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Abstract

Building on earlier work by Guo-Qiang Zhang on disjunctive informa-
tion systems, and by Thomas Ehrhard, Pasquale Malacaria, and the
first author on stable Stone duality, we develop a framework of dis-
junctive propositional logic in which theories correspond to algebraic
L-domains. Disjunctions in the logic can be indexed by arbitrary sets
(as in geometric logic) but must be provably disjoint. This raises sev-
eral technical issues which have to be addressed before clean notions
of axiom system and theory can be defined.

We show soundness and completeness of the proof system with
respect to distributive disjunctive semilattices, and prove that every
such semilattice arises as the Lindenbaum algebra of a disjunctive
theory. Via stable Stone duality, we show how to use disjunctive
propositional logic for a logical description of algebraic L-domains.
Keywords: Disjunctive propositional logic, domain theory, informa-
tion system, L-domain, domain theory in logical form.

1 Introduction

This paper takes up a number of research strands that have lain dormant for
several years, and while it presents a number of new results it also highlights
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several unresolved issues. The central objects of study are L-domains, dis-
covered independently by Th. Coquand [9] and the second author [20]. They
occupy a curious position in domain theory; on the one hand, they form one
of two maximal cartesian closed categories of algebraic domains and Scott-
continuous functions [20], on the other hand, they form a large cartesian
closed category of stable functions [26].1 To date, no deeper reason is known
for this coincidence but it explains and warrants the attention devoted to
them in the literature. The specific goal of the present paper is to develop a
logical language for describing algebraic L-domains, similar to S. Abramsky’s
domain theory in logical form (or DTLF for short), [2], for SFP-domains and
Scott-continuous functions.

The possibility of logical descriptions for domains was first proposed and
demonstrated by D. Scott in [25], where the logical apparatus is that of
information systems. Scott showed that domain theory can be based on
the notion of a “token of information” together with an entailment relation,
thus tying denotational objects very closely to computational concerns. The
approach was taken up in a number of publications; the most relevant for us
are G.-Q. Zhang’s papers on information systems for stable domain theory
[28, 29, 30].

In a separate development, Abramsky realised that the language of in-
formation systems, while extremely elegant, is too parsimonious to serve as
a useful basis for program logics. Indeed, at first approximation, the step
from Scott’s information systems to Abramsky’s DTLF, is to allow informa-
tion tokens to be combined by propositional connectives. The present paper
similarly attempts to enrich Zhang’s disjunctive information systems to a
disjunctive propositional logic. Apart from the technical advantage of having
the logical apparatus at one’s disposal, one may gain deeper insight into the
subject by explicating the connection with lattice theory, Stone duality, and
topology.

Abramsky demonstrated the applicability of DTLF to problems in Com-
puter Science in two landmark papers, [1, 4], devoted to concurrent and
functional programming, respectively. This paper aims to lay the founda-
tions for similar applications of stable domain theory. For this recall the role
stability plays as an approximation to the operational notion of sequentiality,
[7], in studying computability at higher types, [22], and in the λ-calculus, [5].

1For an in-depth discussion of cartesian closure in the stable universe, see [5, Chap-
ter 12].
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Obviously, a logic for disjunctive propositions must deviate in some way
from classical propositional logic. Here we take our cue from work in category
theory, especially from M. Coste’s notion of a lim theory [10] and P. John-
stone’s disjunctive theories [16]. In both cases, the set of admissible formulas
is restricted by requirements that need to be established in parallel via a
proof system. For our purposes we end up with a propositional calculus in
which disjunctions can be indexed by sets of arbitrary cardinality but must
be shown to be over a “disjoint” set of formulas. Section 2 of our paper is
devoted to a careful analysis of the resulting syntactic framework. Three
challenges present themselves: firstly, formulas and derivations have to be
defined in parallel, through a simultaneous induction; secondly, and because
of this, it is not obvious what the correct definition of an axiom system
should be; thirdly, by admitting arbitrary infinite disjunctions we are faced
with problems of size. Luckily, all three problems can be overcome in what
we would deem a satisfying and elegant way.

A useful intermediary step on the way towards a logical description of
L-domains is to provide an algebraic semantics for the logic, essentially by
factoring valid formulas by interderivability, also known as the Lindenbaum
construction. The appropriate lattice-like structures were presented by the
first author in [8]; they are called distributive disjunctive semilattices. Some
care needs to be taken to define the semantics of disjunctive propositions
because of the interdependence with derivations, but with the presentation
obtained in Section 2 this is not too difficult, and both soundness and com-
pleteness can be established following essentially the classical construction.

In Section 3.3 we take a closer look at the category of distributive dis-
junctive semilattices from a purely algebraic perspective. The supremum
operation on these is only defined partially, but the domain of definition is
given by equations expressed in the totally defined infimum operation, so we
are dealing with an essentially algebraic theory in the sense of P. Freyd [12].
The completeness proof of the previous section can now be used to set up
an adjunction between certain structured sets and distributive disjunctive
semilattices. Somewhat to our surprise, we find that this adjunction is not
monadic, though it is known that it can be written as a composition of two
monadic adjunctions [19].

In Section 4 we look at the link between disjunctive propositional logic
and distributive disjunctive semilattices from the perspective of the latter,
and show that every semilattice has a logical presentation. Only axioms of a
certain kind are required and we see most clearly the link between Zhang’s
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disjunctive information systems and our logic. It can be argued that the
proof of the presentation theorem 4.3 is precisely the price one has to pay
for the increased expressivity of the latter over the former. We conclude this
section with an application of the presentation theorem by showing that the
category of distributive disjunctive semilattices has coequalisers.

In Section 5 we combine the link between logic and semilattices, on the
one hand, with a Stone-type duality between disjunctive semilattices and L-
domains, established by the first author in [8]. The role of open sets is played
by Zhang’s “stable neighbourhoods” [31], and we take some care to explore
the concept in the realm of general L-domains (rather than dI-domains).

We conclude with a discussion of the problems that need to be overcome
if one were to attempt to extend the framework to continuous rather than
algebraic L-domains.

Acknowledgements. Research for this paper was begun by the first au-
thor some time ago and he acknowledges support from the National Science
Foundation of China (69873034, 60273052), the Specialized Research Fund
for Doctoral Program of Higher Education of the Ministry of Education of
China, and the Shanghai Leading Academic Discipline Project (T0401). A
visit to Birmingham, financially supported by the Engineering and Physical
Sciences Research Council (GR/S79770/01), gave rise to the collaboration
with the second author. The final version was written while the second
author enjoyed the hospitality of Chapman University during his sabbatical.
Discussions with Drew Moshier helped tremendously to shape up many parts
of the paper.

2 Disjunctive propositional theories

M. Coste (see Johnstone’s paper [16]) introduces the notion of a lim-theory by
requiring that its axioms be sequents constructed using the logical operations
true, ∧ and ∃, with the further restriction that existential quantification
may be used only when the variable being quantified is provably unique; i.e.,
∃x.φ(x) is a “good” formula only if the sequent (φ(x) ∧ φ(x′) ` x=x′) is
deducible from the axioms.

Johnstone [16] defines a disjunctive theory in a similar manner: he ad-
mits all the operations of geometric logic (including infinite disjunctions),
subject to the same restriction as before on the use of ∃ and the additional
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requirement that disjunctions must be provably disjoint, i.e.,
∨

i∈I φi is a
“good” formula only if (φi ∧ φj ` false) is provable for each pair of distinct
indices (i, j).

The focus of the current paper is the propositional part of Johnstone’s
disjunctive theory. In other words, we will deal with provably disjoint dis-
junctions but not the existential.

2.1 Formulas and derivations

Formulas will be built out of atomic propositions using binary conjunctions
and arbitrary, but provably disjoint, disjunctions. Because the construction
of formulas refers to proofs, we simultaneously define a proof system for es-
tablishing disjointness. For this we employ sequents in the style of Gentzen’s
intuitionistic sequent calculus LJ, [13]. These take the form Γ ` φ where Γ
is a finite set of formulas and φ is a single formula. As usual, the intended
meaning is that the conjunction of the propositions in Γ entails φ.

Without further assumptions it is not possible to prove the disjointness
of any two formulas, unless one of them is equivalent to false already. So it is
necessary also to allow some disjointness assumptions to be made at the very
beginning. Once again, these assumptions have an impact on which formulas
can be constructed. This is a rather unusual situation, and we take some care
in this section in setting up the formal system and proving its fundamental
properties.

Finally, as there is no restriction on the cardinality of the arity of the
disjunction operation, we are dealing with a version of infinitary logic. As
a result, we have to deal with proper classes of formulas and derivations,
and allow transfinite inductions. Luckily, though, it will turn out that the
expressivity of the system is already captured by a set of formulas (and
derivations).

Definition 2.1 Let P be a set, the elements of which we call atomic (dis-
junctive) propositions. Likewise, let S0 be a set of sequents of the form
p1, . . . , pn ` F where the pi are atomic propositions, and F is the syntactic
constant for “false.” We call the elements of S0 atomic disjointness assump-
tions, and the pair (P, S0) a disjunctive basis.

