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Abstract

It is a pleasant fact that Stone-duality may be described very smoothly
when restricted to the category of compact spectral spaces: The Stone-
duals of these spaces, arithmetic algebraic lattices, may be replaced by
their sublattices of compact elements thus discarding infinitary operations.

We present a similar approach to describe the Stone-duals of coherent
spaces, thus dropping the requirement of having a base of compact-opens
(or, alternatively, replacing algebraicity of the lattices by continuity). The
construction via strong proximity lattices is resembling the classical case,
just replacing the order by an order of approximation.

Our development enlightens the fact that “open” and “compact” are
dual concepts which merely happen to coincide in the classical case.

Introduction

Pointless topology relies on the duality between the category of sober spaces with
continuous functions and the category of spatial frames with frame-homomor-
phisms. The origin of this subject, however, dates back to the classical Represen-
tation Theorem by Marshall Stone [Sto36], which establishes a duality between
compact zero-dimensional Hausdorff spaces and Boolean algebras. So the origi-
nal theory deals just with finitary operations on the algebraic side, whereas one
has to pay a price for the broader generality of frames: infinitary operations are
involved.

The key property of Stone spaces which makes it possible to restrict to fini-
tary operations is the fact that their lattices of open sets are algebraic. More
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precisely, they are exactly the lattices arising as ideal completions of Boolean
algebras. Having realized this, one can immediately generalize Stone’s Theorem
to distributive lattices, yielding spectral spaces as their duals (see e.g. [Joh82,
II-3]). But this is the end of the road: Ideal completions of posets are always
algebraic domains, and hence the spaces which are described in this fashion will
always have a base of compact-open sets.

The way out of this cul-de-sac is via the theory of R-structures or abstract
bases as introduced in [Smy77] and developed in [AJ94]. These sets are ‘ordered’
by an order of approximation which need not be reflexive. Ideal completion of
these structures lead to continuous domains, and, in our setting, to continuous
lattices.

Note the shift of emphasis as we pass to the continuous setting: While Stone
was concerned with a representation of Boolean algebras in topological spaces,
we are more interested in the spaces and seek to describe them via a finitary
algebraic structure. It is our goal, then, to make this description as faithful as
possible.

Similar attempts already exist in the literature, we mention [GK81] and
[Smy92] where one can find pointers to yet earlier work. Our approach differs
from theirs in that we require stronger axioms; so strong in fact, that the lattice
of open sets no longer qualifies. It is a particularly striking result of our work
that there is nevertheless a representation theorem for all coherent spaces. The
representation takes both open and compact subsets into account. We feel that
this sheds fresh light on the foundations of pointless topology.

Quite a number of equivalences between certain topological spaces and certain
complete lattices have been established and it is therefore no surprise that there
is no commonly accepted naming convention for the concepts involved. In what
follows, we will essentially use the terminology of [AJ94]. It is also our main
reference for background information.

1 Coherent spaces

We begin with the following corollary to the Hofmann-Mislove Theorem (see
[HM81, KP94]):

Theorem 1 Let X be a sober space.

1. If K is compact and if (Oi)i∈I is a directed family of open sets such that
K ⊆

⋃
i∈I Oi then K is contained in some Oi already.

2. If O is open and if (Ki)i∈I is a filtered family of compact saturated sets such
that

⋂
i∈I Ki ⊆ O then some Ki is contained in O already.

Except for the necessity to restrict to saturated compact subsets, this theorem
highlights a fundamental duality between open and compact sets. (Recall that a
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subset of a topological space is called saturated, if it coincides with the intersection
of all its neighborhoods.) A more familiar formulation would employ arbitrary
families rather than directed ones. But this does not work as the (even finite)
intersection of compact saturated sets is not necessarily compact again. If we
require this property then we have indeed a complete lattice of compact saturated
sets and the following formulation of Theorem 1 is true:

Theorem 2 Let X be a sober space for which finite intersections of compact
saturated subsets are compact.

1. Every open cover of a compact set contains a finite subcover.

2. Whenever the intersection of compact saturated sets is contained in an open
set then the same is true for an intersection of finitely many of them.

More connections between opens and compacts appear if we also require local
compactness. We arrive at what we choose to call coherent spaces, our principal
objects of interest.

Definition 3 A topological space X is called coherent if it is sober, locally com-
pact and if intersections of finite families of compact saturated sets are compact.

We denote the set of open sets of X by TX and order it by inclusion. The set
of compact saturated sets is denoted by KX and is ordered by reversed inclusion.

Theorem 4 Let X be a coherent space.

