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Abstract
We introduce a family of modal expansions of Belnap–Dunn four-valued logic and related systems, and interpret them in
many-valued Kripke structures. Using algebraic logic techniques and topological duality for modal algebras, and generalizing
the so-called twist-structure representation, we axiomatize by means of Hilbert-style calculi the least modal logic over the
four-element Belnap lattice and some of its axiomatic extensions. We study the algebraic models of these systems, relating them
to the algebraic semantics of classical multi-modal logic. This link allows us to prove that both local and global consequence
of the least four-valued modal logic enjoy the finite model property and are therefore decidable.
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1 Introduction

Combining many-valued and modal logics into a single system is a long-standing concern in
mathematical logic and computer science, see for example [16, 17] and the literature cited there.
The benefit of such an interaction is that it may allow us to deal with modal notions like belief,
knowledge, obligations, in connection with other aspects of reasoning that can be best handled
using many-valued logics, for instance vagueness and inconsistency. If our final aim is to provide a
comprehensive model of human reasoning, it is obvious that all these aspects have to be dealt with
at the same time, therefore such a study is especially interesting from the point of view of theoretical
computer science, cognitive science and artificial intelligence.

Recent work in the tradition of mathematical fuzzy logic has provided a very general framework
for studying modal expansions of fuzzy logic, whose truth values are usually linearly ordered: see for
instance [7, 11, 12]. A parallel line of research has been developing modal versions of inconsistency-
tolerant logical systems, such as Belnap–Dunn four-valued logic and paraconsistent Nelson logic:
see [32–35, 37]. These are also many-valued systems where truth values can be naturally ordered
according to different criteria, none of which defines a linear order.

In this article, we make a first attempt at combining the two approaches mentioned above,
investigating expansions of Belnap–Dunn logic and related paraconsistent systems from the point
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of view of general many-valued modal logic adopted in [7]. In this way, we systematically lay out
a framework for studying paraconsistent modal logic which extends and encompasses the work
of [31, 34]. A preliminary version of the present work has appeared in [25]. While the approach
employed here is essentially the same, we have simplified many proofs, and refined and extended
most results. The last section of the present paper is entirely new.

Our starting point is a Kripke-style semantics whose models are four-valued in two different
respects, both semantic valuations and the accessibility relation among worlds taking values into
the four-element Belnap lattice. We axiomatize the minimum modal logic over this lattice in the
sense of [7], i.e. the logic determined by the class of all four-valued Kripke frames. However, our
completeness proofs follow an alternative strategy to both those of [7] and of [34]. We will then
consider axiomatic extensions of our base logic and explore further possible generalizations.

We obtain what we consider particularly neat completeness proofs, for both the global and the
local consequence relation, mainly relying on (i) an algebraic study of models of the logic, (ii) a
convenient representation of these models as twist-structures and (iii) relating Kripke semantics to
the topological semantics for classical modal logic provided by the duality of Jónsson and Tarski for
modal algebras. This strategy allows us to attack the problem of completeness for four-valued modal
logic using analogous results for classical multi-modal logic. We show that axiomatic extensions of
the minimum modal logic, corresponding to restrictions on the accessibility relation, can be easily
axiomatized using the same methods. Taking advantage of the insight gained through our algebraic
analysis of the logic, we also introduce and study a more general four-valued semantics that seems to
us a natural modal expansion of Belnap–Dunn (and paraconsistent Nelson) logic, encompassing the
above-mentioned existing work on modal expansions of these systems. We obtain axiomatizations
and completeness results for the base logic and its extensions by an easy modification of the methods
used in the previous case.

The article is organized as follows. In Section 2 we introduce the non-modal core of our logics,
which is essentially the logic of the four-element Belnap lattice, either viewed as a bilattice or as an
N4-lattice, and recall some facts that will be used in the study of its modal expansions. In Section 3
we introduce the semantics of our logics, based on four-valued Kripke frames; it is essentially an
instantiation of the definition proposed in [7] for the least modal logic over a residuated lattice. We
associate two modal consequence relations to each class of frames, a global and a local one. Section 4
introduces Hilbert-style calculi that we prove to be complete with respect to our semantically defined
modal consequences. In Section 5 we determine and study the algebraic models of our calculi. The
findings, besides their intrinsic mathematical interest, are key for the developments in the remainder
of the article. They also provide additional semantic insight into four-valued modal logic. In Section 6
we develop a topological duality theory for the algebraic models of our logic, which turns out to
be a straightforward application of Jónsson–Tarski duality for modal algebras. This allows us to
prove completeness of the logic with respect to Kripke-style semantics, and also to axiomatize
certain interesting axiomatic extensions of the base logic. We also see that the semantics introduced
in Section 3 can be generalized by replacing the four-element Belnap bilattice with any complete
algebra in the same variety. In Section 7 we introduce an even more general semantics inspired by our
algebraic analysis of four-valued modal logic, and we sketch out how to axiomatize the resulting logic
and its extensions. The final Section 8 discusses open problems and directions for future research.

2 The non-modal core of the logic

Our non-modal starting point is the logic determined by the four-element Belnap lattice FOUR
(Figure 1) together with the subset of designated elements {t,�}. FOUR has two (bounded) lattice
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Figure 1. The four-element Belnap bilattice FOUR in its two orders.

structures, namely the t-lattice 〈FOUR,≤t,∧,∨,f,t〉 and the k-lattice 〈FOUR,≤k,⊗,⊕,⊥,�〉.
The four lattice operations are determined by the two Hasse diagrams shown in Figure 1. Moreover,
we will consider a negation and an implication operator. Negation ¬ is a unary operator that swaps t
and f while having both ⊥ and � as fixed points. Weak implication ⊃ (later on we will introduce a
strong implication) is defined in FOUR by the following prescription:

x⊃y=
{

y if x∈{t,�}
t if x /∈{t,�}.

The (non-modal) logical language we are mainly interested in is 〈∧,∨,⊃,¬,f,t,⊥,�〉, but it will
sometimes be convenient to focus on more restricted languages, both for the sake of generality and
in order to relate our study to known results on other non-classical logics.

The logical matrix 〈FOUR,{t,�}〉 determines Belnap–Dunn logic [3, 4] in the following way. One
considers the formula algebra Fm freely generated by a countable set of propositional variables over
the languageL=〈∧,∨,¬〉, whose connectives correspond to t-lattice meet, t-lattice join and negation,
respectively. Given formulas Γ ∪{ϕ}⊆Fm, one sets Γ |=ϕ if and only if, for all L-homomorphisms
h : Fm→FOUR, we have h(ϕ)∈{t,�} whenever h[Γ ]⊆{t,�}.

Different choices of the propositional language L, keeping the underlying set of truth values and
the designated elements fixed, give rise to different logics:

(1) L=〈∧,∨,¬,f,t〉 gives us Belnap–Dunn logic with propositional constants f (falsity) and t
(truth).

(2) L=〈∧,∨,⊗,⊕,¬〉 defines the implicationless bilattice logic of Arieli and Avron [2], to which
one may add constants to obtain 〈∧,∨,⊗,⊕,¬,f,t〉.As we will see, the latter is in fact equivalent
to 〈∧,∨,¬,f,t,⊥,�〉, in the sense that both constants ⊥ and � can be obtained as terms in the
language 〈∧,∨,⊗,⊕,¬,f,t〉 and, conversely, the connectives ⊗ and ⊕ are term-definable in
〈∧,∨,¬,f,t,⊥,�〉.

(3) L=〈∧,∨,⊃,¬〉 gives us four-valued paraconsistent Nelson logic, which is an extension of
paraconsistent Nelson logic [1, 28] obtained by adding the following axiom (Peirce’s law):
((p⊃q)⊃p)⊃p. The language with truth constants t and f is considered, for instance, in [30].

(4) L=〈∧,∨,⊗,⊕,⊃,¬〉 gives us the full bilattice logic of Arieli and Avron [2]. As before,
the language with truth constants 〈∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�〉, which is considered in [25],
is equivalent to 〈∧,∨,⊃,¬,f,t,⊥,�〉.
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Table 1. The residuated pair in FOUR
∗ f ⊥ � t → f ⊥ � t
f f f f f f t t t t
⊥ f f ⊥ ⊥ ⊥ ⊥ t ⊥ t
� f ⊥ � t � f ⊥ � t
t f ⊥ t t t f ⊥ f t

The equivalences stated in (2) and (4) depend on the fact that the following identities hold in
FOUR [24, Lemma 1.5]:

x⊗y= (x∧⊥)∨(y∧⊥)∨(x∧y)

x⊕y= (x∧�)∨(y∧�)∨(x∧y).

This means that, in the presence of the constants ⊥ and � in the language, the k-lattice operations
can be simply introduced as derived connectives. Conversely, one can define

⊥:= f⊗t �:= f⊕t.

We notice that all the above-mentioned logics can be finitely axiomatized, for instance, through
Hilbert- and Gentzen-style syntactic calculi. We will introduce one of these in Section 4.

Unless otherwise stated, the language of our non-modal base logic is the one mentioned in the
last item above, i.e. L=〈∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�〉. That is, we will be dealing with Arieli–Avron
bilattice logic [2]. We will use the following abbreviations:

x→y := (x⊃y)∧(¬y⊃¬x)

x∗y := ¬(y→¬x)

x≡y := (x⊃y)∧(y⊃x)

x↔y := (x→y)∧(y→x).

We use the same symbol for the algebraic operation and the corresponding propositional connective.
The first two derived operations, that we call strong implication (→) and fusion (∗), play a particularly
important role in this article. The reason is that they together form a residuated pair: a fact, as we
will see in the next section, that will allow us to relate our treatment of four-valued modal logic to
existing literature on the modal logic of residuated lattices.

In our setting, being a residuated pair means that the following property holds for arbitrary elements
x,y,z of FOUR:

x∗y≤t z iff y≤t x→z.

This, together with the fact that 〈FOUR,∗,�〉 is a monoid, entails that we can view FOUR as
a residuated lattice [36, Proposition 5.4.1]. Residuated lattices are well-known in algebraic logic,
for they provide algebraic semantics for a wide class of multi-valued logics, including the so-called
fuzzy logics [20].

Table 1 shows the behaviour of the two operations in FOUR. Some important points that we
would like to highlight are the following:
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• As suggested by the terminology, strong implication→ has some logical features of classical
implication. For instance, it satisfies the contraposition law (ϕ→ψ is semantically equivalent
to ¬ψ→¬ϕ) and determines the t-lattice order of FOUR in the following way:

x≤t y iff x→y∈{t,�}
iff x→y= (x→y)→ (x→y).

On the other hand, other good properties of classical implication are enjoyed by weak
implication ⊃ but not by the strong one, the most prominent example being the deduction
theorem.

• A remarkable feature that distinguishes strong implication from the classical one, and that will
have important consequences for our study, is the following. Given x∈FOUR and y∈{t,�},
it can happen that x→y /∈{t,�}. The reason is that t→�= f. Logically, this means that, even
if ψ is valid, ϕ→ψ might not be valid.

• Being an adjoint to strong implication, fusion ∗ has the logical role of a multiplicative
conjunction. In fact, one can see that the formula that defines fusion from strong implication is
the same as the one that defines classical conjunction from classical implication.As an algebraic
operation, fusion is associative and commutative, but not idempotent, because⊥∗⊥= f (this is
in fact the only exception to idempotency). Notice also that the neutral element of the monoid
〈FOUR,∗,�〉 is not the top element of the lattice order ≤t . In the standard terminology of
residuated lattices, this is expressed by saying that FOUR is a commutative non-integral
residuated lattice.

3 Relational semantics of the modal logic

For a modal expansion of our logic we initially focus on the necessity operator � only. Semantically,
we seek to interpret it in suitable Kripke structures. For motivation, let us consider first a classical
Kripke model 〈W ,R,v〉, where W is a non-empty set of ‘worlds’, R an accessibility relation among
them and v a valuation. Now view R as the characteristic function associated with the accessibility
relation, i.e. as a map R : W×W→{t,f}. Similarly, view v : Fm×W→{t,f} as a map assigning to
each formula ϕ∈Fm at each point w∈W a truth value in {t,f}. By the so-called standard translation
of modal logic into first-order logic, we obtain the following definition for the semantics of the
necessity operator

v(�ϕ,w) :=
∧
{R(w,w′)→v(ϕ,w′) :w′ ∈W}, (1)

where
∧

denotes the infinitary meet and→ is Boolean implication. Note that conjunction is taken
in the complete lattice of truth values, so there is no problem with applying it to an infinite set.

This definition can now easily be adapted to our four-valued setting. We consider Kripke models
〈W ,R,v〉 where both R and v are four-valued, i.e. we define R : W×W→FOUR and v : Fm×W→
FOUR. As before, valuations are required to be homomorphisms in their first argument. We stress,
as this will be important for our axiomatization, that we have included the constants t,f,�,⊥ in the
propositional language, so valuations must interpret each of them at each world as the corresponding
element of FOUR.

Since FOUR carries three distinct conjunctions and two implications, there are six candidates
for translating (1) into the four-valued setting. We reject the monoid operation ∗ because it is not
idempotent and hence would require us to replace the set {R(w,w′)→v(ϕ,w′) :w′ ∈W} by a multi-set.
The choice between∧ and⊗ is more subtle as it relates to the intended interpretation of the necessity



[09:53 2/6/2015 exv038.tex] LogCom: Journal of Logic and Computation Page: 6 1–45

6 Four-valued modal logic

operator. Our choice is for the ‘logical’ connective rather than the knowledge order one as it is here
that there are useful interactions with the two implications. This leaves the pairs 〈∧,→〉 and 〈∧,⊃〉.

The latter choice has, in our opinion, the disadvantage that the accessibility relation R, although
formally introduced as four-valued, turns out to have a two-valued behaviour when interacting with
weak implication. This is so because in FOUR the value of (1) (with→ replaced by⊃) is the same
as the following one: ∧

{v(ϕ,w′) :R(w,w′)∈{t,�}}.
In fact, the choice 〈∧,⊃〉 has already been considered in [34] for a modal expansion of Belnap–Dunn
logic. It turns out, however, that the resulting operator is strictly less expressive than the one defined
by the pair 〈∧,→〉. Denoting the two choices by �⊃ and �→, we get:

Proposition 3.1
For all formulas ϕ∈Fm, all four-valued Kripke models 〈W ,R,v〉, and all w∈W :

v(�⊃ϕ,w)=v(�→(ϕ∨⊥)⊕(�→ϕ∧⊥),w).

Proof. Given that v is fixed, we abbreviate v(ϕ,w) as w(ϕ). Note that x→⊥≥t⊥ for all x∈FOUR,
and x→⊥=⊥ precisely when x≥t�. This implies w(�→(ϕ∨⊥))≥t⊥ for all w∈W , and obviously
we also have w(�→ϕ∧⊥)≤t⊥. Let us also notice that the definition x→y := (x⊃y)∧(¬y⊃¬x)
immediately implies w(�⊃ϕ)≥t w(�→ϕ). Reasoning by cases, assume w(�⊃ϕ)= t. This means
that w′(ϕ)= t for all w′ s.t. R(w,w′)≥t�. Then w(�→(ϕ∨⊥))= t. To prove that t⊕(w(�→ϕ)∧
⊥)= t, it remains to show that w(�→ϕ)∧⊥ �= f, i.e. w(�→ϕ)≥t⊥. If we had w(�→ϕ)=�, then
there would be w′ ∈W s.t. R(w,w′)→w′(ϕ)=�→�=�. But our assumption implies w′(ϕ)= t,
a contradiction. Suppose then w(�→ϕ)= f. Under the assumptions, this means that there must be
w′ ∈W s.t. R(w,w′)→w′(ϕ)= f. This can only happen if R(w,w′)≥t�, but then the assumptions
imply w′(ϕ)= t and x→ t= t for all x∈FOUR. We conclude w(�→ϕ)≥t⊥ as required. Now assume
w(�⊃ϕ)=�. This implies that, for all w′ ∈W , we have w′(ϕ)≥t� whenever R(w,w′)≥t�. Since
w(�→ϕ)≤t w(�⊃ϕ)=�, we have w(�→ϕ∧⊥)= f. We thus need to show that w(�→(ϕ∨⊥))⊕f=
�, i.e. w(�→(ϕ∨⊥))= t. This happens when R(w,w′)≥t� implies w′(ϕ)≥t� for all w′ ∈W , which
is precisely our assumption. Now assume w(�⊃ϕ)=⊥. This means that (i) there is w′ ∈W s.t.
R(w,w′)≥t� and w′(ϕ)=⊥, and (ii) for all w′′ ∈W , we have w′′(ϕ)≥t⊥ whenever R(w,w′′)≥t�.
From (i) we obtain w(�→(ϕ∨⊥))=⊥. It remains to show that w(�→ϕ∧⊥) �= f, i.e. w(�→ϕ)≥t⊥.
Now w(�→ϕ) �≥t⊥ would mean that there is w′′′ ∈W s.t. R(w,w′′′)≥t� and w′′′(ϕ)≤t�, but this is
forbidden by (ii). We conclude w(�→ϕ)≥t⊥ as required. Finally, assume w(�⊃ϕ)= f. This implies
that there is w′ ∈W s.t. R(w,w′)∈{t,�} and w′(ϕ)≤t⊥. Hence, w(�→(ϕ∨⊥))≤t R(w,w′)→w′(ϕ∨
⊥)=R(w,w′)→⊥=⊥. On the other hand, w(�→ϕ)≤t w(�⊃ϕ), implies w(�→ϕ)= f. Thus we have
w(�→(ϕ∨⊥)⊕(�→ϕ∧⊥))=⊥⊕f= f as required, and this concludes our proof. �

One may wonder whether, conversely, it is possible to define �→ from �⊃. This is already
unlikely given the two-valued nature of the latter, and our algebraic analysis (Subsection 5.2) will
indeed confirm this intuition.