The class L(P, S0) of disjunctive propositions over P and S0, and the
class T(P, S0) of valid sequents over P and S0 are generated by mutual
transfinite induction according to the following rules:
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Disjunctive propositions

(At)
φ ∈ P

φ ∈ L(P, S0)
(Const) T, F ∈ L(P, S0)

(Conj)
φ, ψ ∈ L(P, S0)

φ ∧ ψ ∈ L(P, S0)

(Disj)

φi ∈ L(P, S0) (all i ∈ I) φi, φj ` F (all i 6= j ∈ I)

•∨
i∈I

φi ∈ L(P, S0)
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Valid sequents

(Ax)
(Γ ` F ) ∈ S0

Γ ` F
(Id)

φ ∈ L(P, S0)

φ ` φ

(Lwk)
Γ ` ψ φ ∈ L(P, S0)

Γ, φ ` ψ
(Cut)

Γ ` φ ∆, φ ` ψ

Γ, ∆ ` ψ

(LF )
φ ∈ L(P, S0)

F ` φ
(RT ) ` T

(L∧)
Γ, φ, ψ ` θ

Γ, φ ∧ ψ ` θ
(R∧)

Γ ` φ ∆ ` ψ

Γ, ∆ ` φ ∧ ψ

(L
•∨)

Γ, φi ` θ (all i ∈ I) φi, φj ` F (all i 6= j ∈ I)

Γ,
•∨

i∈I

φi ` θ

(R
•∨)

Γ ` φi0 (some i0 ∈ I) φi, φj ` F (all i 6= j ∈ I)

Γ `
•∨

i∈I

φi

Although the inductive definitions produce proper classes of objects, in
each formula the nesting of operators is only finite (though may be un-
bounded); likewise, the length of any path from assumption to conclusion
in a derivation is finite (though a derivation may contain paths of arbitrary
length). This is because each rule preserves this property.

As in usual elementary proof theory, we can show that the logical rules

can be “inverted” (except R
•∨, because the setting is intuitionistic, with only

a single formula allowed on the right).

Proposition 2.2 (i) Γ, φ, ψ ` θ is derivable, if and only if Γ, φ∧ψ ` θ is
derivable.

(ii) Γ ` φ and Γ ` ψ are derivable, if and only if Γ ` φ ∧ ψ is derivable.
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(iii) Assuming φi, φj ` F is derivable for all i 6= j ∈ I, then all Γ, φi ` θ

are derivable if and only if Γ,
•∨

i∈I φi ` θ is derivable.

Proof. In each case, the “only if”-part is just an application of the corre-
sponding rule. The “if” part requires use of the cut rule. We only illustrate
this for the last statement:

Id
φi0 ` φi0

R
•∨

φi0 `
•∨

i∈I

φi Γ,
•∨

i∈I

φi ` θ

Cut
Γ, φi0 ` θ

In the remainder of this section we will usually treat the side conditions of

the rules (L
•∨) and (R

•∨) separately. All our derivations are then entirely
standard, except that disjunctions can be indexed by an arbitrary set. We
have written the derivations down so that the reader can check that the
necessary side conditions have indeed been established.

2.2 Normal forms

The goal of this subsection is to show that every disjunctive formula over a
basis (P, S0) is provably equivalent to a disjunction of conjunctions of atomic
formulas. This is in analogy to the theory of frames, see [18, Section II.2.11],
or the generation of a topology from a subbasis.

Definition 2.3 We call disjunctive propositions φ and ψ interderivable, and
write φ a` ψ, if both φ ` ψ and ψ ` φ can be derived.

We begin with a suitable version of the frame distributivity law.

Proposition 2.4 Assume φi, φj ` F for all i 6= j ∈ I. Then φ ∧ (
•∨

i∈I φi)

and
•∨

i∈I(φ ∧ φi) are interderivable.
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Proof. We first show that φ∧φi, φ∧φj ` F is derivable whenever φi, φj ` F
is derivable:

φi, φj ` F
Lwk

φ, φi, φj ` F
L∧

φ ∧ φi, φj ` F
Lwk

φ ∧ φi, φ, φj ` F
L∧

φ ∧ φi, φ ∧ φj ` F

The derivation of φ ∧ (
•∨

i∈I φi) `
•∨

i∈I(φ ∧ φi) is not difficult but we need
to be careful with the indices. First note that the following is valid for each
i0 ∈ I:

Id
φ ` φ

Id
φi0 ` φi0

R∧
φ, φi0 ` φ ∧ φi0

For each i0 we can therefore apply the rule R
•∨ and obtain φ, φi0 `

•∨
i∈I(φ ∧ φi). Since the right hand side does not depend on i0, we can next

apply L
•∨ and get φ,

•∨
i∈I φi `

•∨
i∈I(φ ∧ φi). An application of L∧ completes

the proof of the first entailment. For the converse we just give the derivation:

Id
φ ` φ

Id
φi0 ` φi0

R
•∨

φi0 `
•∨

i∈I

φi

R∧
φ, φi0 ` φ ∧

•∨
i∈I

φi

L∧
φ ∧ φi0 ` φ ∧ (

•∨
i∈I

φi)

L
•∨•∨

i∈I

(φ ∧ φi) ` φ ∧ (
•∨

i∈I

φi)

We note that despite the interderivability stated in this proposition, dis-
tributivity only works in one direction, as we can not infer φi, φj ` F from
φ ∧ φi, φ ∧ φj ` F .
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Next we consider the associativity of disjoint disjunctions. We begin with
the disjointness side condition.

Proposition 2.5 Assume φi, φi′ ` F for all i 6= i′ ∈ I, and ψj, ψj′ ` F for

all j 6= j′ ∈ J . Then
•∨

i∈I φi,
•∨

j∈J ψj ` F , if and only if φi, ψj ` F for all
i ∈ I and j ∈ J .

Proof. Suppose
•∨

i∈I φi,
•∨

j∈J ψj ` F . Then for each i0 ∈ I and j0 ∈ J , we
have the derivation

Id
φi0 ` φi0

R
•∨

φi0 `
•∨

i∈I

φi

Id
ψj0 ` ψj0

R
•∨

ψj0 `
•∨

j∈J

ψj

•∨
i∈I

φi,
•∨

j∈J

ψj ` F

Cut

ψj0 ,
•∨

i∈I

φi ` F

Cut
φi0 , ψj0 ` F

For the converse, assume φi, ψj ` F for all i ∈ I and j ∈ J , φi, φi′ ` F for all
i 6= i′ ∈ I, and ψj, ψj′ ` F for all j 6= j′ ∈ J . We get

φi, ψj ` F (all i) (all j)
L
•∨

(
•∨

i∈I

φi), ψj ` F (all j)

L
•∨

(
•∨

i∈I

φi), (
•∨

j∈J

ψj) ` F

Proposition 2.6 Let (Ij)j∈J be a partition of the set I, and (φi)i∈I be a

disjoint family of propositions. Then
•∨

i∈I φi and
•∨

j∈J

•∨
i∈Ij

φi are inter-
derivable.
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Proof. The side conditions having been checked in the previous proposition
it suffices to provide the derivations:

Id
φi ` φi (all i ∈ Ij) (all j ∈ J)

R
•∨

φi `
•∨

k∈I

φk (all i ∈ Ij) (all j ∈ J)

L
•∨•∨

i∈Ij

φi `
•∨

k∈I

φk (all j ∈ J)

L
•∨•∨

j∈J

•∨
i∈Ij

φi `
•∨

k∈I

φk

Id
φk ` φk

R
•∨

φk `
•∨

i∈I(k)

φi

R
•∨

φk `
•∨

j∈J

•∨
i∈Ij

φi

L
•∨•∨

k∈I

φk `
•∨

j∈J

•∨
i∈Ij

φi

(In the second derivation we wrote I(k) for the class of the partition to which
a given k ∈ I belongs.)

Proposition 2.7 (i) Let φ =
∧n

i=1 φi be a disjunctive proposition; then
all occurrences of subformulas φi for which φi a` T can be dropped
from the conjunction and the resulting formula is interderivable with φ.
Likewise, any two interderivable subformulas φi, φi′ can be reduced to
one of them.

(ii) Let φ =
•∨

i∈I φi be a disjunctive proposition; then all occurrences of
subformulas φi for which φi a` F can be dropped from the disjunction
and the resulting formula is interderivable with φ. Furthermore, any
two interderivable subformulas can be dropped entirely.

Proof. Part (i) is standard, as is the first half of (ii). For the second half
assume that φi and φi′ , i 6= i′ ∈ I, are interderivable. By definition it must
be the case that φi, φi′ ` F . Using the cut-rule and interderivability, we
get from this φi ` F and φi′ ` F , which implies that both φi and φi′ are
interderivable with the constant F .

Since the index set in a disjunction can be an arbitrary set, it is also note-
worthy that all occurrences of subformulas which are interderivable with F
can be dropped in one step. To this end set I0 := {i ∈ I | φi a` F} and
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I1 := I \ I0. We have the derivations

∀i ∈ I1 :

φi ` φi
R
•∨

φi `
•∨

i∈I1

φi

∀i ∈ I0 :

φi ` F F `
•∨

i∈I1

φi

Cut

φi `
•∨

i∈I1

φi

and one application of L
•∨ shows that

•∨
i∈I φi `

•∨
i∈I1

φi. The other direction
is trivial.

Theorem 2.8 Let (P, S0) be a disjunctive basis. Every disjunctive proposi-

tion over P and S0 is interderivable with a formula of the form
•∨

i∈I

∧
j∈Mi

pj,
where each Mi is finite and all pj are elements of P . Furthermore, the for-
mula can be chosen in such a way that the sets Fi := {pj | j ∈ Mi} are all
different from each other.