1. TX and KX are arithmetic lattices.

2. In TX we have O ≪ O′ if and only if there is K ∈ KX with O ⊆ K ⊆ O′.

3. In KX we have K ≪ K ′ if and only if there is O∈TX with K ′ ⊆ O ⊆ K.

The terminology arithmetic lattice is adopted from [AJ94] (it was used in
[GHK+80] for the algebraic version). It comprises completeness, distributivity,
continuity, and the following multiplicativity property:

x≪ y, z =⇒ x≪ y ∧ z .

We will also assume 1 ≪ 1 for convenience. We cite the following converse to
Theorem 4 from [GHK+80]:

Theorem 5 Arithmetic lattices are spatial and their spaces of points are coher-
ent.
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Our theory of strong proximity lattices will connect up with coherent spaces
via arithmetic lattices. In particular, we will not need to use the Axiom of Choice
for the correspondence. It is present, of course, through the duality of coherent
spaces and arithmetic lattices.

The basic topological concepts on the two sides of Stone duality take the
following forms:

(spatial) frame (sober) space
completely prime filter element

Scott-open filter compact saturated set
element open set

We may point out that on the side of frames the duality between opens and
compacts is rather opaque. Proximity lattices, as we will see below, behave far
better in this respect.

2 Proximity lattices

Definition 6 A proximity lattice is given by a distributive bounded lattice (B;∨,∧, 0, 1)
together with a binary relation ≺ on B satisfying ≺2 = ≺. We call (B;∨,∧, 0, 1)
the algebraic structure of the proximity lattice and (B;≺) the approximation
structure. The two structures are connected through the following two axioms:

(∨-≺) ∀a ∈ B ∀M ⊆fin B. M ≺ a ⇐⇒
∨
M ≺ a ;

(≺-∧) ∀a ∈ B ∀M ⊆fin B. a ≺M ⇐⇒ a ≺
∧
M ;

Here we write a ≺ M for ∀m ∈ M. a ≺ m and M ≺ a for ∀m ∈ M. m ≺ a. If
x ≺ y, we also say that x approximates y.

There are various sets of axioms in the literature featuring under the name
of proximity lattices. The particular choice we made is very close to the ones
found in [GK81, Smy86, Smy92]. Unlike these previous accounts, we do not
require the order of approximation ≺ to be contained in the order ≤ derived
from the lattice structure. In fact, we rather think of ≺ replacing ≤. We do not
employ the lattice order in our arguments. This is reflected by the fact that the
notations ↑ and ↓ refer to ≺ rather than to ≤: For subsets A of B, we define
↑A = {x ∈ X | ∃a ∈ A. a ≺ x} and ↓A = {x ∈ X | ∃a ∈ A. x ≺ a}. Moreover,
↑x and ↓x stand for ↑{x} and ↓{x}, respectively.

Note that our definition is self-dual, i.e. Bop = (B;∧,∨, 1, 0;≻) is a proximity
lattice if B is. Let us start with stating some simple consequences of the axioms
enlightening the interplay of algebraic and approximation structure.

Lemma 7 If (B;∨,∧, 0, 1;≺) is a proximity lattice and a, b, a′, b′ ∈ B, then:
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1. 0 ≺ a ≺ 1,

2. a ≺ b =⇒ a ≺ b ∨ b′,

3. a ≺ b =⇒ a ∧ a′ ≺ b,

4. a ≺ a′ & b ≺ b′ =⇒ a ∨ b ≺ a′ ∨ b′,

5. a ≺ a′ & b ≺ b′ =⇒ a ∧ b ≺ a′ ∧ b′.

Proof. Put M = ∅ in (∨-≺) and (≺-∧) to get (1). The second assertion holds
by (≺-∧) and the fact that b = b ∧ (b ∨ b′). If we assume a ≺ a′ and b ≺ b′,
then (2) gives us {a, b} ≺ a′ ∨ b′. Now (∨-≺) yields (4). Finally, (3) and (5)
follow by symmetry.

3 Ideals and open sets

Definition 8 Suppose (B;∨,∧, 0, 1;≺) is a proximity lattice. We define the set
of all ideals on B by

Idl(B) = {I ⊆ B | I = ↓I, M ⊆fin I =⇒
∨

M ∈ I} .

Observe that the condition I = ↓I implies that for each x ∈ I there is y ∈ I
with x ≺ y. Since ≺ is not necessarily reflexive this is a non-trivial condition.
Some authors emphasize this by using the term ‘round ideal’.

Lemma 9 Let B be a proximity lattice and I ∈ Idl(B). Then for all a, b ∈ B:

1. a ∨ b ∈ I ⇐⇒ (a ∈ I & b ∈ I),

2. a ∈ I =⇒ a ∧ b ∈ I.

Proof. To prove (1), assume a∨ b ∈ I. Then there is x ∈ I with a∨ b ≺ x since
I ⊆ ↓I. Now (∨-≺) implies a ≺ x and b ≺ x. Thus {a, b} ⊆ I since x ∈ I and
↓I ⊆ I. The reverse implication holds by definition. By a = a ∨ (a ∧ b), (2) is a
trivial consequence of (1).

