉
endowed with a unary negation operation ¬ satisfying the
following identities:

(i) ¬(x � y) = ¬x � ¬y,
(ii) ¬⊥ = ⊥ ¬� = � ¬t = f ¬f = t (if bounds are

present),

(iii) ¬¬x 
 x .
(iv) ¬(x ∧ y) ≡+ ¬(x � y) ¬(x ∧ y) ≡− ¬(x � y).

B is (bounded) distributive if 〈B,∧,∨〉 and 〈B,�,�〉 are
both (bounded) distributive lattices.

A standard (involutive) bilattice (Bou et al. 2011, Defini-
tion 2.2) additionally satisfies x 
 ¬¬x and ¬(x � y) =
¬x � ¬y (in which case the usual De Morgan identities
¬(x ∧ y) = ¬x ∨ ¬y and ¬(x ∨ y) = ¬x ∧ ¬y also hold).

Our presentation of (non-involutive) bilattices as two-
sorted lattices relies on the following constructions.

Definition 2.3 (Product pre-bilattice)LetL+ =〈L+,∧+,∨+〉
and L− = 〈L−,∧−,∨−〉 be lattices. The product pre-
bilattice 〈L+ × L−,∧,∨,�,�〉 is defined as follows. For
all 〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−,

〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉
〈a+, a−〉 � 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∧− b−〉
〈a+, a−〉 � 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∨− b−〉.

Thus, the lattice reduct 〈L+ × L−,�,�〉 is just the standard
direct product L+ × L−, while the reduct 〈L+ × L−,∧,∨〉
is the direct product L+ × (L−)op, with (L−)op denoting the
order-theoretic dual of the lattice 〈L−,∨−,∧−〉.
Definition 2.4 (Non-involutive product bilattice) Let L+ =
〈L+,∧+,∨+〉 and L− = 〈L−,∧−,∨−〉 be lattices, and let
n : L+ → L− and p : L− → L+ be maps satisfying the
following properties:

(i) n, p are both meet-semilattice homomorphisms (pre-
serve finite meets);

(ii) n, p preserve all lattice bounds of L+ and L− (if
present);

(iii) p ◦ n ≤+ I dL+ and n ◦ p ≤− I dL− .

The non-involutive product bilattice is the algebra
L+ �� L− = 〈L+ × L−,∧,∨,�,�,¬〉 where
〈L+ × L−,∧,∨,�,�〉 is the product pre-bilattice
as per Definition 2.3 and the negation is given, for all
〈a+, a−〉 ∈ L+ × L−, by

¬〈a+, a−〉 = 〈p(a−), n(a+)〉.

The standard (involutive) product bilattice construction of,
for example, Bou et al. (2011) corresponds to the case where
n and p are mutually inverse lattice isomorphisms.

Let B = 〈B,∧,∨,�,�,¬〉 be a (bounded, distributive)
non-involutive bilattice. Consistently with the notation intro-
duced earlier, we let:
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≡+ = {〈a, b〉 ∈ B × B : a ∧ b = a � b}
≡− = {〈a, b〉 ∈ B × B : a ∧ b = a � b}.

Then the quotients B+ = 〈B/≡+,∧,∨〉 and
B− = 〈B/≡−,∨,∧〉 are both (bounded, distributive) lat-
tices. Moreover, we can define maps n : B/≡+→ B/≡−
and p : B/≡−→ B/≡+ satisfying the conditions of Defini-
tion 2.4 by letting n([a]+) = [¬a]− and p([a]−) = [¬a]+.
In this way, we obtain the representation result for non-
involutive bilattices first proved in Rivieccio et al. (2020,
Theorem 3.5).

Theorem 2.5 Every non-involutive bilattice
B = 〈B,∧,∨,�,�,¬〉 is isomorphic to the non-involutive
product bilattice B+ �� B− constructed according to Defini-
tions 2.3 and 2.4, with negation defined by ¬〈[a]+, [a]−〉 =
〈p([a]−), n([a]+)〉 for all a ∈ B. The isomorphism is given
by the map ι : B → B/≡+ × B/≡− defined as ι(a) =
〈[a]+, [a]−〉 for all a ∈ B.

Theorem 2.5 tells us that we can view a non-involutive
bilatticeB as a tuple 〈L+,L−, n, p〉 satisfying the conditions
of Definition 2.4. As mentioned in Rivieccio et al. (2020,
Section 3), this correspondence extends to a (covariant) cate-
gorical equivalence between naturally associated categories.
On the one side, we have non-involutive bilattices with alge-
braic homomorphisms among them; on the other, we have
tuples 〈L+,L−, n, p〉 together with the notion of two-sorted
morphism, which we will apply uniformly to all two-sorted
lattices (see Definition 4.5).

In Rivieccio et al. (2020), we also considered the case
where the lattices L+ and L− possess an intuitionistic impli-
cation. We recall the relevant definitions below.

An implicative lattice (also known in the literature as a
Brouwerian lattice or relatively pseudo-complemented lat-
tice) is a lattice L = 〈L,∧,∨,→〉 expanded with an extra
binary operation → (called implication) which satisfies the
following residuation property: a ∧ b ≤ c if and only if
b ≤ a → c, for all a, b, c ∈ L . Implicative lattices are the
algebraic counterpart of the negation-free fragment of intu-
itionistic logic and correspond precisely to the bottom-free
subreducts of Heyting algebras. This implies, in particular,
that any implicative lattice is distributive and has a top ele-
ment (denoted by 1). For our purposes, it is also useful to keep
in mind that implicative lattices form an equational class.

Definition 2.6 (Non-involutive implicative product bilattice)
Let L+ = 〈L+,∧+,∨+,→+, 1+〉 and
L− = 〈L−,∧−,∨−,→−, 1−〉 be implicative lattices, and
let n : L+ → L− and p : L− → L+ be maps satisfying
properties (i)–(iii) of Definition 2.4. The non-involutive
implicative product bilattice is the algebra
L+ �� L− = 〈L+ × L−,∧,∨,�,�,→, �,¬〉, whose
{→, �}-free reduct is the product bilattice of Definition 2.4,

and where the two binary implication operations are given,
for all 〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−, by

〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−〉
〈a+, a−〉 � 〈b+, b−〉 = 〈p(a−) ∧+ b+, a− →− b−〉.

Definition 2.6 generalises both the construction for the
Brouwerian bilattices of Bou et al. (2011) and that for the
nd-frames of Jakl et al. (2016, Definition 3.1). In fact, any
Brouwerian bilattice can be seen as a non-involutive implica-
tive product bilattice L �� L where the maps n, p are both
the identity on L and � is definable as ¬(¬x → ¬y).2 The
operation �, though not considered in Jakl et al. (2016),
structurally exists on any nd-frame, for both underlying
frames of an nd-frame are complete Heyting algebras (in
which the implications →+ and →− are the residua of the
lattice meets).

As in the implication-less case, it is possible to give a
presentation for a class of abstract algebras in the language
〈∧,∨,�,�,→, �,¬〉 which correspond to non-involutive
implicative product bilattices. Let B be one such algebra and
a, b ∈ B.WritingΦ(a) as an abbreviation for a → a, define:

a �+ b if and only if a → b = Φ(a → b)
a �− b if and only if ¬(a � b) = Φ(¬(a � b)).

Definition 2.7 A non-involutive implicative bilattice is an
algebraB = 〈B,∧,∨,�,�,→, �,¬〉 of type 〈2, 2, 2, 2, 2,
2, 1〉 satisfying the following properties:

(i) the relations �+ and �− are pre-orders (i.e. reflexive
and transitive),

(ii) ≤=�+ ∩ (�−)−1,
(iii) the equivalence relation ≡+ induced by �+ is com-

patible with the operations ∧,∨,→,
(iv) the equivalence relation ≡− induced by �− is com-

patible with the operations ∧,∨, �,
(v) the quotients B+ = 〈B/ ≡+,∧,∨,→〉 and B− =

〈B/≡−,∨,∧, �〉 are implicative lattices3,
(vi) x ≡+ y entails ¬x ≡− ¬y and x ≡− y entails

¬x ≡+ ¬y,
(vii) x � y ≡+ ¬x ∧ y and x → y ≡− ¬x ∨ y,
(viii) x � x ≡− ¬(x → x) and x → x ≡+ ¬(x � x),
(ix) ¬(x ∨ y) ≡+ ¬x ∧ ¬y and ¬(x ∧ y) ≡− ¬x ∨ ¬y,
(x) ¬¬x �+ x and ¬¬x �− x .
(xi) ¬⊥ = ⊥ ¬� = � ¬t = f ¬f = t (if the bounds

mentioned are present),
(xii) 〈B,∧,∨,�,�〉 is an interlaced pre-bilattice on which

the relations ≡+ and ≡− coincide with those of Defi-
nition 2.2.

2 In classical propositional logic,¬(¬x → ¬y) is equivalent to¬(y →
x), hence our notation x � y.
3 Notice that B− has ∨ as meet (whose residuum is �) and ∧ as join.
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Asexpected, every non-involutive implicative bilattice has
a non-involutive bilattice reduct, and every non-involutive
implicative product bilattice is a non-involutive implicative
bilattice (Rivieccio et al. 2020, Proposition 4.6). Moreover,
the class of all non-involutive implicative bilattices is equa-
tionally definable (Rivieccio et al. 2020, Proposition 4.9).
The representation result is Rivieccio et al. (2020, Theorem
4.7), which we repeat below.

Theorem 2.8 Every non-involutive implicative bilattice B is
isomorphic to the non-involutive implicative product bilattice
B+ �� B− via the map ι defined in Theorem 2.5.

As in the implication-less case, Theorem 2.8 allows us
to identify non-involutive implicative bilattices with tuples
〈L+,L−, n, p〉 satisfying the conditions of Definition 2.6.
This correspondence also extends to a (covariant) categori-
cal equivalence between naturally associated categories. On
the one side, we have non-involutive implicative bilattices
with algebraic homomorphisms; on the other, we have tuples
〈L+,L−, n, p〉 together with two-sorted morphisms (Defi-
nition 4.5) which additionally preserve the two intuitionistic
implications.