Proof. This is shown by induction on the derivation of the given formula φ;
if φ is equal to F then choose I = ∅, if it is equal to T , then choose I = {∗},
M∗ = ∅; if φ = p ∈ P , then set I = {∗} = M∗, p∗ = p.

For conjunction assume φ = φ1 ∧ φ2 ∈ L(P, S0) and by induction

hypothesis φ1 a`
•∨

i∈I

∧
j∈Mi

qj and φ2 a`
•∨

i′∈I′
∧

j∈Mi′
qj. For φ con-

sider
•∨

i∈I,i′∈I′
∧

j∈Mi∪Mi′
qj which is certainly well-formed and interderiv-

able with the given formula, but may not be quite what we want as some
Fi1,i′1 = {qj | j ∈ Mi ∪ Mi′} may be equal to another Fi2,i′2 without
(i1, i

′
1) = (i2, i

′
2). However, by the preceding proposition, such instances can

all be dropped from the disjunction without affecting its logical strength.

For disjunction assume φ is of the form
•∨

k∈K φk and we have already
established propositions of the desired form interderivable with each φk,

say φk a`
•∨

i∈Ik

∧
j∈Mi

qj. We assume that φ is well-formed, which

yields
•∨

i∈Ik

∧
j∈Mi

qj,
•∨

i∈Ik′

∧
j∈Mi

qj ` F for all k 6= k′ ∈ K, and hence∧
j∈Mi

qj,
∧

j∈Mi
qj ` F for all i ∈ Ik, i′ ∈ Ik′ , k 6= k′ ∈ K, by Proposition 2.2-

(iii). This means that we can form the disjunctive proposition
•∨

i∈I′
∧

j∈Mi
qj
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where I ′ =
•∪k∈K Ik. As in the previous case, we may need to apply Proposi-

tion 2.7 to remove repeated conjunctions.

We call formulas of the form
•∨

i∈I

∧
j∈Mi

pj with {pj | j ∈ Mi} 6= {pj | j ∈
Mi′} for i 6= i′ ∈ I, flat disjunctive propositions, or disjunctive normal forms.
Likewise, a sequent will be called flat if all formulas occurring in it are flat.

Corollary 2.9 For sets P and S0 there exists a set `(P, S0) of disjunctive
propositions over P such that every element of the class L(P, S0) is inter-
derivable with an element of `(P, S0).

Proof. The disjunctive normal forms of the theorem above can be put into
1-1 correspondence with a subset of the powerset of the finite powerset of P .

We note that the flat disjunctive proposition defined in the proof of The-
orem 2.8 is not necessarily the only such formula that is interderivable with
a given φ. Thus the development above does not amount to true “normal
forms,” but what we have is certainly sufficient for the purposes of this paper.

2.3 Axiom sets and disjunctive theories

The normal form theorem allows us to answer a question that may have
occurred to the reader in Definition 2.1 already, namely, whether it is possi-
ble and meaningful to postulate more general disjointness assumptions than
those allowed as members of S0 when constructing formulas. As it turns
out, this would not add anything in terms of expressiveness; a disjointness
sequent φ, ψ ` F can be replaced with one in which φ and ψ are flat. The
outer disjunctions can then be stripped off (by Proposition 2.2-(iii)) and we
obtain a set of disjointness conditions between conjunctions of atomic for-
mulas. The conjunctions, in turn, can be replaced by commas as shown in
Proposition 2.2-(i). We end up with a set of atomic disjointness conditions.
This means that all meaningful sets of disjunctive propositions are already
covered by Definition 2.1.
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On the other hand, within a given set (or class) of disjunctive propo-
sitions we can ask whether there are additional sequents that can be as-
sumed as axioms. This is indeed the case, but the reasoning of the previous
paragraph still applies, and so we only need to consider axioms of the form

p1, . . . , pn `
•∨

i∈I

∧
j∈Mi

qj. Of course, with each such axiom we must require
that the disjunction on the right is well-formed. Let us make this precise:

Definition 2.10 A disjunctive axiom system over a set of atomic proposi-
tions P is a set S of disjunctive sequents of the form

p1, . . . , pn `
•∨

i∈I

∧
j∈Mi

qj

where all pk and qj are elements of P . Furthermore, with each sequent of
this form, the sequents

qj1 , . . . , qjm , qj′1 , . . . , qj′
m′
` F

for each i 6= i′ ∈ I and Mi = {j1, . . . , jm}, Mi′ = {j′1, . . . , j′m′} must also
belong to S. We call the subset of axioms where the right-hand side is F the
set of disjointness assumptions.

Definition 2.11 For S a disjunctive axiom system over atomic proposi-
tions P we denote with L(P, S) (`(P, S)) the set of (flat) disjunctive propo-
sitions, and with T(P, S) the set of sequents that can be derived with the
simultaneous rules of Definition 2.1. We call T(P, S) the disjunctive propo-
sitional theory generated by S, and the elements of T(P, S) the valid sequents
of the theory.

To improve readability we will often leave the set P of atomic propositions
implicit and only write T(S) or even T.

This definition requires us to adjust rule (Ax) of 2.1 to

(Ax′)
(Γ ` φ) ∈ S

Γ ` φ

There is also a slight subtlety with the requirement that a disjunctive axiom
system contain all disjointness assumptions that are needed to build the
formulas that appear in an axiom. Obviously, it ensures that all formulas that
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are mentioned somewhere in a derived sequent are in fact members of L(P, S),
but on the other hand, the disjointness assumptions of a disjunctive axiom
system on their own are not necessarily enough to generate all of L(P, S) or
even `(P, S): consider the simple example S = {(p ` q), (p′ ` q′), (q, q′ ` F )}
in which not only q

•∨ q′ but also p
•∨ p′ is generated as a legal disjunctive

proposition. In other words, additional disjointness assumptions for atomic
propositions may be derivable from the given axioms in S.

Finally, this is a good moment to explicate the link between our logic and
G.-Q. Zhang’s disjunctive information systems. Looking again at the shape
of sequents in a disjunctive axiom system, one may notice that if one allows
additional atomic propositions to be created, then even simpler axioms will
suffice. To this end one introduces a fresh atomic proposition ri for every
subexpression

∧
j∈Mi

qj together with the axioms ri ` qj for all j ∈ Mi, and
q1, . . . , qn ` ri (where {q1, . . . , qn} = {qj | j ∈ Mi}). Furthermore, one could
allow disjoint sequences of formulas on the right and render the axioms in
the form

p1, . . . , pn ` r1, . . . , ri, . . .

which avoids all connectives. Together with those derivation rules that do
not introduce or eliminate a connective, one obtains in this way exactly a
disjunctive information system in the sense of [30].

3 Algebraic semantics

3.1 Disjunctive semilattices

In order to give a representation of L-domains in the style of frames, and
a Stone-type duality for the category of L-domains and stable functions,
Chen [8] introduced the notion of D-semilattice. We briefly recall the relevant
definitions.

Definition 3.1 Let (L; 0, 1,u) be a meet-semilattice with least element 0 and
greatest element 1.

• For x, y ∈ L we say that x and y are disjoint if x u y = 0.

• A subset B of L is disjoint if each pair of distinct elements x and y
in B are disjoint.
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• The semilattice is called disjunctive (for short, a D-semilattice) if every
disjoint subset has a supremum. Joins of disjoint subsets B are denoted

by
•⊔

B.

Finite D-semilattices are lattices but in the infinite case the difference
becomes apparent, see Figure 1.

Figure 1: A D-semilattice which is not a lattice.

Definition 3.2 Let L,N be D-semilattices. A map f : L → N is called a D-
semilattice homomorphism if it preserves finite meets and disjoint suprema.
In particular, it preserves least and largest element.

We will write DSL for the category of D-semilattices and D-semilattice
homomorphisms.

A D-semilattice L is called distributive (or a dD-semilattice) if

a u (
•⊔

B) =
•⊔

b∈B

a u b

is true for each element a ∈ L and disjoint subset B of L.
The full sub-category of dD-semilattices in DSL will be denoted by dDSL.

3.2 Structures, soundness, and completeness

dD-semilattices are the appropriate structures for interpreting disjunctive
propositional logic.

Definition 3.3 Let L be a dD-semilattice. A structure M for a disjunctive
basis (P, S0) in L is a function M : P → L such that

dn
i=1 M(pi) = 0 for all

(p1, . . . , pn ` F ) ∈ S0.
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Given a structure M one defines a semantics J·KM for disjunctive propo-
sitions in L(P, S0) by transfinite induction in the obvious way:

1. JpKM := M(p);

2. JT KM := 1, JF KM := 0;

3. Jφ ∧ ψKM := JφKM u JψKM ;

4. J
•∨

i∈I φiKM :=
•⊔

i∈IJφiKM .

For the last clause to make sense we must prove that the supremum is over
a disjoint subset. This can be done straightforwardly by transfinite induc-
tion over the rules with which we derive valid sequents starting from a set
of atomic disjointness assumptions. One shows that that for all valid se-
quents φ1, . . . , φn ` ψ it holds that

dn
i=1JφiKM v JψKM , so in particular, if

φ1, . . . , φn ` F , then
dn

i=1JφiKM = 0.
In general, whenever

dn
i=1JφiKM v JψKM holds for a structure M in a

dD-semilattice L, we say that M satisfies the sequent φ1, . . . , φn ` ψ.
If S is a disjunctive axiom system over P , then we can consider the

set S0 ⊆ S of disjointness assumptions and thus establish whether a given
map M : P → L is a structure for (P, S0). If so, then the semantics J·KM will
assign a meaning at least to all formulas appearing in the sequents of S. This
allows us to check whether M satisfies the sequents in S, in which case we
call M a model of S. As a model, M will also satisfy all derived sequents,
i.e., all of T(P, S), and therefore the semantic function can be extended to
all of L(P, S) (which, as we saw at the end of Section 2.3, can be bigger
than L(P, S0)). Suppressing these subtleties, we can summarise:

Theorem 3.4 (Soundness) If M is a model of a disjunctive axiom sys-
tem S in a dD-semilattice L, then M satisfies all valid sequents of the dis-
junctive propositional theory T(S) generated by S.