Let us now have a closer look at the set of ideals.

Lemma 10 Suppose (B;∨,∧, 0, 1;≺) is a proximity lattice. Then ↓x is an ideal
for each x ∈ B. Moreover I =

⋃
x∈I ↓x for every I ∈ Idl(B), and this union is

directed.

Proof. The first claim is immediate from the axioms. Clearly, ↓x ⊆ ↓I ⊆ I
for each x ∈ I, hence

⋃
x∈I ↓x ⊆ I. In order to see that this union is directed

suppose x, y ∈ I. Then x ∨ y ∈ I. Since I ⊆ ↓I, this implies the existence of
z ∈ I with x ∨ y ≺ z, hence x ≺ z and y ≺ z. Therefore we have ↓x ∪ ↓y ⊆ ↓z,
i.e. directedness. Finally, choosing x = y in this proof gives for each x ∈ I a
z ∈ I with x ∈ ↓z, thus I ⊆

⋃
x∈I ↓x.
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Theorem 11 Suppose that (B;∨,∧, 0, 1;≺) is a proximity lattice. Then (Idl(B),⊆)
is an arithmetic lattice. Finite infima are intersections, general infima are given
by ∧

j∈J

Ij = ↓
⋂

j∈J

Ij .

Directed suprema are unions, general suprema are calculated by
∨

j∈J

Ij = ↓{
∨

M |M ⊆fin

⋃

j∈J

Ij} .

The order of approximation is given by I ≪ J ⇐⇒ ∃x ∈ B. I ⊆ ↓x ⊆ J.

Proof. By Lemma 7(4), ↓C is closed under suprema if C ⊆ B is. Hence
↓
⋂

j∈J Ij is an ideal, clearly being the greatest lower bound of {Ij | j ∈ J}. It is
a standard observation that the directed union of a family of ideals is an ideal,
hence directed suprema are indeed just unions. To see that finite infima are
intersections, it suffices to prove A∩A′ = ↓(A∩A′). One always has ↓(A∩A′) ⊆
↓A ∩ ↓A′ = A∩A′. For the other inclusion observe that if x ∈ A∩A′ then there
exist a ∈ A, a′ ∈ A′ with x ≺ a, a′, so x ≺ a ∧ a′ ∈ A ∩ A′.

By Lemma 10, we have I =
∨↑{↓x | x ∈ I}. This implies that I ≪ J iff

there is some x ∈ B with I ⊆ ↓x ⊆ J and moreover that the lattice is continuous.
Multiplicativity follows from the characterization of the approximation order and
Axiom (≺-∧).

Next we verify the correctness of the second formula. To this end let (Ij)j∈J
be a collection of ideals and denote ↓{

∨
M | M ⊆fin

⋃
j∈J Ij} by A. We show

that this defines an ideal. It is clear that ↓A = A because ≺2=≺. For the
closure under suprema let N ⊆fin A. By definition, each n ∈ N approximates the
supremum of some Mn ⊆fin

⋃
j∈J Ij. By Lemma 7(4),

∨
N ≺

∨⋃
n∈N Mn and so∨

N ∈ A.
Each Ij is contained in

⋃
j∈J Ij and as ↓ is monotone we get Ij = ↓Ij ⊆

↓
⋃

j∈J Ij. The last set is contained in A because the definition includes suprema
of singleton sets. So A is an upper bound for the Ij.

If, on the other hand, A′ is an ideal which contains all Ij then it must also
contain suprema of finite subsets of

⋃
j∈J Ij. Hence it will contain A.

Finally distributivity. We have to show A ∧ (C ∨ C ′) ⊆ (A ∧ C) ∨ (A ∧ C ′).
So assume that x ∈ B belongs to A ∧ (C ∨ C ′) = A ∩ (C ∨ C ′). Then x ∈ A
and x ≺

∨
M for some M ⊆fin C ∪ C ′. Because A ⊆ ↓A there exists a ∈ A with

x ≺ a. Now we can use (≺-∧) and we get x ≺ a ∧
∨
M =

∨
m∈M(a ∧ m). All

elements a ∧m belong to either A ∩ C = A ∧ C or A ∩ C ′ = A ∧ C ′. Hence x is
in (A ∧ C) ∨ (A ∧ C ′).

From Theorem 5 it follows that proximity lattices are indeed a finitary de-
scription of coherent spaces:

Corollary 12 Suppose that (B;∨,∧, 0, 1;≺) is a proximity lattice. Then pt(Idl(B))
is a coherent space and Idl(B) is isomorphic to its lattice of open subsets.
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4 Filters and compact saturated subsets

Filters in a proximity lattice are defined dually to ideals. They are denoted by
filt(B). Because our definition of proximity lattice is self-dual the results of the
preceding section hold also for filters and the filter completion.

