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Preface

In this work I have collected seven publications, which were written during the years

1989{93, some of them under joint authorship. The order, in which they appear here,

is not the chronological one. Rather, I have tried to give some perspective on my

work by grouping them into four chapters according to the computational paradigm

with which my co-authors and I were concerned at the time. Each chapter begins

with an explanatory text which has been written for the present purpose. It contains

some additional information on how the papers �t into the general plan laid out in

the Introduction. Furthermore, I try to give an honest account of the respective

contribution in the case of joint authorship as it is required by the \Habilitations-

ordnung" of \Technische Hochschule Darmstadt". Finally, I give an overview of

further developments in the area inasmuch as they are related to my own research.

The papers appear here almost exactly as they have appeared in the various pro-

ceedings and journals but some changes seemed necessary. These are the following.

Firstly, I have tried to unify the use of mathematical symbols to some extent. Sec-

ondly, the references all appear in a single bibliography at the end of the text. Where

possible, I have also updated the bibliographical entries by giving precise coordinates

where previously the work had been cited as \to appear". Finally, information about

authorship has been moved into the explanatory text with which each chapter be-

gins. That seemed also the right place for the various acknowledgements. Surely,

more pruning could have been done and there remains a certain amount of redun-

dancy in the introductory parts of the papers. For that I have to beg the readers'

forbearance.

This is a proper occasion to express my gratitude to a number of people without

whose support this work would not have been possible. I begin by thanking my

colleagues Ji�r�� Ad�amek, Bard Bloom, Peter Buneman, Carl Gunter, Michael Mislove,
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Maurice Nivat, Jan Paseka, Frank Pfenning, Andy Pitts, Phil Scott, Allen Stoughton,

Paul Taylor, and Glynn Winskel, at whose invitation I could meet and talk to the

leading researchers in my �eld. I am grateful for their hospitality and initiative.

I thank Samson Abramsky for o�ering me a research position at Imperial College.

The knowledge I gained during those nine month { mostly in discussion with him {

has proven to be a solid and reliable foundation for understanding developments in

the theory of programming as well as for conducting original research myself. I am

grateful for his invitation to participate in the ESPRIT project \Categorical Logic

in Computer Science II" which allows me to keep in contact with the very front of

theoretical computer science research.

I thank my home department at the \Technische Hochschule Darmstadt" for

supporting my activities by allowing me to invite guest professors (two papers in this

collection were initiated during such visits) and by encouraging me to o�er regular

courses.

I thank Karl Heinrich Hofmann and Klaus Keimel for cooperating in the seminar

series of the \Arbeitsgruppe Domains" (running now for more than �ve years) and

for giving me a free hand to select topics and supervise students.

This alone does not give a true account of my intellectual and scienti�c debts to

Klaus Keimel. I wished I could claim for myself just a fraction of his clear judgement,

his sincerity, and his unfailing supportiveness, from which I have pro�tted so much.

I thank my co-authors Peter Buneman, Carl Gunter, Atsushi Ohori, Hermann

Puhlmann, Allen Stoughton, and Jerzy Tiuryn for their enthusiasm, without which

some of these papers would never have been written at all.

And I will not forget to thank Ingrid, Tanis, Elena, and Anne. They keep re-

minding me that life has more to o�er than Syntax and Semantics.



Introduction

We begin by reviewing the general set-up for semantics of programming languages.

In each case, the object of interest is a particular formal language L together with an

evaluation mechanism which we denote by �!

�

. Indeed, the purpose of the formal

language is to write programs which we then expect to be evaluated by a machine.

There are many di�erent paradigms to which L can belong, we only mention impera-

tive, functional, and logical programming style. Of these, the functional paradigm is

probably the most basic one, because any programming language allows subroutines

to be written which can be invoked later on and, in a sense, functional languages

consist of nothing else than this mechanism. In other words, in order to understand

a programming language it is a prerequisite to understand its functional component.

On the practical side it has evolved that the �-calculus is a convenient base

language for many semantical studies. Its syntax is of utmost simplicity, yet, its

theory exhibits all phenomena of functional languages. Furthermore, we can add to

the �-calculus other features, such as various type systems, �rst order constants and

recursion, notions of state and assignment, dynamic storage allocation, to name a

few. The point is that often these features can be added to the �-calculus one at a

time and thus can be studied in isolation; we do not have to deal with a fully edged

programming language from the start. It is according to the language that I have

grouped the papers in this collection.

Now suppose a functional language and an evaluation mechanism have been cho-

sen and we ask what the meaning of a piece of code is supposed to be. The answer

seems straightforward: we apply the evaluation mechanism and wait for the result.

But observe that this is only appropriate for complete programs in the sense that

routines and data are present. If the data is missing then the evaluation will just

stall as soon as input is requested. This leads to the fundamental distinction between
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programs { which can be executed and which return a value upon termination { and

incomplete code. The meaning of a program is clear; it is either the value returned

upon termination or unde�ned otherwise. The undecidability of the halting problem

bars us from making any progress beyond this. Hence the object of our interest is the

other half, the incomplete code. There are three ways to make sense of its meaning,

which we lay out in the following diagram.

hL;�!

�

i

�

�

�

�

�	 ?

@

@

@

@

@R

operational

semantics

o

=

denotational

semantics

d

=

program

logics

l

=

We describe each of these in turn.

In operational semantics the approach is a pragmatic one. In order to see the e�ect

of an expressionM it has to be embedded into a complete program. Hence one de�nes

a notion of context C[ ], which is nothing else than an expression of the language

under consideration containing occurrences of a place holder [ ] into which other code

may be inserted. The equivalence relation on the set of expressions induced by this

may be described as follows: We say that M is operationally equivalent to N , written

as M

o

= N , if for every contextC[ ] such that C[M ] and C[N ] are syntactically correct

and complete programs, we have that C[M ] evaluates to a value c if and only if C[N ]

evaluates to value c. (Further conditions may be necessary to ensure that the set of

applicable contexts is non-empty.) With the provisos mentioned we may write

M

o

= N if 8C[ ]: (C[M ] �!

�

c) () (C[N ] �!

�

c) :

Obviously, it is this notion of interchangeability of code, in which { from a practical

viewpoint { we are ultimately interested in.

In denotational semantics the approach is more fundamental. Here the goal is

to assign a meaning JMK to each syntactical expression M in some mathematical

universe D. If this universe is based on Set Theory, then we want to take advantage
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of the set-theoretical, that is: extensional, notion of equality. Hence we de�ne

M

d

= N if JMK = JNK :

The construction of suitable universes is by no means trivial. In fact, we may note

that there is a fundamental mismatch between the dynamics of computation and the

static world of Set Theory. It is probably fair to say that whenever this mismatch

can be overcome, this constitutes a de�nite achievement likely to increase our insight

on both sides.

The �rst breakthrough in this enterprise was achieved by Dana Scott in 1969/70

when he found that type-free computation could be modelled in the rigidly typed

world of mathematics. This marked the birth of Domain Theory (documented in

[Sco93, Sco72]). It may be de�ned { in the narrow sense { as the study of certain

non-Hausdor� topological spaces and { in the wider sense { as the search for mathe-

matical structures suited to the interpretation of programming languages. The main

references on Domain Theory are [GHK

+

80, Sco81a, Plo81, AJ94]. Mostly via the

special class of continuous lattices there is also a strong connection to more main-

stream mathematics as laid out in [GHK

+

80, BH81, HH87].

Despite its success and, as we see more and more clearly, its fundamental place in

the Mathematics of Computation even beyond Semantics, it must not be forgotten

that the richness of programming paradigms continues to pose a formidable challenge

to mathematical ingenuity. And, indeed, quite a few researchers in the �eld have

expressed the need to widen the ontological fundament of Mathematics, that is, Set

Theory. We mention non-well-founded sets, [Acz88], various type theories, [ML84],

and categorical foundations, [Hyl82, LS86, LM92, Abr93].

Program logics, the third component in the semantics set-up, is the study of logical

systems suited to the description of programming languages. Usually the formulas

of these logics take the form �(M), meaning: `Property � holds of M ', or �M :

`Assuming that � holds and that the execution of M terminates, then afterwards

 will hold'. In the �rst formulation we may de�ne a logical equivalence between

expressions by setting

M

l

= N if 8�: �(M) () �(N) :

This approach is very exible and may be tailored to the needs of the application

as we may be interested in a restricted set of properties only. If we seek a full
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characterization of operational equivalence then it has been shown in the work of

Samson Abramsky, [Abr91], that it is advantageous to establish the correspondence

with the denotational model �rst, because here we can obtain valuable guidance from

Stone duality.

All in all, the ultimate goal is to establish the equivalence between the three

equalities

o

=,

d

=, and

l

=. It has turned out that the relation between

o

= and

d

= is

particularly intriguing. While the implication M

o

= N =) M

d

= N can be proven

relatively easy, its converse (for the case of PCF) has resisted full clari�cation so far

(but essential progress has been made just recently, [AJM, HO]). More information on

this so-called Full Abstraction Problem is given in Chapter 2. For other languages we

haven't even reached the point where we would worry about full abstraction. There

we still struggle with the very construction of a denotational model itself. Examples

are the polymorphic lambda calculus (see Chapter 3), polymorphic languages with

subtyping (see [CW85, Ghe90]), and languages which deal with a set-like data type

(see Chapter 4).



Chapter 1

The simply typed lambda calculus

This chapter contains the paper A new characterization of lambda de�nability written

by Jerzy Tiuryn and myself during 1992 and published as [JT93].

It is quite self-contained except for a de�nition of the simply typed �-calculus,

which I therefore include here. The set T of types is generated by the following rules

in a free fashion.

T1 � 2 T (the base type).

T2 If � 2 T and � 2 T then (�! � ) 2 T.

To construct the terms we assume that we are given a disjoint family of countably

in�nite sets of variables Var

�

, one for each type � 2 T. We write the variables as x

�

to indicate their type. The following rules then generate the terms of the simply

typed �-calculus and at the same time determine a type for each of them.

L1 Each variable x

�

is a term of type �.

L2 If M is a term of type � ! � and if N is a term of type � then (MN) is a term

of type � .

L3 IfM is a term of type � and if x

�

is a variable then �x

�

:M is a term of type �! � .

My motivation to study the lambda de�nability problem was very strong because

I felt (and still feel) that it is at the very heart of the Full Abstraction Problem

for PCF as I have laid out in Section 2.1.4 below. Jerzy Tiuryn, when he visited

Darmstadt in February 1992, agreed that this was a worthwhile problem and we both

9



10 CHAPTER 1. THE SIMPLY TYPED LAMBDA CALCULUS

studied the paper [Plo80] by Gordon Plotkin and the (then very new) paper by Kurt

Sieber [Sie92] which o�ered a novel view of logical relations. Jerzy Tiuryn observed

rather quickly that by combining the two approaches of Plotkin and Sieber and by

adding the feature of \varying arity" one can get a characterization theorem. The

result in Section 1.1.2 is essentially due to him. We then tried quite hard to employ

this characterization for a decidability result but all we came up with was a clear

view of why our approach cannot succeed (Section 1.1.3). I took up the question

again in September of the same year while visiting Allen Stoughton. I could show

that a more involved notion of logical relation allows for a �ner analysis of lambda

de�nability and indeed I could show decidability in the case where only variables

from a �xed �nite set are allowed to enter the terms (Section 1.1.4).

The actual writing was done by myself. We submitted the paper to the conference

Typed Lambda Calculi and Applications, where it was accepted and presented by me

in March 1993.

It got enough attention so that several people began to look at the problem again,

which had been dormant for many years, and, indeed, in June 1993 Ralph Loader

showed the undecidability of lambda de�nability in the general case, [Loa93]. So, in a

sense, our paper contains the most one can hope for in direction of a positive solution.

A consequence of Loader's theorem is that there are functionals at rank 3 which

are invariant under all logical relations of �nite arity. We have no idea what they

are. This illustrates how poor our knowledge and our intuitions about higher order

functions still are. In my view, Loader's negative answer to the lambda de�nability

problem is a �rst step towards a delimiting result regarding the Full Abstraction

Problem for PCF. It would be worthwhile to see if the de�nability problem for �nitary

PCF is undecidable, too. By \�nitary PCF" I mean the simply typed �-calculus over

base type bool plus constants true, false of type bool, a branching construct such as

if-then-else : bool

3

! bool and a constant 
 of type bool at the encounter of which

evaluation will stall. It seems that Loader's techniques are not easily adapted to

solve this case, too.
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1.1 A New Characterization of Lambda De�nabil-

ity

Introduction

An applicative structure consists of a family (A

�

)

�2T

of sets, one for each type �,

together with a family (app

�;�

)

�;�2T

of application functions, where app

�;�

maps

A

�!�

�A

�

into A

�

. For an applicative structure to be a model of the simply typed

lambda calculus (in which case we call it a Henkin model, following [Mit90]), one

requires two more conditions to hold. It must be extensional which means that the

elements of A

�!�

are uniquely determined by their behavior under app

�;�

, or, more

intuitively, that A

�!�

can be thought of as a set of functions from A

�

to A

�

. Sec-

ondly, the applicative structure must be rich enough to interpret every lambda term.

(This requirement can be formalized using either the combinatory or the environment

model de�nition, see Sect. 1.1.1 below.) The simplest examples for Henkin models

are derived if one takes a set A

�

for the base type � (more base types could be accom-

modated in the same way) and then de�nes A

�!�

to be the set of all functions from

A

�

to A

�

. The application functions are in this case just set-theoretic application of

a function to an argument. These models are sometimes called the full type hierarchy

over A

�

.

Simple as this construction is, there remains a nagging open question. Suppose

A

�

is �nite (in which case every A

�

is �nite), is there an algorithm which, given an

element of some A

�

, decides whether it is the denotation of a closed lambda term?

We could also ask for an algorithm which works uniformly for all �nite sets A

�

, but

the essential di�culty seems to arise with the �rst question. The assumption that

a positive solution exists is known under the name lambda de�nability conjecture.

We shall speak of the lambda de�nability problem instead. Besides this being an

intriguing question in itself, there are also connections to other open problems, such

as the higher order matching problem (cf. [Sta82a], and also [SD92]) and the full

abstraction problem for PCF (cf. [JS93]).