2.2 Semi-DeMorgan algebras and their
representation

In the literature on non-classical and algebraic logic, one
finds a wide and constantly growing variety of generalisa-
tions of Boolean algebras. Some of these are algebras that
have (at least) one implication operation (e.g. Heyting alge-
bras, residuated lattices, (quasi-)Nelson algebras), which is
obviously a weakening of the classical implication; others
are algebras in a signature only comprising conjunction(s),
disjunction(s) and negation(s). Well-known examples of the
latter are De Morgan algebras (algebraic models of the four-
valued Belnap–Dunn logic) and bilattices (models of the
logics introduced by Ginsberg 1988 and by Arieli and Avron
1996); some of these algebras are well known and have
been studied by logically oriented algebraists and topol-
ogists since several decades [e.g. Ockham lattices, Stone
algebras, pseudo-complemented distributive lattices (Balbes
and Dwinger 1974)].

The paper Sankappanavar (1987) proposed semi-DeMor-
gan algebras as a common generalisation of many of the
above-mentioned classes, encompassing in particular both
De Morgan algebras and pseudo-complemented distributive
lattices, that is, both the algebraic models of the Belnap–
Dunn logic and the models of the implication-free fragment
of intutionistic logic. Probably due to the technical difficulty
of axiomatising implication-free logics, a logical calculus
corresponding to semi-De Morgan algebras has been intro-
duced only recently in Greco et al. (2017), together with
an algebraic representation on which our approach will be

based. For further details and proofs of results about semi-De
Morgan algebras, we refer the reader to the above-mentioned
papers Sankappanavar (1987) and Greco et al. (2017).

We begin with the abstract (one-sorted) definition, which
is due to Sankappanavar.

Definition 2.9 (Semi-De Morgan algebra) A semi-De Mor-
gan algebra is an algebra A = 〈A,∧,∨,¬, f, t〉 of type
〈2, 2, 1, 0, 0〉 satisfying the following:

(S1) The reduct 〈A,∧,∨, f, t〉 is a bounded distributive lat-
tice (with order ≤),

(S2) ¬f = t and ¬t = f,
(S3) ¬(x ∨ y) = ¬x ∧ ¬y,
(S4) ¬¬(x ∧ y) = ¬¬x ∧ ¬¬y,
(S5) ¬x = ¬¬¬x .

A is a De Morgan algebra if x = ¬¬x .

The postulates (S2) to (S5) can be viewed as minimal
requirements for a unary operation that interprets the nega-
tion in a logic; notice, in particular, that they all correspond to
intuitionistically sound equational laws. As shown in Greco
et al. (2017), semi-De Morgan algebras can be represented
as tuples, but unlike the previously considered cases, the rep-
resentation theorem is not based on a product construction.

Definition 2.10 (Heterogeneous Semi-De Morgan algebra)
Aheterogeneous semi-DeMorganalgebra is a tuple 〈L+,L−,

n, p〉 such that:

(H1) L+ = 〈L+,≤+,∧+,∨+, 0+, 1+〉 is a bounded dis-
tributive lattice,

(H2) L− = 〈L−,≤−,∧−,∨−,¬−, 0−, 1−〉 is a De Mor-
gan algebra,

(H3) p : L− → L+ is an (injective) bounded meet-
semilattice homomorphism,

(H4) n : L+ → L− is a (surjective) bounded lattice homo-
morphism,

(H5) IdL− = n ◦ p.

Given a heterogeneous semi-De Morgan algebra
〈L+,L−, n, p〉, we can obtain a semi-De Morgan algebra
〈L+,∧+,∨+,¬+, 0+, 1+〉 by endowingL+ with a negation
¬+ defined, for all a+ ∈ L+, by

¬+a+ = p(¬−n(a+)).

Conversely, every semi-De Morgan algebra
A = 〈A,∧,∨,¬, f, t〉 determines a heterogeneous
semi-De Morgan algebra as follows. Consider the set
A− = {¬a : a ∈ A} and the operation defined on it by
a ∨− b = ¬¬(a ∨ b) for all a, b ∈ A−. Then
〈A−,∧,∨−,¬, f, t〉 is a DeMorgan algebra, and we obtain a
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heterogeneous semi-De Morgan algebra 〈A+,A−, n, p〉 by
defining:

(i) A+ = 〈A,∧,∨, f, t〉,
(ii) A− = 〈A−,∧,∨−,¬, f, t〉,
(iii) p(a) = a for all a ∈ A−,
(iv) n(b) = ¬¬b for all b ∈ A.

As in the preceding cases, the two constructions yield
an equivalence; that is, every semi-De Morgan algebra A
is isomorphic to the one obtained from the heterogeneous
semi-De Morgan algebra 〈A+,A−, n, p〉 (Greco et al. 2017,
Proposition 4). The equivalence extends straightforwardly
to morphisms, which are semi-De Morgan algebra homo-
morphisms, on the one side, and two-sorted morphisms
(Definition 4.5) between heterogeneous semi-De Morgan
algebras, on the other. Thus, in this case too we have a
(covariant) categorical equivalence between semi-De Mor-
gan algebras and heterogeneous semi-De Morgan algebras.

2.3 Quasi-Nelson algebras and their representation

As mentioned earlier, Nelson’s logic (Nelson 1949) is a
generalisation of Boolean logic. As in other well-known
non-classical systems (e.g. linear logic) where the Boolean
conjunction and disjunction are replaced by two pairs of
connectives, so in Nelson’s logic the classical implication
is replaced by two connectives, the weak implication (→)
and the strong implication (⇒). Some classical properties
(e.g. so-called contraction and the deduction–detachment
theorem) are retained (only) by the former implication, while
others (e.g. so-called contraposition and residuation) are
enjoyed by the latter. Each of the two Nelson implications
determines its own negation, and to each is associated a dis-
tinct conjunction. This richness of language makes Nelson’s
logic particularly interesting, both intrinsically and as a tool
for applications, in particular in the area of philosophical
logic where it was originally introduced.

The algebraic models of Nelson’s logic (Nelson algebras)
have been studied intensely since the 1970s (by such logi-
cians as H. Rasiowa, D. Vakarelov, V. Goranko, M. Kracht)
and are by now fairly well understood. However, our insight
on one of the key features (perhaps the key feature) of Nel-
son’s logic, namely the Nelson axiom relating strong and
weak implication (see Spinks et al. 2019), remains to this
day somewhat unsatisfactory. The papers Spinks et al. (2019)
and the subsequent Rivieccio and Spinks (2019) and Riv-
ieccio and Spinks were aimed at clarifying the meaning and
implications of the Nelson axiom in the context of residuated
lattices (i.e. models of the Full Lambek Calculus: see Galatos
et al. (2007)). The class of quasi-Nelson algebras arose as a
natural object of interest in such a setting, corresponding to
the subclass of (commutative, integral, bounded) residuated

lattices that satisfy the Nelson axiom, but not necessarily the
classical law of double negation.

As argued in Rivieccio and Spinks (2019) and Rivieccio
and Spinks, the interest in quasi-Nelson algebras has dif-
ferent sources. From a logical point of view, quasi-Nelson
algebras may be viewed as (the algebraic models of) a com-
mon generalisation of intuitionistic andNelson’s logic which
retains a great deal of the characteristic features of the latter.
From the point of view that concerns us here, quasi-Nelson
algebras are particularly interesting in that they provide an
example of non-involutive algebras which can be represented
via twist-structures.

The algebraic language of quasi-Nelson algebras is a frag-
ment of that of bounded non-involutive implicative bilattices,
which allows us to adopt similar notational conventions. In
particular, we define a �+ b if and only if a → b = t,
and x ≡+ y for the conjunction of the two identities
x → y = y → x = t. (Because of the structural properties
of quasi-Nelson algebras, it is not necessary to consider the
“negative” relations �− and ≡−.)

Definition 2.11 A quasi-Nelson algebra is an algebra A =
〈A,∧,∨,→,¬, f, t〉 of type 〈2, 2, 2, 1, 0, 0〉 satisfying the
following properties:

(QN1) The reduct 〈A,∧,∨, f, t〉 is a bounded distributive
lattice (with order ≤).

(QN2) The relation�+ is a pre-order (i.e. reflexive and tran-
sitive).

(QN3) The equivalence relation ≡+ induced by �+ is com-
patible with the operations∧,∨,→, and the quotient
algebra A+ = 〈A,∧,∨,→, f, t〉/≡+ is a Heyting
algebra.

(QN4) ¬(x → y) ≡+ ¬ ¬(x ∧ ¬ y).
(QN5) x ≤ y iff x �+ y and ¬ y �+ ¬ x .
(QN6) The following identities hold:

(QN6.1) ¬ ¬(¬ x → ¬ y) ≡+ ¬ x → ¬ y
(QN6.2) ¬(x ∨ y) ≡+ ¬ x ∧ ¬ y
(QN6.3) ¬ ¬ x ∧ ¬ ¬ y ≡+ ¬¬(x ∧ y)
(QN6.4) ¬ x ≡+ ¬¬¬ x
(QN6.5) x �+ ¬¬ x
(QN6.6) x ∧ ¬ x �+ f.

A is a Nelson algebra if it satisfies the identity ¬ ¬ x ≤ x
(or, equivalently, ¬¬ x = x).

The above definition is a generalisation of Rasiowa’s pre-
sentation of Nelson algebras (Rasiowa 1974, Ch. V, p. 68) as
well as Odintsov’s definition of N4-lattices (Odintsov 2003,
Definition 5.1). It follows from Rivieccio and Spinks (Riv-
ieccio and Spinks 2019, Theorem 4.4) that quasi-Nelson
algebras form an equational class. We observe that the
〈∧,∨,¬, f, t〉-reduct of every quasi-Nelson algebra is a
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semi-DeMorgan algebra (Rivieccio and Spinks 2019, Propo-
sition 2.7), in fact a special one, for certain identities are
satisfied that are not valid on all semi-De Morgan algebras
(e.g. x ≤ ¬¬ x which defines lower quasi-De Morgan alge-
bras in Sankappanavar’s terminology). On the other hand,
the 〈∧,∨,→,¬, f, t〉-reduct of a non-involutive implicative
bilattice (or even of aBrouwerian bilattice in the sense of Bou
et al. 2011) need not be a quasi-Nelson algebra, because, for
example, item (QN6.4) or (QN6.6) may fail.