We want to show that filters correspond to compact saturated subsets of the
coherent space described. In preparation for this we look at a more general
correspondence.

Definition 13 Let (B;∨,∧, 0, 1;≺) be a proximity lattice. We call a subset U
of B upper if U = ↑U holds. The collection of all upper sets is denoted by upper(B).

Lemma 14 Let (B;∨,∧, 0, 1;≺) be a proximity lattice. Then σIdl(B) (the Scott-
topology on Idl(B)) is isomorphic to the set of upper sets of B. The isomorphisms
are

φ: σIdl(B) → upper(B), U 7→ {x ∈ B | ↓x ∈ U}

and
ψ: upper(B) → σIdl(B), U 7→ {A ∈ Idl(B) | A ∩ U 6= ∅} .

Proof. We first show that φ is well-defined. Clearly, φ(U) is upwards closed
with respect to ≺. It equals ↑φ(U) because ↓x ∈ U and ↓x =

∨
↑
y≺x ↓y imply

↓y ∈ U for some y ≺ x as U is Scott-open.
Next, let us check the well-definedness of ψ. Again, it is clear that ψ(U) is

an upwards closed subset of Idl(B). We show that ψ(U) is Scott-open. Assume∨
↑
j∈J Aj =

⋃
j∈J Aj ∈ ψ(U). This means

⋃
j∈J Aj∩U 6= ∅ and so there is some Aj

for which the intersection with U is non-empty. This ideal then belongs to ψ(U).
It is clear that both φ and ψ are monotone.
The two functions compose to identities. We first check this for ψ ◦ φ:

ψ ◦ φ(U) = {A | A ∩ φ(U) 6= ∅}

= {A | A ∩ {x | ↓x ∈ U} 6= ∅}

= {A | ∃x ∈ A. ↓x ∈ U}

The last set is equal to U . One inclusion is true because U is upwards closed, the
other because A =

∨
↑
x∈A ↓x and U is Scott-open.

The calculation for φ ◦ ψ reads

φ ◦ ψ(U) = {x | ↓x ∈ ψ(U)}

= {x | ↓x ∈ {A | A ∩ U 6= ∅}}

= {x | ↓x ∩ U 6= ∅}

The last set is equal to U . For one inclusion use that ↑U ⊆ U , for the other that
U ⊆ ↑U . This completes the proof.
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Let us now turn to compact saturated sets. By the Hofmann-Mislove The-
orem (cf. [AJ94], Theorem 7.2.9, and also [KP94, HM81]) we know that KX is
isomorphic to the set of Scott-open filters on the lattice of opens. We relate these
to filters on proximity lattices as follows:

Lemma 15 Let (B;∨,∧, 0, 1;≺) be a proximity lattice. The isomorphisms in
Lemma 14 cut down to isomorphisms between the set of Scott-open filters on
Idl(B) and filt(B).

Proof. All we need to show is the well-definedness of φ and ψ. First of all,
both functions preserve the property that the set they are applied to is non-
empty, simply because they are isomorphisms and map the empty set onto the
empty set. In the case of φ we use the fact that ↓(x ∧ y) = ↓x ∩ ↓y by (≺-∧).
Hence x ∧ y belongs to φ(F) if x and y do. Finally, let us show that ψ(F ) is a
filter. Assume A,A′ ∈ ψ(F ). This is by definition equivalent to A ∩ F 6= ∅ and
A′ ∩ F 6= ∅. Let a and a′ be elements from the intersections. By Lemma 9(2), it
follows that a ∧ a′ belongs to (A ∩ A′) ∩ F .

Theorem 16 If (B;∨,∧, 0, 1;≺) is a proximity lattice then (Kpt(Idl(B)),⊇) ∼=
(filt(B),⊆).

5 Strong proximity lattices

The results achieved so far are quite pleasing. The duality between compact and
open sets is apparent. There are two issues, however, in which we fall short of
a good finitary description of coherent spaces. The first is that we haven’t yet
said how to recover the points themselves from a proximity lattice. Indeed, a
rather complicated definition is needed as can be seen from [Smy92]. The second
shortcoming is more subtle. We ask what the tokens of a proximity lattice stand
for. One would think that an element a ∈ B represents the open set ↓a and,
dually, also the compact saturated set ↑a. This, however, conflicts with the
algebraic structure of the proximity lattice, unless we add further axioms.

Proposition 17 Suppose (B;∨,∧, 0, 1;≺) is a proximity lattice. Then the map
↓:B → Idl(B) preserves finite infima and 0. It preserves binary suprema (and
hence is a lattice homomorphism) iff B satisfies

(≺-∨) ∀a, x, y ∈ B. a ≺ x ∨ y =⇒ ∃x′, y′ ∈ B. x′ ≺ x, y′ ≺ y & a ≺ x′ ∨ y′.