Let’s now turn to completeness: suppose P is a set of atomic propositions
and S a disjunctive axiom system according to Definition 2.10, with T :=
T(P, S) the disjunctive theory generated. We would like to follow the usual
procedure and show that L(P, S), quotiented by interderivability, is a dD-
semilattice that satisfies exactly those sequents that are derivable from the
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axiom system, but we must be conscious of the problem of size. One shows
easily that for every formula φ, the equivalence class

[φ]T := {ψ ∈ L(P, S) | φ a` ψ}

is a proper class. Luckily, it is still the case that there are only set-many
such equivalence classes. We see this by considering

[φ]′T := [φ]T ∩ `(P, S)

which is always small as it is a subset of `(P, S). Furthermore, in Theorem 2.8
we showed that [φ]′T is always non-empty, and from this we infer

φ a` ψ if and only if [φ]′T = [ψ]′T .

In other words, the (small) equivalence classes on `(P, S) are fully represen-
tative of the (big) equivalence classes on L(P, S). Consequently we set

A(T) := {[φ]′T | φ ∈ L(P, S)} .

(Note that every element of A(T) still has a class of different names.) We
can now define the dD-semilattice operations on A(T) in an entirely straight-
forward fashion:

0 := [F ]′T

1 := [T ]′T

[φ]′T u [ψ]′T := [φ ∧ ψ]′T
•⊔

i∈I [φi]
′
T := [

•∨
i∈I φi]

′
T

We should briefly reassure ourselves that the disjoint disjunction in the last
clause can be formed for all disjoint subsets of A(T); indeed:

[φi]
′
T u [φi′ ]

′
T = 0

iff [φi ∧ φi′ ]
′
T = [F ]′T

iff φi ∧ φi′ ` F

18



Proposition 3.5 A(T) is a dD-semilattice. Furthermore, the associated or-
der v satisfies [φ]′T v [ψ]′T if and only if φ ` ψ.

Proof. The only interesting bit of the first statement, suprema for disjoint
subsets, we showed already. To support the second statement, we give the
following sequence of transformations:

[φ]′T v [ψ]′T

iff [φ]′T = [φ]′T u [ψ]′T

iff [φ]′T = [φ ∧ ψ]′T

iff φ a` φ ∧ ψ

iff φ ` ψ

Theorem 3.6 (Completeness) The valid sequents in a disjunctive propo-
sitional theory T(P, S) are precisely those that are satisfied in every model
of the disjunctive axiom system S.

Proof. We define a structure M : P → A(T) by M(p) := [p]′T. This satisfies
the axioms by construction, and therefore gives rise to a denotational function
J·KM :L(P, S) → A(T). Using the explicit description of operations on A(T)
above, it is immediate that JφKM = [φ]′T holds for all formulas, not just the
atomic ones. Now:

Γ ` φ is a valid sequent in T

iff
∧

Γ ` φ is a valid sequent in T by Proposition 2.2-(i)

iff [
∧

Γ]′T v [φ]′T as seen above

iff J∧γ∈Γ γKM v JφKM as J·KM = [·]′T
iff

d
γ∈ΓJγKM v JφKM by the definition of J·KM .
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From this we see that the valid sequents in T(P, S) are precisely those that
are satisfied by M in A(T).

3.3 Categories of algebras

The disjunctive bases of Definition 2.1 can easily be turned into a category.

Definition 3.7 Let (P, S0) and (P ′, S ′0) be disjunctive bases. A func-
tion f : P → P ′ is said to be disjointness preserving if for each sequent
p1, . . . , pn ` F in S0, the sequent f(p1), . . . , f(pn) ` F belongs to S ′0.

We denote the category of disjunctive bases and disjointness preserving
maps with DB0.

There is an obvious forgetful functor U from dDSL to DB0, which assigns
to a dD-semilattice L the pair (L, S0(L)), where S0(L) consists of all sequents
x1, . . . , xn ` F for which

dn
i=1 xi = 0 holds in L. It assigns to a homomor-

phism f : L → L′ the function f itself. What we have called a “structure”
in Section 3.2, Definition 3.3, can now be rendered more conspicuously as a
disjointness preserving map M : (P, S0) → U(L).

For a functor in the opposite direction one can employ the construc-
tion of Section 3.2, that is, assign to a disjunctive basis (P, S0) the dD-
semilattice A(T0) where T0 is the disjunctive propositional theory generated
by S0. Its action on morphisms derives from the following:

Proposition 3.8 The assignment ηP : p 7→ [p]′T0
is a universal arrow from

(P, S0) to U .

Proof. Let f : (P, S0) → (L, S0(L)) be a disjointness preserving map. We
need to show that f can be lifted to a dDSL homomorphism f̄ from A(T0)
to L, such that U(f̄) ◦ ηP = f . As a diagram:

(P, S0)
ηP- (A(T0), S0(A(T0))) A(T0)

DB0

@
@

@
@

@
f

R

dDSL

(L, S0(L))

U(f̄)

?

................
L

f̄

?

................
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We extend f to all disjunctive propositions by transfinite induction

f(
∧n

i=1 φi) :=
dn

i=1 f(φi) f(
•∨

i∈I pi) :=
•⊔

i∈I f(pi)

(The disjoint supremum exists because f is assumed to preserve disjointness.)
The extension translates interderivability to equality because of soundness
(Theorem 3.4) and so the definition

f̄([φ]′T0
) := f(φ)

is well-defined.
Since the elements of A(T0) are generated by the atomic propositions

in P , there is no other choice for a homomorphic lifting of f .

We now invoke general category theory (e.g., [23, Theorem IV-2(ii)]) and
obtain:

Theorem 3.9 The forgetful functor U :dDSL → DB0 has a left adjoint F .
It assigns to a disjunctive basis (P, S0) the dD-semilattice A(T0), with
T0 = T(P, S0), and to a disjointness preserving map f : (P, S0) → (P ′, S ′0)
the homomorphism ηP ′ ◦ f .

An obvious question at this stage is to ask whether the forgetful functor
is monadic. This property can be interpreted in more than one way, but
for the situation at hand we prefer to paraphrase it as saying that dDSL is
a “category of algebras” over DB0. Unfortunately, though, this is not the
case; U appears to “forget” too much of the disjointness information that
describes the domain of definition of disjoint suprema.

Example 3.10 Consider the four element set P = {0, a, b, 1} with the single
disjointness assumption 0 ` F . The effect of U ◦ F on this basis is the set
P ′ = {[F ] = [0], [a], [b], [1], [a∧ b], [a∧ 1], [b∧ 1], [a∧ b∧ 1], [T ]} with disjoint-
ness assumption [0] ` F . Note that P ′ does not have any nontrivial terms

involving
•∨.
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Now consider the Eilenberg-Moore algebra α: (P ′, S ′0) → (P, S0) given by
the following assignments:

[0], [a ∧ b], [a ∧ b ∧ 1] 7→ 0

[a], [a ∧ 1] 7→ a

[b], [b ∧ 1] 7→ b

[T ], [1] 7→ 1

It is isomorphic to the four-element lattice 0 ≤ a, b ≤ 1 but the existence of
the supremum of a and b is coincidental and not given explicitly, since the

term a
•∨ b does not belong to L(P, S0). Indeed, it would be easy to construct

an Eilenberg-Moore algebra that is isomorphic to the ordered set shown in
Figure 1 with the least element removed, and thus provide an example that

can not be rescued by extending the domain of definition of
•∨ to those subsets

that happen to have a supremum in the quotient.

We leave it as an open problem whether the situation can be improved
by changing the concept of dD-semilattice (for example, by specifying the
domain of definition of disjoint supremum explicitly), or by adjusting the
definition of DB0.

On the other hand, the concept of dD-semilattice is clearly essentially

algebraic, as the domain of definition of
•t is specified by an equation in-

volving only u and 0. In discussing the same issue in the case of preframes,
Johnstone and Vickers, [19], point out that essentially algebraic theories can
always be factored as a tower of monadic adjunctions. In our case, the tower
has two stories: the adjunction between Set and meet semilattices, and the
adjunction between the latter and dDSL.2 The problem that arises with
the Eilenberg-Moore algebra in our counterexample above can not arise in
the adjunction between semilattices and dDSL because structure maps are
now semilattice isomorphisms between X and the image of X in U ◦ F (X)
under ηX .

This is a good moment to point out another open question that we have
to leave unanswered in this report. It concerns the construction of free dD-
semilattices itself, which we have carried out via term algebras. One may

2It is not quite so automatic as we pretend, as the arity of the disjoint supremum
operation is unbounded, but this is only a minor irritation, also addressed in [19].
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wonder whether it is possible to do this in a similar vein to Johnstone’s use of
“coverings” for the construction of free frames. One of the attractions would
be that it follows the two stages of our tower of monadic adjunctions between
Set and dDSL; another that it addresses in a direct way the problem of size

caused by the unbounded arity of
•∨.