To summarize, our choice for the semantics of the necessity operator is based on the pair 〈∧,→〉,
i.e. in the four-valued context we replace classical conjunction with the truth lattice meet and classical
implication with the strong implication of Arieli–Avron logic. From now on we will write simply �

in place of �→.
Let us point out a further pleasing feature of �. Given that FOUR is endowed with an involutive

negation (in fact, since ¬x=x→�, we can view FOUR as an involutive residuated lattice in the
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sense of [21]), we can introduce a possibility operator � which turns out to be dual to � in the logic.
Semantically, it is given by [7, p.746]:

v(�ϕ,w) :=
∨
{R(w,w′)∗v(ϕ,w′) :w′ ∈W}. (2)

This is again obviously a generalization of the classical definition with the monoid operation replacing
classical conjunction (the fact that ∗ is not idempotent is not a problem here as it is applied to two
terms, not to a set).

We are now ready to extend the semantic consequence relation of our base logic to the modal
setting. We say that a point w∈W of a four-valued model M=〈W ,R,v〉 satisfies a formula ϕ∈Fm if
v(ϕ,w)∈{t,�}. In such a case we write M,w |=ϕ. For a set of formulas Γ ⊆Fm, we write M,w |=Γ
to mean that M,w |=γ for each γ ∈Γ . As is usual in modal logic, we consider two consequence
relations. The local consequence Γ |=l ϕ holds if for every model M=〈W ,R,v〉 and every w∈W , it
is the case that M,w |=Γ implies M,w |=ϕ. The global consequence relation Γ |=gϕ holds if, for
every model M, if M,w |=Γ for all w∈W , then M,w |=ϕ for all w∈W .

We remind the reader that the above definitions imply that:

• if Γ |=l ϕ, then Γ |=gϕ (global consequence is a strengthening of the local one);
• ∅|=l ϕ if and only if ∅|=gϕ (the two consequences have the same valid formulas).

Let us now explore the axioms and rules that are valid semantically. The following can be easily
shown to follow from the definition of � (see also [7]).

Proposition 3.2
The following formulas are valid in all models:

(i) �t↔ t
(ii) �(ϕ∧ψ)↔ (�ϕ∧�ψ),

(iii) �(c→ϕ)↔ (c→�ϕ) for all c∈{t,f,�,⊥}.
As in [7], the last of these schemata will play a prominent role in the axiomatization of our logic,

as will the following rule:

Proposition 3.3 (Monotonicity)
The rule ϕ→ψ ��ϕ→�ψ is sound with respect to global consequence. In other words, ϕ→ψ |=g
�ϕ→�ψ holds.

Proof. We will use the following property, which holds in any residuated lattice. Let x,y,z∈FOUR.
If x≤t y, then z→x≤t z→y. From this the proposition easily follows. In fact, assume ϕ→ψ holds
at every world w of a model 〈M,R,v〉. Then v(ϕ→ψ,w)∈{t,�}, which means, as observed above,
that v(ϕ,w)≤t v(ψ,w). To compute v(�ϕ,w) we take, according to (1), the t-meet of all expressions
R(w,w′)→v(ϕ,w′). By the above property, each of those is smaller than R(w,w′)→v(ψ,w′), so
the t-meets are comparable as well, that is, v(�ϕ,w)≤t v(�ψ,w). And again this is equivalent to
v(�ϕ,w)→v(�ψ,w)=v(�ϕ→�ψ,w)∈{t,�}. �

The following is an immediate consequence of monotonicity:

Corollary 3.4
If ϕ→ψ is valid in all models then so is �ϕ→�ψ .

However, necessitation (from �ϕ derive ��ϕ), which in classical modal logic is equivalent to
monotonicity, is not sound, even with respect to global consequence. This is a consequence of what
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we observed in the previous section: y∈{t,�} does not imply x→y∈{t,�}. As a counter-example,
consider the one-point Kripke model M=〈W ,R,v〉 where W={w}, R(w,w)= t and v(p,w)=� for
some variable p∈Var. Then v(�p,w)=R(w,w)→v(p,w)= t→�= f. Hence M �|=�p but M |=p.
The same model shows that the following monotonicity rule with respect to weak implication

ϕ⊃ψ
�ϕ⊃�ψ

is not globally sound. Let q∈Var be such that v(q,w)= t. Then v(q⊃p,w)= t⊃�=�, which
means that M |=q⊃p. However, v(�q,w)=R(w,w)→v(q,w)= t→ t= t and v(�p,w)=R(w,w)→
v(p,w)= t→�= f. This means that v(�q⊃�p,w)=v(�q,w)⊃v(�p,w)= t→ f= f /∈{t,�}. That is,
M �|=�q⊃�p.

The normality axiom, �(ϕ→ψ)→ (�ϕ→�ψ), also fails. To see this, consider again a one-point
model M=〈W ,R,v〉 where W={w} and R(w,w)=⊥. Let v be such that v(p,w)=⊥ and v(q,w)= f
for p,q∈Var. Then we have that

v(p→q,w)=⊥→ f=⊥
v(�p,w)=⊥→⊥= t
v(�q,w)=⊥→ f=⊥
v(�(p→q),w)=⊥→⊥= t
v((�p→�q),w)= t→⊥=⊥
v(�(ϕ→ψ)→ (�ϕ→�ϕ),w)= t→⊥=⊥ /∈{t,�}.

Thus M �|=�(ϕ→ψ)→ (�ϕ→�ψ). The same model shows that similar normality axioms for the
weak implication fail as well, that is, we have

�|=�(ϕ⊃ψ)⊃ (�ϕ⊃�ϕ) and �|=�(ϕ⊃ψ)→ (�ϕ⊃�ϕ).

The modal logic we are studying is thus non-normal: this constitutes one of the main difficulties
in providing a complete axiomatization for it, as the standard canonical model construction cannot
be applied to prove completeness.

4 Axiomatizations

In this section, we introduce Hilbert-style calculi which we will prove to be complete with respect to
the global and the local consequence relations, respectively. Our starting point is the axiomatization
of the non-modal fragment of our logic, provided by Arieli and Avron [2, p. 47]. We present the
axiom schemata in stages:

(⊃ 1) p⊃ (q⊃p)

(⊃ 2) (p⊃ (q⊃r))⊃ ((p⊃q)⊃ (p⊃r))

(⊃ 3) ((p⊃q)⊃p)⊃p

(¬ ¬) p⊃¬¬p ¬¬p⊃p

Note that the schema (¬p⊃¬q)⊃ (q⊃p), usually called contraposition, is absent but the classical
nature of the calculus has been preserved by the inclusion of Peirce’s Law (⊃3) and double negation.
In fact, it is not difficult to check that the 〈∧,∨,⊃〉-fragment of Arieli–Avron logic coincides with
the negation-free fragment of classical logic [10, Remark 1.2].
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The next set of schemata establishes the link with the truth lattice operations and is entirely standard:

(∧ ⊃) (p∧q)⊃p (p∧q)⊃q

(⊃ ∧) p⊃ (q⊃ (p∧q))

(⊃ t) p⊃ t

(⊃ ∨) p⊃ (p∨q) q⊃ (p∨q)

(∨ ⊃) (p⊃r)⊃ ((q⊃r)⊃ ((p∨q)⊃r))

(⊃ f) f⊃p

The analogous schemata for the information lattice operations are as follows:

(⊗ ⊃) (p⊗q)⊃p (p⊗q)⊃q

(⊃ ⊗) p⊃ (q⊃ (p⊗q))

(⊃�) p⊃�
(⊃ ⊕) p⊃ (p⊕q) q⊃ (p⊕q)

(⊕ ⊃) (p⊃r)⊃ ((q⊃r)⊃ ((p⊕q)⊃r))

(⊃⊥) ⊥⊃p

In the absence of contraposition one also has to stipulate how negation interacts with the other
operations:

(¬ ∧) ¬(p∧q)≡ (¬p∨¬q)

(¬ ∨) ¬(p∨q)≡ (¬p∧¬q)

(¬ ⊗) ¬(p⊗q)≡ (¬p⊗¬q)

(¬ ⊕) ¬(p⊕q)≡ (¬p⊕¬q)

(¬ ⊃) ¬(p⊃q)≡ (p∧¬q)

(¬ t) ¬t⊃p

(¬ f) p⊃¬f

(¬ �) p⊃¬�
(¬ ⊥) ¬⊥⊃p

The only rule of the Arieli–Avron calculus is modus ponens:

(mp) p,p⊃q�q

As is shown in [2], this calculus is complete with respect to the semantics based on FOUR introduced
in Section 2.

We now proceed to expand theArieli–Avron calculus to accommodate the modal necessity operator,
taking our cue from the semantic considerations in the previous subsection. We begin by adding the
axiom schemata

(� t) �t↔ t

(� ∧) �(p∧q)↔ (�p∧�q)

(� ⊥) �(⊥→p)↔ (⊥→�p)
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Interestingly, the last of these covers only one of the four cases that make up Proposition 3.2 (iii),
and indeed, one of the consequences of our completeness result is that the other three are not needed.
In order to capture the closure property expressed in Corollary 3.4, we need to make sure that we
first generate all valid instances of the shape ϕ→ψ . The official definition of our logic is therefore
slightly more involved than usual:

Definition 4.1
Let Fm be the set of formulas generated by a countable set of variables Var in the modal language
〈∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�,�〉. The setΣ of axioms of modal bilattice logic is the least subset of Fm
containing all substitution instances of the schemata exhibited in this subsection, and closed under

(val-mp) if ϕ and ϕ⊃ψ are in Σ , then so is ψ ;
(val-mono) if ϕ→ψ is in Σ , then so is �ϕ→�ψ .

The rules of modal bilattice logic are

ϕ,ϕ⊃ψ
(mp)

ψ

ϕ→ψ
(mono)

�ϕ→�ψ

Local inference �l employs only (mp), while global inference �g is generated by (mp) and (mono).

Note that, although structurally similar, the rules (val-mp) and (val-mono) are only ever applied to
valid formulas, while (modus ponens) and (monotonicity) can be applied to arbitrary assumptions.

5 Algebraic models of the logic

5.1 Modal bilattices

We start by looking at the algebraic models of the non-modal core of the logic. This will allow us to
determine the models of the modal calculi which, as is to be expected, will turn out to be language
expansions of the non-modal algebras.

The first author proved in [36, Theorem 4.2.4] that Arieli–Avron logic is algebraizable in the sense
of [6]. This means in particular that the non-modal calculus introduced in the previous section enjoys
strong algebraic completeness with respect to a class of algebras introduced in [36, Definition 4.3.1]
under the name implicative bilattices.1

Definition 5.1
A (bounded) bilattice is an algebra 〈B,∧,∨,⊗,⊕,¬,f,t,⊥,�〉 such that 〈B,∧,∨,f,t〉 and
〈B,⊗,⊕,⊥,�〉 are both (bounded) lattices. The order≤t arising from∧ or∨ is called the truth order
(t-order), that arising from ⊗ or ⊕ the knowledge order (k-order) ≤k . The negation operation ¬ is
required to satisfy the properties

(i) x≤t y iff ¬y≤t¬x;
(ii) x≤k y iff ¬x≤k¬y;

(iii) ¬¬x=x.

1These algebras are called classical implicative bilattices in [10, 24]
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Conditions (i)–(iii) uniquely determine the behaviour of negation on the bounds: ¬t= f, ¬f= t,
¬�=�, and ¬⊥=⊥. We note that conditions (i)–(ii) can be expressed by equations (De Morgan
Laws), which implies that bilattices form an equational class (a variety). Notice also that FOUR is
an (in fact, the smallest non-trivial) algebra in this variety.

Definition 5.2
A (bounded) implicative bilattice is a (bounded) bilattice with an additional operation ⊃ satisfying
the following identities:

(IB1) (x⊃x)⊃y=y
(IB2) x⊃ (y⊃z)= (x∧y)⊃z= (x⊗y)⊃z
(IB3) ((x⊃y)⊃x)⊃x=x⊃x
(IB4) (x∨y)⊃z= (x⊃z)∧(y⊃z)= (x⊕y)⊃z
(IB5) x∧((x⊃y)⊃ (x⊗y))=x
(IB6) ¬(x⊃y)⊃z= (x∧¬y)⊃z.

Implicative bilattices obviously form a variety. Once again, FOUR, viewed as an algebra in the
language 〈∧,∨,⊗,⊕,⊃,¬〉 (possibly also including the bounds) is the smallest non-trivial implicative
bilattice. We also notice that Definition 5.2 implies that each of the four lattice operations distributes
over the other three [36, Proposition 4.3.4.]. This also follows from the following important fact [36,
Theorem 5.2.1].

Theorem 5.3
The variety of (bounded) implicative bilattices is generated by FOUR.

Algebraizability of the Arieli–Avron calculus introduced in the previous section means that the
derivability relation of this calculus can be faithfully interpreted in the equational consequence of
the variety of implicative bilattices, and vice versa, by mutually inverse interpretations. Consider a
translation τ : Fm→Eq from propositional formulas Fm into equations Eq over the same language,
i.e. 〈∧,∨,⊗,⊕,⊃,¬〉, possibly enriched with the four constants. For ϕ∈Fm, we define

τ : ϕ �−→ ϕ=ϕ⊃ϕ.

This is extended to sets of formulas in the usual way: τ (Γ ) :=⋃{τ (γ ) :γ ∈Γ }. Algebraizability of
Arieli–Avron calculus � then implies the following.

Theorem 5.4
Γ �ϕ if and only if τ (Γ ) |=τ (ϕ) in the equational consequence of the variety of (bounded) implicative
bilattices.

A translation ρ : Eq→Fm can be defined in order to obtain a ‘reverse completeness’ theorem that
may be seen as a converse to the above one. This is not central in our setting, but it will be useful to
know that the translation can be defined as follows:

ρ(ϕ=ψ) �−→ ϕ↔ψ.

Theorem 5.3 tells us that Γ �ϕ is also equivalent to τ (Γ ) |=τ (ϕ) holding in FOUR. Combining
this result with what we already know from Section 2, we obtain the following equivalences.



[09:53 2/6/2015 exv038.tex] LogCom: Journal of Logic and Computation Page: 12 1–45

12 Four-valued modal logic

Corollary 5.5
Let Γ ∪{ϕ}⊆Fm. The following are equivalent:

(i) Γ �ϕ
(ii) τ (Γ ) |=τ (ϕ) holds in FOUR

(iii) τ (Γ ) |=τ (ϕ) holds in any (bounded) implicative bilattice
(iv) Γ |=ϕ holds in the matrix 〈FOUR,{t,�}〉.

The last item of the preceding corollary can also be formulated in a more general way, replacing
FOUR by an arbitrary implicative bilattice, and this will be particularly important for us. In the
standard theory of logical matrices, one considers pairs 〈A,D〉 where A is an algebra with carrier set
A and D⊆A. One then defines a notion of consequence in the same way as we have done in Section 2
for the matrix 〈FOUR,{t,�}〉. That is, we consider the formula algebra Fm freely generated by
a countable set of propositional variables over the appropriate propositional language L and we
set Γ |=〈A,D〉ϕ if and only if, for all L-homomorphisms h : Fm→A, we have h(ϕ)∈D whenever
h[Γ ]⊆D. We can then add one more piece of information to the above-stated equivalences:

(v) Γ |=ϕ holds in any matrix 〈B,F0〉, where B is a (bounded) implicative bilattice and
F0 :={a∈B :a⊃a=a}.

This means that Arieli–Avron logic is complete with respect to the above-defined class of matrices.
This is also a consequence of algebraizability, and one can see that the equation defining the elements
in F0 is determined by the translation τ . It is important for us to notice that item (v) can be restated
in even more general terms:

(vi) Γ |=ϕ holds in any matrix 〈B,F〉, where B is a (bounded) implicative bilattice and F is a bifilter
of B.

By a bifilter of B we mean a subset F⊆B that is a lattice filter with respect to both the t- and
the k-lattice order (see [10, Proposition 2.11]). Using this terminology, it is easy to check that the
above-defined set F0 is the least bifilter of any implicative bilattice.

Algebraizability is an intrinsic property of a logical calculus that is preserved by extensions and,
under certain conditions, by language expansions. These are determined by the shape of the translation
ρ from equations into propositional formulas. In our case, when adding a modal operator � to the
Arieli–Avron calculus, the condition that we need in order to preserve algebraizability is that ϕ↔ψ

imply �ϕ↔�ψ . This is an easy consequence of the monotonicity rule (mono) introduced in the
previous section, which is a rule of the global but not of the local calculus.

Theorem 5.6
The global calculus �g of modal bilattice logic is algebraizable with the same translations τ and ρ
that ensure algebraizability of Arieli–Avron logic.

It is easy to see that the local calculus �l is not algebraizable. In fact, we will see that if it were
algebraizable, then it would coincide with the global one. This situation mirrors classical modal
logic, where local and global consequence share the same algebraic counterpart, the latter being
algebraizable while the former is not.

The general theory of algebraizable logics [6] allows us to straightforwardly determine the algebraic
models of the global calculus. These are algebras in the language

〈∧,∨,⊗,⊕,⊃,¬,�,f,t,⊥,�〉
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having an implicative bilattice reduct and satisfying identities and quasi-identities that are the τ -
translations of the new axioms and rules that we have added to the non-modal calculus. Notice that
we have now included the constants in the language, as they appear, crucially, in the new axioms.
We are thus led to introduce the following structures.