One of the main results of Rivieccio and Spinks (2019) is
that quasi-Nelson algebras can also be represented through
a product construction similar to the ones introduced earlier.
(For further details and proofs of results, we refer the reader
to Rivieccio and Spinks 2019.)

Definition 2.12 Let H+ = 〈H+,∧+,∨+,→+, 0+, 1+〉 and
H− = 〈H−,∧−,∨−,→−, 0−, 1−〉 be Heyting algebras and
n : H+ → H− and p : H− → H+ be maps satisfying the
following properties:

(i) n is a bounded lattice homomorphism,
(ii) p preserves meets and both lattice bounds,4

(iii) n ◦ p = IdH− and IdH+ ≤+ p ◦ n.

The algebra H+ �� H− = 〈H+ × H−,∧,∨,→,¬, 0, 1〉 is
defined as follows. For all 〈a+, a−〉, 〈b+, b−〉 ∈ H+ × H−,

1 = 〈1+, 0−〉
0 = 〈0+, 1−〉

¬〈a+, a−〉 = 〈p(a−), n(a+)〉
〈a+, a−〉 ∧ 〈b+, b−〉 = 〈a+ ∧+ b+, a− ∨− b−〉
〈a+, a−〉 ∨ 〈b+, b−〉 = 〈a+ ∨+ b+, a− ∧− b−〉

〈a+, a−〉 → 〈b+, b−〉 = 〈a+ →+ b+, n(a+) ∧− b−)〉.

A twist-algebraA overH+ �� H− is a {∧,∨,→,¬, 0, 1}-
subalgebra of H+ �� H− with carrier set A satisfying
π1(A) = H+ and a+ ∧+ p(a−) = 0+ for all 〈a+, a−〉 ∈ A.

Remark 2.13 The set B := {〈a+, a−〉 ∈ H+ × H−:
a+ ∧+ p(a−) = 0+} is the universe of the largest twist-
algebra B over H+ �� H−, and all others are precisely
those subalgebras of B that satisfy π1(A) = H+. Observe,
moreover, that the condition a+ ∧+ p(a−) = 0+ entails
n(a+) ∧− a− = 0− for all 〈a+, a−〉 ∈ A. Likewise,
π2[A] = H− follows from π1[A] = H+.

Every twist-algebra is a quasi-Nelson algebra (Rivieccio
and Spinks 2019, Corollary 3.4). Moreover, every quasi-
Nelson algebra A = 〈A,∧,∨,→,¬, f, t〉 can be viewed

4 As observed in Rivieccio and Spinks (2019) and Rivieccio and Spinks
(2020), conditions (i)–(iii) entail that p also preserves theHeyting impli-
cation.

as a twist-algebra in the following way. By (QN3), we have
a Heyting algebra quotient
A+ = 〈A+,∧+,∨+,→+, 0+, 1+〉. The second Heyting
algebra A− is defined as follows. Denoting by [b] the equiv-
alence class of each b ∈ A modulo ≡+, we consider the set
A− = {[¬ a] : a ∈ A} ⊆ A+. We endow A− with Heyting
algebra operations as follows. For all a, b ∈ A, let

[¬ a] ∧− [¬ b] = [¬(a ∨ b)]
(= [¬ a∧¬ b] = [¬ a]∧+ [¬ b], by Def. 2.11 (QN6.2))
[¬ a] ∨− [¬ b] = [¬(a ∧ b)]
[¬ a] →− [¬ b] = [¬ ¬(¬ a → ¬ b)] (= [¬ a →
¬ b] = [¬ a] →+ [¬ b]), by Def. 2.11 (QN6.1))
0− = [¬ t] (= [f] = 0+)

1− = [¬ f] (= [t] = 1+).

It is easy to show that the above operations are well
defined. (In particular, [a] = [c] and [b] = [d] imply
[¬(a ∧ b)] = [¬(c ∧ d)].) The set A− is the universe of a
〈∧+,→+, 0+, 1+〉-subalgebra of A+. Note that ∨−, though
not coinciding with the restriction of ∨+ to A−, is neverthe-
less a join for ∧− inA−, so that A− forms a Heyting algebra
in its own right, though not a Heyting subalgebra ofA+. The
maps p : A− → A+ and n : A+ → A− are defined as fol-
lows: p is the identity map on A− and n[a] = [¬ ¬ a] for all
a ∈ A. These maps satisfy the conditions of Definition 2.12,
which gives us the following result (Rivieccio and Spinks
2019, Proposition 4.2).

Theorem 2.14 Every quasi-Nelson algebra A is isomorphic
to a twist-algebra over A+ �� A− by the map ι(a) =
〈[a], [¬ a]〉.

Unlike the preceding cases, Theorem 2.14 alone would
not allow us to identify each quasi-Nelson algebra with a
tuple 〈H+,H−, n, p〉, because distinct quasi-Nelson alge-
bras may be isomorphic to twist-algebras over the same
algebraH+ �� H−. To recover a one-to-one correspondence,
we need to improve the representation result of Rivieccio and
Spinks (2019) by adding one more ingredient to our tuples.

Recall that, given a Heyting algebra
H = 〈H ,∧,∨,→, 0, 1〉, the set of dense elements of H
(which indeed forms a lattice filter) is defined as

D(H) := {a ∈ H : a → 0 = 0}.

It is shown in Rivieccio and Spinks (2020) that every quasi-
Nelson algebra can be identified with a tuple 〈H+,H−, n, p,
∇+〉, where∇+ is a lattice filter ofH+ which contains D(H).
The following result is (Rivieccio and Spinks (2020), Propo-
sition 9).

Proposition 2.15 Let H+ and H− be Heyting algebras and
n : H+ → H− and p : H− → H+ maps satisfying the con-
ditions of Definition 2.12. Let ∇ ⊆ H+ be a lattice filter of

123



U. Rivieccio, A. Jung

H+ containing D(H+). Then the setA := {〈a+, a−〉 ∈ H+ × H− :
a+ ∨+ p(a−) ∈ ∇, a+ ∧+ p(a−) = 0+}

is the universe of a twist-algebra over H+ �� H−.

By Proposition 2.15, each tuple 〈H+,H−, n, p,∇〉 deter-
mines a twist-algebra over H+ �� H−. Following the nota-
tion of Odintsov (2004), we denote this twist-algebra by
Tw〈H+,H−, n, p,∇〉. The next result (Rivieccio and Spinks
(2020), Proposition 10) entails that every quasi-Nelson alge-
bra is isomorphic to Tw〈H+,H−, n, p,∇〉 for a suitable
choice of ∇.

Proposition 2.16 Let A be a twist-algebra over H+ �� H−,
and define I (A) := {a ∈ A : ¬ a ≤ a}. Then:

(i) I (A) is a lattice filter of A, and one has
I (A) = {〈a+, 0−〉 : 〈a+, 0−〉 ∈ A}.

(ii) ∇A := π1[I (A)] is a lattice filter of H+.
(iii) D(H+) ⊆ ∇A.
(iv) A = Tw〈H+,H−, n, p,∇A〉.

Corollary 2.17 Every quasi-Nelson algebra A is isomorphic
to Tw〈A+,A−, n, p,∇A〉, where ∇A = I (A)/≡+.

3 Priestley dualities

In this section, we briefly recall the main notions from Priest-
ley duality (for bounded distributive lattices and for meet
semi-lattices) that we shall need in the sequel of the paper.

The original Priestley duality concerns the category D
of bounded distributive lattices and bounded lattice homo-
morphisms. To every bounded distributive lattice L, one
associates the set X(L) of its prime filters. On X(L), one
has the Priestley topology τ , generated by the sets Φ(a) :=
{x ∈ X(L) : a ∈ x} and Φ ′(a) := {x ∈ X(L) : a /∈ x},
and the inclusion relation between prime filters as an order.
The resulting ordered topological spaces are called Priestley
spaces5. A homomorphism h between bounded distribu-
tive lattices L and L′ gives rise to a function X(h) :
X(L′) → X(L), defined by X(h)(x ′) = h−1[x ′], that is
continuous and order preserving. Taking functionswith these
properties, called Priestley functions, as morphisms between
Priestley spaces one obtains the category PrSp, and X is now
readily recognised as a contravariant functor from D to PrSp.

For a functor in the opposite direction, one associates with
every Priestley space X = 〈X , τ,≤〉 the set L(X) of clopen
up-sets. This is a bounded distributive lattice with respect

5 Abstractly, a Priestley space is defined as a compact ordered topo-
logical space 〈X , τ,≤〉 such that, for all x, y ∈ X , if x � y, then there
is a clopen up-setU ⊆ X with x ∈ U and y /∈ U . It follows that 〈X , τ 〉
is a Stone space.

to the set-theoretic operations ∩,∪,∅ and X . To a Priestley
map f : X → X ′, one associates the function L( f ), given
by L( f )(U ′) = f −1[U ′], which is a bounded lattice homo-
morphism from L(X ′) to L(X). Together, then, L constitutes
a contravariant functor from PrSp to D.

The two functors are adjoint to each other with the units
given by:

ΦL : L → L(X(L)) ΦL(a) = {x ∈ X(L) : a ∈ x}
ΨX : X → X(L(X)) ΨX (x) = {U ∈ L(X) : x ∈ U .}

One shows that these are the components of a natural trans-
formation from the identity functor on D to L · X and from
the identity functor on PrSp to X · L , respectively, satisfying
the required diagrams for an adjunction. In particular, they
are morphisms in their respective categories. Furthermore,
they are isomorphisms, and thus, the central result of Priest-
ley duality is obtained: the categories D and PrSp are dually
equivalent.

All dualities in the rest of this paper concern bounded
distributive lattices with additional structure; in each case,
the functors X and L are defined as above and likewise for
the units Φ and Ψ .