4 Presentations

A presentation is a description of a mathematical structure via generators
and relations. For example, one can specify the group Z3 of residue classes
of integers modulo 3 by a one-element set {a} of generators and the one-
element set {a · a · a = e} of relations. The principle works equally well
for general algebraic systems (i.e., sets with a system of operations of fixed
arity), see [24] for example. The theory of frames is not subsumed by this,
but there, too, “presentations always present,” see [18, 27]. Here we study
this question for dD-semilattices.

4.1 Categorical considerations

In case one has a monadic adjunction between Set and a category Alg of
“algebras,” one can argue that a presentation over a set X of generators
amounts to a parallel pair of morphisms Uf, Ug: UFUFX → UFX, where
Uf is the multiplication of the associated monad T = UF and g is the
transpose of a function g′: UFX → UFX which “picks out representatives”
among each equivalence class. The parallel pair becomes contractible (cf. [23,
Exercise 2, Section VI-6]) because of the map ηUFX which goes in the opposite
direction, i.e., from UFX to UFUFX. Beck’s Theorem states that the
monadicity of the adjunction implies that U creates a coequaliser for f and g.
This coequaliser, then, is the algebra presented by the parallel pair.

The analysis above applies to varieties of algebraic systems, because they
are monadic over Set. Given a presentation, the map g′ can be defined using
the Axiom of Choice.

We stated earlier that there is a tower of two monadic adjunctions link-
ing Set and dDSL, with the category SL of meet semilattices acting as the
intermediate category. Now, it is easy to see that a contractible pair in SL
will give rise to a coequaliser in dDSL (by transporting it first down to Set,
and then lifting it to SL and then dDSL), but we have not found a convinc-
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ing argument why a contractible pair of meet semilattice homomorphisms
should be a useful notion of presentation for dD-semilattices. In particular,
it is not clear to us that a presentation via a disjunctive axiom system (Def-
inition 2.10) can always be translated into such a contractible pair. We have
to leave this issue as (yet another) open question.

A more mundane categorical treatment of presentations for algebraic sys-
tems can be given by using the fact that varieties have all coequalisers:

Diagram 4.1 Consider the following diagram:

R FR

Set Alg

UFX

π1

?

π2

?
FX

π̄1

?

π̄2

?

©©©©©©©©©©©©©

η

*

ª¡
¡

¡
¡

¡

U(e)

@
@

@
@

@

e

R

X
η′ - UA A

HHHHHHHHHHHHH

f

j

..............

U(m)

R ª..
..
..
..
..
..
..

m

UB

U(f̄)

?
B

f̄

?

We read this as follows: R is a set of pairs of terms, that is, a subset of
(UFX)2, and π1, π2 are the projections restricted to this subset. We assume
that e: FX → A is the coequaliser of the transposed maps π̄1, π̄2. The image
under the forgetful functor U gives us the map U(e): UFX → UA, and we
get η′: X → UA by composition with η.

We claim that η′ is a universal arrow. So suppose that we are given a
map f from X to the carrier set of an algebra B such that the transpose f̄
coequalises π̄1 and π̄2. The rules for adjunctions tell us that then U(f̄) co-
equalises π1, π2, so B can indeed be said to satisfy the given relations. Because
e is assumed to be the coequaliser, we have a (unique) mediating homomor-
phism m in Alg, and its image under U makes the two resulting triangles on
the left commute.
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From a practical point of view, however, it appears that showing the ex-
istence of coequalisers in Alg is no simpler than showing that presentations
present, and indeed, we do not know of a straightforward argument for the
existence of coequalisers of dD-semilattices. The considerations above illus-
trate that coequalisers and presentations are closely related, and indeed, we
will show below first that there is a meaningful notion of presentation for
dD-semilattices and then prove as a corollary that dDSL has coequalisers.

4.2 Presenting dD-semilattices

At this stage, it will come as no surprise to the reader that a presentation
of a dD-semilattice consists of a set P of generators and a disjunctive axiom
system S over P (cf. Definition 2.10). Also, in Section 3.2 we have already
shown considerable detail of the construction of the dD-semilattice A(T) from
such a presentation. From an algebraic point of view, A(T) is a “universal
solution” to the given presentation. This is made precise in the same way as
we did for disjunctive bases in Section 3.3. We set up a category DB of pre-
sentations by defining morphisms from (P, S) to (P ′, S ′) as maps h: P → P ′

for which

( p1, . . . , pn `
•∨

i∈I

∧
j∈Mi

qj ) ∈ S

implies

( h(p1), . . . , h(pn) `
•∨

i∈I

∧
j∈Mi

h(qj) ) ∈ T(P ′, S ′) .

For a forgetful functor U from dDSL to DB we assign to a dD-semilattice L
the set of generators |L| := {dxe | x ∈ L}, and as axioms the set S(L) which
consists of the sequents3

dx1e, . . . , dxne `
•∨

i∈I

dyie

for which

x1 u . . . u xn v
•⊔

i∈I

yi

3Note that the right hand side of these sequents does not involve finite infima of gen-
erators, as allowed in the general form of axioms in Definition 2.10. This is the result
of there being sufficiently many generators to fix the meet semilattice structure by those
sequents where the right hand side is a single generator. Cf. the discussion just before
Section 3.
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(In keeping with our convention throughout this paper, this specialises to
dx1e, . . . , dxne ` F iff x1 u . . . u xn = 0 when I = ∅.) The following is then
shown in exactly the same way as Proposition 3.8:

Proposition 4.2 The assignment ηP : p 7→ [p]′T is a universal arrow from
(P, S) to U .

As before, this proposition provides us with a left adjoint F to U . In the
language of Section 3.2, we can express this adjunction as saying that for
every dD-semilattice L there is a natural isomorphism between models of T
in L, and D-semilattice homomorphisms from A(T) to L.

The presentation theorem can now be expressed as follows:

Theorem 4.3 The composition F ◦U is naturally isomorphic to the identity
functor on dDSL.

Proof. We abbreviate T(|L| , S(L)) by T throughout this proof. The plan

is to show that the components of the counit ε: F ◦ U
•→ Id have inverses.

To make this concrete, the result of applying εL to an element [φ]′T of A(T)
is JφKE, where E: |L| → L “strips off the quotes.” For an inverse to εL con-
sider sL: L → A(T), given by sL(x) := [dxe]′T. It will follow that this is a
homomorphism of D-semilattices if we can show that it is an inverse to εL

on the underlying sets, because the theory of dD-semilattices is essentially
algebraic.4

With these definitions we compute

εL ◦ sL(x) = εL([dxe]′T) = JdxeKE = E(dxe) = x

and
sL ◦ εL([φ]′T) = sL(JφKE) = [dJφKEe]′T

and we are left with the task of showing dJφKEe a` φ in the theory T. This
we have to do by induction over the structure of φ.

• φ = F : We have F ` dJF KEe = d0e by Rule (LF ), and

(d0e ` F ) ∈ S(L) because 0 v
•⊔ ∅ = 0.

• φ = T : We have dJT KEe = d1e ` T by (RT ), and (` d1e) ∈ S(L)
because

d ∅ = 1 v 1, and so (T ` d1e) ∈ T by (Lwk).

4In other words, for general partial algebras this need not be true.
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• φ = dxe: We have JdxeKE = E(dxe) = x and dxe a` dxe by (Id).

• φ = φ1 ∧ φ2: We can assume dJφiKEe a` φi, i = 1, 2, by induction hy-
pothesis, and from this we get dJφ1KEe∧dJφ2KEe a` φ1∧φ2 by an appli-
cation of (L∧) and (R∧). It remains to show that dJφ1KEe∧dJφ2KEe a`
dJφ1 ∧ φ2KEe. Well, since Jφ1 ∧ φ2KE = Jφ1KE u Jφ2KE v JφiKE, i = 1, 2,
we have that both dJφ1 ∧ φ2KEe ` dJφ1KEe and dJφ1 ∧ φ2KEe ` dJφ2KEe
belong to S(L); hence dJφ1 ∧ φ2KEe ` dJφ1KEe ∧ dJφ2KEe belongs to T
by (R∧). On the other hand, dJφ1KEe∧dJφ2KEe ` dJφ1 ∧ φ2KEe belongs
to S(L) by definition.

• φ =
•∨

i∈I φi: We assume dJφiKEe a` φi, i ∈ I, by induction hy-
pothesis, and we also have φi, φi′ ` F for all i 6= i′ ∈ I because φ
is well-formed. Hence we also have dJφiKEe, dJφi′KEe ` F and, us-

ing the rules (R
•∨) and (L

•∨), we get
•∨

i∈IdJφiKEe a`
•∨

i∈I φi. It re-

mains to show that dJ
•∨

i∈I φiKEe a`
•∨

i∈IdJφiKEe. Now, since JφiKE v
•⊔

i∈IJφiKE = J
•∨

i∈I φiKE, i ∈ I, the sequents dJφiKEe ` dJ
•∨

i∈I φiKEe,
i ∈ I, belong to S(L) by definition, and hence Rule (L

•∨) implies

that
•∨

i∈IdJφiKEe ` dJ
•∨

i∈I φiKEe belongs to T. On the other hand,

dJ
•∨

i∈I φiKEe `
•∨

i∈IdJφiKEe belongs to S(L) already.

Of course, there is always more than one presentation for a given dD-
semilattice, so we can not expect the composition U ◦ F to be equivalent
to Id as well.