Definition 5.7
A modal bilattice is a bounded implicative bilattice B having an extra unary operation � that satisfies
the following identities:

(i) �t= t
(ii) �(x∧y)=�x∧�y

(iii) �(⊥→x)=⊥→�x.

The reader may have noticed that the above equations are not prima facie the τ -translations of the
axioms. For instance, the axiom �t↔ t translates as

�t↔ t= (�t↔ t)⊃ (�t↔ t).

It is however easy to show that, in an implicative bilattice, the equation x↔y= (x↔y)⊃ (x↔y) is
equivalent to x=y. Notice also that we have not included the quasi-identity corresponding to the
monotonicity rule because it holds just as a consequence of the second item (monotonicity of � with
respect to the t-lattice order). Returning to a comment we made above, we note that every modal
bilattice satisfies the equation �(c→ϕ)=c→�ϕ for each c∈{f,t,⊥,�}. This can be shown purely
algebraically, but it will also follow from our completeness result. Finally, we notice that (iii) is
equivalent, in any implicative bilattice, to the simpler one

(iii′) �(x⊃⊥)=�x⊃⊥
where �x :=¬�¬x.

The above considerations immediately imply the following results.

Theorem 5.8
The global consequence relation�g of modal bilattice logic is algebraizable with respect to the variety
of modal bilattices.

Theorem 5.9
The global consequence relation �g is complete with respect to the class of all matrices 〈B,F0〉 such
that B is a modal bilattice and F0 is the least bifilter of B.

We now want to show that�g and�l indeed share the same algebraic counterpart, i.e. that a similar
result to Theorem 5.9 can be proved about the local calculus. For this we will need a few lemmas.

Following standard algebraic logic terminology [19], we say that a matrix 〈A,D〉 is a model of a
logic � when Γ �ϕ implies Γ |=〈A,D〉ϕ for all formulas Γ ∪{ϕ}⊆Fm. In such a case we call D a
logical filter of �.

Lemma 5.10
For any modal bilattice B, the matrix 〈B,F〉 is a model of the local calculus �l if and only if F⊆B
is a bifilter.

Proof. Assume 〈B,F〉 is such that F⊆B is a bifilter of B. In order to prove that 〈B,F〉 is a model of�l
it is sufficient to prove that F contains the image of all axioms and is closed under the rules of the local
consequence. The axioms are the same as those for the global consequence. Then Theorem 5.8 ensures
that B |=h(ψ)=h(ψ)⊃h(ψ) for any axiom ψ and any homomorphism h : Fm→B. This means that
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h(ψ) belongs to the least non-empty bifilter of B, namely F0={a∈B :a=a⊃a} [10, Theorem 2.12].
Since F0 is contained in any non-empty bifilter, we easily obtain that h(ψ)∈F. As for rules, the only
rule of �l is modus ponens relative to ⊃ and we know that bifilters are closed under modus ponens
[10, Proposition 2.11]. Conversely, if 〈B,F〉 is a model of �l with B a modal bilattice and F⊆B,
then F is non-empty because h(ψ)∈F for any theoremψ of �l and any homomorphism h : Fm→B.
Moreover, F must be closed under modus ponens, which implies, again by [10, Proposition 2.11],
that F is a bifilter. �

We can already notice that the previous lemma indicates that, when considering models of the
local consequence, it is necessary to consider arbitrary bifilters rather than just the minimal one.

Any logic is complete with respect to the class of all its matrix models. More interestingly, it is
known that any logic is complete with respect to the class of all its reduced matrix models. We say
that a matrix 〈A,D〉 is reduced when identity is the only congruence θ of A which is compatible
with D, by compatible meaning that, for all a,b∈A such that 〈a,b〉∈θ , it holds that a∈D if and
only if b∈D. It can be shown that, for any subset D⊆A, there is always a greatest congruence that
is compatible with D. This is denoted by Ω(D) and is called the Leibniz congruence of the matrix
〈A,D〉. Thus, a reduced matrix can be defined as one whose Leibniz congruence is the identity.

We are going to exploit the completeness result with respect to reduced models to characterize
the algebraic counterpart of the local calculus. For an arbitrary logic � (not necessarily syntactically
defined), we denote

Alg∗(�) :={A : 〈A,D〉 is a reduced matrix model of the logic�}.
Algebraizability of �g implies that a matrix 〈A,D〉 is a reduced model of �g if and only if A is a
modal bilattice and D is the least bifilter of A. It follows that Alg∗(�g) is exactly the variety of modal
bilattices. This allows us to prove the next lemma that we need.

Lemma 5.11
Alg∗(�l) is the variety of modal bilattices.

Proof. Let us denote by ModBil the class of all modal bilattices. As mentioned above,
Alg∗(�g)=ModBil. Moreover, Alg∗(�g)⊆Alg∗(�l), because �g is an extension of �l. Thus,
ModBil⊆Alg∗(�l). We also know from [19] that V (Alg∗(�l)), the variety generated by Alg∗(�l),
coincides with V (Fm/Ω), where

Ω :={〈ϕ,ψ〉∈Fm×Fm : ∅�gϕ↔ψ}.
By Theorem 5.8, we have that Fm/Ω is a modal bilattice. This implies that V (Fm/Ω)=V (Alg∗(�l))
⊆ModBil. Hence, Alg∗(�l)⊆ModBil, which implies that Alg∗(�g)=Alg∗(�l)=ModBil. �

The previous lemmas do not yet give us necessary and sufficient conditions for a matrix to be a
reduced model of �l (this issue will be settled in Subsection 5.3, with the help of the construction
introduced in Subsection 5.2). However, they allow us to prove the following completeness result.

Theorem 5.12
The local consequence relation �l is complete with respect to the class of all matrices 〈B,F〉 such
that B is a modal bilattice B and F is a bifilter of B.

Proof. Let K be the class of all matrix models 〈B,F〉 such that B is a modal bilattice and F⊆B
a bifilter of B. Denote by |=K the associated consequence relation, defined as follows: Γ |=K ϕ iff
Γ |=〈B,F〉ϕ for any matrix 〈B,F〉∈K . By Lemma 5.10, we have �l≤|=K (i.e., |=K is an extension of
�l). By Lemma 5.11 we know that K∗⊆K , where K∗ denotes the class of all reduced matrix models
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of �l. Hence, |=K≤|=K∗ and, as mentioned above, |=K∗=�l is an instance of a result that holds for
any logic. Thus, we have that |=K≤|=K∗=�l which implies |=K=�l. �

Given a finite set of formulas Γ ={γ1,...,γn}, we abbreviate
∧
Γ :=γ1∧ ...∧γn.

Corollary 5.13
Let Γ ∪{ϕ}⊆Fm. The following are equivalent:

(i) Γ �l ϕ,
(ii) there exists a finite Γ0⊆Γ such that Γ0�l ϕ,

(iii) there exists a finite Γ0⊆Γ such that the equation
∧
Γ0∧�≤t ϕ is valid in the variety of

modal bilattices.

Proof. The equivalence between (i) and (ii) follows immediately from the fact that all rules of the
calculus �l involve only finitely many premises. To show that (ii) implies (iii), assume Γ0�l ϕ

for a finite Γ0. Then
∧
Γ0�l ϕ, as this already holds in the non-modal fragment of the calculus.

By Theorem 5.12, this means that, for every matrix 〈B,F〉 and every homomorphism h : Fm→
B, we have that h(

∧
Γ0)∈F implies h(ϕ)∈F. This implies that the element h(ϕ) belongs to the

bifilter generated by h(
∧
Γ0). By [9, p. 203] this means h(

∧
Γ0)≤t h(

∧
Γ0)⊗h(ϕ) or, equivalently,

h(
∧
Γ0)∧�≤t h(ϕ). Since this holds for any homomorphism h, we can conclude that B satisfies

the equation
∧
Γ0∧�≤t ϕ. Moreover, B itself being an arbitrary modal bilattice, we have that the

equation holds in the variety. Conversely, assume (iii) holds. Then, if h(
∧
Γ0)∈F for some matrix

〈B,F〉 and some homomorphism h : Fm→B, the equation of (iii) tells us that h(ϕ) belongs to the
bifilter generated by h(

∧
Γ0), which is included in F. Hence, h(ϕ)∈F. �

We may ask ourselves what is the analogue of Lemma 5.10 for the global calculus �g, i.e. given
a matrix 〈B,F〉 with B a modal bilattice, which properties must F satisfy in order for 〈B,F〉 to be
a model of the global calculus? Obviously F must be a bifilter, and the next proposition indicates
that the only further requirement is that F be closed under rule (mono), that is, if a→b∈F, then
�a→�b∈F.

Proposition 5.14
For any modal bilattice B, the matrix 〈B,F〉 is a model of the global consequence relation �g if and
only if F⊆B is a non-empty bifilter that is closed under rule (mono).

Proof. Assume 〈B,F〉 is such that F⊆B is a non-empty bifilter of B closed under the monotonicity
rule. Then we know that 〈B,F〉 is a model of �l by Proposition 5.10. Since monotonicity is the only
rule that distinguishes�g from�l, the assumption immediately implies that 〈B,F〉 is a model of�g as
well. Conversely, if 〈B,F〉 is a model of �g with B a modal bilattice and F⊆B, then F is non-empty
because h(ψ)∈F for any theorem ψ of �g and any homomorphism h : Fm→B. Moreover, F must
be closed under modus ponens, which implies, by [10, Proposition 2.11], that F is a bifilter, and it
must also clearly be closed under rule (mono). �
Corollary 5.15
The global consequence relation �g is complete with respect to the class of all matrices 〈B,F〉 such
that B is a modal bilattice and F⊆B a non-empty bifilter of B that is moreover closed under rule
(mono).

Proof. Let K be the class of all matrix models 〈B,F〉 such that B is a modal bilattice and F⊆B a
non-empty bifilter of B closed under rule (mono). By algebraizability of �g, we know that �g is the
logic determined by the class of matrices 〈B,F0〉 where B is a modal bilattice and F0 is the minimal
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(non-empty) bifilter. Since F0 is closed under monotonicity, we immediately have |=K≤�g. On the
other hand, Proposition 5.14 implies �g≤|=K , so we are finished. �

5.2 Twist-structure representation of modal bilattices

Several classes of bilattices can be conveniently represented through a construction called twist-
structure [8, 29]. In this section we extend it to obtain a representation for modal bilattices. This will
enhance our understanding of the necessity operator � as well as clarify the connection between our
logic and that of [34], and will eventually allow us to prove completeness of our modal calculi with
respect to the four-valued Kripke semantics.

Definition 5.16
A bimodal Boolean algebra is a structure A=〈A,�,�,∼,0,1,�+,�−〉 such that 〈A,�,�,∼,0,1〉 is
a Boolean algebra and both �+ and �− are unary operators that preserve finite (possibly empty)
meets.

The above definition implies that both 〈A,�,�,∼,0,1,�+〉 and 〈A,�,�,∼,0,1,�−〉 are modal
Boolean algebras in the usual sense [13]. Given a bimodal Boolean algebra A, we consider the (full)
twist-structure

A��=〈A×A,∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�,�〉
whose operations are defined, for 〈a1,a2〉,〈b1,b2〉∈A×A, as follows:

〈a1,a2〉∧〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉∨〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉⊗〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉⊕〈b1,b2〉 :=〈a1�b1,a2�b2〉
〈a1,a2〉⊃〈b1,b2〉 :=〈∼a1�b1,a1�b2〉

¬〈a1,a2〉 :=〈a2,a1〉
f :=〈0,1〉
t :=〈1,0〉
⊥:=〈0,0〉
�:=〈1,1〉

�〈a1,a2〉 :=〈�+a1��−∼a2,�+a2〉,
where �+a2 :=∼�+∼a2. This construction is obviously related to (and to some extent generalizes)
those of [31, 34, 37]. The term full is meant to distinguish our twist-structures from those of, e.g.
[31], whose underlying set can be a proper subset of the direct square A×A (see also the construction
considered below, in Subsection 7.3). Notice that the k-order in A�� is the direct power of the lattice
order of A, i.e. ≤k=≤×≤, whereas the t-order is the direct product of ≤ and its dual: ≤t=≤×≥.

We are going to see that every twist-structure A�� is indeed a modal bilattice. With respect to the
construction used in [31, 34] to represent so-called BK-lattices, we note that a twist-structure A�� is a
BK-lattice precisely when the underlying bimodal Boolean algebra A satisfies the equation �−x=1,
so that �〈a1,a2〉=〈�+a1,�+a2〉. It is also easy to check that

�(〈a1,a2〉∨〈0,0〉)⊕(�〈a1,a2〉∧〈0,0〉)=〈�+a1,�+a2〉
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which explains the relation between our modal operator and that of [31, 34] stated in Proposition 3.1.
Obviously, our modal operator cannot be recovered as a term in the language of [34], because � is
defined using two independent operators �+ and �− on the underlying Boolean algebra, while [34]
only makes use of one operator (together with its dual).

Proposition 5.17
Every twist-structure A�� is a modal bilattice.

Proof. We do not need to worry about non-modal connectives, as the result has been proven, e.g. in
[8, Proposition 4.11]. Let us check that A�� satisfies the axioms defining modal bilattices, namely:

(i) �t= t
(ii) �(x∧y)=�x∧�y

(iii) �(⊥→x)=⊥→�x.

(i) �〈1,0〉=〈�+1∧�−∼0,�+0〉=〈�+1∧�−1,0〉=〈1,0〉.
(ii) Given 〈a1,a2〉,〈b1,b2〉∈A×A, we have

�(〈a1,a2〉∧〈b1,b2〉)=�〈a1∧b1,a2∨b2〉
=〈�+(a1∧b1)∧�−∼ (a2∨b2),�+(a2∨b2)〉
=〈�+a1∧�+b1∧�−(∼a2∧∼b2),�+a2∨�+b2〉
=〈�+a1∧�+b1∧�−∼a2∧�−∼b2,�+a2∨�+b2〉
=�〈a1,a2〉∧�〈b1,b2〉.

(iii) In order to simplify our calculations, we will prove the equation (iii’) �(x⊃⊥)=�x⊃⊥, which
we have already noted to be equivalent, in any implicative bilattice, to (iii). Given 〈a1,a2〉∈A×A,
we have

�(〈a1,a2〉⊃〈0,0〉)=�〈∼a1,0〉
=〈�+∼a1∧�−∼0,�+0〉
=〈�+∼a1∧�−1,0〉
=〈�+∼a1∧1,0〉
=〈∼�+a1,0〉
=〈�+a1,�+a2∧�−∼a1〉⊃〈0,0〉
=¬〈�+a2∧�−∼a1,�+a1〉⊃〈0,0〉
=¬�¬〈a1,a2〉⊃〈0,0〉
=�〈a1,a2〉⊃〈0,0〉.

�
A first and most important example of a twist-structure is FOUR itself, which is isomorphic (if

we ignore the modal operator) to 2��, where 2 is the two-element Boolean algebra. Concerning the
modal operator, given that there are two modal algebras whose non-modal reduct is the two-element
Boolean algebra, we see that there are exactly four modal bilattices whose non-modal reduct is
FOUR.

Our next aim is to show that, as happens with (non-modal) bilattices, every modal bilattice is
isomorphic to a twist-structure.
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First of all, let us notice that, if we leave out the modal operator, then we know that every bounded
implicative bilattice is isomorphic to a twist-structure A��, where A is a Boolean algebra [8, Theorem
4.13]. Given a (modal) bilattice B, we can recover the associated Boolean algebra by defining an
equivalence relation as follows: for a,b∈B, we let

a≈b iff a⊃ f=b⊃ f.

This relation, which can be defined in several alternative ways (cf. [9, Definition 3.7]), is not only an
equivalence relation, but also a congruence with respect to all the algebraic operations of a bounded
implicative bilattice except negation. This means that we can consider the quotient 〈B,∧,∨,⊃,f,t〉/≈
which is a Boolean algebra. Notice that in the quotient the t-meet and the k-meet coincide, and likewise
for the two joins. Also, for a∈B, the Boolean negation of its corresponding class [a]∈B/≈ is defined
as usual: ∼[a] :=[a]⊃[f].

However, the relation ≈ need not be a congruence with respect to �. In order to define modal
operators on the quotient B/≈, we thus need slightly more involved definitions: for an equivalence
class [a]∈B/≈, we let

�+[a] :=[�(a⊃ f)⊃ f]
�−[a] :=[�(¬(a⊃ f)∨�)]
�+[a] :=[�a]

where � abbreviates ¬�¬. Notice that �+[a]=∼�+∼[a]. We can thus view �+ as a defined
operation.

Let us prove that our definitions are sound. Assume then a≈b, and notice that this is equivalent to
a⊃⊥=b⊃⊥ (this can be checked in any implicative bilattice, for instance using the twist-structure
representation). Then, �(a⊃⊥)=�(b⊃⊥). Now we can apply equation (iii) of Definition 5.7, in
its equivalent form (iii’), to conclude �a⊃⊥=�b⊃⊥. Thus we have �a≈�b. We omit the proofs
of the other two cases as they are straightforward. It remains to prove that �− is indeed a meet-
preserving operator and �+ is a join preserving operator (from which it will follow that �+ is a
meet-preserving operator). It is immediate to see that �+[f]=[f]. That �+ preserves joins follows
easily from De Morgan Laws. That �−[t]=[t] is also immediate. To see that �− preserves meets,
we notice that any implicative bilattice satisfies the following equation:

¬((x∧y)⊃ f)=¬(x⊃ f)∧¬(y⊃ f). (3)

This can be checked in FOUR (relying on Theorem 5.3) or using the twist-structure representation
of implicative bilattices. We can now easily check that

�−[a∧b]=[�(¬((a∧b)⊃ f)∨�)]
=[�((¬(a⊃ f)∧¬(b⊃ f))∨�)] by (3)

=[�((¬(a⊃ f)∨�)∧(¬(b⊃ f)∨�))] by distributivity

=[�(¬(a⊃ f)∨�)∧�(¬(b⊃ f)∨�)] � preserves meets

=[�(¬(a⊃ f)∨�)]∧[�(¬(b⊃ f)∨�)]
=�−[a]∧�−[b].