Let us quickly review the existing literature on the question. A �rst attempt

to characterize lambda de�nable elements in the full type hierarchy was made by

H.L�auchli [L�au70]. He showed that lambda de�nable elements are invariant under
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permutations of the ground set A

�

which is a not too surprising result as there are

no means by which the lambda calculus could speak about particular elements of A

�

.

He also observed that permutation invariance was too weak a property for full char-

acterization at all types. This line of thought was taken up by G.Plotkin in [Plo80] (a

precursor of this is [Plo73]). He replaced permutation invariance by invariance under

logical relations and proved that for in�nite ground sets this characterizes lambda

de�nability at types of rank less than three. Using more complicated logical relations

de�ned over a quasi-ordered set he could remove the restriction on the rank. The

restriction on the size of A

�

, however, remained. In both cases the proof is by coding

the theory of lambda terms into the ground set. The problem is also discussed in

papers by R.Statman (cf. [Sta82a, Sta82b, Sta83, Sta85]). In [Sta85] a characteri-

zation is stated (without proof) which is applicable to all Henkin models and which

employs logical relations on a free extension of the given model by in�nitely many

variables. More recently, K.Sieber [Sie92] used logical relations in a novel fashion

to tackle the full abstraction problem for PCF. His logical relations have large ar-

ity and are reminiscent of value tables. It was this paper from which we got the

initial idea for the results presented here. By looking at logical relations which are

de�ned over an ordered set (as in [Plo80]) but which in addition increase their arity

as we pass to later \worlds", we derive a characterization theorem which works for

all ground sets A

�

and, in fact, every Henkin model, which again contrasts to the

characterization in [Plo80], which can not be generalized to arbitrary Henkin models.

(A counterexample is given in [Sta85].) Furthermore, our characterization theorem

has a very straightforward proof. Indeed, the proof is so simple that it suggests a

positive solution to the lambda de�nability problem. Even though we do not achieve

this, at least we can make the obstacles very clear. These lie in the fact that higher

order terms (even when they are in normal form) can contain arbitrarily many auxil-

iary variables. For a restricted set of variables one would expect a decidability result.

This can be achieved as we show in Sect. 1.1.4, but the proof becomes somewhat

technical.

Our de�nition of logical relation will still make sense if we replace the ordered set

by a small category and, in fact, it reduces to a logical predicate on the presheaf model

built from the initial Henkin model (for details, see [LS86] or [MM91]). A bit of this

generality indeed simpli�es our presentation of Kripke logical relations with varying
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arity in the next section. The characterization theorem in Sect. 1.1.2, however, works

with a very simple �xed ordered set.

1.1.1 Kripke Logical Relations with Varying Arity

Suppose A

�

is a set and we are studying the semantics of the simply typed lambda

calculus in the full type hierarchy over A

�

. (We could take an arbitrary Henkin

model instead but would have to write out the application functions explicitly in

every instance.) Let C be a small category of sets. We want to build a logical

relation over each object w of C, taking the cardinality of w as the arity of the

relation at w. Thus elements of the relations are tuples indexed by elements of w. It

makes no di�erence whether w is �nite or in�nite.

We start with ground relations R

w

�

� A

w

�

which have the following compatibility

property: Whenever f : v ! w is a map in C and (x

j

)

j2w

is an element of R

w

�

then

(x

f(i)

)

i2v

is an element of R

v

�

(note the contravariance). The ground relations are

extended to higher types as usual. For a function type �! � let

R

w

�!�

= f(g

j

)

j2w

j 8j 2 w:g

j

2 A

�!�

^ 8f : v! w8(x

i

)

i2v

2 R

v

�

:

(g

f(i)

(x

i

))

i2v

2 R

v

�

g:

(A tuple of functions at w must have the de�ning property of logical relations at all

v reachable - via a map in C - from w.) Relations (R

w

�

)

w2Obj(C)

�2T

constructed this way

we shall call Kripke logical relations with varying arity. Ordinary logical relations

are subsumed by this concept - just take a one object one morphism category C

- as well as Plotkin's \I-relations": take a category all of whose objects have the

same cardinality and all of whose morphisms are bijections such that the category is

isomorphic to a quasi-ordered set.

We observe that for each type � we have the compatibility with morphisms of C

we required at ground level:

Lemma 1.1.1 Let (R

w

�

)

w2Obj(C)

�2T

be a Kripke logical relation with varying arity. For

all types �, objects v;w of C, morphisms f : v ! w, and tuples (x

j

)

j2w

in R

w

�

, the

tuple (x

f(i)

)

i2v

is in R

v

�

.

Proof. By induction on types. For � it is part of the de�nition. If �! � is a function

type we have to show that (g

j

)

j2w

2 R

w

�!�

implies (g

f(i)

)

i2v

2 R

v

�!�

. By de�nition we
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have to supply arguments (x

l

)

l2u

2 R

u

�

, for h:u! v to the functions. The resulting

tuple has the form (g

f(h(l))

(x

l

))

l2u

which belongs to R

u

�

because f � h:u! w is also

a map in C and was taken account of in the de�nition of R

w

�!�

.

Our logical relations have the usual \un-Currying" property.

Lemma 1.1.2 Let (R

w

�

)

w2Obj(C)

�2T

be a Kripke logical relation with varying arity. For

any type � = �

1

! : : : ! �

n

! � and any object w, a tuple (g

j

)

j2w

is in R

w

�

if

and only if for every chain of maps v

n

f

n

! : : :

f

2

! v

1

f

1

! w and tuples (x

k

i

)

i2v

k

2 R

v

k

�

k

,

k = 1; : : : ; n, the result of applying the functions coordinatewise to all n arguments

is in R

v

n

�

.

Proof. Easy induction on the length of the unfolded types �

1

! : : :! �

n

! �.

In order to prove the \Fundamental Theorem of Logical Relations" (in the words

of [Sta85]) let us recall how the simply typed lambda calculus is interpreted over A

�

.

Free variables are assigned values by environments �:Var !

S

�2T

A

�

(where a vari-

able x

�

of type � is mapped to A

�

) and the denotation of a lambda term M is then

de�ned with respect to environments as follows:

M � x

�

: Jx

�

K� = �(x

�

).

M �M

1

M

2

: JM

1

M

2

K� = JM

1

K�(JM

2

K�).

M � �x

�

:M

1

: J�x

�

:M

1

K� = the map which assigns to a 2 A

�

the value JM

1

K�[x

�

7!

a]. (In a general extensional applicative structure there need not be a representative

in A

�!�

for this map. This is the \richness" of Henkin models we referred to in the

Introduction.)

Theorem 1.1.3 For every Kripke logical relation with varying arity (R

w

�

)

w2Obj(C)

�2T

,

object w of C, and closed term M of type � the constant tuple (JMK)

j2w

is in R

w

�

.

Proof. The proof is for all objects of C simultaneously by induction on the term

structure. Hence we must also take open terms into account. For w 2 Obj(C) let

(�

j

)

j2w

be a tuple of environments such that for every free variable x

�

of M the tuple

(�

j

(x

�

))

j2w

is in R

w

�

. We show that under this condition the tuple (JMK�

j

)

j2w

is

in R

w

�

. We check the three cases in the de�nition of J�K:

M � x

�

: (Jx

�

K�

j

)

j2w

= (�

j

(x

�

))

j2w

2 R

w

�

by assumption.
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M � M

1

M

2

: (JM

1

M

2

K�

j

)

j2w

= (JM

1

K�

j

(JM

2

K�

j

))

j2w

. By induction hypothesis

(JM

1

K�

j

)

j2w

is in R

w

�!�

and (JM

2

K�

j

)

j2w

is in R

w

�

. Because a category contains

an identity morphism for every object, we get that the tuple resulting from pointwise

application is in R

w

�

.

M � �x

�

:M

1

: (J�x

�

:M

1

K�

j

)

j2w

is a tuple of functions from A

�

to A

�

. To check

that it is in relation we to apply to it a tuple (a

i

)

i2v

of arguments from R

v

�

for an

object v and a morphism f : v ! w. We get the tuple (JM

1

K�

f(i)

[x

�

7! a

i

])

i2v

. From

Lemma 1.1.1 we know that each of the tuples (�

f(i)

(y))

i2v

, y a variable, is in relation

at v. Updating the environments at x

�

to (a

i

)

i2v

retains this property. So we can

conclude from the induction hypothesis that (JM

1

K�

f(i)

[x

�

7! a

i

])

i2v

is in R

v

�

.

Let us emphasize again that the preceding theorem is neither a surprise nor

a generalization over already established results. Our Kripke logical relation with

varying arity is nothing more than a logical predicate over a particular Henkin model

in the cartesian closed functor category Set

C

op

. The point is that we want to look

at a complicated logical relation over a simple Henkin model in order to characterize

lambda de�nability in the latter. We included the proof of the Fundamental Theorem

in order to acquaint the reader with the technical apparatus.

1.1.2 A Characterization of Lambda De�nability

We will now characterize lambda de�nability in the full type hierarchy over some

ground set A

�

. (The proof for an arbitrary Henkin model is the same but involves

more notational overhead.) From A

�

we construct a concrete category A as follows.

Objects are �nite products A

�

1

:::�

n

= A

�

1

� : : :� A

�

n

of our denotational domains,

one for each sequence �

1

: : : �

n

of types. The empty sequence � is represented by an

arbitrary one-point setA

�

. If �

1

: : : �

n

is a pre�x of the sequence �

1

: : : �

n

�

1

: : : �

m

then

our category contains the projection morphism from A

�

1

� : : :�A

�

n

�A

�

1

� : : :�A

�

m

to A

�

1

�: : :�A

�

n

. So A is really an ordered set, namely, the dual of T

�

with the pre�x

ordering. The logical relation (T

w

�

)

w2Obj(A)

�2T

which will give us the characterization,

has arity jA

�

1

� : : :�A

�

n

j at the object w = A

�

1

� : : : � A

�

n

. A tuple from T

w

�

is therefore indexed by tuples ~a = (a

1

; : : : ; a

n

) 2 A

�

1

� : : : � A

�

n

. At ground level

we take those tuples (x

~a

)

~a2w

into T

w

�

for which there is a closed lambda term M of

type �

1

! : : : ! �

n

! � such that for each ~a = (a

1

; : : : ; a

n

) in A

�

1

� : : :� A

�

n

we
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have x

~a

= JMK(a

1

) : : : (a

n

). Intuitively, we take only those tuples which are \value

tables" of lambda de�nable functions. This idea is taken directly from [Sie92]. These

relations have the compatibility property with morphisms in A. Indeed, if M de�nes

the tuple (x

~a

)

~a2w

at w = A

�

1

� : : : � A

�

n

then �x

�

1

1

: : : x

�

n

n

y

�

1

1

: : : y

�

m

m

:Mx

�

1

1

: : : x

�

n

n

de�nes the corresponding tuple at v = A

�

1

� : : : � A

�

n

� A

�

1

� : : : � A

�

m

. The

following lemma asserts that the lambda de�nable functions can be read o� at A

�

,

the one element object in A.

Lemma 1.1.4 A one-element tuple (x) is in T

A

�

�

if and only if x is the denotation

of a closed lambda term of type �.

Proof. We prove by induction on types (simultaneously for all objects w = A

�

1

�

: : :� A

�

n

of A) that T

w

�

only contains tuples which are de�nable by closed lambda

terms of type �

1

! : : : ! �

n

! �. For � = � this is the de�nition of T

w

�

, so let us

look at a function type �! � .

If M is a closed term of type �

1

! : : : ! �

n

! � ! � which de�nes the tuple

(f

~a

)

~a2w

we want to assert that it is in relation at w. To this end we supply an

argument tuple (x

~

b

)

~

b2v

for an object v = A

�

1

� : : : � A

�

n

� A

�

1

� : : : � A

�

m

. By

induction hypothesis, this tuple is represented by a closed term N of type �

1

!

: : : ! �

n

! �

1

! : : : ! �

m

! �. The resulting tuple (f

�(

~

b)

(x

~

b

))

~

b2v

is represented

by the term �x

�

1

1

: : : x

�

n

n

y

�

1

1

: : : y

�

m

m

:(Mx

�

1

1

: : : x

�

n

n

)(Nx

�

1

1

: : : x

�

n

n

y

�

1

1

: : : y

�

m

m

) and so, by

induction hypothesis, is contained in T

v

�

.

Conversely, assume that the tuple (f

~a

)

~a2w

belongs to T

w

�!�

. We supply it with

the argument tuple over the object v = A

�

1

� : : : � A

�

n

� A

�

which is given by

the term �x

�

1

1

: : : x

�

n

n

x

�

:x

�

. By induction hypothesis it is contained in T

v

�

. The

resulting tuple (f

~a

(a))

~aa2v

is in T

v

�

and, again by induction hypothesis, there is a

closed term N of type �

1

! : : : ! �

n

! � ! � representing it. We claim that N

also represents (f

~a

)

~a2w

: Using the denotation of N we get a tuple (g

~a

)

~a2w

of functions

of type �! � where g

(a

1

;:::;a

n

)

= JNK(a

1

) : : : (a

n

). In order to see that such a function

is equal to the corresponding f

~a

we supply a generic argument a from A

�

. We get

f

~a

(a) = JNK(a

1

) : : : (a

n

)(a) = g

~a

(a), which completes our argument.

Theorem 1.1.3 and Lemma 1.1.4 together give our main result:

Theorem 1.1.5 An element of a Henkin model is lambda de�nable if and only if it

is invariant under all Kripke logical relations with varying arity.
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Somewhat slicker but maybe less transparent is the following description of the

relations T

w

�

. We replace sequences of types by �nite sets of variables. The objects

ofA remain almost the same, fx

�

1

1

; : : : ; x

�

n

n

g corresponds to the set Envfx

�

1

1

; : : : ; x

�

n

n

g

of �nite environments over this collection of variables. The tuples should now be

labeled by our symbol for environments �. For w = Envfx

�

1

1

; : : : ; x

�

n

n

g we take a tuple

(x

�

)

�2w

into T

w

�

if there is a lambda term M whose free variables are contained in

fx

�

1

1

; : : : ; x

�

n

n

g such that for all � 2 w we have x

�

= JMK�. The proof of Lemma 1.1.4

can be changed accordingly.