Section 2 indicates that ourmost general objects of interest
are tuples 〈L+,L−, n, p〉 where L+,L− are bounded dis-
tributive lattices and n, p are meet-preserving maps. This
suggests that a suitable base category to work with will be
one whose objects are bounded distributive (semi)-lattices
and whose morphisms are meet-preserving maps; for in such
a setting, we should be able to view our tuples 〈L+,L−, n, p〉
as diagrams in the base category. Following this intuition,
we shall work within the framework of the Priestley-style
duality for meet-semilattices introduced by Bezhanishvili
and Jansana (2011). This approach is also appealing to us
because inBezhanishvili and Jansana (2013) the authors have
extended their duality to meet-semilattices enriched with an
intuitionistic implication,whichmeans thatwewill be able to
exploit their results when dealing with tuples 〈L+,L−, n, p〉
where L+ andL− are Heyting algebras (i.e. the case of bilat-
tices with implication and quasi-Nelson algebras).

Suppose L+ and L− are bounded distributive lattices and
n : L+ → L− is a map which is meet-preserving but not
necessarily join-preserving. Then n does not give rise in any
obvious way to a function between the corresponding Priest-
ley spaces X(L+) and X(L−), but it can nevertheless be
represented as a binary relation X(n) ⊆ X(L−) × X(L+) as
follows:

X(n) = {〈x−, x+〉 ∈ X(L−) × X(L+) : n−1[x−] ⊆ x+}.

Any relation X(n) defined in this particular way obviously
satisfies non-trivial order-theoretic and topological proper-
ties, which we shall identify in the next section. Their lattice-
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theoretic duals (corresponding to join-preserving maps),
have been studied in Halmos (1962) for Boolean spaces, and
generalised to the setting of Priestley spaces in Cignoli et al.
(1991).

It may be interesting to notice that the maps n and p can
be viewed as two-sorted analogues of the so-called necessity
operator� of modal logic. In fact, most notions from duality
for modal algebras apply to our case as well: in particular, the
morphisms between spaces that we shall obtain are a straight-
forward generalisation of the maps known in the modal logic
literature as bounded morphisms (or p-morphisms; see, for
example, Blackburn et al. (2001)).

Thus, in our approach the spatial dual to a tuple
〈L+,L−, n, p〉 will be the structure
〈X(L+), X(L−), X(n), X(p)〉 made of two Priestley spaces
togetherwith two binary relations between them. For the con-
verse construction, a binary relation between Priestley spaces
may give rise to a meet-preserving map on the corresponding
lattices as follows. Given sets X ,Y , a relation R ⊆ X × Y
and a subset X ′ ⊆ X , define:

R[X ′] = {y ∈ Y : there is x ∈ X ′ s.t. 〈x, y〉 ∈ R}.

In particular, for X ′ = {x}, we write R[x] instead of R[{x}].
For Y ′ ⊆ Y , let:

�RY
′ = {x ∈ X : R[x] ⊆ Y ′}.

Now, suppose 〈X+, X−, Rn, Rp〉 is a structure such that
X+ and X− are Priestley spaces, and Rn ⊆ X− × X+,
Rp ⊆ X+ × X− are binary relations. Imposing suitable
restrictions on the relations, one can show that the maps
�Rn : L(X+) → L(X−) and �Rp : L(X−) → L(X+)

given as above are well defined on the lattices L(X+) and
L(X−) and preserve finite meets. Thus, one obtains a tuple
〈L(X+), L(X−),�Rn ,�Rp 〉 of the required type.

In order to obtain a general duality (to be later specialised
to the various classes of algebras introduced in Sect. 2), it
only remains to take care of morphisms. For tuples of type
〈L+,L−, n, p〉, a natural notion of morphism arises in a
straightforward way; one just needs to look at the algebraic
homomorphisms of the corresponding class of abstractly pre-
sented algebras6. Having fixed these (see Definition 4.5 in
the next section), the morphisms on the spatial side will be
fixed as well, and we will only need to provide a convenient
characterisation for them.

6 This is nevertheless a choice, different, for example, from the one
made in Jakl et al. (2016, Definition 3.3).

4 Two-sorted lattices and their duals

We now apply definitions and results (specialised to our
particular setting) on the dualities for (implicative) meet-
semilattices developed in Bezhanishvili and Jansana (2011)
and Bezhanishvili and Jansana (2013); we refer the reader to
these papers for further details and proofs. Keep in mind
that, since we are dealing with distributive lattices rather
than semilattices, we will be able to use most results and
definitions from Bezhanishvili and Jansana (2011, 2013) in
a simplified form (e.g. we will not have to deal with fine-
grained notions such as the distributive envelope, optimal
filter and Frink ideal; in particular, in our setting optimal and
prime filters coincide).

Let us start with the official definition of our main objects
of interest, that is, two-sorted lattices.

Definition 4.1 A two-sorted lattice is a structure L =
〈L+,L−, n, p〉 such that:

(i) L+ = 〈L; ∧+,∨+, 0+, 1+;≤+〉 and
L− = 〈L; ∧−,∨−, 0−, 1−;≤−〉 are bounded distribu-
tive lattices;

(ii) n : L+ → L− and p : L− → L+ are maps that preserve
finite meets and all lattice bounds of L+ and L−.

Given a two-sorted lattice 〈L+,L−, n, p〉, we define its
dual space as the structure

X(L) = 〈X(L+), X(L−), X(n), X(p)〉

where:

(i) X(L+) = 〈X(L+), τ+,⊆〉 is the Priestley space corre-
sponding to L+;

(ii) X(L−) = 〈X(L−), τ−,⊆〉 is the Priestley space corre-
sponding to L−;

(iii) X(p) ⊆ X(L+)×X(L−) and X(n) ⊆ X(L−)×X(L+)

are relations defined as follows:

X(n) = {〈x−, x+〉 ∈ X(L−) × X(L+) : n−1[x−] ⊆ x+}
X(p) = {〈x+, x−〉 ∈ X(L+) × X(L−) : p−1[x+] ⊆ x−}.

Unless indicated otherwise, wewill always write x−, y−, etc.
for generic points (i.e. prime filters) in X(L−) and x+, y+ for
points (prime filters) in X(L+). Every relation obtained in the
above-defined way satisfies certain special properties, which
we are now going to demonstrate.

Proposition 4.2 (Bezhanishvili and Jansana 2011, Prop. 6.1,
Lemma 6.10) Let X(L) = 〈X(L+), X(L−), X(n), X(p)〉
be the space corresponding to a two-sorted lattice L =
〈L+,L−, n, p〉. The following hold:
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(i) X(n)[x−] ⊆ X(L+) and X(p)[x+] ⊆ X(L−) are non-
empty closed up-sets;

(ii) �Rn ◦ ΦL+ = ΦL− ◦ n and �Rp ◦ ΦL− = ΦL+ ◦ p.

Taking the lead from Bezhanishvili and Jansana (2011),
we include the properties of Proposition 4.2 in our official
definition of a two-sorted Priestley space.

Definition 4.3 A two-sorted Priestley space is a structure
X = 〈X+, X−, Rn, Rp〉 such that:

(i) X+ = 〈X , τ+,≤+〉 and X− = 〈X , τ−,≤−〉 arePriestley
spaces;

(ii) Rn ⊆ X− × X+, Rp ⊆ X+ × X− are binary relations
satisfying7:

1. Rn[x−] and Rp[x+] are non-empty closed up-sets,
for all x− and x+;

2. for all U− ∈ L(X−), U+ ∈ L(X+), we have
�RpU− ∈ L(X+) and �RnU+ ∈ L(X−).

By Proposition 4.2, the dual space X(L) =
〈X(L+), X(L−), X(n), X(p)〉 of a two-sorted lattice L =
〈L+,L−, n, p〉 is a two-sorted Priestley space. The next
result entails that, conversely, to every two-sorted Priestley
space we can associate a two-sorted lattice.

Proposition 4.4 (Bezhanishvili and Jansana 2011, Prop. 5.9,
Lemma 6.5) Let X = 〈X+, X−, Rn, Rp〉 be a two-sorted
Priestley space. Then L(X) = 〈L(X+),L(X−),�Rn ,�Rp 〉
is a two-sorted lattice.

Next we check that every two-sorted lattice is isomor-
phic to its double dual. For this, we need to stipulate
what a (homo)morphism of two-sorted lattices is. We shall
adopt the notion of many-sorted homomorphism that is
standard in many-sorted universal algebra (Meinke and
Tucker 1992, Definition 3.4.1.); as mentioned earlier, such a
choice is also consistent with the fact that, in the case of
semi-De Morgan and quasi-Nelson algebras, many-sorted
homomorphisms correspond precisely to algebraic homo-
morphisms.

Definition 4.5 Let L = 〈L+,L−, n, p〉 and L
′ = 〈L′+,L′−,

n′, p′〉 be two-sorted lattices. A morphism h : L → L
′

7 Our formulation of (ii).1 is different from the one in Bezhanishvili
and Jansana (2011, Definition 6.2), but the two are easily seen to be
equivalent in our context. Also, we always require Rn and Rp to be
total (Bezhanishvili and Jansana 2011, Definition 6.11) because our
maps n, p preserve all lattice bounds.

consists of a pair of bounded lattice homomorphisms h =
〈h+, h−〉with h+ : L+ → L ′+ and h− : L− → L ′− such that
h+ ◦ p = p′ ◦ h− and n′ ◦ h+ = h− ◦ n.

L+

h+
��

n ��
L−

h−
��

p
��

L′+
n′

��
L′−

p′
��

One easily checks that two-sorted lattices together with
the above-defined morphisms form a category that we
shall denote by 2Lat. Given a two-sorted lattice L =
〈L+,L−, n, p〉, let ΦL = 〈ΦL+ , ΦL−〉. The next result fol-
lows fromPriestley duality together with Proposition 4.2.(ii).

Proposition 4.6 LetL = 〈L+,L−, n, p〉 be a two-sorted lat-
tice. Then the map ΦL = 〈ΦL+ , ΦL−〉 is an isomorphism in
2Lat between L and L(X(L)).

Given two-sorted lattices L = 〈L+,L−, n, p〉 and L
′ =

〈L′+,L′−, n′, p′〉 and a morphism h = 〈h+, h−〉: L → L
′,

we let X(h) = 〈X(h+), X(h−)〉, where X(h+) : X(L′+) →
X(L+) X(h−) : X(L′−) → X(L−) are the Priestley func-
tions given by X(h+)(x ′+) = h−1+ [x ′+] and X(h−)(x ′−) =
h−1− [x ′−].