We have thus shown that we can obtain a bimodal Boolean algebra B/≈ as a quotient of our
modal bilattice B. It remains to prove that B is isomorphic to the full twist-structure (B/≈)��. The
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isomorphism is defined by the same map jB as employed in the non-modal case (cf. [8, Theorem
4.13]): for all a∈B,

jB(a) :=〈[a],[¬a]〉.
Building on the representation result for non-modal bilattices, we only need to check that jB(�a)=

�(jB(a)). We will use the fact that the following equation holds in any bounded implicative bilattice:

x= ((x⊃ f)⊃⊥)∧(¬((¬x⊃ f)⊃ f)∨�). (4)

This can be directly checked in FOUR or using the twist-structure representation of implicative
bilattices.

We then have

jB(�a)=〈[�a],[¬�a]〉
=〈[�a],[¬�¬¬a]〉 x=¬¬x

=〈[�(((a⊃ f)⊃⊥)∧(¬((¬a⊃ f)⊃ f)∨�))],[�¬a]〉 by (4)

=〈[�((a⊃ f)⊃⊥)∧�(¬((¬a⊃ f)⊃ f)∨�)],[�¬a]〉 �(x∧y)=�x∧�y

=〈[�((a⊃ f)⊃⊥)]∧[�(¬((¬a⊃ f)⊃ f)∨�)],[�¬a]〉
=〈[�(a⊃ f)⊃⊥]∧[�(¬((¬a⊃ f)⊃ f)∨�)],[�¬a]〉 by Definition 5.7 (iii)

=〈[�(a⊃ f)]⊃[⊥]∧[�(¬((¬a⊃ f)⊃ f)∨�)],[�¬a]〉
=〈[�(a⊃ f)]⊃[f]∧[�(¬((¬a⊃ f)⊃ f)∨�)],[�¬a]〉
=〈[�(a⊃ f)⊃ f]∧�−[¬a⊃ f],[�¬a]〉
=〈�+[a]∧�−∼[¬a],�+[¬a]〉
=�〈[a],[¬a]〉
=�(jB(a)).

Theorem 5.18
Any modal bilattice B is isomorphic to the modal twist-structure (B/≡)�� through the map jB defined
by jB(a) :=〈[a],[¬a]〉 for all a∈B.

Thanks to Theorem 5.18, from now on, when it is convenient to do so, we will be able to view a
modal bilattice as a twist-structure. The correspondence between modal bilattices and twist-structures
can be extended to an equivalence between two naturally associated categories, as was done for non-
modal bilattices in [8, 27]. For what follows, it will be useful to recall a property of twist-structures
that does not depend on the presence of modal operators [9, Proposition 3.18]:

Proposition 5.19
Assume B=A�� is a (modal) bilattice, viewed as a twist-structure over a (bimodal) Boolean algebra
A, and F⊆B is a bifilter. Then F=∇×A, where ∇ is a lattice filter of A.

A consequence of the twist-structure representation which is particularly important from a logical
point of view is that it makes it possible to translate formulas from the language of modal bilattice
logic into that of classical bimodal logic (studied, e.g., in [26]). This is quite straightforward. Let us
consider the language of modal bilattice logic. Drawing inspiration from [22], we define a translation
ν that maps the formulas of this language to pairs of formulas in the language of classical bimodal
logic 〈�,�,∼,0,1,�+,�−〉 as follows. First we assign to every propositional variable p a pair of
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different propositional variables 〈p1,p2〉 in such a way that if p is different from q, then p1 is different
from q1 and p2 is different from q2. Then we define ν inductively by:

ν1(p) :=p1 and ν2(p) :=p2
ν1(f) :=ν1(⊥) :=ν2(⊥) :=ν2(t) :=0 and ν2(f) :=ν2(�) :=ν1(�) :=ν1(t) :=1
ν1(¬ϕ) :=ν2(ϕ) and ν2(¬ϕ) :=ν1(ϕ)
ν1(�ϕ) :=�+ν1(ϕ)��−∼ν2(ϕ) and ν2(�ϕ) :=∼�+∼ν2(ϕ)
ν1(ϕ∧ψ) :=ν1(ϕ⊗ψ) :=ν1(ϕ)�ν1(ψ) and ν2(ϕ∧ψ) :=ν2(ϕ⊕ψ) :=ν2(ϕ)�ν2(ψ)
ν1(ϕ∨ψ) :=ν1(ϕ⊕ψ) :=ν1(ϕ)�ν1(ψ) and ν2(ϕ∨ψ) :=ν2(ϕ⊗ψ) :=ν2(ϕ)�ν2(ψ)
ν1(ϕ⊃ψ) :=∼ν1(ϕ)�ν1(ψ) and ν2(ϕ⊃ψ) :=ν1(ϕ)�ν2(ψ).

Using the twist-structure representation we immediately obtain the following result (the proof is
essentially the same as that of [22, Proposition 4.1]).

Proposition 5.20
A modal bilattice B=A�� satisfies an equation ϕ=ψ if and only if the bimodal Boolean algebra A
satisfies the equations ν1(ϕ)=ν1(ψ) and ν2(ϕ)=ν2(ψ).

We will see a concrete application of the translation to particular equations in Subsection 6.3,
when we look at extensions of the least modal bilattice logic. For now we would like to point out
the following remarkable consequence. Let us denote the global and local consequence relations of
classical bimodal logic by �cbg and �cbl. We then have the following:

Proposition 5.21
Let Γ ∪{ϕ}⊆Fm be formulas of modal bilattice logic. Then

(1) Γ �gϕ if and only if ν1(Γ )�cbg ν1(ϕ),
(2) Γ �l ϕ if and only if ν1(Γ )�cbl ν1(ϕ).

Proof. (i) Algebraizability of �g (Theorem 5.6) implies that Γ �gϕ if and only if τ (Γ ) |=τ (ϕ)
holds in the equational consequence of the class of modal bilattices, that is, {γ =γ ⊃γ :γ ∈Γ } |=
ϕ=ϕ⊃ϕ. In any implicative bilattice, this is equivalent to {γ ∧�=�:γ ∈Γ } |=ϕ∧�=�. By
Proposition 5.20, we then have that {ν1(γ ∧�)=ν1(�) :γ ∈Γ } |=ν1(ϕ∧�)=ν1(�) and {ν2(γ ∧
�)=ν2(�) :γ ∈Γ } |=ν2(ϕ∧�)=ν2(�) hold in the class of bimodal Boolean algebras. The latter
condition is vacuous, because ν2(ψ∧�)=ν2(ψ)�1=1=ν2(�) for all ψ ∈Fm. As to the former,
since ν1(ψ∧�)=ν1(ψ)�1=ν1(ψ) for allψ ∈Fm, we can rewrite it as {ν1(γ )=1 :γ ∈Γ } |=ν1(ϕ)=
1. By algebraizability of the global consequence of classical bimodal logic [26, Corollary 4.2.12],
this is exactly equivalent to ν1(Γ )�cbg ν1(ϕ).

(ii) Assume Γ �l ϕ. By Corollary 5.13, this means that Γ0�l ϕ for a finite Γ0⊆Γ and that the
equation

∧
Γ0∧�≤t ϕ holds in the variety of modal bilattices. This is a shorthand for (

∧
Γ0∧�)∨

ϕ=ϕ. We apply ν to both sides and we obtain ν1(
∧
Γ0)�ν1(ϕ)=ν1(ϕ) and (ν2(

∧
Γ0)�1)�ν2(ϕ)=

ν2(ϕ). By Proposition 5.20, these equations are valid in any bimodal Boolean algebra (although the
latter is obviously vacuous). By algebraic completeness of classical bimodal logic, this means that
ν1(

∧
Γ0)�cbl ν1(ϕ), which clearly implies ν1(Γ )�cbl ν1(ϕ). Conversely, assuming ν1(Γ )�cbl ν1(ϕ),

we invoke finiteness of classical bimodal logic to find a finite subset ν1(Γ0)={ν1(γ ) :γ ∈Γ0⊆Γ }⊆
ν1(Γ ) such that ν1(Γ0)�cbl ν1(ϕ). By algebraic completeness of classical bimodal logic, this means

that the equation ν1(Γ0)�ν1(ϕ)=ν1(ϕ) is valid in the variety of bimodal Boolean algebras, where

ν1(Γ0) :=ν1(γ1)� ...�ν1(γn)=ν1(γ1∧ ...∧γn)=ν1(
∧
Γ0).
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We can thus rewrite the left-hand side of the previous equation as follows:

ν1(Γ0)�ν1(ϕ)=ν1(
∧
Γ0)�ν1(ϕ)

= (ν1(
∧
Γ0)�1)�ν1(ϕ)

= (ν1(
∧
Γ0)�ν1(�))�ν1(ϕ)

=ν1((
∧
Γ0∧�)∨ϕ).

Thus, we have ν1((
∧
Γ0∧�)∨ϕ)=ν1(ϕ). As observed above, ν2((

∧
Γ0∧�)∨ϕ)=ν2(ϕ) is trivially

true, so we can apply Proposition 5.20 to conclude that (
∧
Γ0∧�)∨ϕ=ϕ holds in any modal bilattice.

Hence, by Corollary 5.13, we have
∧
Γ0�l ϕ, which implies Γ �l ϕ. �

Classical bimodal logic has both the local and the global finite model property [26, Theorems 2.7.9
and 3.1.10]. This means that ifΓ ��cbgϕ (orΓ ��cbl ϕ), then this is witnessed by a Kripke model whose
underlying set of points is finite. This property, together with the fact that both logics are finitely
axiomatizable, implies that they are decidable. Proposition 5.21 allows us to transfer these results to
our logics:

Theorem 5.22
Both calculi �l and �g of modal bilattice logic have the finite model property, and are therefore
decidable.

Proof. We only consider local consequence, as the proof for the global one is completely analogous.
Assume Γ ��l χ . By Proposition 5.21, we then have ν1(Γ ) ��cbl ν1(χ ). Since classical bimodal logic
enjoys the finite model property, there is a finite Kripke model M=〈W ,R+,R−,v〉 witnessing this,
where R+,R−⊆W×W are accessibility relations corresponding to the two operators �+,�− and
v : Fmcb→P(W ) is a valuation from the formula algebra Fmcb over the language of classical bimodal
logic 〈�,�,∼,0,1,�+,�−〉. There is thus a point w0∈W such that M,w0 |=ν1(Γ ) but M,w0 �|=ν1(χ ),
that is, w0∈v(ν1(γ )) for each γ ∈Γ but w0 /∈v(ν1(χ )). This is enough to establish the claim that �l
(and similarly �g) is decidable, but notice that M is not a four-valued Kripke model of the kind
introduced in Section 3. Thus, in order to conclude the proof, we need to turn M into a four-valued
model. It is clear that we can combine the relations R+ and R− into a single four-valued relation
R4 : W×W→FOUR by defining, for all w,w′ ∈W ,

R4(w,w′) :=

⎧⎪⎪⎨
⎪⎪⎩

t iff 〈w,w′〉∈R+ and 〈w,w′〉∈R−
� iff 〈w,w′〉∈R+ and 〈w,w′〉 /∈R−
⊥ iff 〈w,w′〉 /∈R+ and 〈w,w′〉∈R−
f iff 〈w,w′〉 /∈R+ and 〈w,w′〉 /∈R−.

This gives us a four-valued Kripke frame 〈W ,R4〉. In order to define a four-valued valuation, we let,
for each formula ϕ in the language of modal bilattice logic 〈∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�,�〉,

v4(ϕ,w)=

⎧⎪⎪⎨
⎪⎪⎩

t iff w∈v(ν1(ϕ)) and w /∈v(ν2(ϕ))
� iff w∈v(ν1(ϕ)) and w∈v(ν2(ϕ))
⊥ iff w /∈v(ν1(ϕ)) and w /∈v(ν2(ϕ))
f iff w /∈v(ν1(ϕ)) and w∈v(ν2(ϕ)).
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Checking that v4 acts homomorphically on non-modal formulas is straightforward: we have, for
instance,

v4(ϕ∧ψ,w)= t ⇔ w∈v(ν1(ϕ∧ψ)) and w /∈v(ν2(ϕ∧ψ))

⇔ w∈v(ν1(ϕ)�ν1(ψ)) and w /∈v(ν2(ϕ)�ν2(ψ))

⇔ w∈v(ν1(ϕ))∩v(ν1(ψ)) and w /∈v(ν2(ϕ))∪v(ν2(ψ))

⇔ w∈v(ν1(ϕ)),w∈v(ν1(ψ)) and w /∈v(ν2(ψ)),w /∈v(ν2(ψ))

⇔ v4(ϕ,w)= t and v4(ψ,w)= t.

Concerning modal formulas, we need to check that

v4(�ϕ,w)=
∧
{R4(w,w′)→v4(ϕ,w′) :w′ ∈W}.

This amounts to showing that

(i)
∧{R4(w,w′)→v4(ϕ,w′) :w′ ∈W}∈{t,�} iff
w∈v(ν1(�ϕ))=v(�+ν1(ϕ)��−∼ν2(ϕ))=v(�+ν1(ϕ))∩v(�−∼ν2(ϕ))

(ii)
∧{R4(w,w′)→v4(ϕ,w′) :w′ ∈W}∈{f,�} iff
w∈v(ν2(�ϕ))=v(∼�+∼ν2(ϕ))=∼v(�+∼ν2(ϕ))= (v(�+∼ν2(ϕ)))c.

(i) Recall that v(�+δ) :={w∈W :R+[w]⊆v(δ)} for all δ∈Fmcb and the definition v(�−δ) is similar.
Now, on the one hand,

∧{R4(w,w′)→v4(ϕ,w′) :w′ ∈W}∈{t,�}means that R4(w,w′)→v4(ϕ,w′)∈
{t,�} for all w′ ∈W . By residuation, this is equivalent to R4(w,w′)≤t v4(ϕ,w′). In FOUR, this means
that R4(w,w′)∈{t,�} implies v4(ϕ,w′)∈{t,�} and that R4(w,w′)∈{t,⊥} implies v4(ϕ,w′)∈{t,⊥}.
According to our definitions, these conditions translate as follows: 〈w,w′〉∈R+ implies w′ ∈v(ν1(ϕ))
and 〈w,w′〉∈R− implies w′ /∈v(ν2(ϕ)). On the other hand, w∈v(�+ν1(ϕ))∩v(�−∼ν2(ϕ)) means that
R+[w]⊆v(ν1(ϕ)) and R−[w]⊆ (v(∼ν2(ϕ)))= (v(ν2(ϕ)))c. The former says that 〈w,w′〉∈R+ implies
w′ ∈v(ν1(ϕ)), while the latter says that 〈w,w′〉∈R− implies w′ /∈v(ν2(ϕ)). We see then that the two
conditions are equivalent.

(b). Notice that
∧{R4(w,w′)→v4(ϕ,w′) :w′ ∈W}∈{f,�} implies, in FOUR, that there is w′′ ∈

W such that R4(w,w′′)→v4(ϕ,w′′)∈{f,�}. The table of strong implication in FOUR (Table 1)
shows that, if a→b∈{f,�}, then a∈{t,�} and b∈{f,�}. So, R4(w,w′′)∈{t,�} and v4(ϕ,w′′)∈{f,�}.
According to our definitions, these mean that 〈w,w′′〉∈R+ and w′′ ∈v(ν2(ϕ)). It is then sufficient to
realize that

(v(�+∼ν2(ϕ)))c={w∈W :∃w′′ ∈v(ν2(ϕ)) s.t. 〈w,w′′〉∈R+}
to see that the two conditions are equivalent.

We thus conclude that M4=〈W ,R4,v4〉 is indeed a four-valued Kripke model. To finish the proof,
it is sufficient to check that M4,w0 |=Γ but M4,w0 �|=χ , i.e. v4(γ,w0)∈{t,�} for each γ ∈Γ but
v4(χ,w0)∈{t,�}. According to our definitions, this amounts to proving that w0∈v(ν1(γ )) for all
γ ∈Γ but w0 /∈v(ν1(χ )), which are exactly the assumptions we started from. �

The proof of Theorem 5.22 already suffices to establish completeness of our calculi with respect
to the four-valued Kripke semantics introduced in Section 3, although only through completeness
of classical bimodal logic. We are going to see in Subsection 6.2 that, thanks to duality, the same
argument can be used to establish the result without relying on completeness of classical bimodal
logic.
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5.3 Congruences and reduced models

As we have anticipated, the twist-structure representation will allow us to characterize the reduced
models of �l. In order to obtain this, we will use twist-structures to obtain further information on
models of �g also and on congruences of modal bilattices.

First, we are going to prove an analogue of Proposition 5.19 concerning those bifilters which are
logical filters of �g, i.e. those F⊆B such that 〈B,F〉 is a model of the global calculus. In order to
do this, we introduce the following definition. Given a bimodal Boolean algebra 〈A,�+,�−〉, we
define an open filter (cf. e.g. [26, Definition 3.1.4]) to be a lattice filter ∇⊆A that satisfies: if a∈∇,
then �+a, �−a∈∇.