1.1.3 The Lambda De�nability Problem

We return to the problem of �nding an e�ective characterization of lambda de-

�nability for hereditarily �nite Henkin models. Indeed, studying the De�nability

Lemma 1.1.4 one gets the impression that for a particular type � only a �nite piece

of the category A is used. More formally, we can precisely de�ne the objects from A

that occur in the proof of Lemma 1.1.4. Fix a type � and de�ne two relations `

�

and 

�

between strings of types and types as follows:

(i) � `

�

�,

(ii) if s `

�

�! � then s� `

�

� and s� 

�

�,

(iii) if s 

�

�

1

! : : : ! �

n

! � and if for strings s

1

� : : : � s

n

there are types

�

1

; : : : ; �

n

such that for all k = 1; : : : ; n, s

k

`

�

�

k

then for all k = 1; : : : ; n,

s

k

`

�

�

k

.

Now let F

�

be the full sub-category of A whose objects are given by fA

s

2

A j 9� 2 T:s `

�

� g. (Note that the strings occurring on the left hand side of the

relation 

�

all occur on the left hand side of `

�

already.) We show that the proof of

Lemma 1.1.4 for a particular type � can be based on F

�

. At ground type we start

with the same logical relation (T

w

�

)

w2Obj(F

�

)

�2T

as before.

Lemma 1.1.6 Given a type � 2 T the following is true for all � 2 T and s 2 T

�

:

(i) If s `

�

� then every element of T

A

s

�

is lambda de�nable.

(ii) If s 

�

� then every lambda de�nable tuple is in T

A

s

�

.
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Proof. By induction on �. If � is the ground type � then both statements follow

from the de�nition of T

w

�

. The proof of (i) for a function type �! � works as in

Lemma 1.1.4: Assume s = �

1

: : : �

n

`

�

�! � and (f

j

)

j2A

s

2 T

A

s

�!�

(where we have

identi�ed w with A

s

). We have s� 

�

� and so by induction hypothesis we can apply

the tuple given by the term �x

�

1

1

: : : x

�

n

n

x

�

:x

�

to it. The result is in T

A

s

�A

�

�

and since

s� `

�

� it is given by a term N . As before we see easily that N also de�nes (f

j

)

j2A

s

.

To prove part (ii) we have to un-Curry completely: �! � = �

1

! : : :! �

n

! �

(we have re-named � to �

1

). Assume that the tuple (f

j

)

j2A

s

is given by a term M .

By Lemma 1.1.2 we have to apply the functions to argument tuples from T

A

s

k

�

k

,

k = 1; : : : ; n for strings s � s

1

� : : : � s

n

from F

�

. By our rule (iii) we have for

each k, s

k

`

�

�

k

. Hence we can use the induction hypothesis and conclude that all

argument tuples are lambda de�nable. The application of (f

j

)

j2A

s

to these argument

tuples results in a tuple which again is lambda de�nable and of type �. But at ground

type lambda de�nable tuples are in relation and we are done.

Theorem 1.1.7 An element of type � of a Henkin model is lambda de�nable if and

only if it is invariant under all logical relations based on F

�

.

If we are looking at a hereditarily �nite Henkin model, for example the full type

hierarchy over a �nite ground set, and if for some type � the category F

�

happens

to have only �nitely many objects then we can e�ectively determine the lambda

de�nable elements of A

�

by simply checking the �nitely many Kripke logical relations

with varying arity over F

�

. Unfortunately, this approach can only succeed for types

of rank less than 3:

Lemma 1.1.8 For every type � of rank at least 3 the category F

�

has in�nitely many

objects.

Proof. We illustrate the idea for the type � = ((�! �) ! �) ! �. The general proof

is exactly the same but involves a lot of indices. Using rules (i){(iii) above, we get

(1) � `

�

� by (i).

(2) (�! �) ! � `

�

� and (�! �) ! � 

�

(�! �) ! � by (1) and (ii).

(3) (�! �) ! � `

�

�! � by (2) and (iii).
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(4) h(�! �) ! �ih�i `

�

� by (3) and (ii).

(5) h(�! �) ! �ih�i `

�

�! � by (2), (4), and (iii).

The last two steps can be repeated forever.

Behind this proof is the observation that from rank 3 on we can no longer bound

the number of variables occurring in a normal form. What happens if we do impose

a bound is the topic of the next section.

1.1.4 Lambda De�nability with Fixed Sets of Variables

Two-layered logical relations

We proceed by further re�ning the notion of logical relation and we begin by studying

this re�nement for ordinary logical relations, letting the varying arity and the Kripke

universe at the side for the moment.

Observe that the de�nition of the extension of a logical relation to a type � ! �

falls naturally into two halves:

(1) If f :A

�

! A

�

belongs to R

�!�

then it maps each element of R

�

into R

�

.

(2) If f :A

�

! A

�

maps each element of R

�

into R

�

then it belongs R

�!�

.

In the proof of the Fundamental Theorem the �rst condition is needed in order to

show that an application remains invariant if the constituents are, and the second

is needed for abstraction. Of course, the power of logical relations resides in the

fact that the two properties are ful�lled simultaneously. Nevertheless, we shall study

these two conditions separately and thus tie up our logical relations more closely with

the structure of lambda terms. To this end we de�ne the following two-layer type

system (T

0

;T

1

) (over a single ground type � and over the set Var of variables):

� � 2 T

0

� �; � 2 T

0

=) � ! � 2 T

0

� B 2 Var

�

; � 2 T

0

=) B ! � 2 T

1
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Note that T

0

may be viewed as a subset of T

1

by virtue of the empty string in

Var

�

. We will also need the forgetful map e:T

1

! T

0

which maps x

�

1

1

: : : x

�

n

n

! � to

�

1

! : : :! �

n

! � .

Now let R

�

� A

�

be an arbitrary relation (for simplicity we let the arity be 1). It

is extended to the types of T

0

and T

1

as follows. For �! � 2 T

0

let R

�!�

be any

subset of

ff 2 A

�!�

j 8� 2 T

1

:(e(�) = � =) 8a 2 R

�

:f(a) 2 R

�

)g

and for n � 1; B = x

�

1

1

: : : x

�

n

n

; B ! � 2 T

1

let R

B!�

be any superset of

ff 2 A

e(B!�)

j 8a

1

2 R

�

1

: : :8a

n

2 R

�

n

:f(a

1

) : : : (a

n

) 2 R

�

g :

Obviously, such two-layered relations are no longer determined by their value at

ground type. But starting from some R

�

we can always construct a two-layered

logical relation. The Fundamental Theorem now reads as follows:

Theorem 1.1.9 Let M � �x

�

1

1

: : : x

�

n

n

:N be a lambda term in normal form and of

type �

1

! : : :! �

n

! � such that N is not an abstraction and let � be an environ-

ment which maps each free variable y

�

of M into R

�

. Then JMK� 2 R

x

�

1

1

:::x

�

n

n

!�

.

Proof. We have to argue more carefully, but the proof is essentially as usual. Vari-

ables can't cause any problems. In the case that M is an application M

1

M

2

, we

employ the assumption that M is in normal form, hence the denotation of M

1

under

� is in R

�!�

where � ! � is an ordinary type. The denotation of M

2

under � is in

some R

�

where e(�) = �. So the composed term is in R

�

as required.

The case that M is an abstraction is characterized by the fact that n � 1. Unlike

in the usual proof we have to unwind all leading lambdas at one stroke. We want

JMK� to be in R

x

�

1

1

:::x

�

n

n

!�

and to check this we have to apply it to arguments a

i

from R

�

i

, i = 1; : : : ; n, and see whether the result is in R

�

. This is indeed the case,

as JMK�(a

1

) : : : (a

n

) = JNK�[x

1

7! a

1

; : : : ; x

n

7! a

n

] and the induction hypothesis

applies to N and the updated environment. (The updating must be read from left to

right. This way the lemma remains true also for sequences x

�

1

1

: : : x

�

n

n

which contain

some variables more than once.)
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Two-layered Kripke logical relations with varying arity

Let us now combine the techniques of Sect. 1.1.1 with these two-layered logical re-

lations. We use the presentation of Kripke logical relations with varying arity via

environments as briey described at the end of Sect. 1.1.1.

So let V � Var be a set of variables. It is our goal to characterize all functionals

which are de�nable by lambda terms containing variables (free or bound) only from V .

Our base category V is the set of all subsets of V together with inclusion morphisms.

There is a contravariant equivalence between V and the category E of environments

Env(F ) over sets F of variables contained in V with restriction maps. It no longer

helps to think of E as a concrete example of a general category, as we make use of

its particular structure. In other words, we have so far no abstract concept for a

two-layered Kripke logical relation with varying arity.

For each object in V, that is, for each set F of variables contained in V , we

want a two-layered logical relation (R

F

�

)

�

of arity j

Q

x

�

2F

A

�

j. (Elements from the

set

Q

x

�

2F

A

�

serve a double purpose. We use them to index elements from the

relations and we use them as environments. From now on, we will always use the

letter � to denote them.) Since we have restricted the set of variables available

we cannot allow arbitrary types � to occur, only those � = B ! � for which the

sequence B = x

�

1

1

: : : x

�

n

n

contains each variable at most once and all variables are

contained in V . Let us call such sequences and types built from them non-repeating

and let T

1

(V ) stand for the collection of all non-repeating types over V . We will

also allow ourselves to treat B as a set sometimes, just to keep the complexity of our

formulas within manageable range.

De�nition 1.1.10 Let (R

F

�

)

F�V

�2T

1

(V )

be a family of relations such that the following

conditions are satis�ed:

(1) 8�! � 2 T

0

:R

F

�!�

� f(f

�

)

�2Env(F )

2 A

Env(F )

�!�

j 8� 2 T

1

(V ):(e(�) = �

=) 8(x

�

)

�2Env(F )

2 R

F

�

:(f

�

(x

�

))

�2Env(F )

2 R

F

�

)g,

(2) 8� 2 T

1

(V ) where � = B ! � and B = x

�

1

1

: : : x

�

n

n

; n � 1 it is the case

that R

F

�

� f(f

�

)

�2Env(F )

2 A

Env(F )

e(�)

j f

�

= f

�

0

if �

F nB

= �

0

F nB

and

8(a

1

�

)

�2Env(F[B)

2 R

F[B

�

1

; : : : ;8(a

n

�

)

�2Env(F[B)

2 R

F[B

�

n

:
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(f

�

F

(a

1

�

) : : : (a

n

�

))

�2Env(F[B)

2 R

F[B

�

g,

(3) 8� 2 T

0

8F � F

0

� V:(x

�

)

�2Env(F )

2 R

F

�

=) (x

�

0

F

)

�

0

2Env(F

0

)

2 R

F

0

�

.

If these three conditions are satis�ed then we call the family (R

F

�

)

F�V

�2T

1

(V )

a two-layered Kripke logical relation with varying arity over V .

We need to check carefully whether the Fundamental Theorem remains valid:

Theorem 1.1.11 Let M � �x

�

1

1

: : : x

�

n

n

:N be a lambda term in normal form and

of type �

1

! : : : ! �

n

! � such that N is not an abstraction, let F �

V � Var be sets of variables such that all variables occurring in M are con-

tained in V and such that all its free variables are contained in F , let (R

F

�

)

F�V

�2T

1

(V )

be a two-layered Kripke logical relation with varying arity over V and, �nally,

let (�

�

)

�2Env(F )

be a family of environments such that for all x

�

2 FV (M),

(�

�

(x

�

))

�2Env(F )

is in R

F

�

. Then the tuple (JMK�

�

)

�2Env(F )

is in R

F

x

�

1

1

:::x

�

n

n

!�

.

Proof. The proof is by induction on the complexity of M , simultaneously for all

appropriate F; V , and (�

�

)

�2Env(F )

. The situation is trivial as usual for variables.

If M � M

1

M

2

is an application then because M is in normal form, M

1

is not an

abstraction. The free variables of M

1

and M

2

are also contained in F . We can

therefore apply the induction hypothesis and get that (JM

1

K�

�

)

�2Env(F )

is in R

F

�!�

and (JM

2

K�

�

)

�2Env(F )

is in R

F

�

where e(�) = �. So (JMK�

�

)

�2Env(F )

is in R

F

�

by

part (1) of the de�nition.

Let now M � �x

�

1

1

: : : x

�

n

n

:N be an abstraction, that is, n � 1. We want to see

that (JMK�

�

)

�2Env(F )

is in R

F

B!�

where we have introduced B as an abbreviation

for x

�

1

1

: : : x

�

n

n

. Let F

0

stand for F [ B. By part (2) of our de�nition we have to

supply the functions JMK�

�

with arguments (a

i

�

)

�2Env(F

0

)

from R

F

0

�

i

, i = 1; : : : ; n. But

since (JMK�

�

F

(a

1

�

) : : : (a

n

�

))

�2Env(F

0

)

equals (JNK�

�

F

[x

1

7! a

1

�

; : : : ; x

n

7! a

n

�

])

�2Env(F

0

)

we may apply the induction hypothesis to N;F

0

; and (�

�

F

[x

1

7! a

1

�

; : : : ; x

n

7!

a

n

�

])

�2Env(F

0

)

. That the new family of environments meets the requirements of the

theorem is a consequence of the persistency part (3) of our de�nition.
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The term relation

As usual, a term construction will give us completeness of the characterization. So

�x a set V of variables and let (T

F

�

)

F�V

�2T

1

(V )

be the family of relations for which each

T

F

�

is the collection of all (f

�

)

�2Env(F )

2 A

Env(F )

�

de�nable by lambda terms, i.e.,

(f

�

)

�2Env(F )

is in T

F

�

if there exists a lambda term M � �x

�

1

1

: : : x

�

n

n

:N (N not an

abstraction) in normal form all of whose variables belong to V , all of whose free

variables belong to F , for which x

�

1

1

: : : x

�

n

n

= B is non-repeating and B ! � = �

such that 8� 2 Env(F ) we have f

�

= JMK�. We have to check that we get a valid

relation this way.