The spatial category dual to2Lat,whichwe shall denote by
2PrSp, has as objects two-sorted Priestley spaces; we define
the corresponding morphisms below.

Definition 4.7 Let X = 〈X+, X−, Rn, Rp〉 and X ′ =
〈X ′+, X ′−, R′

n, R
′
p〉 be two-sorted Priestley spaces and let

f+ : X+ → X ′+ and f− : X− → X ′− be maps. The pair
f = 〈 f+, f−〉 is a 2PrSp-morphism if the following condi-
tions hold:

(i) f+ and f− are Priestley functions.
(ii) f preserves Rp and Rn , that is, if 〈x+, x−〉 ∈ Rp, then

〈 f+(x+), f−(x−)〉 ∈ R′
p, etc.

(iii) f+ and f− are bounded morphisms, in the sense that

(a) if 〈 f+(x+), x ′−〉 ∈ R′
p, then there is x− ∈ X− such

that f−(x−) ≤′− x ′− and 〈x+, x−〉 ∈ Rp,
(b) if 〈 f−(x−), x ′+〉 ∈ R′

n , then there is x+ ∈ X+ such
that f+(x+) ≤′+ x ′+ and 〈x−, x+〉 ∈ Rn .

In keeping with the view of n and p as necessity-like
modalities, one can view 2PrSp-morphisms as a two-sorted
version of so-called bounded morphisms or p-morphisms,
i.e. the morphisms of modal spaces. It is straightforward
to check that the composition map f ◦ g of two 2PrSp-
morphisms f and g is a 2PrSp-morphism. We proceed to
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check that 2PrSp-morphisms are precisely the duals of 2Lat-
morphisms.

Proposition 4.8 Let L = 〈L+,L−, n, p〉 and L
′ =

〈L′+,L′−, n′, p′〉 be two-sorted lattices and h = 〈h+, h−〉:
L → L

′ a morphism between them. The following hold:

(i) For all x ′+ ∈ X(L′+) and x ′− ∈ X(L′−), if 〈x ′+, x ′−〉 ∈
X(p′), then 〈X(h+)(x ′+), X(h−)(x ′−)〉 ∈ X(p), and
analogously for pairs 〈x ′−, x ′+〉 ∈ X(n′).

(ii) For all x ′+ ∈ X(L′+) and x− ∈ X(L+), if 〈X(h+)(x ′+),

x−〉 ∈ X(p), then there is x ′− ∈ X(L′−) such that
X(h−)(x ′−) ⊆ x− and 〈x ′+, x ′−〉 ∈ X(p′); analogously
for elements x ′− ∈ X(L′−) and x+ ∈ X(L+).

Hence, X(h) is a 2PrSp-morphism.

Proof (i). Assume 〈x ′+, x ′−〉 ∈ X(p′), i.e. (p′)−1[x ′+] ⊆ x ′−.
Then h−1− [(p′)−1[x ′+]] ⊆ h−1− [x ′−] = X(h−)(x ′−). From the
assumption that h+ ◦ p = p′ ◦ h−, we have

(h+ ◦ p)−1 = p−1 ◦ h−1+ = h−1− ◦ (p′)−1 = (p′ ◦ h−)−1.

Hence,

h−1− [(p′)−1[x ′+]] = p−1[h−1+ [x ′+]]
= p−1[X(h+)(x ′+)] ⊆ X(h−)(x ′−),

which means that 〈X(h+)(x ′+), X(h−)(x ′−)〉 ∈ X(p) as
required.

(ii). Assume 〈X(h+)(x ′+), x−〉 ∈ X(p), which means that
p−1[h−1+ [x ′+]] ⊆ x−. As seen in (i), we have p−1 ◦ h−1+ =
h−1− ◦ (p′)−1 and so we can rewrite our assumption as
h−1− [(p′)−1[x ′+]] ⊆ x−. We need to show that there is
x ′− ∈ X(L′−) such that h−1− [x ′−] ⊆ x− and (p′)−1[x ′+] ⊆ x ′−.
We shall then need to extend (p′)−1[x ′+] to a prime filter of
L′− with the required properties. In order to do so, notice
that (p′)−1[x ′+] is a filter and that ↓ h−[xc−] is an ideal of
L′− such that (p′)−1[x ′+] ∩ ↓ h−[xc−] = ∅. In fact, if there
was some a′− ∈ (p′)−1[x ′+] ∩ ↓ h−[xc−], then we would
have, on the one hand, p′(a′−) ∈ x ′+ and, on the other,
a′− ≤′− h−(b−) for some b− /∈ xc−. Then, by monotonic-
ity of p′, we would have p′(a′−) ≤′− p′(h−(b−)) and so
p′(h−(b−)) ∈ x ′+ because x ′+ is an up-set. But by assump-
tion h−1− [(p′)−1[x ′+]] ⊆ x−, so we should have b− ∈ x−,
a contradiction. Thus, (p′)−1[x ′+] ∩ ↓ h−[xc−] = ∅, and
we can invoke the prime filter theorem for distributive lat-
tices to extend (p′)−1[x ′+] to a prime filter x ′− such that
x ′− ∩ ↓ h−[xc−] = ∅. To finish the proof, it is sufficient to
observe that h−1− [x ′−] ⊆ x−. In fact, if h−(a−) ∈ x ′−, then
h−(a−) /∈ ↓ h−[xc−], which entails a− /∈ xc− and so a− ∈ x−
as required. ��

Given two-sortedPriestley spaces X = 〈X+, X−, Rn, Rp〉
and X ′ = 〈X ′+, X ′−, R′

n, R
′
p〉 and a 2PrSp-morphism f =

〈 f+, f−〉: X → X ′, the pair L( f ) = 〈L( f+),L( f−)〉
of lattice homomorphisms L( f+) : L(X ′+) → L(X+),
L( f−) : L(X ′−) → L(X−) is defined as in Priestley dual-
ity: for all clopen up-sets U ′+ ⊆ X ′+, U ′− ⊆ X ′−,

L( f+)(U ′+) := f −1+ [U ′+] L( f−)(U ′−) := f −1− [U ′−].

Proposition 4.9 Let X = 〈X+, X−, Rn, Rp〉 and X ′ =
〈X ′+, X ′−, R′

n, R
′
p〉 be two-sorted Priestley spaces and f =

〈 f+, f−〉: X → X ′ a 2PrSp-morphism. Then L( f ) =
〈L( f+),L( f−)〉 is a 2Lat-morphism.
Proof It follows fromPriestley duality thatL( f+) andL( f−)

are bounded lattice homomorphisms. We will only consider
the first additional condition of Definition 4.5 (the other can
be shown using a similar reasoning), namely L( f+) ◦�p′ =
�p ◦ L( f−). This means that, for any clopen up-set U ′− ⊆
X ′−, wemust have (L( f+)◦�p′)(U ′−) = (�p◦L( f−))(U ′−).
Let us compute the left-hand side of the equation, which is

(L( f+) ◦ �p′)(U ′−) = L( f+)({x ′+ ∈ X ′+ : R′
p[x ′+] ⊆ U ′−})

= f −1+ [{x ′+ ∈ X ′+ : R′
p[x ′+] ⊆ U ′−}].

Thus, we have that x+ ∈ (L( f+) ◦ �p′)(U ′−) if and only if,
for all x ′− ∈ X ′−, if 〈 f+(x+), x ′−〉 ∈ Rp′ , then x ′− ∈ U ′−.
Likewise, we compute

(�p ◦ L( f−))(U ′−) = �p( f
−1− [U ′−])

= {x+ ∈ X+ : Rp[x+] ⊆ f −1− [U ′−]}]

which means that x+ ∈ (�p ◦ L( f−))(U ′−) if and only if,
for all x− ∈ X−, if 〈x+, x−〉 ∈ Rp, then f−(x−) ∈ U ′−. To
see that (L( f+) ◦ �p′)(U ′−) ⊆ (�p ◦ L( f−))(U ′−), assume
x+ ∈ (L( f+) ◦ �p′)(U ′−) and 〈x+, x−〉 ∈ Rp. Then, by
Definition 4.7.(ii), we have 〈 f+(x+), f−(x−)〉 ∈ Rp′ . Thus,
by our assumption, we immediately conclude that f−(x−) ∈
U ′− as required. Conversely, to see that (�p ◦L( f−))(U ′−) ⊆
(L( f+) ◦ �p′)(U ′−), assume x+ ∈ (�p ◦ L( f−))(U ′−) and
〈 f+(x+), x ′−〉 ∈ Rp′ . Then, by Definition 4.7.(iii), there is
x− ∈ X− such that f−(x−) ≤′− x ′− and 〈x+, x−〉 ∈ Rp.
Then, by our assumption, f−(x−) ∈ U ′− and so, since U ′− is
an up-set, we also have x ′− ∈ U ′−, as required. ��

Given a two-sortedPriestley space X = 〈X+, X−, Rn, Rp〉,
the map ΦX = 〈ΦX+ , ΦX−〉 is defined by

ΦX+(x+) := {U+ ∈ L(X+) : x+ ∈ U+}
ΦX−(x−) := {U− ∈ L(X−) : x− ∈ U−}.

Proposition 4.10 For any two-sorted Priestley space X =
〈X+, X−, Rn, Rp〉, themapΦX : X → X(L(X)) is a 2PrSp-
isomorphism.
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Proof We know from Priestley duality that ΦX+ and ΦX−
are order homeomorphisms. It remains to check that items
(ii) and (iii) of Definition 4.7 are satisfied. Item (ii) fol-
lows from Bezhanishvili and Jansana (2011, Proposition
6.7). Let us prove (iii) (a); the proof of (b) is similar. Let
then 〈ΦX+(x+), x ′−〉 ∈ X(�Rp ) for some x+ ∈ X+ and
x ′− ∈ X(L(X)). Since ΦX− is surjective, we know that
x ′− = ΦX−(x−) for some x− ∈ X− (so ΦX−(x−) ⊆
x ′−). Then 〈ΦX+(x+),ΦX−(x−)〉 ∈ X(�Rp ) which, using
again Bezhanishvili and Jansana (2011, Proposition 6.7),
entails 〈x+, x−〉 ∈ Rp, as required. ��

Joining the previous results, we obtain our first equiva-
lence.