Proof. Preservation of 0 and 1 is immediate. Moreover ↓(a ∧ b) = ↓a ∩ ↓b by
(≺-∧). By Theorem 11, the latter equals ↓a ∧ ↓b.

By the formula for the supremum in Theorem 11, we have x ∈ ↓a∨↓b iff there
are a′ ≺ a, b′ ≺ b with a ≺ a′ ∨ b′. Requiring ↓ to preserve ∨ means requiring
that this holds iff x ∈ ↓(a∨ b), i.e. iff x ≺ a ∨ b. This condition is exactly (≺-∨).
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It appears that we should add (≺-∨) to the list of our axioms. But an anal-
ogous result holds for filters and the map ↑:B → filt(B). So we should also
include

(∧-≺) ∀a, x, y ∈ B. x ∧ y ≺ a =⇒ ∃x′, y′ ∈ B. x ≺ x′, y ≺ y′ & x′ ∧ y′ ≺ a.

We arrive at our main definition:

Definition 18 A strong proximity lattice is a proximity lattice additionally sat-
isfying (≺-∨) and its dual (∧-≺).

From Proposition 17 we see that the tokens of a strong proximity lattice are
very concrete in the sense that each of them stands for a particular open set and
also for a particular compact saturated set. The algebraic operations in the lattice
translate into actual union and intersection under this reading. Furthermore, the
order of approximation corresponds to the way-below relation on the respective
lattices. As a by-product, we can now also recover the points of the coherent
space in a simple fashion:

Definition 19 Suppose (B;∨,∧, 0, 1;≺) is a strong proximity lattice. Let the
spectrum of B comprise all prime filters of B:

spec(B) = {F ∈ filt(B) | (M ⊆fin B &
∨

M ∈ F ) =⇒M ∩ F 6= ∅}.

For x ∈ B define the basic open set

Ox = {F ∈ spec(B) | x ∈ F}.

Finally, let TB denote the topology on spec(B) generated by the sets Ox, x ∈ B.
We refer to it as the canonical topology.

Lemma 20 Suppose (B;∨,∧, 0, 1;≺) is a strong proximity lattice and a, b ∈ B.
Then Oa ∩Ob = Oa∧b and Oa ∪Ob = Oa∨b. Hence the Oa form indeed a base for
the canonical topology on spec(B) (rather than merely a subbase).

Proof. The first assertion holds by the dual of Lemma 9(1), the second by
primeness of elements of spec(B).

Theorem 21 Let (B;∨,∧, 0, 1;≺) be a strong proximity lattice. The isomor-
phism in Lemma 14 cuts down to a homeomorphism between pt(Idl(B)) and
spec(B).
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Proof. For bijectivity it remains to show that φ and ψ preserve finitary prime-
ness of filters. To this end let M ⊆fin B and

∨
M ∈ φ(F). We use the fact that ↓

preserves finite suprema and get
∨

m∈M ↓m = ↓
∨
M ∈ F . Since F is prime,

some ↓m0 belongs to it and its generator m0 belongs to φ(F).
Assuming that F is a prime filter in B, we show that ψ(F ) is completely

prime. Assume
∨

j∈J Aj ∈ ψ(F ). This means
∨

j∈J Aj ∩ F 6= ∅ and so there is
M ⊆fin

⋃
j∈J Aj and a ∈ F with a ≺

∨
M . Since F is upwards closed it also

contains
∨
M and since it is prime it contains some m0 ∈ M . This m0 came

from some Aj0 which therefore belongs to ψ(F ).
Recall that the topology on pt(Idl(B)) is given by the collection of all OA =

{F ∈ pt(Idl(B)) | A ∈ F}, A ∈ Idl(B). We check that it translates into the
canonical topology on spec(B) under ψ−1:

ψ−1(OA) = ψ−1({F ∈ pt(Idl(B)) | A ∈ F})

= {F ∈ spec(B) | A ∈ ψ(F )}

= {F ∈ spec(B) | A ∩ F 6= ∅}

=
⋃

a∈A

{F ∈ spec(B) | a ∈ F} =
⋃

a∈A

Oa .

The translation for φ−1 reads:

φ−1(Oa) = φ−1({F ∈ spec(B) | a ∈ F})

= {F ∈ pt(Idl(B)) | ↓a ∈ F} = O↓a .