Corollary 4.4 The category dDSL of dD-semilattices has coequalisers.

Proof. Given homomorphisms f, g: L → M we add to S(M) the sequents
df(x)e ` dg(x)e and dg(x)e ` df(x)e for all x ∈ L. In this way we obtain
a disjunctive axiom system S(M)+, and together with the generators |M |
we thus have a presentation of a dD-semilattice C. There is an obvious
embedding of (|M | , S(M)) into (|M | , S(M)+), and its image under F is a
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homomorphism m from M to C. Given the concrete descriptions we com-
puted for these constructions above, it is easy to see that m is indeed the
coequaliser of f and g.

We note that the proof of this statement suggests that there is also a
universal “inequaliser” for a parallel pair f, g, which is obtained by adding
only the sequents df(x)e ` dg(x)e to the theory of M .

5 Domains as theories

The goal of this section is to show how our framework for disjunctive proposi-
tional logic can be used to give a logical description of L-domains, analogous
to Abramsky’s celebrated domain theory in logical form for SFP-domains, [2].
A main ingredient for this application is the first author’s stable Stone dual-
ity for L-domains, [8], which establishes a dual equivalence between certain
distributive D-semilattices and algebraic L-domains. We begin by reviewing
and generalising the main ingredients of this work.

5.1 L-domains and stable open sets

Our domain-theoretic terminology and notation follows [3], specifically, a
dcpo is a poset in which every directed subset has a supremum. Scott-
continuous maps between dcpos preserve these suprema. A subset of a dcpo
is called Scott-closed if it is a lower set and closed under the formation of
directed suprema. They are the closed sets of the Scott topology.

A dcpo D is called an L-domain if for every x ∈ D, ↓x is a complete
lattice.5 An alternative definition can be given via consistent subsets, which
are non-empty subsets that are bounded above.

Proposition 5.1 A dcpo D is an L-domain if and only if every consistent
subset has an infimum.

5This terminology is somewhat in conflict with the convention in both [3] and [14]
where the word “domain” is reserved for continuous dcpos, but “L-domain” is too deeply
ingrained to make a change at this stage.
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Proof. If D is an L-domain and A bounded by x then consider the infimum y
of A in the complete lattice ↓x. Any lower bound of A also belongs to ↓x
because A 6= ∅, and hence must be below y. Conversely, all non-empty
subsets of ↓x are consistent and have a (global) infimum by assumption.
Relative to ↓x the (local) infimum of the empty set is x. This shows that ↓x
is a complete lattice.

A dcpo D is called an algebraic domain if every element of D is the di-
rected supremum of the compact elements below it. Algebraic L-domains
were discovered independently by Coquand, [9], and the second author, [20].
In the latter work it is shown that they form one of two maximal carte-
sian subcategories of the category of pointed algebraic domains with Scott-
continuous maps. See [3, Section 4] or [5, Section 5] for a discussion of
this result. Our interest in the present paper, however, is the combination
of L-domains with stable functions. This notion originated in the work of
G. Berry on models of sequential programming languages [6]; for an up-to-
date and comprehensive presentation of categories of stable functions see [5,
Chapter 12].

Definition 5.2 Let D, E be dcpos. A Scott-continuous function f : D → E
is called stable if for all x ∈ D and y ≤ f(x) there exists a least element
x′ ≤ x with y ≤ f(x′).

Proposition 5.3 Let D,E be L-domains and f a Scott-continuous function
from D to E. The following are equivalent:

(i) f is stable;

(ii) f preserves infima of consistent sets.

Proof. (i) =⇒ (ii): If A ≤ x is consistent then so is {f(a) | a ∈ A} because
Scott-continuous maps are order-preserving. Set y :=

∧
a∈A f(a) and let

x′ ≤ x be minimal with y ≤ f(x′). Since all a ∈ A are mapped above y, x′ is
a lower bound of A, from which we see that f(

∧
A) ≥ y =

∧
a∈A f(a). The

other inequality is automatic for order-preserving functions.
(ii) =⇒ (i): Assume y ≤ f(x). The set A := {x′ | x′ ≤ x and y ≤ f(x′)}

is consistent. We get f(
∧

A) =
∧

a∈A f(a) ≥ y, so
∧

A is the desired minimal
element below x.
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It is well known that Scott continuity of functions is a topological notion;
a similar statement holds in the present context. Call a subset of an L-domain
stable, if it is Scott-open and closed under infima of consistent subsets.

Proposition 5.4 For a Scott-open subset O of an L-domain the following
are equivalent:

(i) O is stable;

(ii) Every element x of O is above a unique minimal compact ele-
ment µ(x,O) of O;

(iii) O can be written as a disjoint union
•⋃

i∈I ↑αi with all αi compact.

Proof. (i) =⇒ (ii): Let x be an element of the stable open set O. The
set ↓x ∩ O is consistent and µ(x, O) :=

∧
(↓x ∩ O) belongs to O. We must

show that it is a compact element, so let (xi)i∈I be a directed family with
µ(x,O) ≤ ∨ ↑

i∈I xi. As the supremum is in the open set O, for some i0 we
must have xi0 ∈ O already. Now consider the element µ(

∨ ↑
i∈I xi, O); it must

be below µ(x,O) but because of minimality this can only mean that the two
are the same. It follows that xi0 is above µ(x,O).

(ii) =⇒ (i): Let A ≤ x be a consistent subset of the Scott-open set O.
The minimal element µ(x,O) below x is a lower bound for A in O.

The equivalence of (ii) with (iii) is immediate.

With this characterisation it is clear that the points of an algebraic L-
domain are separated by stable open sets, whereas for a general L-domain
this need not be the case:

Example 5.5 The L-domain D in Figure 2 has only one compact element,
⊥, and consequently only two stable open sets, ∅ and D.

Proposition 5.6 Let D, E be L-domains and f a function from D to E. If
f is stable, then for every stable open set O of E, f−1(O) is a stable open set
of D. If E is algebraic then the converse is true, too.
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⊥

Figure 2: A non-algebraic L-domain.

Proof. For the first statement we know already from general domain theory
that f−1(O) is Scott-open as stability subsumes Scott continuity. If A ≤ x
is a consistent subset of f−1(O) then f(

∧
A) =

∧
a∈A f(a) and this point

belongs to O as well. If follows that
∧

A ∈ f−1(O).
The second statement is shown in three nearly identical stages. We only

give the first one which establishes that f is monotone. So let x ≤ y in D
and α a compact element of E below f(x). The open set ↑α is stable, so
f−1(↑α) is stable, too, and contains x and hence y. Consequently, α ≤ f(y).
By forming the directed supremum of all compact elements below f(x) we
get f(x) ≤ f(y).

5.2 Stable Stone duality

The appropriate structure for the stable Stone dual of an L-domain is sug-
gested by the following observation:

Proposition 5.7 The stable open sets of an L-domain D form a distributive
disjunctive semilattice sn(D) when ordered by inclusion. Finite meets are
given by intersection and disjoint suprema by disjoint union.

Proof. The intersection of finitely many Scott-open sets is again Scott-open;
stability is also preserved because it is given by a closure property. Next let
(Oi)i∈I be a collection of pairwise disjoint stable open sets. A consistent

subset A ≤ x of the union O :=
•⋃

i∈I Oi must belong entirely to one compo-
nent Oi because open sets are upper. It follows that

∧
A is also contained

in Oi ⊆ O.
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Distributivity is inherited from the powerset.

For a functional view of Stone duality we observe that stable open sets on
an L-domain D are in one-to-one correspondence to stable functions from D
to S, the two-element L-domain ⊥ < ∗. This is an immediate consequence of
Proposition 5.6 as {∗} is the only non-trivial stable open set of S. We note
that the order between stable functions into S which corresponds to inclusion
between stable open sets is the pointwise one, not the “stable order” that is
usually considered in studies of stability.

As usual, the functional view allows us to give a short definition of the
contravariant functor sn from the category LDom of L-domains and stable
functions to the category DSL of disjunctive semilattices and D-semilattice
homomorphisms. The action on a stable map f : D → D′ is given by χ 7→
χ ◦ f for χ: D′ → S. Alternatively, we can write sn(f)(O) := f−1(O) and
it is this form from which one sees most easily that sn(f) is a D-semilattice
homomorphism.

In order to recover the points from a D-semilattice we make the following
definition:

Definition 5.8 Let L be a disjunctive semilattice. A disjunctive completely
prime filter F of L is a subset that is closed under finite meets and is inacces-
sible by disjoint suprema. For brevity we often use (abstract) point instead
of disjunctive completely prime filter. The set of all abstract points is denoted
by pt(L). We view it as an ordered set where the order relation is given by
inclusion between the filters.

We note that the empty set is deemed to be disjoint in our framework,
so a disjunctive completely prime filter can not contain the least element 0
of the D-semilattice. Conversely, the greatest element 1 is always a member.

Proposition 5.9 Disjunctive completely prime filters on a D-semilattice are
in one-to-one correspondence to D-semilattice homomorphisms from L to 2,
the two-element D-semilattice 0 < 1.

Classically, there is a third representation of abstract points, namely, by
meet-prime elements of the lattice, cf. [3, Section 7.1.3]. This is not available
in the disjunctive setting because the set L\F need not be disjoint, and hence
may not have a supremum. On the other hand, the following proposition is
stronger than what is available in standard Stone duality.
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Proposition 5.10 For any D-semilattice L the ordered set (pt(L),⊆) is an
L-domain.