Proposition 5.23
Let B=A�� be a modal bilattice, viewed as a twist-structure over a bimodal Boolean algebra A. Then
F⊆B is a logical filter of �g if and only if F=∇×A and ∇ is an open filter of A.

Proof. Assume F=∇×A, with ∇ an open filter of A. We already know that F is a bifilter,
so, by Proposition 5.14, we only need to check that it is closed under the rule (mono).
Assume then 〈a1,a2〉→〈b1,b2〉∈F for some 〈a1,a2〉,〈b1,b2〉∈B, which means a1→b1, b2→
a2∈∇. We need to show that �〈a1,a2〉→�〈b1,b2〉∈F, which amounts to showing that the
first component of �〈a1,a2〉→�〈b1,b2〉 belongs to ∇, i.e. (�+a1∧�−∼a2)→ (�+b1∧�−∼
b2), �+b2→�+a2∈∇. The assumption b2→a2∈∇ allows us to conclude �+(b2→a2)
because ∇ is open. Moreover, �+(b2→a2)≤�+b2→�+a2 holds in any (bi)modal Boolean
algebra. So we have �+b2→�+a2∈∇. Since (�+a1∧�−∼a2)→ (�+b1∧�−∼b2)= (�−∼
a2→ (�+a1→�+b1))∧(�+a1→ (�−∼a2→�−∼b2)), it remains to show that �−∼a2→
(�+a1→�+b1), �+a1→ (�−∼a2→�−∼b2)∈∇. For this, it is sufficient to note that we have,
on the one hand, �+(a1→b1)∈∇ by assumption and �+(a1→b1)≤�+a1→�+b1≤�−∼a2→
(�+a1→�+b1). Similarly, on the other hand, we have �−(b2→a2)=�−(∼a2→∼b2)≤�−∼
a2→�−∼b2≤�+a1→ (�−∼a2→�−∼b2), so the result follows from the assumption that
b2→a2∈∇, which implies �−(b2→a2)∈∇. Hence we conclude that F is a �g filter. Conversely,
assume F is a �g filter, i.e. by Proposition 5.14, a non-empty bifilter that is closed under rule (mono).
Then we know that F=∇×A, with ∇ a lattice filter. We need to prove that ∇ is open. Assume
a∈∇. This means that 〈a,1〉∈F. Then we also have 〈1,0〉→ (¬(〈a,1〉⊃〈0,1〉)∨〈1,1〉)∈F. To see
this, we only need to compute the first component of this expression, which is (1→1)∧((a→
0)→0)=a∈∇. We can then apply (mono) to conclude �〈1,0〉→�(¬(〈a,1〉⊃〈0,1〉)∨〈1,1〉)=
〈1,0〉→�(¬(〈a,1〉⊃〈0,1〉)∨〈1,1〉)∈F. We compute the first component of this expression, which
is (�+1∧�−∼∼a)∧(�+∼a→0)=�−a∧�+a. We have thus �−a∧�+a∈∇, which shows that
∇ is open. �

In order to obtain more information on reduced models, we need to look at congruences of modal
bilattices, in particular at those congruences that are compatible with a given logical filter. To this
end, we will extend to the modal setting a known result of implicative bilattices, namely that the
congruences of a twist-structure A�� are isomorphic, as a lattice, to the congruences of A [8, Theorem
4.13].

The existence of an isomorphism between congruences of a modal bilattice B (viewed as a twist-
structure A��) and the underlying bimodal Boolean algebra A follows from the general theory of
algebraizable logics. In fact, algebraizability of �g with respect to the variety of modal bilattices
implies that the congruences of any modal bilattice B are isomorphic to the lattice of logical filters of
�g on B. Now, by Proposition 5.23, we have that Con(B) is isomorphic to the lattice of open filters of
A. Classical modal logic, even when two independent necessity operators are present in the language,
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is algebraizable (see [26]), and the logical filters of this logic are precisely the open filters. Thus, we
have that the lattice of open filters of A is isomorphic to Con(A). Putting these results together, we
obtain Con(B)∼=Con(A).

In order to see how this isomorphism can be concretely established, consider a modal bilattice
B=A�� and define a map H : Con(A��)→Con(A), for all θ ∈Con(B), as follows:

H(θ ) :={〈x,y〉∈A2 : 〈〈x,1〉,〈y,1〉〉∈θ}. (5)

Let us check that this definition is sound.

Lemma 5.24
Let θ ∈Con(A��) and 〈〈x,x′〉,〈y,y′〉〉∈θ . Then 〈〈x,z〉,〈y,z〉〉∈θ for any z∈A.

Proof. From the assumption we obtain 〈〈x,x′〉∧〈1,1〉,〈y,y′〉∧〈1,1〉〉=〈〈x,1〉,〈y,1〉〉∈θ . Then,
〈〈x,1〉∨〈0,z〉,〈y,1〉∨〈0,z〉〉=〈〈x,z〉,〈y,z〉〉∈θ . �
Proposition 5.25
For all θ ∈Con(A��), H(θ ) is a congruence of A.

Proof. Clearly H(θ ) is an equivalence relation, and it is easy to check that it is compatible
with the algebraic operations of A. One needs, for instance, to show that 〈x,y〉,〈x′,y′〉∈H(θ ), i.e.
〈〈x,1〉,〈y,1〉〉,〈〈x′,1〉,〈y′,1〉〉∈θ , implies 〈x�x′,y�y′〉∈H(θ ). By definition, the latter means that
〈〈x�x′,1〉,〈y�y′,1〉〉∈θ , which easily follows from the assumptions. Concerning the modal opera-
tors, we need to check that 〈〈x,1〉,〈y,1〉〉∈θ implies 〈〈�+x,1〉,〈�+y,1〉〉,〈〈�−x,1〉,〈�−y,1〉〉∈θ .
From the assumption, using Lemma 5.24, we obtain 〈〈x,0〉,〈y,0〉〉∈θ . From this we have

〈�〈x,0〉,�〈y,0〉〉=〈〈�+x��−∼0,�0〉,〈�+y��−∼0,�0〉〉=〈〈�+x,0〉,〈�+y,0〉〉∈θ

and again by the Lemma we obtain 〈〈�+x,1〉,〈�+y,1〉〉∈θ as desired. The case of �− is analogous.
�

The inverse map H−1 : Con(A)→Con(A��) can be defined, for η∈Con(A), by

H−1(η) :={〈〈x1,x2〉,〈y1,y2〉〉∈ (A×A)2 : 〈x1,y1〉,〈x2,y2〉∈η}. (6)

Proposition 5.26
For all η∈Con(A), H−1(η) is a congruence of A��.
Proof. As before, it is clear that H−1(η) is an equivalence relation and compatibility with the
algebraic operations of A�� is also easy to prove. Let us check the case of the modal operator. Assume
〈〈x1,x2〉,〈y1,y2〉〉∈H−1(η), i.e. 〈x1,y1〉,〈x2,y2〉∈η. We need to prove that 〈�〈x1,x2〉,�〈y1,y2〉〉∈
H−1(η), i.e. that 〈�+x1��−∼x2,�+y1��−∼y2〉,〈�+x2,�+x2y2〉∈η, and these follow easily
from the fact that η is a congruence of A. �
Theorem 5.27
H and H−1 are mutually inverse order isomorphisms between the lattices 〈Con(A��),⊆〉 and
〈Con(A),⊆〉.
Proof. Let us check that θ=H−1(H(θ )) for all θ ∈Con(A��). Using (5) and (6), we
have 〈〈x1,x2〉, 〈y1,y2〉〉∈H−1(H(θ )) if and only if 〈x1,y1〉,〈x2,y2〉∈H(θ ) if and only if
〈〈x1,1〉,〈y1,1〉〉,〈〈x2,1〉,〈y2,1〉〉∈θ . Assume the latter condition holds. Note that 〈x1,1〉=〈x1,x2〉∧
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〈1,1〉, 〈y1,1〉=〈y1,y2〉∧〈1,1〉, 〈x2,1〉=¬〈x1,x2〉∧〈1,1〉 and 〈y2,1〉=¬〈y1,y2〉∧〈1,1〉. Then in
the quotient A��/θ , which is a modal bilattice, we have [〈x1,x2〉]θ ∧[〈1,1〉]θ =[〈x1,x2〉]θ ∧
〈1,1〉=[〈y1,y2〉]θ ∧〈1,1〉 and, similarly, ¬[〈x1,x2〉]θ ∧〈1,1〉=¬[〈y1,y2〉]θ ∧〈1,1〉. It is easy to
show that, in any twist-structure, this implies [〈x1,x2〉]θ =[〈y1,y2〉]θ . Hence, 〈〈x1,x2〉, 〈y1,y2〉〉∈
θ , which shows that H−1(H(θ ))⊆θ . The converse inclusion is easy, for 〈〈x1,x2〉, 〈y1,y2〉〉∈
θ implies 〈〈x1,x2〉∧〈1,1〉, 〈y1,y2〉∧〈1,1〉〉=〈〈x1,1〉, 〈y1,1〉〉∈θ and 〈¬〈x1,x2〉∧〈1,1〉,¬〈y1,y2〉∧
〈1,1〉〉=〈〈x2,1〉, 〈y2,1〉〉∈θ . Thus, θ=H−1(H(θ )).
It is obvious that η=H(H−1(η)) for all η∈Con(A). In fact, applying the definitions, we have 〈x,y〉∈
H(H−1(η)) if and only if 〈〈x,1〉,〈y,1〉〉∈H−1(η) if and only if 〈x,y〉,〈1,1〉∈η. It is also clear that
θ⊆θ ′ implies H(θ )⊆H(θ ′). Conversely, if H(θ )⊆H(θ ′), then H−1(H(θ ))=θ⊆H−1(H(θ ′))=θ ′.
So H : Con(A��)∼=Con(A) is actually an order isomorphism. �

We are now going to use the insight given by the previous theorem to look at congruences of a
modal bilattice that are compatible with logical filters.

Proposition 5.28
Let 〈B,F〉 be a matrix such that B=A�� is a modal bilattice and F=∇×A is a bifilter. Then a
congruence θ ∈Con(B) is compatible with F if and only if H(θ )∈Con(A) is compatible with ∇.

Proof. Assume θ ∈Con(B) is compatible with F and let x,y∈A be such that 〈x,y〉∈H(θ ) and x∈
∇. By (5), 〈x,y〉∈H(θ ) iff 〈〈x,1〉,〈y,1〉〉∈θ . Since x∈∇, we have 〈x,1〉∈F, which implies, by
compatibility, 〈y,1〉∈F. This means that y∈∇, as required.
Conversely, assume H(θ )∈Con(A) is compatible with ∇, 〈x,y〉∈F and 〈〈x,y〉,〈x′,y′〉〉∈θ . From
the last assumption, using Lemma 5.24, we obtain 〈〈x,1〉,〈x′,1〉〉∈θ . This means that 〈x,x′〉∈H(θ ).
Since 〈x,y〉∈F, we have x∈∇, hence x′ ∈∇. This implies 〈x′,y′〉∈F. �
Corollary 5.29
Let 〈B,F〉 be a matrix such that B=A�� is a modal bilattice and F=∇×A is a bifilter. Then 〈B,F〉
is reduced if and only if 〈A,∇〉 is reduced.

Corollary 5.30
A matrix 〈B,F〉 is a reduced model of �l if and only if B is a modal bilattice and F is a bifilter such
that F0={a∈B :a=a⊃a} is the only logical filter of �g contained in F.

Proof. Assume 〈B,F〉 is a reduced model of �l. Then B is a modal bilattice (Proposition 5.11) and
F is a bifilter (Proposition 5.10). Suppose G is a filter of �g (hence, a fortiori, a filter of �l) such
that F0⊆G⊆F. Since �l is protoalgebraic, the Leibniz operator is monotone on filters of �l. This
means that Ω(G)⊆Ω(F)= IdB, therefore Ω(G)={〈a,b〉∈B×B :a↔b∈G}= IdB. Assume a∈G.
Since the equation x↔ (x⊃x)=x holds in any implicative bilattice, we have a=a↔ (a⊃a)∈G.
This means that 〈a,a⊃a〉∈Ω(G) and therefore a=a⊃a. Hence, G=F0. Conversely, assume B
is a modal bilattice and F is a bifilter such that F0 is the only filter of �g contained in F. By
Proposition 5.10, 〈B,F〉 is a model of �l. Let G :={a∈B : 〈a,a⊃a〉∈Ω(F)}. We are going to prove
that G is a filter of �g. It is clear that b∈G for all b∈F0, that is, F0⊆G. Moreover, G is closed under
modus ponens, i.e., b,b⊃c∈G imply c∈G. To see this, notice that in the quotient B/Ω(F) we have
[b]=[b]⊃[b] and [b]⊃[c]= ([b]⊃[c])⊃ ([b]⊃[c]), which implies, in any implicative bilattice, [c]=
[c]⊃[c]. Thus, G is a bifilter. Assume b→c∈G, i.e. 〈b→c,(b→c)⊃ (b→c)〉∈Ω(F). Reasoning
as before, in the quotient B/Ω(F) we have [b]→[c]= ([b]→[c])⊃ ([b]→[c]), which implies [b]=
[b]∧[c]. Hence, 〈b,b∧c〉∈Ω(F). SinceΩ(F) is a congruence of B, we have 〈�b,�(b∧c)〉∈Ω(F),
from which we can derive 〈�b→�c,�(b∧c)→�c〉∈Ω(F) and 〈(�b→�c)⊃ (�b→�c),(�(b∧
c)→�c)⊃ (�b→�c)〉∈Ω(F). Since (�(b∧c)→�c)⊃ (�b→�c)=�b→�c, we obtain 〈(�b→
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�c)⊃ (�b→�c),�b→�c〉∈Ω(F). This means that �b→�c∈G, so we conclude that G is a
filter of �g. Then, by assumption, G=F0. Now, if 〈a,b〉∈Ω(F), then 〈(a↔b)⊃ (a↔b),(b↔b)⊃
(a↔b)〉=〈(a↔b)⊃ (a↔b),a↔b〉∈Ω(F), which means that a↔b∈G=F0. This implies a=b,
so indeed Ω(F)= IdB as required. �

6 Duality and completeness

In this section we develop a topological duality for bimodal Boolean algebras, which will essentially
turns out to be just an application of Jónsson–Tarski duality for modal algebras [5, Chapter 5]. Since,
as mentioned earlier, bimodal Boolean algebras are equivalent (as a category) to modal bilattices, this
will give us a duality for modal bilattices as well. More importantly, we will prove that the relational
semantics obtained through duality is not only equivalent to the algebraic semantics for our calculi
given in Section 5, but also to the four-valued Kripke semantics introduced in Section 3, and this
will allow us to prove completeness of our modal calculi with respect to Kripke semantics.

6.1 Duality

As mentioned before, a bimodal Boolean algebra A=〈A,�,�,∼,0,1,�+,�−〉 can be viewed as a
pair of standard modal algebras 〈A,�,�,∼,0,1,�+〉 and 〈A,�,�,∼,0,1,�−〉.According to Jónsson–
Tarski duality, to these algebras correspond modal spaces 〈X(A),τA,R�+〉 and 〈X(A),τA,R�−〉
constructed as follows:

• X(A) is the set of ultrafilters of A;
• τA is the topology on X(A) having as basis the family of setsΦ(a) :={P∈X(A) :a∈P} for each

a∈A;
• R�+ ⊆X(A)×X(A) is defined, for all P,Q∈X(A), as follows: 〈P,Q〉∈R+ iff �−1+ [P]⊆Q;

• R�− ⊆X(A)×X(A) is defined in the same way as R+: 〈P,Q〉∈R− iff �−1− [P]⊆Q.

We remind the reader that a modal space is a structure 〈X,τ,R〉, where R⊆X×X, such that

• 〈X,τ 〉 is a Stone space, i.e. a compact Hausdorff space having a basis of clopen sets;
• R[x] is a closed set for every x∈X;
• R−1[U] is clopen for every clopen set U⊆X.

The following definition seems thus to be the most natural one in our context.

Definition 6.1
A bimodal space is a structure X =〈X,τ,R+,R−〉 such that both 〈X,τ,R+〉 and 〈X,τ,R−〉 are modal
spaces.

It is clear that to each bimodal space X =〈X,τ,R+,R−〉 a bimodal Boolean algebra can be
associated in the way prescribed by Jónsson–Tarski duality. We denote this algebra by

A(X )=〈A(X),∩,∪,∼,�R+ ,�R− ,∅,X〉,
where 〈A(X ),∩,∪,∼,∅,X〉 is the Boolean algebra of clopens of the Stone space 〈X,τ 〉 and, for each
U∈A(X ) and for •∈{+,−},

�R•U :={x∈X :R•[x]⊆U} (7)

The above correspondence between bimodal Boolean algebras and bimodal spaces can be extended
to a dual equivalence of categories by defining suitable notions of morphisms. For the algebras, we
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adopt the obvious definition: morphisms of bimodal Boolean algebras are algebraic homomorphisms.
On the topological side we follow once again Jónsson–Tarski duality.

Definition 6.2
Abimodal function f : X→X ′ between bimodal spaces X =〈X,τ,R+,R−〉 and X ′ =〈X ′,τ ′,R′+,R′−〉
is a continuous function such that, for •∈{+,−},

(i) 〈x,y〉∈R• implies 〈f (x),f (y)〉∈R′• for all x,y∈X;
(ii) for all x∈X and z∈X ′, if 〈f (x),z〉∈R′•, then there is y∈X such that f (y)=z and 〈x,y〉∈R•.