We summarize the situation in the following table which should be contrasted
to the one at the end of Section 1.

strong proximity lattice coherent space
prime filter element

ideal open set
filter compact saturated set

6 The representation theorem

So far, we did only one half of the work due: all strong proximity lattices are de-
scriptions of certain coherent spaces. What is missing is a construction which
assigns to an arbitrary coherent space X a strong proximity lattice B with
spec(B) ∼= X. In the classical case of spectral spaces one takes the lattice of
all compact-open subsets of X. There is no base of compact-opens in our situa-
tion, so this does not work. The naive approach of taking for B (a base of) the
topology TX of X together with the lattice operations on TX and ≪ as order of
approximation (i.e. O ≺ O′ iff there is some K ∈ KX with O ⊆ K ⊆ O′) does
not work either; Axiom (∧-≺) is violated.
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Example 22 The unit interval with the standard Hausdorff topology is a coher-
ent space. One has [0, 1

2
) ∩ (1

2
, 1] = ∅ ≪ ∅, but for no open sets O, O′ with

[0, 1
2
) ≪ O and (1

2
, 1] ≪ O′, the intersection O ∩O′ is empty.

This failure is not surprising; the classical construction relies on both prop-
erties of compact-open sets, openness and compactness. If we want to capture
both, we have to consider pairs (O,K) consisting of an open set O and a compact
set K. What ought to be the order of approximation, replacing subset inclusion
in the classical case? Now O ⊆ O′ for compact-opens means in fact that O′ is
a compact neighborhood of O. These thoughts lead to the idea that one should
define (O,K) to approximate (O′, K ′) if K ⊆ O′. These definitions do indeed
work. We define

• B := {(O,K) ∈ TX ×KX | O ⊆ K}

• (O,K) ∨ (O′, K ′) := (O ∪O′, K ∪K ′)

• (O,K) ∧ (O′, K ′) := (O ∩O′, K ∩K ′)

• 0 := (∅, ∅); 1 := (X,X)

• (O,K) ≺ (O′, K ′) : ⇐⇒ K ⊆ O′

Theorem 23 If X is a coherent space, then the above defined structure is a
strong proximity lattice with X ∼= spec(B).

Proof. It is clear that (B;∨,∧, 0, 1) is a distributive lattice and that ≺ ◦ ≺ ⊆
≺. On the other hand, local compactness of X implies that whenever K ⊆ O for
compact K and open O, there are O′ ∈ TX and K ′ ∈ KX with K ⊆ O′ ⊆ K ′ ⊆ O,
hence ≺ is interpolating.

Now for the axioms: (∨-≺) and (≺-∧) hold trivially since all operations and
relations involved are set-theoretic.

For (≺-∨) assume that K ⊆ O1∪O2. Each x ∈ K belongs to either O1 or O2.
In each case we have Ox and Kx with x ∈ Ox ⊆ Kx ⊆ O1/2 by local compactness.
Since K is compact, it is covered by finitely many Ox which may be grouped as
belonging to O1 or O2. This gives the interpolating neighborhoods.

For (∧-≺) assume K1 ∩ K2 ⊆ O for an open set O and compact saturated
sets K1, K2. Since KX is arithmetic, we have Ki =

⋂
{K ′

i | K
′
i ≪ Ki}, i = 1, 2,

and hence K1 ∩ K2 =
⋂
{K ′

1 ∩ K ′
2 | K ′

1 ≪ K1, K
′
2 ≪ K2}. This is a filtered

intersection of compact saturated sets and Theorem 1 tells us that some K ′
1∩K

′
2

is contained in O already.
Finally, we have to verify X ∼= spec(B). As both spaces are sober, it suffices

to prove their topologies isomorphic. To this end, define Ψ: (TX ,⊆) → Idl(B,⊆)
and Φ: Idl(B,⊆) → (TX ,⊆) by

Ψ(O) = ↓(O,X) and Φ(I) =
⋃

{O | ∃K ∈ KX . (O,K) ∈ I}.

11



It is clear that these maps are well-defined and monotone. It remains to verify
them being inverses: Φ(Ψ(O)) =

⋃
{O′ | ∃K ∈ KX . O

′ ⊆ K ⊆ O} = O holds by
local compactness, hence Φ ◦Ψ = idTX . Moreover, we have

(O,K) ∈ Ψ(Φ(I)) ⇐⇒ (O,K) ≺ (Φ(I), X)

⇐⇒ K ⊆
⋃

{O′ ∈ TX | ∃K ′ ∈ KX . (O
′, K ′) ∈ I}

⇐⇒ K ⊆ O′ for some O′ with (O′, K ′) ∈ I

⇐⇒ (O,K) ∈ I,

where the last equivalence holds since I = ↓I and the second last by compactness
of K and I’s being an ideal. Thus Ψ ◦ Φ = idIdl(B).

Theorem 24 The spectra of strong proximity lattices are precisely the coherent
spaces.