Lemma 1.1.12 (T

F

�

)

F�V

�2T

1

(V )

is a two-layered Kripke logical relation with varying

arity over V .

Proof. (1) Let (f

�

)

�2Env(F )

be in T

F

�!�

. Then this tuple is given by a term M of

type � ! � which is not an abstraction. Let further N be term which de�nes a tuple

(x

�

)

�2Env(F )

from T

F

�

where e(�) = �. Then MN is in normal form and de�nes

(f

�

(x

�

))

�2Env(F )

.

(2) Let (f

�

)

�2Env(F )

be an element from the right hand side of (2) in De�ni-

tion 1.1.10. We can apply it to the tuples de�ned by x

�

1

1

; : : : ; x

�

n

n

and the result

(f

�

F

(Jx

1

K�) : : : (Jx

n

K�))

�2Env(F

0

)

will be in T

F

0

�

, hence given by a lambda term M

which is not an abstraction. We claim that (f

�

)

�2Env(F )

is given by �x

�

1

1

: : : x

�

n

n

:M .

Indeed, if a

1

2 A

�

1

; : : : ; a

n

2 A

�

n

are arguments for the function f

�

then

f

�

(a

1

) : : : (a

n

) = f

�

0

F

(Jx

1

K�

0

) : : : (Jx

n

K�

0

)

= JMK�

0

= J�x

�

1

1

: : : x

�

n

n

:MK�(a

1

) : : : (a

n

)

where �

0

(y) =

8

<

:

a

i

if y � x

i

;

�(y) otherwise:

Here we have used the fact that f

�

= f

�

0

F

because

� and �

0

F

di�er only at variables from F \fx

1

; : : : ; x

n

g. Also the fact that x

�

1

1

: : : x

�

n

n

is non-repeating is crucial here.

(3) Persistency is clear as the denotation of a term only depends on its free

variables.
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Theorem 1.1.13 A functional is de�nable from a �xed set V of variables if and

only if it is invariant under all two-layered Kripke logical relations with varying arity

over V .

Decidability

We are now ready to harvest the fruit from our hard labor in this section. Unlike

for full de�nability, the notion of de�nability from a �xed set of variables becomes

decidable if we restrict to �nite ground sets A

�

and �nite sets V of variables. The

reason for this simply is that there are only �nitely many relations to check. Thus

we have:

Theorem 1.1.14 The problem whether a given functional from a hereditarily �nite

Henkin model is lambda de�nable by a term over a �xed �nite set of variables is

decidable.

Although two-layered Kripke logical relations with varying arity over some set of

variables may seem complicated, there is nevertheless a fairly simple underlying idea.

The relations can be thought of as value tables for functionals where the new types

� 2 T

1

and the restrictions to subsets F of V are just a way of keeping track of free

and bound variables in de�ning terms. (Note that a variable may be re-used several

times, that is, may occur both bound and free.) Gordon Plotkin has suggested to

us that one may obtain Theorem 1.1.14 by working backwards from the given value

table for a functional in search for a de�ning term. At each stage, one determines

the set of value tables which, applied in the right order, give a value table in the

set of sought after tables. Each branch of the search stops if either a projection

(which corresponds to a variable) can satisfy the requirements or if only tables occur

which we are looking for already. Since the set of variables is restricted the tables are

�nite objects and the search must eventually end. Bookkeeping over free and bound

variables is also necessary in this approach and while we haven't formally carried

through this approach, we think that it will amount to a scheme with probably the

same complexity as ours.



Chapter 2

A Typed Lambda Calculus with

Recursion

We have already noted in the introduction to this collection that the language PCF

and its domain theoretic denotational model constitute the archetypical example of

a mathematical treatment of a programming language. Introduced by Dana Scott in

1969 (published as [Sco93]) and studied in close detail by Gordon Plotkin in [Plo77]

and Robin Milner in [Mil77] it stimulated a large number of deep and excellent

research. We refer to [BCL85] for an overview of results up to 1985. More recent

work includes [Mul87, Sto88, Blo90, Sie92, Cur93, CCF93, AJM, HO, Ehr93].

The �rst paper below, entitled Studying the Fully Abstract Model of PCF within its

Continuous Function Model (joint work with Allen Stoughton) achieves the following.

We give a simple construction of the fully abstract (order-extensional) model of PCF

(which, by the work of Robin Milner, we know to exist uniquely) along the following

lines.

1. Select the PCF-de�nable elements in the usual Scott-model based on at do-

mains and continuous functions.

2. Add limit points so as to get dcpo's at every type. The resulting structure is

not extensional. Hence:

3. Take the extensional collapse by factoring with the binary logical relation based

on identity for the ground types.

25
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4. We prove that for each type there is a least element in each equivalence class.

These elements represent the fully abstract model.

The programme up to Step 3 was laid out in [Sto88] already. During Allen

Stoughton's visit to Darmstadt in September 1991 we discussed the problem and

Allen conjectured that 4 could be true. This conjecture I con�rmed and furthermore

showed that the map (called norm in the paper) from a denotation to the least ele-

ment equivalent to it, is also Scott-continuous. Once that was settled, many questions

about the properties of norm arose. Allen established some, others remain open.

The paper was written up by Allen Stoughton, except for Section 2.1.4, where

I laid out my speculations about the the connection between Full Abstraction and

De�nability. We submitted the paper to the conference Typed Lambda Calculi and

Applications and Allen presented it in March 1993. It appeared as [JS93] in the

proceedings of that conference.

The second paper The Classi�cation of Continuous Domains was written by my-

self in the fall of 1989. It was accepted for the conference Logic in Computer Science

1990 and appeared as [Jun90b].

The problem of �nding the maximal cartesian closed categories of continuous

domains was addressed in my doctoral thesis [Jun89] already but the de�nition of

FS-domains was still missing. A complete classi�cation could therefore not be found

at the time.

Admittedly, this result has little bearing on the Full Abstraction Problem, as for

a solution of the latter we must move to more specialized classes of domains. It is

included in this chapter just the same because it delineates the arena in which a

Scott-style denotational model must live, where by \Scott-style denotational model"

I mean a structure which is a dcpo { needed for the interpretation of recursion { and

which satis�es a certain separability axiom which we need to tie up operational and

denotational semantics (see [Mil77]). Furthermore, if we add a probabilistic choice

operator to PCF then the denotational model must at least accommodate the unit

interval of real numbers and we �nd ourselves in the realm of continuous domains

(see [SD80, Jon90, Kir93]).
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2.1 Studying the Fully Abstract Model of PCF

within its Continuous Function Model

Introduction

As is well known, the continuous function model E of the applied typed lambda

calculus PCF fails to be inequationally fully abstract [Plo77], but PCF has a unique

inequationally fully abstract, order-extensional model F [Mil77, Sto90], where models

are required to interpret the ground type � as the at dcpo of natural numbers. Two

attempts at �nding connections between E and F have been made in the literature.

Mulmuley's idea was to connect complete lattice versions of E and F [Mul87]. Us-

ing a syntactically de�ned inductive (inclusive) predicate, he de�nes an inequationally

fully abstract, order-extensional model F

0

as the image of a continuous closure (re-

traction that is greater than the identity function) of the complete lattices version

E

0

of the continuous function model. The use of complete lattices is essential in this

construction, and, e.g., parallel or is mapped to >. Very pleasingly, F

0

inherits both

its ordering relation and function application operation from E

0

. Thus some of PCF's

operations must be sent by the closure to strictly greater functions. Although the

closure isn't a homomorphism between E

0

and F

0

(since it doesn't preserve appli-

cation in general), it does preserve the meaning of terms. F

0

isn't a combinatory

algebra, since all functions of F

0

preserve >, and thus the usual axiom for the K

combinator cannot hold. Finally, Mulmuley is able to recover F from F

0

simply by

removing > at all types.

A more algebraic connection between E and F was subsequently developed by

the second author [Sto88]. Here one begins by forming the inductively reachable

subalgebra R(E) of E, which in this case simply consists of those elements of E that

are lub's of directed sets of denotable elements. R(E) is then continuously quotiented

by a syntactically de�ned inductive pre-ordering, producing F . Furthermore, in

contrast to the situation with E

0

and F

0

above, there is a continuous homomorphism

from R(E) to F .

The purpose of this paper is to give a concrete presentation of this construction of

F from R(E). We de�ne a modelN(E) as the image of a syntactically de�ned contin-

uous projection over R(E), and show that N(E) is inequationally fully abstract and



28 CHAPTER 2. A TYPED LAMBDA CALCULUS WITH RECURSION

order-extensional, and is thus order-isomorphic to F . As in Mulmuley's construction,

the ordering relation of N(E) is inherited from E (and R(E)). On the other hand we

prove that the application operation of N(E) cannot be inherited from E. There is,

of course, a continuous homomorphism from R(E) to N(E).

In the �nal section of the paper, we consider the relationship between the full

abstraction problem, lambda de�nability and our presentation of F , and propose a

minimal condition that any \solution" to the full abstraction problem should satisfy.

2.1.1 Background

The reader is assumed to be familiar with such standard domain-theoretic concepts

as (directed) complete partial orders (dcpo's), (directed) continuous functions, and

!-algebraic, strongly algebraic (SFP) and consistently complete dcpo's.

If X is a subset of a poset P , then we write

F

X and uX for the lub and glb,

respectively, of X in P , when they exist. We abbreviate

F

fx; yg and ufx; yg to xty

and x u y, respectively. We write !

?

for the at dcpo of natural numbers. Given

dcpo's P and Q, we write P !

c

Q for the dcpo of all continuous functions from P

to Q, ordered pointwise. A dcpo P is a sub-dcpo of a dcpo Q i� P � Q, v

P

is the

restriction of v

Q

to P , ?

P

= ?

Q

and

F

P

D =

F

Q

D for all directed D � P . A

pre-ordering � over a dcpo hP;v

P

i is inductive i� v

P

� � and, whenever D is a

directed set in hP;v

P

i and D � d,

F

D � d.

In the remainder of this section, we briey recall the de�nitions and results from

[Sto88] that will be required in the sequel.

The reader is assumed to be familiar with many-sorted signatures � over sets

of sorts S, as well as algebras over such signatures, i.e., �-algebras. Signatures

are assumed to contain distinguished constants 


s

at each sort s, which intuitively

stand for divergence. Many operations and concepts extend naturally from sets to

S-indexed families of sets, in a pointwise manner. For example, if A and B are S-

indexed families of sets, then a function f :A!B is an S-indexed family of functions

f

s

:A

s

! B

s

. We will make use of this and other such extensions without explicit

comment. We use uppercase script letters (A, B, etc.) to denote algebras and the

corresponding italic letters (A, B, etc.) to stand for their carriers.

We write T

�

(or just T ) for the initial (term) algebra, so that T

s

is the set of

terms of sort s. Given an algebra A and a term t of sort s, [[t]]

A

(or just [[t]]) is the
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meaning of t in A

s

, i.e., the image of t under the unique homomorphism from T to

A. Sometimes we write t

A

(or even just t) for [[t]]

A

.

An algebra is reachable i� all of its elements are denotable (de�nable) by terms.

A pre-ordering over an algebra is substitutive i� it is respected by all of the operations

of that algebra. Substitutive equivalence relations are called congruences, as usual.

The congruence over T that is induced by an algebra A is called �

A

: two terms

are congruent when they are mapped to the same element of A. When we say that

c[v

1

; : : : ; v

n

] is a derived operator of type s

1

� � � � � s

n

! s

0

, this means that c is a

context of sort s

0

over context variables v

i

of sort s

i

. We write c

A

for the corresponding

derived operation over an algebra A.

The reader is also assumed to be familiar with ordered algebras, i.e., algebras A

whose carriers are S-indexed families of posets A

s

= hA

s

;v

s

i with least elements ?

s

denoted by the 


s

constants, and whose operations are monotone functions. Such an

algebra is called complete when its carrier is a dcpo and operations are continuous.

A homomorphism over complete ordered algebras is called continuous when it is

continuous on the underlying dcpo's. We write OT

�

(or just OT ) for the initial

ordered algebra, which consists of T with the \
-match" ordering: one term is less

than another when the second can be formed by replacing occurrences of 
 in the

�rst by terms. The substitutive pre-ordering over T that is induced by an ordered

algebra A is called �

A

: one term is less than another when the meaning of the �rst

is less than that of the second in A.

Given complete ordered algebras A and B, we say thatA is an inductive subalgebra

of B (written A � B) i� A is a subalgebra of B and A is a sub-dcpo of B. Given a

complete ordered algebra A, we write R(A) for the �-least inductive subalgebra of

A. Its carrier R(A) contains all of the elements reached by the trans�nite process

that starts with the denotable elements and closes under lub's of directed sets, and

thus we are able to carry out proofs by induction on R(A). A complete ordered

algebra A is inductively reachable i� A = R(A). Complete ordered algebras whose

carriers are !-algebraic are inductively reachable i� all of their isolated elements are

denotable. It is easy to see that R(A) itself is inductively reachable.

If A is an algebra and R is a pre-ordering over A, then R is unary-substitutive i�

all unary-derived operations respect R: for all derived operators c[v] of type s! s

0

and a; a

0

2 A

s

, if aR

s

a

0

, then chaiR

s

0

cha

0

i. Unary-substitutive pre-orderings can fail



30 CHAPTER 2. A TYPED LAMBDA CALCULUS WITH RECURSION

to be substitutive; see Lemma 2.2.27 of [Sto88] and Counterexample 2.1.22.

If P � S, A is an algebra and R is a pre-ordering over AjP then R

c

, the con-

textualization of R, is the relation over A de�ned by: aR

c

s

a

0

i� chaiR

p

cha

0

i, for all

derived operators c[v] of type s! p, p 2 P .

Lemma 2.1.1 If P � S, A is an algebra and R is a pre-ordering (respectively,

equivalence relation) over AjP then R

c

is the greatest unary-substitutive pre-ordering

(respectively, equivalence relation) over A whose restriction to P is included in R.

Proof. See Lemma 2.2.25 of [Sto88].

Lemma 2.1.2 If A is a complete ordered algebra and � is an inductive pre-ordering

over AjP , for P � S, then �

c

is a unary-substitutive, inductive pre-ordering over A.