Theorem 4.11 The categories 2Lat and 2PrSp are dually
equivalent via the functors X and L.

5 Specialising the duality

Having established a duality between two-sorted lattices of
typeL = 〈L+,L−, n, p〉 and two-sorted Priestley spaces,we
can restrict our attention to special subclasses (subcategories)
obtained by imposing further structural conditions on L+,
L− or on the maps n and p. Focusing on the maps first, we
begin by collecting a number of observations that have been
established in Bezhanishvili and Jansana (2011).

Proposition 5.1 (Bezhanishvili and Jansana 2011, Corollary
6.12, Theorem 8.9) Let L = 〈L+,L−, n, p〉 be a two-sorted
lattice and let

X(L) = 〈X(L+), X(L−), X(n), X(p)〉

be the corresponding two-sorted Priestley space. Then the
following hold:

(i) n preserves joins if andonly if X(n) is functional (Bezhan-
ishvili and Jansana 2011, Definition 6.11), i.e. for all
x− ∈ X(L−) there is x+ ∈ X(L+) such that ↑ x+ =
X(n)[x−].

(ii) n is injective if and only X(n) is onto (Bezhanishvili and
Jansana 2011, Definition 8.7), i.e. for all x+ ∈ X(L+)

there is x− ∈ X(L−) such that ↑ x+ = X(n)[x−].
(iii) n is surjective if and only X(n) is 1-1 (Bezhanishvili and

Jansana 2011, Definition 8.7), i.e. for all x− ∈ X(L−)

and for all U− ∈ L(X(L−)), there is U+ ∈ L(X(L+))

such that X(n)[U−] ⊆ U+ and X(n)[x−] � U+.

Analogous equivalences hold for p.

In our setting (and this time, differently from that
of Bezhanishvili and Jansana 2011), further restrictions can

also be imposed on the composition of the maps n and p. To
look at this, it will be useful to have the following lemma at
hand.

Lemma 5.2 Let L = 〈L+,L−, n, p〉 be a two-sorted lattice
and let

X(L) = 〈X(L+), X(L−), X(n), X(p)〉

be the corresponding two-sorted Priestley space. Then for all
x−, x ′− ∈ X(L−), we have 〈x−, x ′−〉 ∈ X(p) ◦ X(n) if and
only if (n ◦ p)−1[x−] ⊆ x ′−, and analogously for composing
the two maps the other way round.

Proof Assume 〈x−, x ′−〉 ∈ X(p) ◦ X(n). Then there is
x+ ∈ X(L+)with 〈x−, x+〉 ∈ X(n) (i.e. n−1[x−] ⊆ x+) and
〈x+, x ′−〉 ∈ X(p) (i.e. p−1[x+] ⊆ x ′−). If that is the case,
then p−1[n−1[x−]] = (n ◦ p)−1[x−] ⊆ p−1[x+] ⊆ x ′−.

Conversely, assume (n ◦ p)−1[x−] = p−1[n−1[x−]] ⊆
x ′−. Let (x ′−)c be the complement of x ′− in L−, which is
a (prime) ideal of L−. Consider the set p[(x ′−)c], and let us
form its down-set↓ p[(x ′−)c] inL+. Observe that↓ p[(x ′−)c]
is an up-directed down-set and therefore an ideal of L+.
Moreover, n−1[x−] ∩ ↓ p[(x ′−)c] = ∅. To see this, suppose
there was a+ ∈ n−1[x−] ∩ ↓ p[(x ′−)c]. Then n(a+) ∈ x−
and a+ ≤+ p(a−) for some a− /∈ x ′−. Then, by mono-
tonicity of n, we would have n(a+) ≤− n(p(a−)) and so
n(p(a−)) ∈ x− because x− is an up-set. This means that
a− ∈ p−1[n−1[x−]], but p−1[n−1[x−]] ⊆ x ′− by assump-
tion, so a− ∈ x ′−: a contradiction. Now, since n−1[x−] is a
lattice filter, we can invoke the prime filter theorem for dis-
tributive lattices to extend n−1[x−] to a prime filter x+ such
that n−1[x−] ⊆ x+ and x+ ∩ ↓ p[(x ′−)c] = ∅. To prove our
claim, it is then sufficient to observe that p−1[x+] ⊆ x ′−. In
fact, if there was some a− ∈ p−1[x+] with a− /∈ x ′−, then
we would have p(a−) ∈ x+ and p(a−) ∈ p[(x ′−)c], and so
x+ ∩ ↓ p[(x ′−)c] �= ∅, against what we have shown. Thus,
〈x−, x−〉 ∈ (X(p) ◦ X(n)). ��

The following proposition studies the behaviour of the
composition of n and p in comparison with the identity maps
on the two lattices, and we are going to need it to characterise
the spaces corresponding to bilattices, semi-De Morgan and
quasi-Nelson algebras.

Proposition 5.3 LetL = 〈L+,L−, n, p〉 be a two-sorted lat-
tice and let

X(L) = 〈X(L+), X(L−), X(n), X(p)〉

be the corresponding two-sorted Priestley space. Then the
following hold:

(i) n ◦ p ≤− IdL− if and only if ≤X(L−) ⊆ (X(p) ◦ X(n)).
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(ii) p ◦ n ≤+ IdL+ if and only if ≤X(L+) ⊆ (X(n) ◦ X(p)).
(iii) IdL− ≤− n ◦ p if and only if (X(p) ◦ X(n)) ⊆ ≤X− .
(iv) IdL+ ≤+ p ◦ n if and only if (X(n) ◦ X(p)) ⊆ ≤X+ .

Proof Clearly it suffices to show, for example, (i) and (iii).
(i). Assume n ◦ p ≤− IdL− and observe that, for all

x−, y− ∈ X(L−) such that x− ⊆ y−, we have (n ◦
p)−1[x−] ⊆ y−. Indeed, if a− ∈ (n ◦ p)−1[x−], then
n(p(a−)) ∈ x−. Since n(p(a−)) ≤− a− and x− is an up-set,
we have a− ∈ x− ⊆ y−. By Lemma 5.2, this means that
〈x−, y−〉 ∈ (X(p) ◦ X(n)) for all y− ∈ X(L−), as required.

Conversely, assume ≤X(L−) ⊆ (X(p) ◦ X(n)). Let a− ∈
L− and x− ∈ X(L−) be such that a− /∈ x−. Since 〈x−, x−〉 ∈
(X(p)◦X(n)), there is x+ ∈ X(L+) such that n−1[x−] ⊆ x+
and p−1[x+] ⊆ x−. From the latter and the assumption that
a /∈ x− we have p(a−) /∈ x+, and from p(a−) /∈ x+, we
have n(p(a−)) /∈ x−. Thus, contrapositively, n(p(a−)) ∈ x−
entails a ∈ x− and this holds for any prime filter x−, which
means that n(p(a−) ≤− a−.

(iii). Assume IdL− ≤− n ◦ p, and let x−, x ′− ∈ X(L−) be
such that 〈x−, x ′−〉 ∈ (X(p)◦ X(n)). This means that there is
x+ ∈ X(L+) with 〈x−, x+〉 ∈ X(n) and 〈x+, x ′−〉 ∈ X(p).
That is, n−1[x−] ⊆ x+ and p−1[x+] ⊆ x ′−. Let a− ∈ x−.
By assumption a− ≤− n(p(a−)), so n(p(a−)) ∈ x− as well,
because x− is an up-set. Thismeans that p(a−) ∈ n−1[x−] ⊆
x+. Hence, p(a−) ∈ x+. Thus,wehave x− ⊆ p−1[x+] ⊆ x ′−
and so x− ⊆ x ′−, as required.

Conversely, suppose (X(p) ◦ X(n)) ⊆ ≤X− . Assume, in
view of a contradiction, that there exists a− ∈ L− such that
a− �− n(p(a−)). Then, by the primefilter theorem, there is a
prime filter x− ∈ X(L−) such that a− ∈ x− and n(p(a−)) /∈
x−. Then a− /∈ (n ◦ p)−1[x−]. Since (n ◦ p)−1[x−] is a
filter, we can invoke the prime filter theorem again to obtain
a prime filter x ′− such that (n ◦ p)−1[x−] ⊆ x ′− and a− /∈ x ′−.
By Lemma 5.2, (n ◦ p)−1[x−] ⊆ x ′− means that 〈x−, x ′−〉 ∈
X(p) ◦ X(n). Hence, applying the assumption that (X(p) ◦
X(n)) ⊆ ≤X− , we have x− ⊆ x ′−, which would imply a− ∈
x ′−: a contradiction. ��

Recalling Definition 2.4, one sees that every (tuple corre-
sponding to a) non-involutive bilattice satisfies the left-hand
sides of conditions (i) and (ii) of Proposition 5.3; likewise,
quasi-Nelson algebras (Definition 2.12) satisfy (i), (iii) and
(iv). These observations motivate the following definition.

Definition 5.4 Let L = 〈L+,L−, n, p〉 be a two-sorted lat-
tice (Definition 4.1). We shall say that:

(i) L is a non-involutive bilattice if (1) IdL− ≥− n ◦ p and
(2) IdL+ ≥+ p ◦ n.

(ii) L is a non-involutive implicative bilattice if L is a non-
involutive bilattice andL+ andL− and are bothHeyting
algebras.

(iii) L is a semi-DeMorgan algebra if (1)L− is aDeMorgan
algebra, (2) n preserves finite joins, and (3) IdL− = n◦ p
(no condition is required on p ◦ n).

(iv) 〈L,∇〉 is a quasi-Nelson algebra if (1) L+ and L− and
are both Heyting algebras, (2) n preserves finite joins,
(3) ∇ is a lattice filter of L+ such that D(L+) ⊆ ∇, (4)
IdL− = n ◦ p, and (5) IdL+ ≤+ p ◦ n.

Note that, in order to simplify our terminology, we have
resorted to the slight abuse of language of calling a structure
〈L+,L−, n, p〉, e.g. a semi-De Morgan algebra, rather than
“the tuple corresponding, via the representation theorem, to
some semi-De Morgan algebra”.