We thus have a category of bimodal Boolean algebras with algebraic homomorphisms on the
one side, and a category of bimodal spaces with bimodal functions on the other. The same functors
involved in Jónsson–Tarski duality will establish our duality. To an algebraic homomorphism of
bimodal Boolean algebras h : A→A′ corresponds a bimodal function X(h) : X(A′)→X(A) defined
by X(h)(P) :=h−1[P] for all P∈X(A′). Similarly, to a bimodal function f : X→X ′ one associates
a bimodal Boolean algebra homomorphism A(f ) : A(X ′)→A(X ) defined by A(f )(U) := f−1[U] for
all U∈A(X ′). Thus we have:

Theorem 6.3
The category of bimodal spaces and bimodal functions is dually equivalent to the category of bimodal
Boolean algebras and algebraic homomorphisms.

As mentioned before, this result can be easily used to obtain a duality for modal bilattices (see
also [8], where this strategy is applied to several classes of non-modal bilattices viewed as twist-
structures).

Corollary 6.4
The category of bimodal spaces and bimodal functions is dually equivalent to the category of modal
bilattices and algebraic homomorphisms.

6.2 Completeness

We are now going to use our duality, together with the algebraic results of Section 5, to prove
completeness of our modal calculi with respect to the four-valued Kripke semantics introduced in
Section 3.

We are going to expound the details of the completeness proof for the local calculus, which is
essentially the same as that for the global calculus, and we will point out where the differences lie as
we go along. The overall strategy is the following. Assuming Γ ��l ϕ, we first look for an algebraic
counter-model, using the algebraic completeness results established in Section 5. Then, using duality,
we turn the algebraic counter-model into a topological one. Finally, we will show how to view the
topological model thus constructed as a four-valued Kripke model, and so our proof will be complete.

Theorem 6.5
For all Γ ∪{ϕ}⊆Fm, the following are equivalent:

(i) Γ �l ϕ;
(ii) for every four-valued Kripke model M=〈W ,R,v〉 and every w∈W , it holds that M,w |=Γ

implies M,w |=ϕ.
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Theorem 6.6
For all Γ ∪{ϕ}⊆Fm, the following are equivalent:

(i) Γ �gϕ;
(ii) for any four-valued Kripke model M=〈W ,R,v〉, if M,w |=Γ for all w∈W , then M,w |=ϕ for

all w∈W .

Proof. Assume Γ ��l ϕ. Thanks to algebraic completeness (Theorem 5.12), we can find an algebraic
counter-model, i.e. a matrix 〈B,F〉, with B a modal bilattice and F⊆B a bifilter of B, and a
homomorphism h : Fm→B such that h[Γ ]⊆F but h(ϕ) /∈F. In the case of �g, we moreover know
that F=F0 is the least bifilter of B. Thanks to the twist-structure representation (Theorem 5.18), we
may assume that B=A��, with A a bimodal Boolean algebra. We also know, by Proposition 5.19, that
F=∇×A, with ∇ a lattice filter of A. In the case of the global calculus, we have F=F0={1}×A,
where 1 is the top element of A. As before, we denote by π1 the first projection mapping, so that
π1[F]=∇. Clearly, π1[h[Γ ]]⊆∇ but π1(h(ϕ)) /∈∇. By the Ultrafilter Theorem, we can extend ∇
to an ultrafilter P such that π1(h(ϕ)) /∈P. Then, by duality, we have P∈Φ(π1(h(γ ))) for all γ ∈Γ
and P /∈Φ(π1(h(ϕ))). We thus obtain a topological counter-model by considering the bimodal space
〈X(A),τA,R�+ ,R�−〉 which is dual to A. From this point on we follow the proof of Theorem 5.22,
which showed that a model of classical bimodal logic can be turned into a four-valued Kripke model.
We first define a four-valued relation R4 : X(A)×X(A)→FOUR as follows: for all Q,Q′ ∈X(A),

R4(Q,Q′) :=

⎧⎪⎪⎨
⎪⎪⎩

t iff 〈Q,Q′〉∈R�+ and 〈Q,Q′〉∈R�−
� iff 〈Q,Q′〉∈R�+ and 〈Q,Q′〉 /∈R�−
⊥ iff 〈Q,Q′〉 /∈R�+ and 〈Q,Q′〉∈R�−
f iff 〈Q,Q′〉 /∈R�+ and 〈Q,Q′〉 /∈R�−

We thus have a four-valued Kripke frame 〈X(A),R4〉. Next, we need to define a four-valued valuation
to obtain a Kripke model. We do this in two stages. We first define two standard (two-valued)
valuations v+,v− : Var→P(X(A)) as follows: for all p∈Var,

v+(p) :={Q∈X(A) :Q∈Φ(π1(h(p)))}
v−(p) :={Q∈X(A) :Q∈Φ(π1(¬h(p)))}.

These are extended to arbitrary formulas ψ,χ ∈Fm as follows:

v+(ψ∧χ ) :=v+(ψ⊗χ ) :=v+(ψ)∩v+(χ ) and v−(ψ∧χ ) :=v−(ψ⊕χ ) :=v−(ψ)∪v−(χ )
v+(ψ∨χ ) :=v+(ψ⊕χ ) :=v+(ψ)∪v+(χ ) and v−(ψ∨χ ) :=v−(ψ⊗χ ) :=v−(ψ)∩v−(χ )
v+(ψ⊃χ ) :=∼v+(ψ)∪v+(χ ) and v−(ψ⊃χ ) :=v+(ψ)∩v−(χ )
v+(¬ψ) :=v−(ψ) and v−(¬ψ) :=v+(ψ)
v+(�ψ) :=�R�+ v+(ψ)∩�R�− ∼v−(ψ) and v−(�ψ) :=∼�R�+ ∼v−(ψ)
v+(f) :=v+(⊥) :=v−(⊥) :=v−(t) :=∅ and v−(f) :=v−(�) :=v+(�) :=v+(t) :=X(A).

We then combine v+ and v− into one four-valued valuation v4 : Fm×X(A)→FOUR as follows:
for all ψ ∈Fm and Q∈X(A),

v4(ψ,Q)=

⎧⎪⎪⎨
⎪⎪⎩

t iff Q∈v+(ψ) and Q /∈v−(ψ)
� iff Q∈v+(ψ) and Q∈v−(ψ)
⊥ iff Q /∈v+(ψ) and Q /∈v−(ψ)
f iff Q /∈v+(ψ) and Q∈v−(ψ).



[09:53 2/6/2015 exv038.tex] LogCom: Journal of Logic and Computation Page: 29 1–45

Four-valued modal logic 29

The same argument used in the proof of Theorem 5.22 shows that v4 acts homomorphically on both
non-modal and modal formulas. We may thus conclude that MA=〈X(A),R4,v4〉 is indeed a four-
valued Kripke model. It only remains to show that MA is a witness that Γ does not imply ϕ. This
is easy, for P∈v+(γ ) for all γ ∈Γ but P /∈v+(ϕ). According to our definition of v4, this means that
v4(γ,P)∈{t,�} for all γ ∈Γ and v4(ϕ,P) /∈{t,�}. That is, MA,P |=Γ but MA,P �|=ϕ. Thus, Γ �|=l ϕ.
Applying the same reasoning we can show that Γ �|=gϕ, if we take into account that in this case
Q∈Φ(π1(h(γ ))) for all γ ∈Γ and for all Q∈X(A), which means that Γ holds globally in MA. �

We would now like to show that the completeness results of Theorems 6.5 and 6.6 apply to a more
general semantics than the one introduced at the beginning of Section 3.

Consider a Kripke model 〈W ,R,v〉 where both R and v are B-valued instead of FOUR-valued,
where B is an implicative bilattice. That is, we define R : W×W→B and v : Fm×W→B. Notice that
valuations are still required to preserve the four lattice bounds, which are included in the signature
of implicative bilattices. As in Section 3, we can define the modal operator by

v(�ϕ,w) :=
∧
{R(w,w′)→v(ϕ,w′) :w′ ∈W},

where the algebraic operations are now those of B. In order for this definition to make sense, we need
to further require that the t-lattice reduct of B be complete in the usual lattice-theoretical sense. It
is easy to show (using the twist-structure representation, for instance), that the k-lattice reduct of B
will be complete as well.

We can now define (global and local) modal consequence relations determined by the class of
B-valued Kripke models as we did in Section 3. All definitions are the same, replacing FOUR with
B and the set {t,�} with F0, the least bifilter of B. The non-modal core of these logics will thus be
the consequence determined by the matrix 〈B,F0〉. It is an easy consequence of [36, Theorem 4.1.4,
Proposition 4.3.14] that this logic coincides with that of the matrix 〈FOUR,{t,�}〉. This result holds
true even when we move to the modal setting.

Theorem 6.7
B-valued and FOUR-valued modal logics coincide.

Proof. To see that B-valued modal consequence is weaker than FOUR-valued one, it is sufficient
to notice that FOUR is a subalgebra of any implicative bilattice [36, Proposition 4.3.12]. Thus, any
FOUR-valued Kripke model can be viewed as a B-valued one, namely one where both R and v only
take values in {f,t,⊥,�}. The logics (both global and local) determined by the class of all B-valued
Kripke models are obviously weaker than those of a subclass of it, hence the result follows. In order
to prove that FOUR-valued is weaker than the B-valued one, we will need completeness of our
Hilbert calculi with respect to FOUR-valued modal consequence. Let us notice that all axioms and
rules of our calculi are sound with respect to B-valued modal consequence. This can be checked
directly, and also easily follows from the considerations of [7, Section 3.1]. Soundness implies that
the consequence determined by our calculus �g (or �l) is weaker than B-valued modal consequence.
By completeness (Theorems 6.5 and 6.6), �g and �l coincide with the corresponding semantically
defined FOUR-valued consequence, so we are done. �

6.3 Extensions

We have mentioned in the proof of Proposition 6.7 the possibility of imposing restrictions on the
values that the accessibility relation can take. These determine subclasses of frames and, therefore,
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extensions (strengthenings) of the four-valued modal logic that we have been considering throughout
the article. One may ask, as the authors of [7] do, whether it is possible to axiomatize the logic
corresponding to these frames. In our case, this turns out to be quite straightforward, and we will see
that in this respect too the splitting of the modal operator � into two operators �+ and �− is a great
help. Taking inspiration from [7], we focus on:

(1) Idempotent frames, i.e. those where the value of R is restricted to those elements of FOUR that
are idempotent with respect to fusion, i.e. R(w,w′)∗R(w,w′)=R(w,w′) for for all w,w′ ∈W . As
mentioned at the end of Section 2, in our case this amounts to the requirement that R(w,w′) �=⊥.

(2) Consistent frames, where R(w,w′) �=�.
(3) Classical frames, where R is allowed to take only classical values: R(w,w′)∈{f,t}. These are

exactly the frames that are at the same time idempotent and consistent.

1) Idempotent frames. It is straightforward (if tedious) to check that in idempotent frames the
normality axiom

�(p→q)→ (�p→�q)

is valid. In fact, as happens in [7], this axiom characterizes the class of idempotent frames. That
is, it is possible to show that, if we add the axiom to our calculus �l (�g), we obtain a sound and
complete axiomatization for the local (global) consequence determined by the class of idempotent
FOUR-valued frames. We will not pursue this, instead we adopt a simpler axiomatization. We add
to �l (or �g) the following version of normality:

(� ⊃) �(p⊃q)⊃ (�p⊃�q).

Again, it is easy (and slightly less tedious) to check that (� ⊃) is valid in idempotent frames. Thus,
our enriched calculi are sound with respect to the intended semantics. In order to prove completeness,
it will be sufficient to show that, repeating the proof strategy of Theorems 6.5 and 6.6, we obtain as
a counter-model a Kripke frame that is idempotent. In order to see this, we are going to look once
more at algebraic models of our enriched calculi.

Any axiomatic extension of an algebraizable logic is itself algebraizable with the same translations.
The corresponding algebraic semantics is a subvariety of the original one, axiomatized by adding
the equations that result as the translation of the new logical axioms. Thus, we see that the algebraic
semantics of �g+ (� ⊃) is precisely the class of modal bilattices that satisfy the equation

�(x⊃y)⊃ (�x⊃�y)= (�(x⊃y)⊃ (�x⊃�y))⊃ (�(x⊃y)⊃ (�x⊃�y))

which can be equivalently and conveniently rewritten as

�(x⊃y)⊃ (�x⊃�y)≥t�.

This implies that reduced models of �g+ (� ⊃) are matrices 〈B,F0〉 with B a modal bilattice
satisfying the above equation and F0 the minimal bifilter of B. The same argument of Lemma 5.11
and Theorem 5.12 shows that the local calculus �l+ (� ⊃) is complete with respect to the class of
matrices 〈B,F〉 with B a modal bilattice satisfying the above equation and F a bifilter. In order to
obtain more information on this class of modal bilattices, we once more exploit the twist-structure
representation.
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Proposition 6.8
A modal bilattice B=A�� satisfies �(x⊃y)⊃ (�x⊃�y)≥t� if and only if the underlying bimodal
Boolean algebra A satisfies the equation �+x≤�−x.

Proof. Assume A�� satisfies �(x⊃y)⊃ (�x⊃�y)≥t�. According to the twist-structure construc-
tion, this means that the first component of

�(〈a1,a2〉⊃〈b1,b2〉)⊃ (�〈a1,a2〉⊃�〈b1,b2〉)

is 1. We instantiate the above equation by taking b1=∼a2=1 and b2=∼a1, so that it becomes
�(〈a1,0〉⊃〈1,∼a1〉)⊃ (�〈a1,0〉⊃�〈1,∼a1〉). We compute the first component, which is

∼ (�+(∼a1�1)��−(∼a1�∼∼a1))�(∼ (�+a1��−∼0)�(�+1��−∼∼a1)).

This simplifies as ∼ (1�1)�(∼�+a1��−a1)=∼�+a1��−a1. Given that a1 is an arbitrary
element of A, we see that ∼�+a1��−a1=1 means that A satisfies the equation ∼�+x��−x=1,
i.e. �+x≤�−x.

Conversely, assume A satisfies �+x≤�−x. We need to prove that

∼ (�+(∼a1�b1)��−(∼a1�∼b2))�(∼ (�+a1��−∼a2)�(�+b1��−∼b2))=1

which is equivalent, in any Boolean algebra, to

�+(∼a1�b1)��−(∼a1�∼b2)��+a1��−∼a2≤�+b1��−∼b2.

Since �+ and �− preserve meets, we can simplify the left-hand side of the inequality
as follows: �+(∼a1�b1)��−(∼a1�∼b2)��+a1��−∼a2=�+(a1�(∼a1�b1))��−(∼a2�
(∼a1�∼b2))=�+(a1�b1)��−(∼a2�(∼a1�∼b2)). Obviously

�+(a1�b1)��−(∼a2�(∼a1�∼b2))≤�+b1

so it only remains to prove that

�+(a1�b1)��−(∼a2�(∼a1�∼b2))≤�−∼b2.

By our assumption that �+x≤�−x, we have

�+(a1�b1)��−(∼a2�(∼a1�∼b2))≤�−(a1�b1)��−(∼a2�(∼a1�∼b2)).

The right-hand side of the inequality can be rewritten as follows:

�−(a1�b1)��−(∼a2�(∼a1�∼b2))=�−(a1�b1�∼a2�(∼a1�∼b2))

=�−(a1�∼b2�b1�∼a2).

We thus have

�+(a1�b1)��−(∼a2�(∼a1�∼b2))≤�−(a1�∼b2�b1�∼a2)≤�−∼b2

which finishes our proof. �
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We are now in a position to prove completeness of �l+ (� ⊃) and �g+ (� ⊃) with respect
to the consequence determined by idempotent Kripke frames. We assume that Γ +(� ⊃) ��l ϕ. By
algebraic completeness, we know that this is witnessed by a matrix 〈B,F〉, with B=A�� and F a
bifilter of B. By Proposition 6.8, we moreover know that A satisfies �+x≤�−x. This means that
the bimodal space 〈X(A),τA,R�+ ,R�−〉 will satisfy R�− ⊆R�+ . To see this, assume 〈P,Q〉∈R�−
for some P,Q∈X(A). By definition, this means �−1− [P]⊆Q, that is, �−a∈P implies a∈Q for all
a∈A. Now, if �+b∈P for some b∈A, then �−b∈P as well, because �+b≤�−b and P is an up-set
with respect to the lattice order of A. Then, by assumption, b∈Q and this means that 〈P,Q〉∈R�+
as claimed.

By looking at the proofs of Theorems 6.5 and 6.6, we see that the relation R4 : X(A)×X(A)→
FOUR that we constructed can only take value⊥ in case 〈Q,Q′〉 /∈R�+ and 〈Q,Q′〉∈R�− for some
Q,Q′ ∈X(A). In our case, as we have seen, this is impossible. We conclude that the model that we
have constructed is actually idempotent. Hence, if ϕ is not derivable from Γ in �l+ (� ⊃), then
there is an idempotent model witnessing that Γ does not semantically entail ϕ. The same obviously
holds for �g+ (� ⊃). We have thus the following.

Theorem 6.9
The calculus �l+ (� ⊃) is sound and complete with respect to the local consequence determined
by the class of idempotent Kripke models.

Theorem 6.10
The calculus �g+ (�⊃) is sound and complete with respect to the global consequence determined
by the class of idempotent Kripke models.

(2) Consistent frames. The same strategy will allow us to axiomatize the consequence determined
by the class of all consistent frames.