Proof. See Lemma 2.3.14 of [Sto88].

Lemma 2.1.3 (i) Unary substitutive pre-orderings over reachable algebras are sub-

stitutive.

(ii) Unary substitutive, inductive pre-orderings over inductively reachable, com-

plete ordered algebras are substitutive.

Proof. See Lemmas 2.2.29 and 2.3.35 of [Sto88].

2.1.2 Syntax and Semantics of PCF

For technical simplicity, we have chosen to work with a combinatory logic version

of PCF with a single ground type �, whose intended interpretation is the natural

numbers. From the viewpoint of the conditional operations, non-zero and zero are

interpreted as true and false, respectively.

The syntax of PCF is speci�ed by a signature, the sorts of which consist of PCF's

types. The set of sorts S is least such that

(i) � 2 S, and

(ii) s

1

! s

2

2 S if s

1

2 S and s

2

2 S.

As usual, we let ! associate to the right. De�ne s

n

, for n 2 !, by: s

0

= s and

s

n+1

= s! s

n

. The signature � over S has binary (application) operators �

s

1

;s

2

of
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type (s

1

! s

2

)� s

1

! s

2

for all s

1

; s

2

2 S, as well as the following constants (nullary

operators), for all s

1

; s

2

; s

3

2 S:

(i) 


s

of sort s,

(ii) K

s

1

;s

2

of sort s

1

! s

2

! s

1

,

(iii) S

s

1

;s

2

;s

3

of sort (s

1

! s

2

! s

3

)! (s

1

! s

2

)! s

1

! s

3

,

(iv) Y

s

of sort s

1

! s,

(v) n of sort �, for n 2 !,

(vi) Succ and Pred of sort �! �, and

(vii) If

s

of sort �! s

2

.

We usually abbreviate x � y to x y, and let application associate to the left.

A model A is a complete ordered algebra such that the following conditions hold:

(i) A

�

= f?

�

; 0

A

; 1

A

; : : :g, where ?

�

v n

A

for all n 2 ! and n

A

and m

A

are

incomparable whenever n 6= m (we often confuse A

�

with !

?

below);

(ii) For all a

1

2 A

s

1

and a

2

2 A

s

2

, K

s

1

;s

2

a

1

a

2

= a

1

;

(iii) For all a

1

2 A

s

1

!s

2

!s

3

, a

2

2 A

s

1

!s

2

and a

3

2 A

s

1

, S

s

1

;s

2

;s

3

a

1

a

2

a

3

=

a

1

a

3

(a

2

a

3

);

(iv) For all a 2 A

s

1
, Y

s

a is the least �xed point of the continuous function over

A

s

that a represents;

(v) For all a 2 A

�

, Succ a is equal to ?, if a = ?, and is equal to a+ 1, if a 2 !;

(vi) For all a 2 A

�

, Pred a is equal to ?, if a = ?, is equal to 0, if a = 0, and is

equal to a� 1, if a 2 ! � f0g;

(vii) For all a

1

2 A

�

and a

2

; a

3

2 A

s

, If

s

a

1

a

2

a

3

is equal to ?, if a

1

= ?, is equal

to a

2

, if a

1

2 ! � f0g, and is equal to a

3

, if a

1

= 0;

A model A is extensional i�, for all a

1

; a

2

2 A

s

1

!s

2

, if a

1

a = a

2

a for all a 2 A

s

1

,

then a

1

= a

2

, and order-extensional i�, for all a

1

; a

2

2 A

s

1

!s

2

, if a

1

a v a

2

a for all

a 2 A

s

1

, then a

1

v a

2

. Finally, morphisms between models are simply continuous

homomorphisms between the complete ordered algebras.

Application is left-strict in all models A since ?

s

1

!s

2

v

s

1

!s

2

K

s

2

;s

1

?

s

2

, and thus

?

s

1

!s

2

a v

s

2

K

s

2

;s

1

?

s

2

a = ?

s

2

, for all a 2 A

s

1

.

The continuous function model E is the unique model E such that E

�

= !

?

,

E

s

1

!s

2

= E

s

1

!

c

E

s

2

for all s

1

; s

2

2 S, application is function application and n

A

= n

for all n 2 !. E is clearly order-extensional. The \parallel or" operation por 2 E

�

2

is de�ned by: porx y = 1, if x 2 ! � f0g or y 2 ! � f0g, porx y = 0, if x = 0, and
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porx y = ?, otherwise.

Lemma 2.1.4 If A is a model, then so is R(A).

Proof. Follows easily from the fact that R(A) is an inductive subalgebra of A.

For s 2 S, we write I

s

for the term S

s;s

1

;s

K

s;s

1
K

s;s

of sort s

1

. I is the identity

operation in all models. We code lambda abstractions in terms of the S, K and I

combinators, in the standard way.

For s 2 S, de�ne approximations Y

n

s

to Y

s

of sort s

1

! s by Y

0

s

= 


s

1

!s

and

Y

n+1

s

= S

s

1

;s;s

I

s

1
Y

n

s

, so that Y

n

s

is an !-chain in the initial ordered algebra, and thus

in all models.

Following [Mil77, BCL85], we can de�ne syntactic projections 	

n

s

of sort s

1

, for

all n 2 ! and s 2 S, by 	

n

�

= Y

n

�

1

F and 	

n

s

1

!s

2

= �xy:	

n

s

2

(x(	

n

s

1

y)), where F of sort

�

1

! �

1

is �xy: If y (Succ(x(Predy))) 0. Expanding the abstractions, one can see that

the 	

n

s

form an !-chain in the initial ordered algebra, and thus in all models. Given

a model A, we write A

n

s

for the sub-poset of A

s

whose elements are f	

n

s

a j a 2 A

s

g.

Clearly A

n

�

= f?; 0; 1; : : : ; n� 1g and A

n

s

� A

m

s

if n � m.

Lemma 2.1.5 (Milner/Berry) Suppose A is an extensional model, and let s 2 S.

The 	

n

s

represent an !-chain of continuous projections with �nite image over A

s

whose lub is the identify function. Hence A

s

is a strongly algebraic dcpo whose set of

isolated elements is

S

n2!

A

n

s

.

Proof. The 	

n

s

obviously represent an !-chain of continuous functions. Inductions

on S su�ce to show that they are retractions, have �nite image and that their lub is

the identity function. But then each 	

n

s

is less than the identity function. The rest

follows easily.

Lemma 2.1.6 Suppose A is an extensional model, and let s 2 S. The 	

n

s

also

represent an !-chain of continuous projections with �nite image over R(A)

s

whose

lub is the identity function. Hence R(A)

s

is a strongly algebraic dcpo and, for all

a 2 A

s

,

(i) x is isolated in R(A)

s

i� x is isolated in A

s

and denotable.

(ii) x 2 R(A)

s

i� 	

n

x is denotable for all n 2 !.
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Proof. Follows from Lemma 2.1.5 and the fact that R(A) is the least inductive

inductive subalgebra of A.

We write por

2

for 	

2

por. It is easy to see that por

2

and por are interde�nable

elements of E

�

2
.

Let the equality test Eq of sort �

2

be

Y (�zxy: Ifx (If y (z(Predx)(Predy)) 0) (Not y));

where Not of sort �

1

is �x: Ifx 0 1.

For n 2 !, de�ne operators And

n

of sort �

n

by: And

0

= 1 and

And

n+1

= �xy

1

� � � y

n

: Ifx (And

n

y

1

� � � y

n

) 0:

Also following [Mil77, BCL85], de�ne glb operators Inf

n

s

of sort s

n

, for n � 1, by:

Inf

n

�

= �y

1

� � � y

n

: If (And

n�1

(Eq y

1

y

2

) � � � (Eq y

1

y

n

)) y

1




Inf

n

s

1

!s

2

= �y

1

� � � y

n

z: Inf

n

s

2

(y

1

z) � � � (y

n

z):

Lemma 2.1.7 (Milner) If A is an order-extensional model, then Inf

n

x

1

� � � x

n

is

the glb of fx

1

; : : : ; x

n

g in A

s

, for all x

1

; : : : ; x

n

2 A

s

, n � 1 and s 2 S.

Proof. By induction on S.

Lemma 2.1.8 Suppose A is an order-extensional model, and let s 2 S. Then, for

all nonempty X � A

s

(respectively, X � R(A)

s

),

F

n2!

(u(	

n

X)) is the glb of X in

A

s

(respectively, R(A)

s

). Thus A

s

and R(A)

s

are consistently complete, !-algebraic

dcpo's.

Proof. Suppose X � A

s

is nonempty, and let x 2 X. Then u(	

n

X) v x for all

n 2 !, and thus

F

n2!

(u(	

n

X)) v x. Now, let y be a lb of X. Then 	

n

y v u(	

n

X)

for all n 2 !, so that y =

F

n2!

(	

n

y) v

F

n2!

(u(	

n

X)), completing the proof that

F

n2!

(u(	

n

X)) is the glb ofX inA

s

. But, ifX � R(A)

s

, then each u(	

n

X) � R(A)

s

by Lemma 2.1.7, so that

F

n2!

(u(	

n

X)) 2 R(A)

s

, as required. The rest follows by

Lemmas 2.1.5 and 2.1.6.

Lemma 2.1.9 If A is an order-extensional model, then 	

n

(uX) = u(	

n

X), for all

n 2 ! and �nite, nonempty X � A

s

.
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Proof. By induction on S, using the fact (Lemma 2.1.7) that �nite, nonempty glb's

are determined pointwise.

Since glb's of in�nite subsets of E are not always determined pointwise, it is

somewhat surprising that we have an in�nitary version of the preceding lemma.

Lemma 2.1.10 If A is an order-extensional model, then 	

n

(uX) = u(	

n

X), for

all n 2 ! and nonempty X � A

s

.

Proof. For all x 2 X, we have that 	

n

(uX) v 	

n

x. Thus 	

n

(uX) v u(	

n

X).

For the other direction, u(	

n

X) = u(	

n

(	

n

X)) = 	

n

(u(	

n

X)) v 	

n

(uX) by

Lemma 2.1.9 and the fact that u(	

n

X) v uX.

Following [Plo80], we say that an n-ary logical relation L over a model A, for n 2

!, is an n-ary relation over A such that hx

1

; : : : ; x

n

i 2 L

s

1

!s

2

i� hx

1

y

1

; : : : ; x

n

y

n

i 2

L

s

2

for all hy

1

; : : : ; y

n

i 2 L

s

1

. Given such an L and A, we say that an element a 2 A

s

satis�es L i� ha; : : : ; ai 2 L

s

.

Lemma 2.1.11 Suppose L is an n-ary logical relation over a model A, s 2 S and

D

1

; : : : ;D

n

� A

s

are directed sets such that, for all x

i

2 D

i

, 1 � i � n, there

are y

i

2 D

i

, 1 � i � n, such that x

i

v y

i

for all i and hy

1

; : : : ; y

n

i 2 L

s

. Then

h

F

D

1

; : : : ;

F

D

n

i 2 L

s

.

Proof. By induction on S.

Lemma 2.1.12 Suppose L is an n-ary logical relation over a model A. If L is

satis�ed by 


�

, n, for all n 2 !, Succ, Pred and If

�

, then all elements of R(A) satisfy

L.

Proof. First we must show that the remaining constants satisfy L. The satisfaction

of L by K and S at all sorts follows as usual. One shows that 
 satis�es L at all

sorts by induction on S, using the fact that application is strict in its left argument.

The proof that If satis�es L at all sorts also proceeds by induction on S, using the

fact that If

s

1

!s

2

x y z w = If

s

2

x (y w) (z w) for all x 2 A

�

, y; z 2 A

s

1

!s

2

and w 2 A

s

1

.

Finally, the satisfaction of L by Y at all sorts follows using Lemma 2.1.11.

A simple induction on T then shows that all denotable elements of A satisfy L,

following which we use Lemma 2.1.11 again to show, by induction on R(A), that L

is satis�ed by all elements of R(A).
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Lemma 2.1.13 (Plotkin) There is no f 2 R(E)

�

2
such that f w por

2

.

Proof. Following [Sie92], let L be the ternary logical relation over E such that

hx

1

; x

2

; x

3

i 2 L

�

i� either x

i

= ? for some i or x

1

= x

2

= x

3

. It is easy to see

that L satis�es the hypotheses of Lemma 2.1.12, and thus all elements of R(E) sat-

isfy L. Clearly, h1;?; 0i 2 L

�

and h?; 1; 0i 2 L

�

. Thus, if there were such an f , then

we would have that hx

1

; x

2

; x

3

i 2 L

�

, where x

1

= f 1?, x

2

= f ? 1 and x

3

= f 0 0.

But x

1

= 1, x

2

= 1 and x

3

= 0|contradicting the de�nition of L.

The following theorem allows us to de�ne the meaning [[M ]] 2 !

?

of a term M of

sort � to be [[M ]]

A

, for an arbitrary model A.

Theorem 2.1.14 (Plotkin) For all models A and B and terms M of sort �,

[[M ]]

A

= [[M ]]

B

.

Proof. See Theorem 3.1 of [Plo77].

We now de�ne notions of program ordering and equivalence for PCF. De�ne a

pre-ordering

@

�

over T jf�g by M

@

�

�

N i� [[M ]] v [[N ]], and let � be the equivalence

relation over T jf�g induced by

@

�

. By Lemmas 2.1.1 and 2.1.3 (i),

@

�

c

is a substitutive

pre-ordering over T and �

c

is a congruence over T . It is easy to see that

@

�

c

induces

�

c

. We say that a model A is inequationally fully abstract i� �

A

=

@

�

c

. From

[Plo77], we know that E is not inequationally fully abstract. On the other hand, by

[Mil77], there exists a unique (up to order-isomorphism) inequationally fully abstract,

order-extensional model.

Finally, we recall Milner's important result concerning the order-extensional na-

ture of

@

�

c

and the extensional nature of �

c

[Mil77].

Lemma 2.1.15 (Milner) (i)

@

�

c

�

=

@

�

�

and �

c

�

= �

�

.