Proof. Obviously, and analogous to the classical situation, pt(L) is a dcpo.
For the L-domain condition we employ the characterisation given in Propo-
sition 5.1. So let (Fi)i∈I be a non-empty collection of disjunctive completely
prime filters contained in another such filter F . The intersection G :=

⋂
i∈I Fi

is clearly the greatest lower bound for the Fi provided we can show that it
satisfies the conditions for an abstract point. Certainly, G is a filtered upper

set, so let A be a disjoint set of elements with
•⊔

A ∈ G. For every i ∈ I there
is then at least one element ai ∈ A ∩ Fi but in actual fact, there is precisely
one element a of A that is contained in all the Fi. Indeed, any ai belongs to
the enclosing filter F , and if ai 6= aj then ai u aj = 0 ∈ F , too, contradicting
primality.

In order to obtain a functor from DSL to LDom (the category of L-
domains and stable functions) we define pt(f): pt(L′) → pt(L) as pt(F )(χ) :=
χ ◦ f for any D-semilattice homomorphism χ: L′ → 2. It is the equivalent
definition pt(f)(F ) := f−1(F ) in terms of disjunctive prime filters, though,
which makes it apparent that pt(f) is a stable function.

To summarise:

Theorem 5.11 The assignments sn and pt form a dual adjunction between
the categories LDom and DSL.

It is somewhat unorthodox to view the set of abstract points as an ordered
set rather than as a topological space. We chose this approach because stable
open sets do not necessarily form a topology. Still, it is worthwhile to explore
the behaviour of the usual definition of the spectrum, which employs the
following sets for arbitrary elements x of the D-semilattice L:

Ox := {F ∈ pt(L) | x ∈ F}

Proposition 5.12 Every Ox is a stable open set of pt(L). Furthermore, for
every F ∈ pt(L) and every stable open set O containing F , there exists x ∈ L
such that µ(F, Ox) = µ(F,O).
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Proof. The first statement is established with two chains of equivalences:

∨↑

i∈I

Fi =
⋃

i∈I

Fi ∈ Ox ⇐⇒ x ∈
⋃

i∈I

Fi ⇐⇒ ∃i0 ∈ I. x ∈ Fi0 ⇐⇒ ∃i0 ∈ I. Fi0 ∈ Ox

and for (Fi)i∈I ⊆ F a non-empty consistent set of abstract points

∀i ∈ I. Fi ∈ Ox ⇐⇒ ∀i ∈ I. x ∈ Fi ⇐⇒ x ∈
⋂

i∈I

Fi =
∧

i∈I

Fi ⇐⇒
∧

i∈I

Fi ∈ Ox

For the second, assume F belongs to the stable open set O. By Proposi-
tion 5.4, µ(F,O) is a compact element G of pt(L). Consider the stable open
sets Ox, x ∈ G; they form a downward directed family and consequently, the
collection Fx := µ(F,Ox) is upward directed in pt(L). Note that Fx ⊆ G as
G ∈ Ox, and also that x ∈ Fx. Therefore the union of the Fx is a filter that
equals G. By compactness, for some x ∈ G, µ(F,Ox) = Fx = G = µ(F,O).

In general, it is not the case that a disjunctive semilattice has names for
all the stable open sets of pt(L), though:

Example 5.13 Let L be the frame of open sets of C, the Cantor set. We
show that every disjunctive completely prime filter F is already completely
prime in the usual sense. To this end let O :=

⋃
i∈I Oi ∈ F . O is the disjoint

union of clopen sets, so some clopen U belongs to F already. Because closed
implies compact, U is covered by finitely many Oi already. Now, each Oi is
the disjoint union of clopen sets and therefore U is covered by finitely many
of these. Although the covering collection V0, . . . , Vn may not be disjoint,
they can easily be replaced by a disjoint collection by setting V ′

0 := V0, V ′
k :=

Vk \ (V ′
0 ∪ . . .∪ V ′

k−1). One of the V ′
k must belong to F and hence the same is

true about the corresponding Oi from the original collection.
Thus the abstract points of L are exactly the elements of Cantor space C.

The order between these is trivial and therefore every subset of C is a stable
open set.

As a consequence of the adjunction between LDom and DSL, for every
L-domain D there is a stable function into the second dual, given concretely
by

η(x) := {O ∈ sn(D) | x ∈ O}
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In general, it need not be injective as Example 5.5 illustrates (where the
second dual is the one-point L-domain). On the other hand, and in contrast
to the classical situation, [17, 15], surjectivity always holds.

Theorem 5.14 For any L-domain D the canonical embedding η: D →
pt(sn(D)) is surjective. If D is algebraic then it is an order isomorphism.

Proof. Characterisation 5.4(iii) tells us that every stable open set of D is

of the form
•⋃

i∈I ↑αi where the αi’s are compact elements. Consequently, O
belongs to a disjunctive completely prime filter F if and only if ↑α belongs
to F for some compact α ∈ O. Furthermore, the sets of this shape form
a downward directed collection in F , which means that the corresponding
α’s are directed in D. Let x be their supremum, and it is immediate that
F = {O ∈ sn(D) | x ∈ O} = η(x).

Injectivity in the algebraic case is trivial as there the stable open sets ↑α,
α compact in D, separate the points.

It remains to characterise the stable Stone duals of algebraic L-domains.

Definition 5.15 An element c of a D-semilattice L is called disjunctively

completely coprime (or simply coprime) if c v
•⊔

A always implies c v a for
some element a of the disjoint subset A of L. We denote with cop(L) the set
of these elements.

We call L coprime generated if every element x is the disjoint supremum
of coprimes; we call it stable if in addition the top element 1 is coprime.

Proposition 5.16 Let L be a coprime generated D-semilattice.

(i) L is distributive (in the sense of Definition 3.2).

(ii) For each element x of L there is a unique set A of coprimes such that

x =
•⊔

A.

The proof of this is entirely straightforward and should not distract us
from stating the main result of this section.

Theorem 5.17 The dual adjunction between LDom and DSL restricts to
a dual equivalence between
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(i) algebraic L-domains and coprime generated D-semilattices;

(ii) algebraic L-domains with least element and stable D-semilattices.

Proof. For every compact element α of an L-domain D the stable open
set ↑α is disjunctively completely coprime in sn(D), so it is clear that the
stable Stone dual of an algebraic L-domain has enough coprimes. For the
converse we observe that ↑c is an abstract point whenever c is disjunctively
completely coprime in a D-semilattice L. Furthermore, it is compact in
the L-domain pt(L). If L is coprime generated, then for every disjunctive
completely prime filter F , the set of coprimes Fc := cop(L)∩F is downward
directed with F = ↑Fc. In other words, F =

∨ ↑
c∈Fc

↑c holds in the L-
domain pt(L), and this is sufficient for establishing algebraicity.

5.3 Logical description of L-domains

Our general presentation theorem 4.3 for distributive D-semilattices allows
us immediately to define a disjunctive propositional logic that characterises
a given algebraic L-domain. However, the stable Stone duals of algebraic
L-domains are coprime generated and this suggests that a more compact
representation should be possible. So let us reconsider the construction of
Section 4.2 for the coprime-generated situation. There, the forgetful functor
U :dDSL → DB created an atomic proposition for every element of the
lattice; now we will try to make do with coprime elements alone. We set
|L|c := {dxe | x ∈ cop(L)} and let the axioms be

dx1e, . . . , dxne `
•∨

i∈I

dyie iff x1 u . . . u xn v
•⊔

i∈I

yi

as before but restricted to coprime elements. Denote the set of these with
Sc(L) and the derived theory T(|L|c , Sc(L)) with Tc(L).

Our goal is to show that from Tc(L) the semilattice can be reconstructed
by computing the canonical model A(Tc(L)) (see Section 3.2). For this we
adjust the proof of Theorem 4.3. The inverse sL: L → A(Tc) to εL is now

given by x 7→ [
•∨

i∈Idxie]′T where {xi | i ∈ I} is the unique set of coprime

elements such that x =
•⊔

i∈I xi. The rest of the argument is changed as
follows:
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εL ◦ sL(x) = εL([
•∨

i∈I

dxie]′Tc
) = J

•∨
i∈I

dxieKE =
•⊔

i∈I

JdxieKE =
•⊔

i∈I

xi = x

Composition the other way round yields:

sL ◦ εL([φ]′Tc
) = sL(JφKE) = [

•∨
i∈I

dxie]′Tc
where JφKE =

•⊔
i∈I

xi

Our revised task is to show that
•∨

i∈Idxie a` φ in the theory Tc(L). As
before, we do so by induction over the structure of φ.

• φ = F : We have JF KE = 0 =
•⊔ ∅ and therefore sL(JF KE) =

•∨
i∈∅dxie =

F and the statement becomes trivial.

• φ = T : We have JT KE = 1 and assume a =
•⊔

i∈I xi. By definition,

`
•∨

i∈Idxie belongs to the axioms from which T `
•∨

i∈Idxie follows by
rule Lwk. The reverse implication follows in the same way from RT .

• φ = dxe: Now applied only to elements of cop(L), the argument remains
the same.