In order to characterise the spaces corresponding to the
above-defined algebraic structures, we shall exploit Esakia
duality for Heyting algebras and Cornish–Fowler duality
for De Morgan algebras (on Esakia duality see, for exam-
ple, Bezhanishvili and Jansana 2013; see Cornish and Fowler
1977 on the duality for De Morgan algebras). According
to these, the category having as objects Heyting algebras
(respectively, De Morgan algebras) and as morphisms alge-
braic homomorphisms is dually equivalent to the category of
Esakia spaces (resp., De Morgan spaces), both being special
Priestley spaces; the functors establishing these dualities are
defined in the same way as in Priestley duality. We recall
below the necessary definitions and results.

Definition 5.5 An Esakia space is a Priestley space X in
which the down-set of each clopen set is clopen (or equiva-
lently, the down-set of each open set is open).

An Esakia function between Esakia spaces X and Y is
a Priestley function f : X → Y satisfying f −1[↓O] =
↓ f −1[O] for any open setO ⊆ Y (or equivalently, ↑ f (x) ⊆
f [↑ x] for every x ∈ X ).

Esakia functions correspond to Heyting algebra homo-
morphisms. Besides this notion, we shall need amore general
one to be able to represent themap p (whichneednot preserve
joins). This is the notion of a generalised Esakia morphism
introduced in Bezhanishvili and Jansana (2013, Definition
4.2), that we shall more briefly call Esakia relation. A rela-
tion R ⊆ X×Y between Esakia spaces X and Y is an Esakia
relation if R satisfies item (ii) of Definition 4.3, and more-
over, for all x ∈ X , y ∈ Y , if 〈x, y〉 ∈ R, then there is z ∈ ↑ x
such that R[z] = ↑ y.

For each Esakia space X , the lattice of clopen up-sets
L(X) is a Heyting algebra in which the implication is given,
for all U , V ,∈ L(X), by

U → V := X − ↓(U − V ) = {x ∈ X : ↑ x ∩U ⊆ V }.

Differently from Esakia duality, De Morgan duality is not
just a restriction of Priestley duality, because a De Morgan
space is a Priestley space enriched with an extra map.
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Definition 5.6 ADeMorgan space is a pair 〈X , g〉where X is
a Priestley space and g : X → X is an order-reversing home-
omorphism such that g ◦ g = IdX . A De Morgan function
between De Morgan spaces 〈X , g〉 and 〈X ′, g′〉 is a Priestley
map f : X → X ′ satisfying f ◦ g = g′ ◦ f .

X
f ��

g

��

X

g′
��

X
f �� X

For anyDeMorgan space 〈X , g〉, the lattice of clopen up-sets
L(X) is a De Morgan algebra in which the negation is given,
for all U , V ,∈ L(X), by

¬U := X − g[U ],

where g(U ) = {g(x) : x ∈ U }.
Conversely, the Priestley space X(L) of any De Morgan

algebra L can be endowed with a map g : X(L) → X(L)

satisfying the properties in Definition 5.6. This is given, for
all x ∈ X(L), by

g(x) := L − {¬ a : a ∈ x}.

We are now ready to introduce spaces corresponding to
the classes of algebras of Definition 5.4. Given a Priestley
space X , we denote by max(X) the set of points in X that are
maximal w.r.t. the Priestley order. (Recall that in a Priestley
space every element is below a maximal one.)

Definition 5.7 Let X = 〈X+, X−, Rn, Rp〉 be a two-sorted
Priestley space (Definition 4.3). We say that:

(i) X is a non-involutive bilattice space if
(1) ≤X+ ⊆ (Rn ◦ Rp) and (2) ≤X− ⊆ (Rp ◦ Rn).

(ii) X is a non-involutive implicative bilattice space if X
is a non-involutive bilattice space and X+ and X− are
both Esakia spaces.

(iii) 〈X , g〉 is a semi-De Morgan space if (1) 〈X−, g〉 is a
De Morgan space, (2) Rn is functional, and (3) ≤X− =
(Rp ◦ Rn).

(iv) 〈X , C〉 is a quasi-Nelson space if (1) X+ and X− are
both Esakia spaces, (2) Rn is functional, (3) Rp is an
Esakia relation, (4) C ⊆ X+ is a closed set such that
C ⊆ max(X+), (5) ≤X− = (Rp ◦ Rn), and (6)
(Rn ◦ Rp) ⊆ ≤X+ .

A brief comment on the last item of the preceding defi-
nition is perhaps in order, and in particular about the closed

set C. This is meant to be the spatial counterpart of the fil-
ter ∇ appearing in the last item of Definition 5.4, which in
turn comes from the representation of quasi-Nelson alge-
bras given in Corollary 2.17. Indeed, the correspondence
between lattice filters of a distributive lattice and closed
(up-)sets of the corresponding Priestley space is well known,
and has been exploited in a similar way in the duality for
Nelson algebras introduced in Jansana and Rivieccio (2014).
Thus, following Jansana and Rivieccio (2014), given a quasi-
Nelson algebra 〈L,∇〉 with L = 〈L+,L−, n, p〉, we let
C∇ := ⋂{ΦL+(a) : a ∈ ∇}.

The next two propositions show that Definition 5.7 is
indeed adequate.

Proposition 5.8 LetL = 〈L+,L−, n, p〉 be a two-sorted lat-
tice and let

X(L) = 〈X(L+), X(L−), X(n), X(p)〉

be the corresponding two-sorted Priestley space. Then the
following hold:

(i) If L is a non-involutive bilattice, then X(L) is a non-
involutive bilattice space.

(ii) If L is a non-involutive implicative bilattice, then X(L)

is a non-involutive implicative bilattice space.
(iii) If L is a semi-De Morgan algebra, then X(L) is a semi-

De Morgan space.
(iv) If 〈L,∇〉 is a quasi-Nelson algebra, then 〈X(L), C∇〉 is

a quasi-Nelson space.

Proof (i). Follows from the duality between 2Lat and 2PrSp
and from items (i) and (ii) of Proposition 5.3.

(ii). Follows from the preceding item and from Esakia
duality.

(iii). Property (1) of Definition 5.7(iii) follows from
Cornish–Fowler duality, (2) follows from item (i) of Propo-
sition 5.1, and (3) from items (i) and (iii) of Proposition 5.3.

(iv). Property (1) of Definition 5.7(iv) follows fromEsakia
duality, (2) from item (i) of Proposition 5.1, (4) follows
from Jansana and Rivieccio (2014, Section 3.3), (5) follows
from items (i) and (iii) of Proposition 5.3, and (6) from item
(iv) of Proposition 5.3. It remains to verify that (3) holds,
i.e. that Rp = X(p) ⊆ X(L+) × X(L−) is an Esakia rela-
tion. So let 〈x+, x−〉 ∈ X(L+) × X(L−) be a pair of prime
filters that belongs to X(p), which means p−1[x+] ⊆ x−.
The Esakia condition states that we should find z+ ∈ X(L+)

such that (a) x+ ⊆ z+, and (b) for all y− ∈ X(L−), x− ⊆ y−
iff p−1[z+] ⊆ y−. Since we can choose y− = x− in (b), and
because of the prime filter theorem, we are really seeking
that p−1[z+] = x−. We show that z+ := n−1[x−] satis-
fies the two requirements. First note that z+ is a prime filter
of L+ since n is a lattice homomorphism. Then, because we
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have IdL+ ≤+ p ◦ n in the twist-product representation of a
quasi-Nelson algebra, and since prime filters are upper sets,
we know that (p ◦ n)[x+] ⊆ x+, so

x+ ⊆ (p ◦ n)−1[(p ◦ n)[x+]] ⊆ (p ◦ n)−1[x+]
= n−1[p−1[x+]] ⊆ n−1[x−] = z+

which establishes (a). For (b) we exploit n ◦ p = IdL− , and
indeed, x− = (n ◦ p)−1[x−] = p−1[n−1[x−]] = p−1[z+].

��
Proposition 5.9 Let X = 〈X+, X−, Rn, Rp〉 be a two-sorted
Priestley space, and letL(X) = 〈L(X+),L(X−),�Rn ,�Rp 〉
be the corresponding two-sorted lattice. Then the following
hold:

(i) If X is a non-involutive bilattice space, then L(X) is a
non-involutive bilattice.

(ii) If X is a non-involutive implicative bilattice space, then
L(X) is a non-involutive implicative bilattice.

(iii) If X is a semi-DeMorgan space, thenL(X) is a semi-De
Morgan algebra.

(iv) If 〈X , C〉 is a quasi-Nelson space, then 〈L(X),∇C〉 is a
quasi-Nelson algebra.

Proof (i). Follows from (the duality between 2Lat and 2PrSp
and from) items (i) and (ii) of Proposition 5.3.

(ii). Follows from the preceding item and from Esakia
duality.

(iii). Property (1) of Definition 5.4.iii follows from
Cornish–Fowler duality, (2) follows from item (i) of Propo-
sition 5.1 and (3) from items (i) and (iii) of Proposition 5.3.

(iv). Property (1) of Definition 5.4.iv follows from Esakia
duality, (2) from item (i) of Proposition 5.1, (3) follows
from Bezhanishvili and Jansana (2013, Proposition 4.3), (4)
follows from Jansana and Rivieccio (2014, Section 3.3), (5)
follows from items (i) and (iii) of Proposition 5.3. ��

In the next definition, we stipulate how the general def-
inition of morphism for two-sorted lattices specialises (as
expected) to the various classes of algebras we are interested
in.

Definition 5.10 Let L = 〈L+,L−, n, p〉 and L
′ =

〈L′+,L′−, n′, p′〉 be two-sorted lattices (Definition 4.1) and
h = 〈h+, h−〉: L → L

′ a 2Lat-morphism (Definition 4.5).
We shall say that:

(i) h is a non-involutive bilatticemorphism ifL, L
′ are non-

involutive bilattices.
(ii) h is a non-involutive implicative bilattice morphism

if L, L
′ are non-involutive implicative bilattices and

h+, h− preserve the Heyting implication.

(iii) h is a semi-De Morgan morphism if L, L
′ are semi-

De Morgan algebras and h− preserves the De Morgan
negation.

(iv) h is a quasi-Nelson morphism if 〈L,∇〉, 〈L′,∇′〉 are
quasi-Nelson algebras, h+, h− preserve the Heyting
implication and h+[∇] ⊆ ∇′.