(ii) If M

1

N

@

�

c

s

2

M

2

N for all N 2 T

s

1

, then M

1

@

�

c

s

1

!s

2

M

2

.

(iii) If M

1

N �

c

s

2

M

2

N for all N 2 T

s

1

, then M

1

�

c

s

1

!s

2

M

2

.

Proof. See Lemma 4.1.11 of [Cur86].

From Lemma 2.1.15 (i), we know that, for all terms M of sort �, either M �

c

�




or M �

c

�

n for some n 2 !.
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2.1.3 Normalization of R(E)

In this section, we focus on E. Apart from the counterexamples, however, we could

just as well work with any other order-extensional model, such as the bidomains

model [BCL85]. We begin by de�ning semantic analogues of

@

�

c

and �

c

.

De�nition 2.1.16 De�ne an inductive pre-ordering � over Ejf�g by x �

�

y i�

x v y, and let � be the equivalence relation over Ejf�g induced by �.

Clearly, �

�

is just the identity relation over E

�

.

Lemma 2.1.17 (i) �

c

is a unary-substitutive, inductive pre-ordering over E.

(ii) �

c

is the unary-substitutive equivalence relation over E induced by �

c

.

(iii) For all M;N 2 T

s

, M

@

�

c

s

N i� [[M ]] �

c

s

[[N ]].

(iv) For all M;N 2 T

s

, M �

c

s

N i� [[M ]]�

c

s

[[N ]].

Proof. (i) and (ii) follow from Lemmas 2.1.1 and 2.1.2, (iii) can be shown by a

simple calculation, and (iv) follows from (iii).

Lemma 2.1.18 (i) The restriction of �

c

to R(E) is a substitutive, inductive pre-

ordering over R(E).

(ii) The restriction of �

c

to R(E) is a congruence over R(E).

Proof. (i) follows by Lemma 2.1.3 (ii), and (ii) follows from (i).

Lemma 2.1.19 (i) �

c

�

= �

�

and �

c

�

= �

�

.

(ii) For all x

1

; x

2

2 R(E)

s

1

!s

2

, if x

1

y �

c

x

2

y for all y 2 R(E)

s

1

, then x

1

�

c

x

2

.

(iii) For all x

1

; x

2

2 R(E)

s

1

!s

2

, if x

1

y �

c

x

2

y for all y 2 R(E)

s

1

, then x

1

�

c

x

2

.

Proof. (i) follows from Lemma 2.1.15 (i). For (ii), it su�ces to show that 	

n

x

1

�

c

	

n

x

2

for all n 2 !, since �

c

is inductive. But isolated elements of R(E) are deno-

table, and thus, by Lemma 2.1.15 (ii), it is su�cient to show that 	

n

x

1

y �

c

	

n

x

2

y

for all isolated y 2 R(E)

s

1

. But 	

n

(x

1

(	

n

y)) �

c

	

n

(x

2

(	

n

y)) follows from the

hypothesis and Lemma 2.1.18, completing the proof of (ii). Finally, (iii) follows from

(ii).

The following term features prominently below and is a generalization of the

parallel or tester introduced in [Plo77].
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De�nition 2.1.20 Let the term Test of sort �! �! �

2

! � be

�xyf: If (Eq (f 1 y) 1)

(If (Eq (f x 1) 1)

(If (f 0 0) 
 0)


)


:

Lemma 2.1.21 For all f 2 E

�

2
, Test?? f is 0, if f w por

2

, and ?, otherwise. �

The following is a counterexample to �

c

(and thus �

c

) being substitutive.

Counterexample 2.1.22 Test?? �

c

?, but Test?? por 6�

c

? por.

Proof. By Lemmas 2.1.19, 2.1.21 and 2.1.13, we have Test?? �

c

?. But

Test?? por = 0, and thus Test?? por 6�

c

? por.

We do, however, have:

Lemma 2.1.23 (i) For all x

1

; x

2

2 E

s

1

!s

2

and y 2 R(E)

s

1

, if x

1

�

c

x

2

, then

x

1

y �

c

x

2

y.

(ii) For all x 2 R(E)

s

1

!s

2

and y

1

; y

2

2 E

s

2

, if y

1

�

c

y

2

, then x y

1

�

c

x y

2

.

Proof. For (i), since application is continuous and �

c

is inductive, it su�ces to show

x

1

y �

c

x

2

y when y is isolated. But this follows since all isolated elements of R(E)

s

1

are denotable and �

c

is unary-substitutive. (ii) follows similarly.

The following result shows that we cannot allow x

1

; x

2

to range over E

s

1

!s

2

in

parts (ii) and (iii) of Lemma 2.1.19. This raises the question (which we leave unan-

swered) of when nondenotable elements are related by �

c

and �

c

.

Counterexample 2.1.24 De�ne G

1

; G

2

2 E

�

2

!�

2
by

G

1

= �f:If (f 0 0) por (�xy:Test
 
 f); G

2

= �f:If (f 0 0) por 
:

Then G

1

f �

c

G

2

f for all f 2 R(E)

�

2
, but G

1

6�

c

G

2

.
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Proof. It is easy to see that G

1

f �

c

G

2

f for all f 2 R(E)

�

2
. But chG

1

i = 0 and

chG

2

i = ?, where the derived operator c[v] of type (�

2

! �

2

)! � is v (v(�xy: 1)) 
 
.

Thus G

1

6�

c

G

2

.

We are now ready to de�ne our continuous projection over R(E).

De�nition 2.1.25 The function norm:R(E) !R(E) is de�ned by

norm

s

x = ufx

0

2 R(E)

s

j x

0

�

c

x g:

By Lemma 2.1.10, 	

n

(normx) = uf	

n

x

0

j x

0

�

c

x and x

0

2 R(E)

s

g for all n 2 !

and x 2 R(E)

s

, s 2 S. We write x v�

c

y for x v y and x �

c

y.

Lemma 2.1.26 If X is a �nite subset of R(E)

s

and x

0

2 X is such that x

0

�

c

x for

all x 2 X, then x

0

�

c

uX.

Proof. By induction on S.

Lemma 2.1.27 Let x; y 2 R(E)

s

, s 2 S, and n 2 !.

(i) normx v x.

(ii) normx �

c

x.

(iii) If x v�

c

normy, then x = norm y.

(iv) x �

c

y i� normx v norm y.

(v) x �

c

y i� normx = norm y.

(vi) If x v y, then normx v normy.

(vii) norm(normx) = normx.

(viii) norm(	

n

x) v�

c

	

n

(normx).

(ix) 	

n

(norm(	

n

x)) = norm(	

n

x).

(x) normx =

F

n2!

norm(	

n

x).

(xi) norm

s

is continuous.

Proof. (i) Immediate from the reexivity of �

c

.

(ii) By Lemma 2.1.26, we have that 	

n

x �

c

uf	

n

x

0

j x

0

�

c

x and x

0

2

R(E)

s

g v normx, for all n 2 !. Thus x �

c

normx, since �

c

is inductive. The result

then follows by (i).

(iii) If x v�

c

normy, then x �

c

norm y �

c

y by (ii), so that norm y v x. But

then x = norm y, since x v normy.
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(iv) The \if" direction follows from (ii) and the fact that v

s

� �

c

s

. For the

\only if" direction, suppose that x �

c

y. Let y

0

2 R(E)

s

be such that y

0

�

c

y. Then

x �

c

y

0

, so that x u y

0

�

c

x by Lemma 2.1.26. But then normx v x u y

0

v y

0

. Thus

normx v normy.

(v) Immediate from (iv).

(vi) Follows from (iv), since v

s

� �

c

s

.

(vii) Follows by (i){(iii).

(viii) Follows by (i), (ii) and (v).

(ix) Since norm(	

n

x) �

c

	

n

x, we have 	

n

(norm(	

n

x)) �

c

	

n

(	

n

x) = 	

n

x �

c

norm(	

n

x), and thus 	

n

(norm(	

n

x)) �

c

norm(	

n

x). The result then follows by

(iii), since 	

n

(norm(	

n

x)) v norm(	

n

x).

(x) By (vi) and (viii), norm(	

n

x) v normx and

F

n2!

norm(	

n

x) �

c

	

n

(normx), for all n 2 !. Thus

F

n2!

norm(	

n

x) v�

c

normx, since �

c

is induc-

tive. The result then follows by (iii).

(xi) Follows from (x).

Lemma 2.1.28 norm(Test??) = ?.

Proof. Follows from Counterexample 2.1.22.

Lemma 2.1.29 norm

�

is the identity function on R(E)

�

.

Proof. Immediate by Lemma 2.1.19 (i).

The following counterexample shows that Lemma 2.1.27 (viii) cannot be strength-

ened to an identity.

Counterexample 2.1.30 norm(	

2

(Test2 2)) 6= 	

2

(norm(Test2 2)).

Proof. Let the term A of sort �

2

be

�xy: If (And

2

(Eq x 1) (Eq y 2))

1

(If (And

2

(Eqx 2) (Eq y 1))

1

(If (And

2

(Eq x 0) (Eq y 0)) 0 
));
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so that A v por

2

. Since Test2 2A = 0, it follows that (norm(Test2 2))A = 0, and

thus that (norm(Test 2 2))por

2

= 0. But then

	

2

(norm(Test2 2)) por = 	

2

((norm(Test2 2))por

2

) = 	

2

0 = 0;

showing that 	

2

(norm(Test2 2)) 6= ?. On the other hand, it is easy to show that

	

2

(Test2 2) = Test??, and thus norm(	

2

(Test2 2)) = ? by Lemma 2.1.28.

In preparation for three key counterexamples, we now de�ne the following or

operations of sort �

2

, where the \L", \R" and \D" stand for \Left", \Right" and

\Divergent", respectively:

LOr = �xy: Ifx 1 (If y 1 0)

ROr = �xy: If y 1 (If x 1 0)

DOr = �xy: Ifx (If y
 1) (If y 1 0):

Lemma 2.1.31 There is no h 2 R(E)

�!�!�

2

!�

such that

h?? por = ?; h 0 0DOr = 0; h 0? LOr = 0; h? 0ROr = 0:

Proof. Suppose, toward a contradiction, that such an h does exist.

Let L be the 4-ary logical relation over E such that hx

1

; x

2

; x

3

; x

4

i 2 L

�

i�

fx

1

; x

2

; x

3

; x

4

g � f?; ng for some n 2 ! and, if x

1

= ?, then one of x

2

; x

3

; x

4

is

also ?. Clearly, 


�

and all n 2 ! satisfy L. Furthermore, Succ and Pred satisfy L

since it is satis�ed by all elements of E

�

1

. Finally, it is easy to show that L is satis�ed

by If

�

. Hence h satis�es L, by Lemma 2.1.12.

Next, we show that hpor;DOr; LOr;ROri 2 L

�

2
. Suppose that hx

1

; x

2

; x

3

; x

4

i 2 L

�

and hy

1

; y

2

; y

3

; y

4

i 2 L

�

. We must show that hz

1

; z

2

; z

3

; z

4

i 2 L

�

, where z

1

= porx

1

y

1

,

z

2

= DOrx

2

y

2

, z

3

= LOrx

3

y

3

and z

4

= ROrx

4

y

4

. Clearly, each z

i

2 f?; 0; 1g.

Furthermore, if z

i

= 0 for some i, then both x

i

and y

i

must be 0, so that no x

j

or y

j

is a nonzero element of !, and thus no z

j

= 1. Now, suppose that z

1

= ?. We must

show that one of z

2

; z

3

; z

4

is ?. Either x

1

or y

1

must be ?, and we consider the case

when x

1

= ?, the other case being dual. Since DOr and LOr are strict in their �rst

arguments, if x

i

= ? for some i 2 f2; 3g, then z

i

= ?. Otherwise, we must have that

x

4

= ? and x

2

= x

3

6= ?. Now, if y

4

2 f?; 0g, then z

4

= ?. Otherwise, y

4

2 !�f0g

and y

1

; y

2

; y

3

2 f?; y

4

g. But then y

1

= ? (otherwise z

1

= 1), and thus either y

2

= ?
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or y

3

= ?. Since DOr is also strict in its second argument, if y

2

= ?, then z

2

= ?.

Otherwise, y

3

= ? and y

2

= y

4

. Now, if x

3

= 0, then z

3

= ?. Otherwise, we have

that x

2

= x

3

2 ! � f0g. But then z

2

= ?, since both x

2

; y

2

2 ! � f0g.

Summarizing, we have that h satis�es L and hpor;DOr; LOr;ROri 2 L

�

2
. Fur-

thermore, h?; 0; 0;?i 2 L

�

and h?; 0;?; 0i 2 L

�

, so that hz

1

; z

2

; z

3

; z

4

i 2 L

�

, where

z

1

= h?? por, z

2

= h 0 0DOr, z

3

= h 0? LOr and z

4

= h? 0ROr. But z

1

= ? and

z

2

= z

3

= z

4

= 0, contradicting the de�nition of L.

The following counterexample shows that application is not preserved by norm.

Counterexample 2.1.32 norm(Test?) 6= (normTest)(norm?).

Proof. By Lemma 2.1.19 (iii) and Counterexample 2.1.22, we have that

Test? �

c

�y: If y (Test? y) (Test? y);

so that (norm(Test?))? por = ?. Since norm? = ?, it is thus su�cient to show

that h?? por 6= ?, where h = normTest. But

h 0 0DOr = 0; h 0? LOr = 0; h? 0ROr = 0;

since h �

c

Test, and thus h?? por 6= ? by Lemma 2.1.31.

Since norm((normTest)(norm?)) = norm(Test?), it follows from the preceding

counterexample that the image of norm is not closed under application.

Counterexample 2.1.33 There is no norm

0

2 R(E)

(�!�

2

!�)

1
such that norm

0

x =

normx for all x 2 R(E)

s

.

Proof. Suppose, toward a contradiction, that such a norm

0

does exist. Then, for all

y 2 R(E)

�

,

Testy �

c

norm(Testy) = norm

0

(Test y) = (�y: norm

0

(Testy)) y;

so that Test �

c

�y: norm

0

(Test y). Then,

(normTest)(norm?) = (norm(�y: norm

0

(Test y)))?

v�

c

(�y: norm

0

(Testy))?

= norm

0

(Test?)