As before, we begin by conjecturing an axiomatization. By looking at the truth table of strong
implication in FOUR (Table 1), one easily notices that, if the relation R is not allowed to take value
�, then no implication of the form R(w,w′)→v(ϕ,w′) can ever take value �. By looking at the
definition of � given in Equation (1) of Section 3, we see that this implies that no modal formula
can evaluate to�. This means that a formula such as �p⊃�p, which is obviously valid in the logic,
can only evaluate to t. This suggest that a sensible axiom to add to our calculi is the following:

(→ �) t→ (�p⊃�p)

We are going to prove that this is in fact enough to axiomatize the consequence of consistent frames.
As before, we look at the equation resulting from the translation of the new axiom, which is

t→ (�x⊃�x)= (t→ (�x⊃�x))⊃ (t→ (�x⊃�x))

or, equivalently,
�x⊃�x= t.

Proposition 6.11
A modal bilattice B=A�� satisfies �x⊃�x= t if and only if the underlying bimodal Boolean algebra
A satisfies the equation �−x≤�+x.

Proof. Assume A�� satisfies �x⊃�x= t, which means that �〈a1,a2〉⊃�〈a1,a2〉=〈1,0〉 for all
a1,a2∈A. This only gives us information about the second component, given that the first component
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of any expression of the form x⊃x is always 1 in an implicative bilattice. The part corresponding
to the second components is �+a1��−∼a2�∼�+∼a2=0. We instantiate the equation by taking
a1=1, so that it becomes

�+1��−∼a2�∼�+∼a2=�−∼a2�∼�+∼a2=0.

This is equivalent, in any Boolean algebra, to �−∼a2≤�+∼a2. Given that the element a2 is
arbitrary, we conclude that A satisfies �−x≤�+x.
Conversely, if A satisfies �−x≤�+x, then �−∼a2�∼�+∼a2=0 for all a1,a2∈A and, a fortiori,
�+a1��−∼a2�∼�+∼a2=0, which concludes our proof. �

From this point on the completeness proof for consistent frames is analogous to the one for
idempotent frames. We just need to observe that, if a bimodal Boolean algebra satisfies �−x≤�+x,
then in the dual bimodal space we will have R�+ ⊆R�− . This means that the relation R4 : X(A)×
X(A)→FOUR that we constructed in the proofs of Theorems 6.5 and 6.6 will never take value �,
as this corresponds to the case where 〈Q,Q′〉∈R�+ and 〈Q,Q′〉 /∈R�− for some Q,Q′ ∈X(A). The
following completeness results immediately follow.

Theorem 6.12
The calculus �l+ (→ �) is sound and complete with respect to the local consequence determined
by the class of consistent Kripke models.

Theorem 6.13
The calculus �g+ (→�) is sound and complete with respect to the global consequence determined
by the class of consistent Kripke models.

(3) Classical frames. This case is now an easy consequence of the previous ones. We just need to
add both axioms (� ⊃) and (→ �) to the logic to obtain a sound and complete axiomatization.

Proposition 6.14
A modal bilattice B=A�� satisfies both �(x⊃y)⊃ (�x⊃�y)≥t� and �x⊃�x= t if and only if the
underlying bimodal Boolean algebra A satisfies the equation �+x=�−x.

Theorem 6.15
The calculus �l+ (� ⊃)+(→ �) is sound and complete with respect to the global consequence
determined by the class of classical Kripke models.

Theorem 6.16
The calculus �g+ (� ⊃)+(→ �) is sound and complete with respect to the global consequence
determined by the class of classical Kripke models.

It is perhaps interesting to note that none of the restrictions considered above corresponds to
the logic of [34], viewed as a particular case of ours (see Proposition 3.1). As we observed in
Subsection 5.2, the requirement is in this case that the equation �−x=1 be satisfied in the underlying
bimodal Boolean algebra. This corresponds to adding the axiom �(p⊃p) to the logic, and this
is in fact one of the axioms that appear in the calculus of [34]. If a bimodal Boolean algebra A
satisfies �−x=1, then R�− =∅ in the dual bimodal space X (A). As a consequence, the valuation
R4 : X(A)×X(A)→FOUR constructed in our completeness proof is only allowed to take values in
{f,�}. This also shows that the class of frames corresponding to �l+ �(p⊃p) is a subclass of the
idempotent frames, and hence the logic of [34] is normal, i.e. satisfies our axiom (� ⊃).

For completeness’ sake, let us mention that the symmetric equation �+x=1 entails that R4 can
only take values in {f,⊥}, hence the corresponding frames are also consistent. The consequence
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determined by this class of frames can be axiomatized by adding the logical axiom �p⊃ f to our base
calculi.

We conclude the section with some considerations on the finite model property and decidability.
By examining the proof of Theorem 5.22, it is easy to realize that all the lemmas involved are still
true when we move from the base logics to their axiomatic extensions. This involves in particular
restricting Corollary 5.13 and Proposition 5.20 to subvarieties of modal bilattices and of bimodal
Boolean algebras corresponding to idempotent frames, classical frames, etc. In fact, Proposition 5.20
can be used to show that there is an isomorphism between the lattices of subvarieties of modal bilattices
and of bimodal Boolean algebras (cf. [22, Proposition 4.2]). This one-to-one correspondence extends
to a correspondence between extensions of the least modal bilattice logic and extensions of classical
bimodal logic. The only reason why analogues of Theorem 5.22 may fail is then that the extension of
classical bimodal logic corresponding to a given modal bilattice logic may not itself enjoy the finite
model property. This can happen, for the finite model property is not necessarily preserved under
axiomatic extensions, as shown in [26], to which we also refer for several examples of logic which
do enjoy it.

7 A more general approach

In this section, we introduce an alternative and more general semantics for our four-valued modal
logic, which makes a more explicit use of the insight gained from the twist-structure representation
of modal bilattices. This alternative semantics is also closer to, and is a more direct generalization
of, that of [34].

Let us first of all explain why we are interested in introducing an alternative semantics. This
brings us back to the four-element algebra FOUR. As mentioned in Section 2, we can view this
structure as an algebra in different algebraic signatures, which correspond to different logics, each
one being a conservative expansion of the previous one: Belnap–Dunn logic, paraconsistent Nelson
logic, bilattice logic. The authors of [34], for instance, took four-valued paraconsistent Nelson logic
as their non-modal core logic and axiomatized the least modal expansion of it, assuming that the
accessibility relation of Kripke frames remains classical. We, instead, have worked throughout this
article with four-valued bilattice logic, and we managed to axiomatize the least modal expansion
of it, allowing both valuations and the accessibility relation to be themselves four-valued (or,
indeed, B-valued, for any complete implicative bilattice B). As we have seen, the restriction that
the accessibility relation be classical corresponds to an extension of the least logic, which we have
also axiomatized.

At this point we may ask ourselves if, analogously, it is possible to axiomatize the least modal
expansion of four-valued paraconsistent Nelson logic, if we also allow the accessibility relation to
be four-valued. This would be a logic in the language 〈∧,∨,⊃,¬,�,f,t〉 as opposed to the one we
have been considering throughout the article, namely 〈∧,∨,⊗,⊕,⊃,¬,�,f,t,⊥,�〉 or, equivalently,
〈∧,∨,⊃,¬,�,f,t,⊥,�〉. We see that the only difference lies in the presence of the constants ⊥ and
�, and it is no coincidence that they play a quite crucial role in both our axiomatization for the
logic and our twist-structure representation. Interestingly, the role of constants is also crucial in [7],
the completeness proofs of which are based on a completely different strategy from ours. From a
mathematical point of view, such a result would be desirable because it would be more general than
the one we have proved in the previous section. In logic it is, as a rule, best to work with a language
that is as restricted as possible, for results on language expansions will then follow just as special
cases.
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Unfortunately, we have not been able to achieve this. We do not know if four-valued modal
logic can be axiomatized without including � as a logical constant; however, we do know that ⊥
is not necessary. Indeed, we can show that axiom (� ⊥) from Section 4 can be replaced in the
logic by equivalent ones that only involve � and the t-constants, and similarly the twist-structure
representation can be obtained without using ⊥ as an algebraic constant. The reason why this is so
can be best understood by looking at the proof of the twist-structure representation, which indeed
appears to be the main hinge on which our whole completeness proofs rely.

As we have seen, the twist-structure representation tells us that the behaviour of the modal operator
� on a modal bilattice B is determined by a pair of operators �+ and �− on the underlying Boolean
algebra B/≈ which is a quotient of the 〈∧,∨,⊃,f,t〉-reduct of B. The two operators are obtained on
B/≈ as

�+[a] :=[�(a⊃ f)⊃ f]
�−[a] :=[�(¬(a⊃ f)∨�)],

where �x is a shorthand for¬�¬x. This definition obviously relies on the existence of certain terms
in the language of modal bilattices, namely �(x⊃ f)⊃ f and �(¬(x⊃ f)∨�), and notice that neither
of these involves⊥. Other properties are required, for instance that the terms respect the relation≈ in
the sense that a≈b entails �(a⊃ f)⊃ f≈�(b⊃ f)⊃ f and �(¬(a⊃ f)∨�)≈�(¬(b⊃ f)∨�). It is not
difficult to check that, for the purpose of the twist-structure representation, other terms would have
worked as well. In the same way as one could define [a]�[b] :=[a⊗b] instead of [a]�[b] :=[a∧b]
because a∧b≈a⊗b for all a,b∈B, we could have defined, for instance,

�+[a] :=[�(a∨⊥)]
�−[a] :=[�(¬(a⊃⊥)∨�)].

While the definition of �+ does not pose any problem, it seems that, in order to define a term that
will allow us to recover to �− in the quotient B/≈, at least � is required.

The above analysis suggests, if not yet a solution to the problem, at least a possible way of
approximating it. Indeed, if we cannot construct the algebraic terms that we need in the language
〈∧,∨,⊃,¬,�,f,t〉, we can assume that they already exist, i.e., introduce them as primitive algebraic
operations. That is, we can augment the non-modal language 〈∧,∨,⊃,¬,f,t〉 with two operators,
which will be denoted by � and �, that will allow us to simply define (in a suitably defined quotient
algebra):

�+[a] :=[�a]
�−[a] :=[�a].

As mentioned earlier, the above requirement leaves us a certain freedom in the choice of the two
operators. Our particular choice will depend on two criteria. On the one hand, we would like to relate
our approach to that of [34], preserving in some way the property stated in Proposition 3.1. For this
reason, we will choose � to be defined on twist-structures exactly in the same way as the modal
operator of [34]. A pleasing consequence of this is that � is in this way guaranteed to be a normal and
finite meet-preserving operator. In a similar spirit, we will define � in such a way that (i) we obtain
another finite meet-preserving operator and (ii) our original operator � will not have to be included
in the primitive language, because we will be able to define �x :=�x∧�x.
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We are now going to describe this approach in more detail, but we will allow ourselves to only
sketch the parts which do not essentially differ from the constructions we have described in the
previous sections.

7.1 Axiomatization

Let us begin by recalling that the non-modal core of the logic, which is the consequence determined
by the matrix 〈FOUR,{t,�}〉 in the language 〈∧,∨,⊃,¬,f,t〉, is four-valued paraconsistent Nelson
logic, which is an extension of paraconsistent Nelson logic [1, 28, 30] obtained by adding Peirce’s
axiom ((p⊃q)⊃p)⊃p. A complete axiomatization of this logic can be obtained by taking all the
axiom schemata introduced in Section 4 that only involve connectives in 〈∧,∨,⊃,¬,f,t〉. The only
rule is also the same, i.e. modus ponens relative to weak implication. This calculus, which is going to
supply the non-modal core of the Hilbert-style presentation for our new logic, is algebraizable.
Its algebraic semantics is the variety of bounded N4-lattices [28] satisfying Peirce’s equation
((x⊃y)⊃x)⊃x=x⊃x. For us, the most straightforward way to introduce this class of algebras
is to say that they are exactly the 〈∧,∨,⊃,¬,f,t〉-subreducts of implicative bilattices. This means,
on the one hand, that this class is precisely the variety generated by FOUR viewed as an algebra
in the language 〈∧,∨,⊃,¬,f,t〉. On the other hand, it entails that each algebra in the variety can be
represented as a 〈∧,∨,⊃,¬,f,t〉-subalgebra of a twist-structure A�� over a Boolean algebra A.

Then, when expanding this logic with a modal operator, we obtain a logic whose algebraic models
(at least for the non-modal reduct) can be viewed as twist-structures. In fact, as mentioned in
Subsection 5.2, Odintsov and Wansing [34] proved that their modal operator � is represented, using
our notation, as follows: �〈a1,a2〉=〈�+a1,�+a2〉. We have also seen that this operator can be
defined as a term (that crucially uses the constant ⊥ and the ⊕ operation) in four-valued bilattice
modal logic. The idea is then to take this term as primitive in our new logic, i.e. we are going to
introduce an operator � which will be represented, on twist-structures, as �〈a1,a2〉=〈�+a1,�+a2〉.
Given that this operator coincides, on twist-structures, with the Odintsov-Wansing one, there is a
natural candidate for its axiomatization in our logic, namely axiom schemata employed in [34]:

(� ⊃) �(p⊃p)

(� ∧) �(p∧q)⊃ (�p∧�q)

(∼ �) ∼�p≡¬�¬∼p

(� ∼) �∼p≡∼¬�¬p,

where∼p :=p⊃ f. Alternatively, if we wanted to adopt an axiomatization that is closer to the one we
introduced for modal bilattice logic, we could replace (� ⊃) and (� ∧) by:

(� t) �t↔ t

(� ∧) �(p∧q)↔ (�p∧�q).

In analogy with the previous case, in order to find suitable axioms for � we are guided by the term
which will correspond to it on the algebraic models. We adopt the following term from the language
of modal bilattices:

�(x∨�)

which is particularly simple and meets the requirements explained above. In a twist-structure, this
gives us

�〈a1,a2〉 :=〈�−∼a2,�+a2〉.
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This operator can be captured through the following axioms:

(� t) �t↔ t

(� ∧) �(p∧q)↔ (�p∧�q)

(� �) ¬�p≡¬�p

(� ∼ ¬) �p≡�∼¬p.

From the above axioms modal syntactic consequences �l and �g can be obtained as we did in
Definition 4.1.

Definition 7.1
Let Fm be the set of formulas generated by a countable set of variables Var in the modal language
〈∧,∨,⊃,¬,f,t,�,�〉. The set Σ of axioms of modal N4-logic is the least subset of Fm containing
all substitution instances of the schemata exhibited in this subsection, and closed under

(val-mp) if ϕ and ϕ⊃ψ are in Σ , then so is ψ ;
(val-mono) if ϕ→ψ ∈Σ , then �ϕ→�ψ, �ϕ→�ψ ∈Σ .

The rules of modal bilattice logic are

ϕ,ϕ⊃ψ
(mp)

ψ

ϕ→ψ
(mono �)

�ϕ→�ψ

ϕ→ψ
(mono �)

�ϕ→�ψ
.

Local inference �∗l employs only (mp), while global inference �∗g is generated by (mp), (mono �)
and (mono �).

We note that for �g we could alternatively use the rules of [34]

ϕ⊃ψ
�ϕ⊃�ψ

ϕ⊃ψ
¬�¬ϕ⊃¬�¬ψ

but only for �, as they would not be sound with respect to the semantics of �.
One first pleasing feature of the axiomatization that we have proposed for � and � is that it

allows us to recover the logic of [34] as an axiomatic extension of ours, and thus its algebraic
counterpart [31] as a subclass of our algebraic models. The logic of Odintsov-Wansing is obtained
by adding the following axiom:

(� �) �p↔∼¬�p

which means, as was to be expected, that we can essentially ignore � as it can be viewed as just a
shorthand for ∼¬�.

7.2 Relational semantics

We have seen that the algebraic (twist-structure) semantics has suggested us an axiomatization for
the logic. Proceeding somehow in reverse order to what we have done in the previous sections, we
are now going to see how the algebraic semantics also suggests a Kripke-style semantics. In fact, the
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latter will be essentially an adaptation of the semantics of [34] to the modal operators that we have
chosen.

Consider a four-valued Kripke model 〈W ,R,v〉 defined as in Section 3, i.e. such that
R : W×W→FOUR and v : Fm×W→FOUR. As observed in Subsection 6.1, we can view R
as a pair of two-valued relations R+,R−⊆W×W defined as follows: for all w,w′ ∈W ,

〈w,w′〉∈R+ iff R(w,w′)∈{t,�}
〈w,w′〉∈R− iff R(w,w′)∈{t,⊥}.

Similarly (but, as in Subsection 6.1, not symmetrically), we view v as a pair of valuations
v+,v− : Var→P(W ) defined, for all w∈W and p∈Var, by

w∈v+(p) iff v(p,w)∈{t,�}
w∈v−(p) iff v(p,w)∈{f,�}.

Models will thus be structures M=〈W ,R+,R−,v+,v−〉. The valuations are extended to arbitrary
formulas ϕ,ψ ∈Fm as follows:

v+(ϕ∧ψ) :=v+(ϕ)∩v+(ψ) and v−(ϕ∧ψ) :=v−(ϕ)∪v−(ψ)
v+(ϕ∨ψ) :=v+(ϕ)∪v+(ψ) and v−(ϕ∨ψ) :=v−(ϕ)∩v−(ψ)
v+(ϕ⊃ψ) :=∼v+(ϕ)∪v+(ψ) and v−(ϕ⊃ψ) :=v+(ϕ)∩v−(ψ)
v+(¬ϕ) :=v−(ϕ) and v−(¬ϕ) :=v+(ϕ)
v+(f) :=v−(t) :=∅ and v−(f) :=v+(t) :=W
v+(�ϕ) :={w∈W :R+[w]⊆v+(ϕ)} and v−(�ϕ) :={w∈W :R+[w]∩v−(ϕ) �=∅}
v+(�ϕ) :={w∈W :R−[w]∩v−(ϕ)=∅} and v−(�ϕ) :=v−(�ϕ).