We are now in a position to confirm that the map ΦL =
〈ΦL+ , ΦL−〉 is, in each case, an isomorphism in the appro-
priate category.

Proposition 5.11 Let L = 〈L+,L−, n, p〉 be a two-sorted
lattice. If L is a non-involutive bilattice (respectively, a
non-involutive implicative bilattice, a semi-DeMorgan alge-
bra, or if 〈L,∇〉 is a quasi-Nelson algebra), then the unit
of the adjunction ΦL = 〈ΦL+ , ΦL−〉 is an isomorphism
of non-involutive bilattices (respectively, of non-involutive
implicative bilattices, semi-De Morgan algebras or quasi-
Nelson algebras) between L and L(X(L)).

Proof We know from Proposition 4.6 that ΦL is a 2Lat-
isomorphism. It remains to check that the additional con-
ditions of Definition 5.10 are satisfied in each case. If L

is a non-involutive bilattice, then the result follows from
Proposition 5.8.i and Proposition 5.9.i. Similarly, if L is a
non-involutive implicative bilattice, then we apply Propo-
sition 5.8.ii and Proposition 5.9.ii to obtain that L(X(L))

is a non-involutive implicative bilattice, and we know from
Esakia duality that themapsΦL+ andΦL− preserve theHeyt-
ing implication as required. IfL is a semi-DeMorgan algebra,
then we apply Proposition 5.8.iii and Proposition 5.9.iii to
obtain that L(X(L)) is a semi-De Morgan algebra as well,
and we know from Cornish–Fowler duality that ΦL− pre-
serves the DeMorgan negation as required. Finally, if 〈L,∇〉
is a quasi-Nelson algebra, then we use Proposition 5.8.iv and
Proposition 5.9.iv to obtain that 〈L(X(L)),∇C∇ 〉 is a quasi-
Nelson algebra too; then, we know from Esakia duality that
themapsΦL+ andΦL− preserve theHeyting implication, and
we know that ΦL+[∇] = ∇C∇ from Jansana and Rivieccio
(2014, Lemma 3.7). ��

The next definition fixes the notion of spatial morphism
for the various spaces considered, and Proposition 5.13 is the
spatial counterpart of Proposition 5.11.

Definition 5.12 Let X = 〈X+, X−, Rn, Rp〉 and X ′ =
〈X ′+, X ′−, R′

n, R
′
p〉 be two-sorted Priestley spaces and let

f = 〈 f+, f−〉: X → X ′ be a 2PrSp-morphism (Defini-
tion 4.7). We shall say that:

(i) f is a non-involutive bilattice space function if X , X ′
are non-involutive bilattice spaces.

(ii) f is a non-involutive implicative bilattice space function
if X , X ′ are non-involutive implicative bilattice spaces
and f+, f− are Esakia functions.
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(iii) f is a semi-De Morgan space function if X , X ′ are
semi-De Morgan spaces and f− is a De Morgan space
function.

(iv) f is a quasi-Nelson space function if 〈X , C〉, 〈X ′, C′〉
are quasi-Nelson spaces, f+, f− are Esakia functions
and f+[C] ⊆ C′.

Proposition 5.13 Let X = 〈X+, X−, Rn, Rp〉 be a two-
sorted Priestley space. If X is a non-involutive bilattice
space (respectively, a non-involutive implicative bilattice
space, a semi-De Morgan space, or a quasi-Nelson space),
then the unit of the adjunction ΦX = 〈ΦX+ , ΦX−〉 is an
isomorphism of non-involutive bilattice spaces (resp., of
non-involutive implicative bilattice spaces, semi-De Morgan
spaces or quasi-Nelson spaces) between X and X(L(X)).

Proof We know from Proposition 4.10 that ΦX is a 2PrSp-
isomorphism. It remains to check that the additional con-
ditions of Definition 5.12 are satisfied in each case. If X
is a non-involutive bilattice space, then the result follows
from Proposition 5.8.i and Proposition 5.9.i. Similarly, if
X is a non-involutive implicative bilattice space, then we
apply Proposition 5.8.ii and Proposition 5.9.ii to obtain that
X(L(X)) is a non-involutive implicative bilattice space, and
we know from Esakia duality that ΦX+ and ΦX− are Esakia
isomorphisms as required. If X is a semi-De Morgan space,
then we apply Proposition 5.8.iii and Proposition 5.9.iii to
obtain that X(L(X)) is a semi-De Morgan space as well,
and we know from Cornish–Fowler duality that ΦX− is a De
Morgan space isomorphism, as required. Finally, if 〈X , C〉
is a quasi-Nelson space, then we use Proposition 5.8.iv and
Proposition 5.9.iv to obtain that 〈X(L(X)), C∇C 〉 is a quasi-
Nelson space too; then, we know from Esakia duality that
ΦX+ and ΦX− are Esakia isomorphisms, and we know that
ΦX+[C] = C∇C from Jansana and Rivieccio (2014, Lemma
3.8). ��

The next two propositions show that the functors X and
L operate as expected on morphisms.

Proposition 5.14 Let L = 〈L+,L−, n, p〉 and L
′ =

〈L′+,L′−, n′, p′〉 be two-sorted lattices, let h = 〈h+, h−〉:
L → L

′ be a 2Lat-morphism and let X(h) : X(L′) → X(L)

be the corresponding 2PrSp-morphism. The following hold:

(i) if h is a non-involutive bilattice morphism, then X(h) is
a non-involutive bilattice space function.

(ii) if h is a non-involutive implicative bilattice morphism,
then X(h) is a non-involutive implicative bilattice space
function.

(iii) if h is a semi-De Morgan morphism, then X(h) is a
semi-De Morgan space function.

(iv) if h is a quasi-Nelson morphism, then X(h) is a quasi-
Nelson space function.

Proof Item (i) follows from Proposition 5.8.i. Item (ii) fol-
lows from Proposition 5.8.ii and Esakia duality. Similarly,
(iii) follows from Proposition 5.8.iii and Cornish–Fowler
duality. Lastly, (iv) follows from Proposition 5.8.iv together
with Jansana and Rivieccio (2014, Lemma 3.5). ��
Proposition 5.15 Let X = 〈X+, X−, Rn, Rp〉 and X ′ =
〈X ′+, X ′−, R′

n, R
′
p〉 be two-sorted Priestley spaces, f =

〈 f+, f−〉: X → X ′ a2PrSp-morphismand letL( f ) : L(X ′) →
L(X ′) be the corresponding 2Lat-morphism. The following
hold:

(i) if f is a non-involutive bilattice space function, then
L( f ) is a non-involutive bilattice morphism.

(ii) if f is a non-involutive implicative bilattice space func-
tion, then L( f ) is a non-involutive implicative bilattice
morphism.

(iii) if f is a semi-De Morgan space function, then L( f ) is
a semi-De Morgan morphism.

(iv) if f is a quasi-Nelson space function, then L( f ) is a
quasi-Nelson morphism.

Proof Item (i) follows immediately from Proposition 5.9.i.
Item (ii) follows from Proposition 5.9.ii together with Esakia
duality, while (iii) follows from Proposition 5.9.iii and
Cornish–Fowler duality. Lastly, (iv) follows from Proposi-
tion 5.9.iv and Jansana and Rivieccio (2014, Lemma 3.6).

��
Joining the preceding results, we obtain the announced

equivalences.

Theorem 5.16 The following categories are dually equiva-
lent via the functors X and L introduced in Sect. 3:

(i) Non-involutive bilattices and non-involutive bilattice
spaces.

(ii) Non-involutive implicative bilattices and non-involutive
implicative bilattice spaces.

(iii) Semi-DeMorganalgebras and semi-DeMorgan spaces.
(iv) Quasi-Nelson algebras and quasi-Nelson spaces.

6 Future work

Asmentioned in the Introduction, amost appealing feature of
the approach to duality proposed in the present paper is that
it may, in principle, be applied to further classes of algebras
which can be presented in amany-sorted fashion. Some obvi-
ously interesting cases in this direction are algebras defined
over fragments of the algebraic languages considered in the
present paper; for instance, the fragment of the quasi-Nelson
language containing two negation operations but no implica-
tion is considered in Rivieccio (2020a) and Rivieccio et al.
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(2020). Indeed, just as the language of quasi-Nelson alge-
bras is a fragment of that of non-involutive bilattices (as it
happens, a sufficiently rich one to allow for a two-sorted
representation), so the language of De Morgan and Kleene
algebras is a fragment of that of Nelson algebras; as men-
tioned earlier, whether the structure of De Morgan/Kleene
algebras is sufficiently rich to admit a twist-algebra presenta-
tion and a topological duality is the object of current research
of ours (Rivieccio 2020b). As a further example of potential
future research direction, we will mention another class of
algebras that can indeed be viewed as two-sorted (in more
than one way: see, for example, Gehrke and Van Gool 2014),
namely general (i.e. not necessarily distributive) lattices.

One final point that needs to be stressed is the connection
of our investigations to logic. Although in the present paper
we have not dwelled much on this aspect, all the algebras
considered in the previous sections are indeed “algebras of
logic”, and the main interest in their study lies in their being
the algebraic counterpart of certain non-classical logics. The
many-sorted approach has recently proven to be particularly
insightful in the proof-theoretic understandingof awide array
of non-classical logics, including bilattice (Greco et al. 2019)
and semi-DeMorgan logic (Greco et al. 2017); indeed, in this
last case a novel two-sorted algebraic presentation for semi-
De Morgan algebras has been introduced precisely with the
aim of providing a two-sorted (display) calculus for the cor-
responding logic. Thus, the research program initiated in the
present paper can also be seen as a duality-theoretic coun-
terpart to the wider enterprise (also pursued in Frittella et al.
(2016), Frittella et al. (2014), Frittella et al. (2016), Greco
and Palmigiano (2017) and Greco and Palmigiano (submit-
ted), to which we refer for further discussion and motivation)
of developing a uniform many-sorted framework for non-
classical logics and their algebras; in particular, the logics
and algebras studied in the papers Greco and Palmigiano
(2017) and Greco and Palmigiano (submitted) provide obvi-
ous further examples that may be worthwhile investigating
from a many-sorted duality perspective.
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