• φ = φ1 ∧ φ2: By induction hypothesis, we can assume Jφ1KE =
•⊔

i∈I xi,

Jφ2KE =
•⊔

j∈J yj, and
•∨

i∈Idxie a` φ1,
•∨

j∈Jdyje a` φ2. Now,

JφKE = Jφ1 ∧ φ2KE = Jφ1KE u Jφ2KE = (
•⊔

i∈I xi) u (
•⊔

j∈J yj) =
•⊔

i∈I,j∈J(xi u yj) and each element xi u yj can be written in a

unique way as
•⊔

k∈Kij
zk with all zk coprime. This last equality is

coded in the axioms because only coprime elements are mentioned:

dxie, dyje `
•∨

k∈Kij
dzke, dzke ` dxie, and dzke ` dyje. Using the rules
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of the proof system we can derive

φ = φ1 ∧ φ2

(induction hypothesis) a` (
•∨

i∈Idxie) ∧ (
•∨

j∈Jdyje)

(Proposition 2.4) a`
•∨

i∈I,j∈J(dxie ∧ dyje)

(axioms in Sc(L)) a`
•∨

i∈I,j∈J

•∨
k∈Kij

dzke

(Propositions 2.5 and 2.6) a`
•∨

k∈Si∈I,j∈J Kij
dzke

as required.

• φ =
•∨

k∈K φk: We assume JφkKE =
•⊔

i∈Ik
xk

i and φk a`
•∨

i∈Ik
dxk

i e for
all k ∈ K by induction hypothesis. Now we note that for k 6= k′

we necessarily have xk
i u xk′

j = 0 because the well-formedness of φ
requires that φk, φk′ ` F holds, and soundness translates this to JφkKE u
Jφk′KE = 0. For the theory Tc(L) this means that dxk

i e, dxk′
j e ` F is an

axiom. Together this says that we can apply propositions 2.5 and 2.6
about the associativity of disjoint disjunctions and without further ado
we obtain

φ =
•∨

k∈K

φk a`
•∨

k∈K

•∨
i∈Ik

dxk
i e a`

•∨
k∈K,i∈Ik

dxk
i e

Thus we have shown:

Theorem 5.18 For L a coprime generated D-semilattice, there is a D-
semilattice isomorphism between L and A(Tc(L)).

If the semilattice is given as the set of stable open sets of an algebraic
L-domain D, as in Theorem 5.17, then the disjunctive basis for Tc(L) can
be derived directly from the domain: The generators |L|c are in one to one
correspondence with the compact elements of D and the axioms are defined
as

dα1e, . . . , dαne `
•∨

i∈I

dβie iff ↑α1 ∩ . . . ∩ ↑αn ⊆
•⋃

i∈I

↑βi
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Figure 3: An L-domain that is not SFP.

In this formulation it becomes clear that it is not possible to restrict disjoint
disjunctions to finite index sets (as is the case in Abramsky’s logic for SFP-
domains), as there are examples of L-domains where a finite set of compact
elements has infinitely many minimal upper bounds. We depict the simplest
example in Figure 3.

We conclude by assembling the various equivalences together for a logical
representation theorem.

Theorem 5.19 Let D be an algebraic L-domain. Then D is isomorphic to
the set of models of the disjunctive propositional theory Tc(sn(D)) in the
two-element D-semilattice 2.

Proof. Remember that a “model” is just a mapping M : |sn(D)|c → 2 of the
atomic propositions into the target D-semilattice, which validates all axioms
in Sc(sn(D)). Soundness (Theorem 3.4) says that models are in one-to-one
correspondence to models of the whole of the generated theory, Tc(sn(D)).
Because of the adjunction between disjunctive bases and dD-semilattices,
Proposition 4.2, such assignments are in one-to-one correspondence to D-
semilattice homomorphisms from A(Tc(sn(D))) to 2. We have just shown
above that the construction A ◦ Tc returns an isomorphic copy for every
coprime generated D-semilattice, so we are down to D-semilattice homomor-
phisms from sn(D) to 2. In stable Stone duality, then, such maps define
disjunctive completely prime filters — the abstract points of sn(D), and so
we arrive at pt(sn(D)), which, according to Theorem 5.17 is isomorphic to
the algebraic L-domain D that we started with.

5.4 Towards continuity

From a semantics point of view, the construction of our logic is guided by
the collection of stable open sets of algebraic L-domains. An alternative
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approach, presented by Th. Ehrhard and P. Malacaria in [11], focuses instead
on what we would like to call cm-open sets ; these are those Scott-open sets
which are closed under infima of finite consistent subsets. A characterisation
analogous to Proposition 5.4 is possible: cm-open sets are exactly the disjoint
unions of Scott-open filters. In the following we discuss the relationship
between the two frameworks, which — following [5] — we label as “stable”
and “conditionally multiplicative (cm)”, respectively.

Ehrhard and Malacaria identify the Stone duals of L-domains in the cm

sense as “S-structures,” which in addition to 0,1, u, and
•⊔

also admit the for-

mation of directed joins. In fact, they show that
•⊔

and
⊔ ↑ can be subsumed

under one operation, the supremum of “disjoint directed (dd) subsets” where
the latter is defined as those non-empty subsets which contain upper bounds
for all pairs x, y for which x u y 6= 0. With a suitable notion of prime filter
on S-structures they establish a Stone-type representation theorem.

With regards to morphisms, cm-open sets are naturally associated with
conditionally multiplicative functions, i.e. those Scott-continuous maps that
preserve meets of finite consistent subsets. On continuous L-domains cm
functions are characterised by preserving cm-open sets, analogous to Propo-
sition 5.6. The representation theorem can thus be extended to a duality
between cm maps and S-structure homomorphisms.

We make the following observations. On dI-domains6 there is no dif-
ference between stable and cm-open sets. Consequently, a Scott-continuous
function between dI-domains is stable if and only if it is conditionally multi-
plicative, and therefore the two approaches coincide.

For the larger category of algebraic L-domains the two approaches are
different (in the sense that cm maps and stable maps are not the same) but
the Stone representation theorems are still closely related. Semantically, we
know that every cm-open set is the directed join of stable open sets. The
corresponding Stone duals are coprime generated S-structures and coprime
generated D-semilattices, respectively, and one would expect there to be a
left adjoint to the forgetful functor from the former to the latter. This is
indeed possible: For a give coprime generated D-semilattice L one considers
the collection of dd-ideals (which are lower dd-sets) in the poset cop(L).
Adapting the proof of [11, Proposition 1] we get:

6Distributive algebraic Scott-domains for which the subposet of compact elements sat-
isfies the descending chain condition.
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Proposition 5.20 For L a coprime generated D-semilattice, the set of dd-
ideals of cop(L) together with the empty set form a coprime generated S-
structure.

Proof. The smallest element is obviously given by the empty set and the
largest by cop(L) itself.

Meet is given by intersection, and we must show that this is disjoint
directed. So assume we are given dd-ideals A,B and a, b ∈ A ∩ B with
a u b 6= 0. There are upper bounds c ∈ A and c′ ∈ B and the infimum c u c′

is an upper bound in L. By coprime generation we have c u c′ =
•⊔

i∈I ci

with all ci coprime. Since a and b are coprime themselves, they are covered
by some ci, ci′ , respectively, but because the collection {ci | i ∈ I} is disjoint,
we must in fact have ci = ci′ and this is the desired upper bound in A ∩B.

Next consider a dd-set (Ai)i∈I of dd-ideals. We claim that the union is
again disjoint directed. For this let a ∈ Ai, b ∈ Aj be such that a u b 6= 0
in L. By prime generation there are then coprime elements below that meet
and we find that Ai ∩ Aj 6= ∅. The collection itself being disjoint directed
we conclude that there is an upper bound Ak of which both a and b are a
member; so they have an upper bound there.

The coprime dd-ideals are those of the form ↓a for a ∈ cop(L).

For a universal arrow we assign to an element x ∈ L the dd-ideal generated

by the set A of coprime elements for which x =
•⊔

A. Proposition 5.16(ii)
assures us that this is well defined. A D-semilattice map f from L to an
S-structure M is then extended to dd-ideals in the obvious way:

f̄(A) :=
⊔

a∈A

f(a)

The supremum is over a dd-set because f preserves 0 and meets, and so
f(a) u f(a′) 6= 0 implies a u a′ 6= 0. The extension preserves 0 and 1
because because f preserves them. For the preservation of meets we calculate
f̄(A ∩ B) =

⊔{f(c) | c ∈ A ∩ B} =
⊔{f(c) | c ∈ cop(L) and ∃a ∈ A, b ∈

B. c ≤ a u b} =
⊔{f(a) u f(b) | a ∈ A, b ∈ B} =

⊔
a∈A f(a) u ⊔

b∈B f(b).
The preservation of suprema of dd-subsets, finally, is shown using the general
associativity of supremum.

If we extend the setting even further to include all continuous L-domains,
then the notion of stable open set becomes too sparse to be of any use. Indeed,

41



the unit interval ([0, 1],≤), for example, has only the two trivial stable open
sets ∅ and [0, 1]. However, there are still plenty of cm-open sets to validate
Ehrhard’s and Malacaria’s representation theorem. For a logical description
of continuous L-domains, though, one would have to develop a syntax for
S-structures. This would have to capture the definition of a disjoint directed
set, which would necessitate keeping track of when two formulas do not entail
false.

Alternatively, we would like to ask whether the disjunctive propositional
logic of the present paper can be extended in such a way that all continuous
L-domains are covered. The hope that such a programme could be successful
is founded on [21]; there a finitary propositional logic is given that captures
all (coherent) continuous domains. The necessary adjustment to Abramsky’s
domain theory in logical form was to drop the identity axiom φ ` φ.
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