Let us point out that the somehow unusual semantics of � simply reflects the algebraic definition
introduced above, �〈a1,a2〉 :=〈�−∼a2,�+a2〉, which only considers the second component (hence
only v− appears) and in the first component operates on the Boolean complement of it.

Satisfaction, local and global consequence are defined in the way to be expected. We say that a
point w∈W of a model M=〈W ,R+,R−,v+,v−〉 satisfies a formula ϕ∈Fm if w∈v+(ϕ) and we write
M,w |=ϕ. For a set of formulas Γ ⊆Fm, we write M,w |=Γ to mean that M,w |=γ for each γ ∈Γ .
Local and global consequence relation, denoted |=∗l and |=∗g, are then defined as in Section 3.

Soundness of the axioms concerning � with respect to this semantics follows from [34]. As to �,
let us consider, for instance, the last axiom:

�p≡�∼¬p.

This is a shorthand for the two axioms �p⊃�(¬p⊃ f) and �(¬p⊃ f)⊃�p. We need to prove that

v+(�p⊃�(¬p⊃ f))=v+(�(¬p⊃ f)⊃�p)=W

for any model M=〈W ,R+,R−,v+,v−〉. According to the semantics of weak implication, this means
v+(�(¬p⊃ f))=v+(�p). Applying the definitions, we see that the right-hand side of this equation is

v+(�(¬p⊃ f))={w∈W :R−[w]∩v−(¬p⊃ f)=∅}
={w∈W :R−[w]∩v+(¬p)∩v−(f)=∅}
={w∈W :R−[w]∩v−(p)∩W=∅}
={w∈W :R−[w]∩v−(p)=∅}
=v+(�p).
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7.3 Algebraic models

As in the case of bilattices, it is immediate to conclude that the global calculus �∗g is algebraizable
with the same translations that ensure algebraizability of paraconsistent Nelson logic (see, e.g. [37,
Theorem 2.6]), which are those of Theorem 5.6. The equivalent algebraic semantics of�∗g is a class of
algebras in the language 〈∧,∨,⊃,¬,�,�,f,t〉, which we call modal N4-lattices. A (quasi)equational
presentation of this class is given by the τ -translation of the axioms and rules introduced in the
preceding Subsection. Clearly, the non-modal reduct of any modal N4-lattice is a bounded N4-
lattice satisfying Peirce’s equation, i.e. a member of the variety generated by FOUR viewed as an
algebra in the language 〈∧,∨,⊃,¬,f,t〉. Instead of introducing modal N4-lattices through an abstract
presentation, we will directly look at their concrete representation.

Let us first consider the non-modal reduct. Let A=〈A,�,�,∼,0,1〉 be a Boolean algebra with
associated (full) twist-structure A��=〈A×A,∧,∨,⊗,⊕,⊃,¬,f,t,⊥,�〉, defined as in Subsection 5.2.
We define a Peirce N4-lattice to be any 〈∧,∨,⊃,¬,f,t〉-subalgebra of A��. We say that a Peirce N4-
lattice B is a (non-full) twist-structure over A, and we write B≤A��. An equational presentation for
this class of algebras can be easily obtained by adding Peirce’s equation and equations for the lattice
bounds to the presentation of N4-lattices introduced in [28]. The following results from [28, 29] will
also be useful:

Theorem 7.2
Any Peirce N4-lattice B can be viewed as a twist-structure B≤A��, where A is a Boolean algebra,
such that:

(i) π1[B] :={x∈A :∃y∈A s.t. 〈x,y〉∈B}=A,
(ii) B={〈x,y〉∈A×A : x�y∈∇, x�y∈ ∇}, where∇⊆A is a lattice filter of A and

∇⊆A is a lattice
ideal,

(iii) ∇=π1[A∗], where A∗ :={a∨¬a :a∈B},
(iv)

∇=π2[A∗] :={y∈A :∃x∈A s.t. 〈x,y〉∈A∗}.
The non-modal reduct of any modal N4-lattice is a Peirce N4-lattice, which we can view as a

twist-structure B≤A�� defined as above. On B, the modal operators will be defined as explained in
Subsection 7.1, i.e. for a1,a2∈A×A,

�〈a1,a2〉=〈�+a1,�+a2〉 �〈a1,a2〉 :=〈�−∼a2,�+a2〉,
where �+ and �− are finite meet-preserving operators that turn A into a bimodal Boolean algebra.
The representation of � simply follows from [31, 34]. For that of �, axioms (� �) and (�∼ ¬) are
crucial. The former tells us that � and � agree on the second component, while the latter takes care
of the first component. The remaining axioms (� t) and (� ∧) ensure that the operator �− actually
preserves finite (possibly empty) meets.

We can thus extend the twist-structure construction to obtain a representation of modal N4-lattices.
It is also possible to obtain an analogue of Theorem 7.2: items (i), (iii) and (iv) are the same, whereas
(ii) has to be adapted by imposing further restrictions on ∇ and

∇

.

Theorem 7.3
Any modal N4-lattice B can be viewed as a twist-structure B≤A��, where A is a bimodal Boolean
algebra, such that:

(i) π1[B]=A,
(ii) B={〈x,y〉∈A×A : x�y∈∇, x�y∈ ∇}, where∇⊆A is a lattice filter of A and

∇⊆A is a lattice
ideal such that
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(1) x∈∇ implies �+x∈∇
(2) x∈ ∇implies �+x∈ ∇

(3) �−x∨∼�+x∈∇ and �−x∧∼�+x∈ ∇for all x∈A,

(iii) ∇=π1[A∗], where A∗ :={a∨¬a :a∈B},
(iv)

∇=π2[A∗].
Algebraic completeness theorems analogous to those of Subsection 5.1 can be obtained in the same

way. In the case of global consequence, algebraizability immediately implies the following.

Theorem 7.4
The global consequence relation �∗g is complete with respect to the class of all matrices 〈B,F0〉 such
that B is a modal N4-lattice and F0 :={a∈B :a⊃a=a}.

Similarly to the case of modal bilattices, the above theorem can be used to prove that Alg∗(�∗l )=
Alg∗(�∗g) is precisely the variety of modal N4-lattices. In order to obtain an analogue of Theorem 5.12,
we need to replace bifilters by special filters, which can be defined as follows (see also [29]).Aspecial
filter of a (modal) N4-lattice B is a subset F⊆B such that

(i) F0 :={a∈B :a⊃a=a}⊆F,
(ii) F is closed under (mp), that is, a,a⊃b∈F imply b∈F.

It is easy to check that the definition implies that any special filter is a non-empty lattice filter of
〈B,∧,∨〉, and that F0 is the least special filter of B. A characterization of special filters, which
generalizes that of bifilters of Proposition 5.19, can be obtained as well. In this case, we have that
any special filter F⊆B of a (modal) N4-lattice B≤A�� is of the form F= (∇×A)∩B, where ∇ is a
lattice filter of A.

Theorem 7.5
The local consequence relation �∗l is complete with respect to the class of all matrices 〈B,F〉 such
that B is a modal N4-lattice and F is a special filter of B.

We will not pursue this here, but it is possible to combine the twist-structure representation of
modal N4-lattices with the above results to obtain more information on reduced models of �∗g and
�∗l as we have done in Subsection 5.3 with modal bilattice logic.

Similarly, one may also ask if �∗g and �∗l enjoy the finite model property and are therefore
decidable. This can be shown following essentially the same proof as Theorem 5.22. The translation
ν, restricted to formulas in the language of modal N4-lattices, is defined in the same way. However,
some adjustments are needed, because Proposition 5.20 is no longer true for non-full twist-structures.
This is essentially due to the restriction imposed by Theorem 7.3 on the elements of the direct product
A×A that belong to the universe B⊆A×A of the twist-structure. Because of this, the only implication
of Proposition 5.20 that still holds true is the leftward one. In fact, if a bimodal Boolean algebra A
satisfies the equations ν1(ϕ)=ν1(ψ) and ν2(ϕ)=ν2(ψ), then the full twist-structure A�� satisfies
the equation ϕ=ψ and therefore every subalgebra B≤A�� will also satisfy ϕ=ψ . Fortunately,
this direction of the implication (by contraposition) is the only one that is needed in the proof of
Theorem 5.22. For the local consequence Corollary 5.13 also needs to be adapted, but this is not a
problem. The equation appearing in the second item of the corollary can be replaced by an equivalent
one in the language of modal N4-lattices, obtaining the equivalence of the following:

(i) Γ �∗l ϕ,
(ii) Γ0�∗l ϕ for a finite Γ0⊆Γ ,
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(iii) the equation
∧
Γ0⊃ϕ= (

∧
Γ0⊃ϕ)⊃ (

∧
Γ0⊃ϕ) is valid in the variety of modal bilattices.

The rest of the proof of Theorem 5.22 can be straightforwardly adapted to the new logics. The
relational semantics introduced in Subsection 7.2 no longer requires us to combine the two relations
R+,R− of a classical model 〈W ,R+,R−,v〉 into a single four-valued one, so this part is even easier
than in the original proof. We still do need to duplicate the classical valuation v : Fmcb→P(W ),
which we can do by defining, for each formula ϕ in the language 〈∧,∨,⊃,¬,f,t,�,�〉 and each
w∈W ,

w∈v+(p) iff w∈v(ν1(ϕ))
w∈v−(p) iff w∈v(ν2(ϕ)).

Checking that v+ and v− act homomorphically on both non-modal and modal formulas is
straightforward (see the next section), as is to conclude that 〈W ,R+,R−,v+,v−〉 is the counter-
model we were looking for. We thus obtain both a method for proving completeness of �∗g and �∗l ,
which again relies on completeness of classical bimodal logic, and the desired finite model property
result.

7.4 Duality and completeness

As we did in Subsection 6.1, we can obtain a duality for modal N4-lattices through the duality
for bimodal Boolean algebras. In fact, the correspondence between modal N4-lattices and twist-
structures is still one-to-one, provided we associate to a given modal N4-lattice a triple 〈A,∇, ∇〉
with A a bimodal Boolean algebra and ∇, ∇⊆A being respectively, a filter and an ideal satisfying
the property stated in item (ii) of Theorem 7.3. Of course, the duality for bimodal Boolean algebras
must itself be adjusted to account for the additional structure given by ∇ and

∇

. This is rather
straightforward and can be done along the lines of [23], where a duality of this type is developed for
non-modal N4-lattices viewed as twist-structures.

A full duality is anyway not needed for proving completeness of �∗l and �∗g with respect to the
relational semantics introduced in Subsection 7.2. The proof strategy is the same as that of the proofs
of Theorems 6.5 and 6.6. Let us see the case of local consequence.

We assume Γ ��∗l ϕ. By Theorem 7.5, we can find a modal N4-lattice B, a special filter F⊆B and
a homomorphism h : Fm→B such that h[Γ ]⊆F but h(ϕ) /∈F. By Theorem 7.3, we can assume that
B≤A�� with A a bimodal Boolean algebra. In this case we also know that F= (∇×A)∩B, with
∇ a lattice filter of A. Then π1[h[Γ ]]⊆∇ but π1(h(ϕ)) /∈∇. By the Ultrafilter Theorem, there is
an ultrafilter P⊇∇ such that π1(h(ϕ)) /∈P. Then, the bimodal space X (A)=〈X(A),τA,R�+ ,R�−〉
gives us a topological counter-model, for P∈Φ(π1(h(γ ))) for all γ ∈Γ but P /∈Φ(π1(h(ϕ))). In this
case 〈X(A),R�+ ,R�−〉 is already a Kripke frame of the kind defined in Subsection 7.2. We turn it
into a model as we have done in Subsection 6.2, i.e. defining two standard (two-valued) valuations
v+,v− : Var→P(X(A)), for all p∈Var, as

v+(p) :={Q∈X(A) :Q∈Φ(π1(h(p)))}
v−(p) :={Q∈X(A) :Q∈Φ(π1(¬h(p)))}.

These are extended to arbitrary formulas in the language 〈∧,∨,⊃,¬,f,t〉 in the same way as in
Subsection 6.2. As for modal formulas, we let

v+(�ϕ) :=�+v+(ϕ) and v−(�ϕ) :=∼�+∼v−(ϕ)
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v+(�ϕ) :=�−∼v−(ϕ) and v−(�ϕ) :=v−(�ϕ).

It is obvious that v+ and v− act homomorphically on both modal and non-modal formulas. That
is, MA=〈X(A),R�+ ,R�− ,v+,v−〉 is a Kripke model such that MA,P |=Γ but MA,P �|=ϕ. Hence,
Γ �|=∗l ϕ as desired.

Axiomatizing the extensions of �∗l and �∗g corresponding to restrictions on the accessibility
relations considered in Subsection 6.3 is also straightforward. Consider, e.g. idempotent frames,
which are frames 〈W ,R+,R−〉 such that R−⊆R+. As we have seen in Subsection 6.3, this
corresponds to requiring that, for any algebraic model B≤A��, the bimodal Boolean algebra A
satisfy the identity �+x≤�−x. It is easy to check that A satisfies �+x≤�−x if and only if B
satisfies ∼¬�x⊃�x= (∼¬�x⊃�x)⊃ (∼¬�x⊃�x), which corresponds to the logical axiom
∼¬�p⊃�p. Thus, if we add this axiom to our axiomatization of �∗l (or �∗g), we obtain a sound and
complete axiomatization for the local (global) consequence determined by the class of idempotent
frames. Analogously, consistent frames are axiomatized by adding the axiom �p⊃∼¬�p and
classical frames correspond to �p≡∼¬�p. The latter is easily seen to be equivalent to �p↔∼¬�p,
i.e. to axiom (� �) of Subsection 7.1. This tells us that, as expected, the logic of [34] can now be
viewed as the extension of our logic that corresponds to classical frames.

8 Further work

We list below a few open problems and what we believe might be interesting directions for future
work.

• We have axiomatized extensions of the base logic that correspond to restrictions on the four-
valued accessibility relation. We now know that the base logic can be equivalently defined
starting from an arbitrary implicative bilattice. Thus, we might apply the restrictions considered
in Subsection 6.3, suitably generalized, to an accessibility relation that is, instead of four-
valued, B-valued, B being any complete implicative bilattice. The definitions of idempotent
and classical frames can be applied as they are, whereas it may make sense to consider a
more liberal formulation for consistent frames. For instance, we could adopt the definition of
consistent element of a bilattice given in [15, Definition 3.6] and say that a frame is consistent
when the value of the accessibility relation is always a consistent element of the underlying
bilattice. At this point we do not know whether and how it would be possible to axiomatize
these extensions.

• We have dealt with the logic of the four-element bilattice or, equivalently, of any complete
bilattice belonging to the variety generated by it. From a technical point of view, the semantic
definition of the logic given in Section 3 could be recast replacing the four-element bilattice
with any Brouwerian bilattice [8] or even one of the more general bilattices considered in [22].
One may thus wonder if it is possible to axiomatize these logics by the same methods as applied
in this article. This may not be straightforward, even in the case of Brouwerian bilattices, for
these correspond to intuitionistic logic in the same way as implicative bilattices correspond to
classical logic; and intuitionistic modal logic is at present far from being as well-understood as
the classical one.

• The semantics introduced in Section 7, unlike that of Section 3, does not require the presence
of an implication in the logical language. This means that it might be possible to define a
modal expansion of Belnap–Dunn logic whose non-modal core is a logic in the conjunction–
disjunction–negation language, which is the one originally considered in [3, 4]. Algebraically,
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this would mean working with De Morgan lattices (see, e.g. [18]) instead of N4-lattices or
bilattices. At this point, it is not at all obvious whether the methods of this article would
be immediately applicable in this more general setting, because Belnap–Dunn logic in this
language is not algebraizable [18, Theorem 2.11] and, moreover, a twist-structure representation
is not available for De Morgan lattices.

• One problem that is left unsolved in [7] is whether it is possible to axiomatize the least modal
logic over a finite residuated lattice in a language that does not include all the elements of the
lattice as logical constants. As mentioned before, in the case of the four-element Belnap lattice
we know that it is at least possible to dispense with one constant, namely ⊥. Although we
believe that the approach described in Section 7 is indeed an approximation to a solution of this
question, we must point out that a fully general solution is yet to be found. As mentioned at the
beginning of Section 7, the core of the problem seems to be that of devising a twist-structure
representation that does not use any algebraic constant in an essential way.

• As mentioned before, our methods seem to be more powerful that those of [7] in the sense
that the same strategy allowed us to prove completeness for both the global and the local
consequence relation, whereas the proofs of [7] only work for local consequence. However,
the scope of [7] is more general than ours as the authors were able to axiomatize the logic of an
arbitrary finite residuated lattice (the four-element Belnap lattice being but one example, except
the fact that it is not integral, which is however not essential). It is thus natural to ask ourselves
if our methods could be applied to find an alternative and hopefully more satisfactory solution
to the problems posed in [7]. The main obstacle in this respect seems to be that a topological
duality theory for (non-modal) residuated lattices is not immediately available. However, if
we restrict our attention to finitely-generated varieties of residuated lattices (which is the same
setting as [7], too), then the theory of natural dualities [14] might provide a suitable basis to
work on.
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