= norm(Test?):

But then (normTest)(norm?) = norm(Test?), contradicting Counterexample 2.1.32.
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The following counterexample shows that denotable elements can be contextually

equivalent to nondenotable ones.

Counterexample 2.1.34 h �

c

Test does not imply that h 2 R(E).

Proof. Let h 2 E

�!�!�

2

!�

be �xy: If (pcon x y) (Testx y) 
, where the \parallel con-

vergence" operation pcon 2 E

�

2
is de�ned by: pcon x y = 1, if x 6= ? or y 6= ?, and

pcon x y = ?, otherwise. Then h =2 R(E), by Lemma 2.1.31. It remains to show that

h �

c

Test.

In the remainder of the proof, we work in the result of adding to PCF a con-

stant PCon of sort �

2

whose interpretation is pcon. All of the results preceding

Lemma 2.1.31 hold for the extended language, with the exception of Lemma 2.1.12.

This lemma can be repaired, however, by adding PCon to the list of constants in its

hypothesis. The logical relation de�ned in the proof of Lemma 2.1.13 is also satis�ed

by PCon and thus this lemma is true for the extended language. (The original proof

that parallel or is not de�nable from parallel convergence can be found in [Abr90].)

It is su�cient to show h �

c

Test, and, since h 2 R(E), this will be a consequence

of showing that hx y �

c

Testx y for all x; y 2 R(E)

�

. If x 6= ? or y 6= ?, then

hx y = Testx y. But Test?? �

c

? was shown in Counterexample 2.1.22.

Although we were able to solve negatively the question of whether norm preserves

application, the following problem is still open.

Open Problem 2.1.35 Is norm� = � for all constants � 2 �? In particular, is

(normK)x y ever strictly less than x?

Now, we are able to show how the unique inequationally fully abstract, order-

extensional model lives inside the continuous function model.

De�nition 2.1.36 We de�ne the ordered algebra N(E) as follows. For all s 2 S,

N(E)

s

consists of normR(E)

s

, ordered by the restriction of v

E

s

to normR(E)

s

. For

all x 2 N(E)

s

1

!s

2

and y 2 N(E)

s

1

, x �

N(E)

y = norm(x �

E

y). For all constants �,

�

N(E)

= norm�

E

.

N(E) is a sub-dcpo of R(E) and N(E) is well-de�ned, since norm is strict and

continuous.
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Theorem 2.1.37 N(E) is an order-extensional model and norm is a surjective mor-

phism from R(E) to N(E).

Proof. N(E) is a complete ordered algebra by the preceding remark and the conti-

nuity of norm. Condition (i) of the de�nition of model holds by Lemma 2.1.29, and

the remaining conditions can be shown using Lemma 2.1.27 (ii) and (v) and (for

condition (iv)) the continuity of norm. For the order-extensionality of N(E), suppose

that x

1

; x

2

2 N(E)

s

1

!s

2

are such that x

1

�

N(E)

y v x

2

�

N(E)

y for all y 2 N(E)

s

1

. Then,

for all y 2 R(E)

s

1

,

norm(x

1

�

E

y) = x

1

�

N(E)

norm y v x

2

�

N(E)

normy = norm(x

2

�

E

y);

and thus x

1

�

E

y �

c

x

2

�

E

y. But then x

1

�

c

x

2

by Lemma 2.1.19 (ii), so that

x

1

= normx

1

v normx

2

= x

2

. Finally, norm is a surjective morphism from R(E) to

N(E) because of the way N(E) was de�ned.

By Lemma 2.1.8, we know that N(E) is a consistently complete, !-algebraic dcpo.

Lemma 2.1.38 For all term M , [[M ]]

N(E)

= norm[[M ]]

E

.

Proof. A consequence of norm being a morphism from R(E) to N(E).

Theorem 2.1.39 N(E) is inequationally fully abstract.

Proof. Follows from Lemmas 2.1.17 (iii) and 2.1.38.

2.1.4 Full Abstraction and Lambda De�nability

There appears to be no clear de�nition of what the \full abstraction problem" for

PCF really is. By Milner's construction [Mil77] we know that there is a unique

inequationally fully abstract, order-extensional model F (which we refer to below as

the fully abstract model) that is made up out of Scott-domains of continuous (set-

theoretic) functions. Why are we not satis�ed? The answer to this question, as

one often reads, is that Milner's model is \syntactic in nature". The same words

are used against Mulmuley's description [Mul87] of the fully abstract model. What

people vaguely imagine is that there ought to be a description of F using dcpo's

enriched with some additional structure (order-theoretic, topological, etc.) which
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allows the domains of the fully abstract model to be constructed without recourse

to the syntax of PCF. Of course, nobody can specify what this additional structure

will be or should be. Stated this way, there is no chance to falsify this research

programme, in the sense that there is no way one can prove a result saying that

there is no \semantic" presentation of F .

We would therefore like to give a weak but precise minimal condition that a

semantic solution of the full abstraction problem should satisfy. Namely, it should

allow us to e�ectively construct the �nite domains F

s

of the fully abstract model

F of �nitary PCF , i.e., the variant of PCF in which the sort � is interpreted as

the booleans (f?; 0; 1g) rather than the natural numbers. (The result of this paper

can be trivially adapted to �nitary PCF.) Clearly, neither Milner's nor Mulmuley's

constructions achieve this. On the other hand, even if we can �nd such an algorithm

for presenting F , we may still be unsatis�ed with it as a semantic description.

The results of this paper give one of the simplest descriptions of the fully abstract

model to date. In order to satisfy the above condition, all one needs to �nd is an

algorithm that decides whether an element of E is denotable, since then one will be

able to e�ectively present R(E) and thus N(E).

The problem of deciding which elements of a model are de�nable in the case of

the typed lambda calculus (without constants) and the full set-theoretic type hier-

archy based on a �nite set is known as \Plotkin's conjecture". (It seems that the

term was coined by Statman in his 1982 paper [Sta82a]. We do not know whether

Plotkin ever considered the question nor whether he ever conjectured anything.) The

\conjecture" is that the problem is decidable. We prefer to call it the \lambda de�n-

ability problem" (cf. [JT93]). This problem can be studied in all kinds of contexts,

and certainly it makes sense to ask whether it is decidable which elements of E are

denotable.

Since a positive solution to the lambda de�nability problem for PCF will mean

that N(E) and thus F are e�ectively presentable, it is natural to ask whether the

converse is also true. We conjecture that it is.
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2.2 The Classi�cation of Continuous Domains

Introduction

The �rst spaces suitable for the interpretation of programming language constructs

were continuous lattices discovered by Dana Scott in the late sixties. Continuous

lattices turned out to have numerous connections to other �elds of mathematics such

as algebra, topology, and convex analysis. An indication of this is the voluminous

Bibliography of Continuous Lattices contained in [HH87].

In Computer Science, however, it was soon recognized that the subclass of alge-

braic lattices is fully su�cient for the purposes of semantics. Indeed, the basic concept

of �nite pieces of information corresponds nicely to the idea of compact elements in

these structures. Generality was sought in a di�erent direction, namely, in the way

the least upper bound of pieces of information was to be formed. This led to a va-

riety of di�erent classes of domains: Lattices, meet-semilattices (= Scott-domains),

SFP-objects, to name a few.

It is our belief that continuous domains do have a similar importance for computer

science in areas largely still to be developed. One application is the analysis of

probabilistic algorithms. Here the central domain is clearly the unit interval, a non-

algebraic but continuous lattice. Some work in this direction has been carried out

in [Gra88, JP89].

Looking at all those di�erent de�nitions of domains the novice in the �eld will

naturally ask for some orientation. And indeed, it is possible to give a rather complete

overview once the basic assumption is shared that a collection of domains should

form a cartesian closed category. Michael Smyth [Smy83] showed 1983 that there is

a largest cartesian closed full subcategory in the class of all countably based algebraic

dcpo's with least element. In his doctoral thesis [Jun89] the present author completely

described all categories of algebraic domains with respect to that criterion of cartesian

closedness. It is the purpose of the present note to do the same for continuous

domains.

It is an easy exercise to show that any Scott-continuous retract of an algebraic

dcpo is a continuous dcpo and it is equally simple to see that the class of all such

retracts is cartesian closed if one starts with a cartesian closed category. This im-

mediately gives us a class of continuous domains for each class of algebraic domains.
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It is then an obvious question whether this will give us the whole variety on the

continuous side. As Smyth notes at the end of his paper [Smy83] \(this result) does

not come out by manipulating retractions". It turned out to be a very hard problem,

indeed. The solution, which was partly provided in [Jun89] and is completed here,

involves the de�nition of two new classes of domains: L-domains and FS-domains.

We will show below that each cartesian closed category of continuous domains with

least element consists of continuous L-domains or of FS-domains. The special ques-

tion, whether the retracts of SFP-objects form a maximal class we leave unanswered.

They are FS-domains but we do not know whether this containment is proper.

FS-domains do have a distinctive advantage over SFP-retracts: They are easy to

discover. This is illustrated below by showing that the collection of all closed discs

in the plane together with the plane itself (the ordering being reversed inclusion)

forms a countably based FS-domain. Even for this well-structured concrete example

it appears to be extremely hard to decide whether it is an SFP-retract.

2.2.1 Background

Our notation will be fairly standard. We call directed-complete partial orders dcpo's

and do not generally assume that they have a least element. If a dcpo does have a

bottom element then we call it pointed. A dcpo is continuous if every element is the

directed supremum of elements way-below it, where an element x is way-below an

element y (x� y) if whenever the sup of a directed set is above y then some element

of the directed set is above x. A subset B is a basis if every element x is the directed

sup of base elements way-below x. A dcpo is countably based or !-continuous if it

has a countable basis.

Our functions are Scott-continuous that is, they preserve directed sups. Dcpo's

together with Scott-continuous maps form a cartesian closed category DCPO. The

full subcategories CONT and CONT

?

of continuous dcpo's (with bottom) are not

cartesian closed. It is the purpose of this note to describe all maximal cartesian

closed full subcategories of CONT

?

.

The basic properties of the way-below relation are summarized in the following

lemma.

Lemma 2.2.1 If D is a continuous dcpo then the following holds for all
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x; x

0

; y; y

0

2 D:

(i) x� y =) x � y.

(ii) x

0

� x� y � y

0

=) x

0

� y

0

.

(iii) x� y =) 9z:x� z � y.

Given a pointed dcpo E and a dcpo D and given elements e 2 E and d 2 D we

can de�ne the step function (d& e) as follows:

(d& e)(x) =

(

e; if d� x;

?; otherwise.

A step function is always Scott-continuous. If x

0

is way-below x in D then the step

function (x& x

0

) is way below the identity function id

D

on D. In a continuous dcpo

we can interpolate between x

0

and x with elements y

0

and y: x

0

� y

0

� y � x. It

is then easy to check that the step function (x& x

0

) is way-below the step function

(y & y

0

) in the dcpo [D �! D].

2.2.2 Continuous L-domains

De�nition 2.2.2 A dcpo D is an L-domain if it is pointed and if every principal

ideal in D is a complete lattice. The category of continuous L-domains is denoted

by cL.

L-domains were discovered by the present author and by T.Coquand [Coq88,

Coq89] independently. A thorough treatment of their main properties can be found

in [Jun89], where it was shown already that they form a maximal cartesian closed

full subcategory of CONT

?

(`Theorem 4.25').

Continuous L-domains occur in `nature': Given a compact connected and locally

connected space X the collection of all closed connected nonempty subsets of X

ordered by reversed inclusion forms a continuous L-domain. This example is due to

Klaus Keimel and Jimmie Lawson.



48 CHAPTER 2. A TYPED LAMBDA CALCULUS WITH RECURSION

2.2.3 FS-domains

It was generally conjectured (see for example [Smy83, KT84]) that the retracts of

SFP-objects (or rather: bi�nite domains, see [Jun89, Tay87b]) form another maximal

cartesian closed full subcategory of CONT

?

and that there are no other. In what

follows we shall characterize the second maximal class and show that every cartesian

closed full subcategory of CONT

?

is contained in one of the two. This second

class will consist of FS-domains, which are introduced here for the �rst time. They

contain the retracts of SFP-objects, but it is open whether this inclusion is strict.

However, we hope to convince the reader that FS-domains are preferable to SFP-

retracts anyway.

De�nition 2.2.3 Let f; g:D ! E be functions from a set D to a dcpo E. We say

that f is �nitely separated from g if there exists a �nite subset M of E such that

for every x 2 D there is some m 2 M such that f(x) � m � g(x) holds. The

function f is strongly �nitely separated from g if there exists a �nite set M of pairs

(m

0

;m) 2 E �E with m

0

� m such that for every x 2 D there is some pair from M

between f(x) and g(x). We will mostly need functions f :D ! D separated from the

identity id

D

.

Lemma 2.2.4 Let f :D ! D be a Scott-continuous function on a dcpo D �nitely

separated from id

D

. Then f(x) � x holds for every x 2 D, f � f is strongly �nitely

separated from id

D

and way-below id

D

in [D �! D].

De�nition 2.2.5 A pointed dcpo D is called an FS-domain if there exists a directed

family (f

i

)

i2I

of Scott-continuous functions, each �nitely separated from id

D

, with

supremum id

D

. The category of FS-domains with Scott-continuous functions as ar-

rows is denoted by FS.

By the preceding lemma it is obvious that FS-domains are continuous. Consider-

ing the characterization (`Theorem 4.1') in [Jun89], it is also clear that FS contains

all retracts of bi�nite domains. In fact, FS has all closure properties one usually

expects from a category of domains:

Theorem 2.2.6 Any product of FS-domains is an FS-domain and the inverse

limit of FS-domains is an FS-domain. Also, FS is a cartesian closed subcategory

of CONT

?