In case the order of approximation on the strong proximity lattice is reflexive,
we find ourselves in the world of algebraic lattices and totally disconnected spaces.
The Stone duality of this situation has been described in [Joh82, II-3]. Note the
strong resemblance between our constructions and the classical situation. Indeed,
if we take the lattice-order as order of approximation, then all axioms are satisfied
automatically and the situation reduces to the classical one.

7 Morphisms

We have already emphasized that it is not our purpose to represent proximity
lattices in the category of topological spaces but rather the other way round, we
developed strong proximity lattices to get a finitary and faithful representation of
coherent spaces. It is therefore our task to describe arbitrary continuous functions
between coherent spaces. It is well-known that this can not be done with functions
between proximity lattices but that one has to resort to certain relations.

Definition 25 Let (A;∨,∧, 0, 1;≺A) and (B;∨,∧, 0, 1;≺B) be strong proximity
lattices. A binary relation G ⊆ A × B is called approximable if the following
conditions are satisfied:

(G-≺) G ◦ ≺B = G;

(≺-G) ≺A ◦ G = G;

(∨-G) ∀M ⊆fin A ∀b ∈ B. M G b ⇐⇒
∨
M G b;

(G-∧) ∀a ∈ A ∀M ⊆fin B. a G M ⇐⇒ a G
∧
M ;

12



(G-∨) ∀a ∈ A ∀M ⊆fin B. a G
∨
M =⇒ ∃N ⊆fin A. a ≺A

∨
N & ∀n ∈ N

∃m ∈M. n G m.

We write G:A → B for an approximable relation from A to B. Composition of
approximable relations is via the relational product ◦.

Note the strong resemblance between these axioms and the definition of strong
proximity lattices themselves. (We could have also included the empty supremum
and the empty infimum in the axioms (≺-∨) and (∧-≺), respectively: These
cases trivially hold.) Indeed, the order of approximation on a strong proximity
lattice gives rise to the identity approximable relation. We also observe that the
definition does not include an analogue of (∧-≺), the dual of (G-∨). This is due
to the fact that the concept of a continuous function is inherently non-symmetric.

Theorem 26 The category of strong proximity lattices and approximable rela-
tions is equivalent to the category of coherent spaces and continuous functions.

Proof. One first has to check that approximable relations indeed give rise to a
category. As we have said already, the orders of approximation themselves play
the role of identity morphisms. The laws for a category are then straightforward
to verify.

We show the one-to-one correspondence between approximable relations and
continuous functions by once again making use of the already established duality
with the category of arithmetic lattices and frame homomorphisms.

If G ⊆ A× B is an approximable relation then we let

hG: Idl(B) → Idl(A), hG(I) := {a ∈ A | ∃b ∈ I. a G b}

be the corresponding frame homomorphism. This result of applying hG gives
an ideal because of (≺-G) and (∨-G). It is clear that hG is monotone. Simple
calculations show that it preserves finite infima and arbitrary suprema.

For the converse, assume that h: Idl(B) → Idl(A) is a frame homomorphism.
We define a relation Gh⊆ A×B as follows:

a Gh b : ⇐⇒ a ∈ h(↓b) .

Again, it is straightforward that this relation satisfies the axioms for an approx-
imable relation.

The two translations are inverses of each other:

hGh
(I) = {a ∈ A | ∃b ∈ I. a Gh b}

= {a ∈ A | ∃b ∈ I. a ∈ h(↓b)}

=
⋃

b∈I

h(↓b) =
∨

b∈I

h(↓b)

= h(
∨

b∈I

↓b) = h(I)

13



and

a GhG
b ⇐⇒ a ∈ hG(↓b) = {x ∈ A | ∃b′ ≺B b. x G b′}

⇐⇒ ∃b′ ≺B b. a G b′

⇐⇒ a G b

where the last equivalence holds because of (G-≺).

8 The cocompact topology

Coherent spaces have been studied in many different guises and there are at
least three different names for them in the literature. The first appearance is in
[Nac65] where they are called compact ordered spaces. Connections with Stone
duality are contained in [GHK+80], Section V.5 and VII.3. Finally, they have
been characterized as supersober spaces in [GHK+80], Section VII.1 and [Law88].
In more recent work, coherent spaces are investigated as the adequate substitute
for compact Hausdorff spaces in non-symmetric topology [Law91, Kop94]. From
all these sources, we collect the following facts:

Facts. If (X, T ) is a coherent space, then Tc, the collection of all complements of
compact saturated sets forms the cocompact topology on X. The patch topology
Tp = T ∨ Tc is a compact Hausdorff topology on X such that (X, Tp,≤T ) is a
compact ordered space. Starting with a compact ordered space (X, T ,≤), the
open upper sets form a topology T# such that (X, T#) is coherent. The cocompact
topology for T# consist of all T -open lower subsets and (T#)p coincides with T .

In this section, we want to make the relationship between a strong proximity
lattice B, its spectrum spec(B), its dual Bop, and the cocompact topology on
spec(B) explicit. We know from Theorem 16 that for any proximity lattice B,
the set Kpt(Idl(B)) is isomorphic to filt(B). So the cocompact topology on pt(Idl(B))
equals filt(B) which in turn is the topology on pt(Idl(Bop). For strong proximity
lattices, this isomorphism is manifested on the point-level, too. There it turns
out to be essentially complementation of prime filters/ideals. But let us first turn
our attention to the compact saturated subsets.

Theorem 27 Let (B;∨,∧, 0, 1;≺) be a strong proximity lattice. Then the map
comp: (filt(B),⊆) → (Kspec(B),⊇) with

comp(K) = {F ∈ spec(B) | K ⊆ F}

is an isomorphism. Its inverse is given by K 7→
⋂
K : Kspec(B) → filt(B).

Proof. The isomorphism of the Hofmann-Mislove-Theorem maps a compact
saturated set K to its filter of open neighborhoods; if the elements of K are

14



given as completely prime filters, then this is their intersection. Thus we get
for K ∈ Kspec(B):

K 7−→ {ψ(F ) | F ∈ K} via Theorem 21
7−→

⋂
{ψ(F ) | F ∈ K} via the HM-Theorem

7−→ φ(
⋂
{ψ(F ) | F ∈ K}) via Lemma 15

=
⋂
{φ(ψ(F )) | F ∈ K} since φ preserves

⋂

=
⋂
K since φ = ψ−1.

Going the other way, the Hofmann-Mislove-Isomorphism maps a Scott-open
filter G of opens to its intersection which consists of all points with neighborhood
filter containing G. Therefore, we calculate for K ∈ filt(B):

K 7−→ ψ(K) via Lemma 15
7−→ {F ∈ pt(Idl(B)) | ψ(K) ⊆ F} via the HM-Theorem
= {F ∈ pt(Idl(B)) | K ⊆ φ(F)} since φ = ψ−1

7−→ {φ(F) | F ∈ pt(Idl(B)); K ⊆ φ(F)} via Theorem 21.

As φ: pt(Idl(B)) → spec(B) is in particular surjective, the latter set equals comp(K).

Theorem 28 Let (B;∨,∧, 0, 1;≺) be a strong proximity lattice. Then the spaces
(spec(B), (Tspec(B))c) and (spec(Bop), Tspec(Bop)) are homeomorphic via

F 7→ ↓(B \ F ).

Moreover, the frame isomorphism between filt(B) ∼= (Tspec(B))c and Idl(Bop) ∼=
Tspec(Bop) arising from this homeomorphism is the identity.

Proof. We first have to check that I := ↓(B \ F ) is a prime ideal for F ∈
spec(B). Clearly I = ↓I. Moreover, B \ F is closed under suprema since F is
prime. Hence I is indeed an ideal by Lemma 7(4). To see primeness, we have to
employ (∧-≺): Suppose a∧ b ∈ I. Then there is x ∈ B \F with a∧ b ≺ x. Axiom
(∧-≺) gives us a′, b′ ∈ B with a ≺ a′, b ≺ b′ and a′ ∧ b′ ≺ x. The last relation
implies a′ ∧ b′ /∈ F since otherwise we had x ∈ F . Hence one of a′, b′ is not an
element of F because this is a filter. Thus a ∈ I or b ∈ I.

By symmetry, ↑(B \ I) is a prime filter if I is a prime ideal. For bijectivity, it
remains to check ↑(B \ ↓(B \ F )) = F which is routine.

By Theorem 21, every open set on spec(Bop) is of the form

Oop
K = {I ∈ spec(Bop) | I ∩K 6= ∅}

for some K ∈ Idl(Bop) = filt(B). We calculate for F ∈ spec(B) and K ∈ filt(B):

↓(B \ F ) ∈ Oop
K ⇐⇒ ↓(B \ F ) ∩K 6= ∅

⇐⇒ (B \ F ) ∩K 6= ∅ since K = ↑K

⇐⇒ K 6⊆ F

⇐⇒ F ∈ spec(B) \ comp(K)
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So the map is indeed a homeomorphism and gives rise to the identity as the
corresponding frame-isomorphism.

Hence the table of Section 5 should be augmented by a third column:

strong proximity lattice spectrum dual spectrum
prime filter or prime ideal element element

ideal open set compact saturated set
filter compact saturated set open set

Again, restricting to the reflexive case leads to familiar territory. Priest-
ley duality combines the correspondence between spectral spaces and distribu-
tive lattices with that between spectral spaces and their patches, totally order-
disconnected compact ordered spaces. An account of this theory may be found
in Chapter 10 of [DP90].
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