.
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Proof. We show that the function space [D �! E] for FS-domains D and E is

again an FS-domain. Let f :D ! D be �nitely separated from id

D

and g:E ! E be

�nitely separated from id

E

. We show that the function F : [D �! E] ! [D �! E],

de�ned by �h:g � g �h�f �f , is �nitely separated from id

[D!E]

. Let M

f

;M

g

be �nite

separating sets for f and g, respectively. De�ne an equivalence relation on [D �! E]

by

h

1

� h

2

() 8m 2M

f

: "g � h

1

(m) \M

g

= "g � h

2

(m) \M

g

:

Obviously there are only �nitely many equivalence classes on [D �! E]. Let

g

M

F

be a set of representatives from each class. We show that M

F

= g �

g

M

F

� f is a

separating set for F . Given h 2 [D �! E] let

�

h be the corresponding representative

in

g

M

F

. We calculate for an x 2 D:

h(x) � h(m

f

) ;for some m

f

2M

f

with f(x) � m

f

� x

� m

g

;for some m

g

2M

g

with

g(h(m

f

)) � m

g

� h(m

f

)

� g(

�

h(m

f

)) ;because g(h(m

f

)) � m

g

and h �

�

h

� g(

�

h(f(x))) ;because f(x) � m

f

.

By symmetry we also have

�

h(x) � g(h(f(x))) and hence g �

�

h � f � g � g � h � f � f .

So indeed: h � g �

�

h � f � F (h).

De�nition 2.2.7 For a continuous dcpo D the Lawson-topology �

D

is generated by

the subbasic open sets

"

"x; x 2 D and D n "x; x 2 D.

On continuous dcpo's the Lawson-topology will always be Hausdor�. With the

results in [Jun89] or in [Law88] it is easy to see that FS-domains are Lawson-compact.

In fact, the Lawson-topology is closely connected to the function space:

Theorem 2.2.8 Let D be an FS-domain.

(i) For each f � id

D

we de�ne an entourage U

f

= f(x; y) 2 D � D j f(x) �

y ^ f(y) � xg resulting in a basis (U

f

)

f�id

D

for a uniformity on D. The

corresponding topology equals �

D

.
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(ii) A function f :D ! D is way-below id

D

if and only if it is strongly �nitely

separated from id

D

.

We �nish this section with the discussion of a concrete example of an FS-domain.

(It was suggested to me by Jimmie Lawson.) Let Disc be the collection of all closed

discs in the plane plus the plane itself, ordered by reversed inclusion. One checks

that the �ltered intersection of discs is again a disc, so Disc is a dcpo. A disc d

1

is

way-below a disc d

2

if and only if d

1

is a neighborhood of d

2

. This proves that Disc is

continuous. For every � > 0 we de�ne a map f

�

on Disc as follows. All discs inside the

open disc with radius

1

�

are mapped to their closed �-neighborhood, all other discs are

mapped to the plane which is the bottom element of Disc. Because the closed discs

contained in some compact set form a compact space under the Hausdor� subspace

topology, these functions are �nitely separated from the identity map. This proves

that Disc is a countably based FS-domain. We do not know whether this domain is

a retract of an SFP-object.

2.2.4 The classi�cation

The following lemma, which we cite from [Jun89] is the starting point for our classi-

�cation:

Lemma 2.2.9 Let D and E be continuous pointed dcpo's with property m. If

[D �! E] is continuous then E is an L-domain or D is Lawson-compact.

Lawson-compact dcpo's do not form a cartesian closed category. Indeed, we are

now going to show that FS-domains are the largest cartesian closed full subcategory

of CONT

?

which consists of Lawson-compact domains only.

De�nition 2.2.10 For any dcpo D and any d 2 D the retraction r

d

:D ! D is

de�ned by r

d

(x) = x if x � d and r

d

(x) = d otherwise.

Lemma 2.2.11 If a function f :D ! D is below r

x

and r

y

then f(x) � x; f(x) �

y; f(y) � x; and f(y) � y.

The following Lemma appears also in [Law88]
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Lemma 2.2.12 If D is a dcpo with continuous and Lawson-compact function space

[D �! D] and if f � id

D

holds then there exist pairs x

0

1

� x

1

; : : : ; x

0

n

� x

n

such

that every upper bound of the step functions (x

i

& x

0

i

), i = 1; : : : ; n, is above f .

Proof.

"

"f is a Lawson-neighborhood of "id

D

. Since [D �! D] is Lawson-compact,

each of the sets "(x

1

& x

0

1

) \ : : : \ "(x

m

& x

0

m

), for any �nite set of pairs x

0

1

�

x

1

; : : : ; x

0

m

� x

m

, is Lawson-compact. The intersection of all these sets is �ltered

and equals "id

D

. Therefore one of them is already contained in

"

"f .

Theorem 2.2.13 If D and [D �! D] are continuous and Lawson-compact and if

f � id

D

then f is �nitely separated from id

D

.

Proof. Let g � id

D

be such that f � g � g and let X

1

= (x

1

& x

0

1

); : : : ;X

n

=

(x

n

& x

0

n

) be step functions such that any upper bound of them is above g according

to Lemma 2.2.12. For each i 2 I = f1; : : : ; ng interpolate between x

0

i

and x

i

to get

y

0

i

; y

i

such that x

0

i

� y

0

i

� y

i

� x

i

and let Y

i

be the step function (y

i

& y

0

i

). We

noted above that X

i

� Y

i

holds in [D �! D]. Also note that for each x 2 D nO |

where O =

"

"y

1

[ : : : [

"

"y

n

| g(x) = ? holds. That is because the function which

maps each element of O onto itself and everything else onto bottom is above all Y

i

and hence above g.

For each x 2 O consider the retraction r

x

. The element x is way-above some of

the y

i

but not necessarily above all of them. Call the subset of I for which y

i

� x; I

x

.

Then r

x

is above all Y

i

with i 2 I

x

, because r

x

(e) = x � y

i

� y

0

i

� Y

i

(e) for e 6� x

and r

x

(e) = e = id

D

(e) � Y

i

(e) otherwise.

Claim: If h:D! D is below r

x

and above all X

i

with i 2 I

x

, then h j

#x

� g j

#x

.

De�ne h

0

:D ! D by h

0

(e) = e if e 6� x and h

0

(e) = h(e) otherwise. This is

continuous because h

0

j

#x

= h j

#x

� r

x

j

#x

= id

D

j

#x

and h

0

�

�

�

Dn#x

= id

D

�

�

�

Dn#x

. The

map h

0

is above all step functions X

i

:

Case 1: e 6� x : h

0

(e) = e = id

D

(e) � X

i

(e); i 2 I:

Case 2a: e � x; i 2 I

x

: h

0

(e) = h(e) � X

i

(e) by assumption.

Case 2b: e � x; i 2 I n I

x

: e 62

"

"x

i

�

"

"y

i

by the de�nition of I

x

, so h

0

(e) = h(e) �

? = X

i

(e).

So h

0

is above g and hence h j

#x

= h

0

j

#x

� g j

#x

. This proves our claim.
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Now let J be some subset of I. Since [D �! D] is Lawson-compact there exists a

�nite set M

J

contained in

T

f"X

i

j i 2 Jg such that every upper bound of fY

i

j i 2 Jg

is above some h 2M

J

, that is

\

i2J

"Y

i

�

[

h2M

J

"h:

In particular, for a given x 2 D, there is h 2 M

I

x

with h � r

x

. We now take all

h from each M

J

that we need, that is:

FM = fh 2

S

J�I

M

J

j 9x 2 D:I

x

= J^

^h � r

x

^ h 2M

J

g:

A function in FM will in general be below many r

x

with J = I

x

. We select just one

x

h

for each h 2 FM and de�ne

M = fh(x

h

) j h 2 FMg:

It remains to show that M separates f from the identity on D. To this end, let x

be some arbitrary but �xed element in D and let h 2 M

I

x

be such that r

x

� h. x is

not necessarily equal to x

h

but we have h � r

x

; r

x

h

and we can apply Lemma 2.2.11:

h(x

h

) � x and h(x) � x

h

, also, h � X

i

for all i 2 I

x

by construction. Hence by the

`Claim' above, h j

#x

� g j

#x

and h j

#x

h

� g j

#x

h

. So we can calculate:

x � h(x

h

) Lemma 2.2.11

� g(x

h

) `Claim'

� g(h(x)) Lemma 2.2.11

� g(g(x)) `Claim'

� f(x) by construction.

Thus with m = h(x

h

) we have found a separating element in M between x and

f(x).

Corollary 2.2.14 If D and [D �! D] are Lawson-compact and continuous then D

is an FS-domain.

Corollary 2.2.15 Every cartesian closed full subcategory of CONT

?

is contained

in cL or in FS.
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If we restrict our attention to continuous domains with a countable basis, then

we must have Lawson-compactness. This was shown in [Jun89]. So we also have the

following continuous analogue to Smyth's Theorem for continuous domains:

Theorem 2.2.16 The class !-CONT

?

of pointed continuous countably based dcpo's

contains a largest cartesian closed full subcategory, the class of all countably based

FS-domains.

It is possible to extend the results of this paper to dcpo's without bottom element.

Most of the work for this was done in [Jun89] already. One gets four maximal

cartesian closed full subcategories of CONT.
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Chapter 3

The polymorphic lambda calculus

The polymorphic �-calculus was introduced by Jean-Yves Girard in 1971 [Gir71,

Gir72] and independently by John Reynolds in 1974 [Rey74]. The simple idea behind

this language is that for certain routines the type of arguments does not play a

role, the routine will behave uniformly (the technical expression generally used is

parametric) for all types. The papers in this chapter do not refer to the syntax of the

polymorphic �-calculus directly, so it is probably admissible to leave out a formal

de�nition in this overview.

As a formal system, the polymorphic �-calculus exhibits striking features; we just

mention a few.

1. It is strongly normalizing and satis�es the Church-Rosser property, hence every

term has a unique normal form.

2. By encoding N into the calculus as so-called Church numerals we can ask what

number-theoretic functions are de�nable. The answer is: all functions that can

be proved total in second-order arithmetic.

3. The term algebra for any signature may be represented as the set of closed

terms of a certain type.

Building a denotational model for the polymorphic �-calculus proved to be an ex-

traordinary challenge. While its type system and strong normalization suggest that

an interpretation in the category of sets should be possible (similar to the one for the

simply typed �-calculus), it was in fact shown in [Rey84] that under some minimal

55
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conditions on the interpretation such a model does not exist (unless one works in a

constructive universe of sets [Pit87]).

Domain-theoretic models were constructed in [Gir86] and [CGW89]. While Gi-

rard's model is based on stable functions { a re�nement of Scott-continuity { the

latter model lives in the category of Scott-domains and continuous functions. At the

heart of this construction is the so-called dependent product (explained in Section 3.1

below) but a formidable multitude of details has to be checked in order to be sure

of correctness. An advantage of this model is that the usual programming constants

can be added to the language (just as we have added them to the simply typed �-

calculus in order to obtain PCF) and the interpretation stays essentially the same.

The disadvantage is that the model is rather inated; so we cannot hope to prove

a close connection between denotational and operational semantics and therefore it

is questionable whether any nice semantic properties can be found and transferred

from the model to the syntax.

Worse, this kind of construction can not be carried through in the preferred

category of bi�nite domains. I made this observation in 1988 and it appeared as a

note in Theoretical Computer Science in 1991, [Jun91]. It is reprinted in the �rst

section of this chapter.

From these negative results it is justi�ed to look for an alternative formulation

of domain-theoretic models for the polymorphic �-calculus. Such an approach does

indeed exist in the form of retraction models. The idea (due to Dana Scott [Sco76])

is to reduce types to certain retractions on a universal domain for the class under

consideration, where a domain U is universal if every other domain (from that class)

can be embedded into U . If we restrict to �nitary retractions on U (those which have

an algebraic image) then it can be shown [McC79, Hut90, Ber91, Rot91] that they

together form yet another domain of the same kind, also embeddable into U . By this

procedure, types become �nitary retractions become points of U , and inverse limits

of types become directed suprema. The dependent product, too, can be calculated

in U by a simple formula. For details I refer to [Gun92].

It is then natural to ask which classes of domains contain a universal object.

For some classes the answer is given in [Sco76, Plo78, Gun87]. After I had found

the new class of L-domains [Jun89], Carl Gunter tried to apply his techniques from

[Gun87], which had given him a universal domain for the bi�nites, to the class of
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bi�nite L-domains. The task seemed hopelessly complicated at the beginning but I

found that with an alternative de�nition a solution could be given. Furthermore, the

adjustment allowed a uniform treatment of all main classes of domains and yielded

universal domains with an additional homogeneity property.

We presented our results to the conference Logic in Computer Science in 1988

and submitted a full paper to the Journal of Pure and Applied Algebra, where it

appeared as [GJ89]. The writing in this case was done by Carl Gunter (except for

Section 3.2.4). In particular, the category theoretic set-up is due to him.

I may add that this approach to universal domains stimulated further research

by Manfred Droste and R�udiger G�obel [DG90, DG91, Dro92, DG93] in the course of

which they unearthed the true signi�cance of our homogeneity property and estab-

lished the connection with the standard model theoretic concept of amalgamation.

The presentation in [DG93] could hardly be improved but I may be allowed the com-

ment that the technical content of that paper di�ers very little from Section 3.2.4

below.

Finally, I quote a very recent result of J. B. Wells who showed that the type

reconstruction problem for the polymorphic �-calculus is undecidable (an earlier

result in this direction is [Pfe93]). This makes this language rather unattractive as a

practical programming language but I believe that due to its concise and pure form

it will remain the object and basis of further semantical studies.
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3.1 The Dependent Product Construction in Var-

ious Categories of Domains

Introduction

In their recent paper \Domain Theoretic Models of Polymorphism", [CGW89], Co-

quand, Gunter, and Winskel show how to use the class S of all (countably based)

Scott domains as a model for the polymorphic lambda calculus. In particular, a type

which contains n free type variables is interpreted as a continuous functor F :S

n

! S.

The category of continuous sections of the corresponding Grothendieck �bration is

shown to be isomorphic to a Scott domain. We show that this construction does not

work for bi�nite domains or algebraic L-domains.

3.1.1 Notation

All partially ordered sets considered in this note have a least element and allow to

form joins of directed subsets. We use the abbreviation dcpo = directed-complete

partial order in the following. The set of compact elements of a dcpo D is denoted

by K(D). The categories we consider are equipped with embedding-projection pairs

as arrows. This is expressed by the superscript ep to the name of these classes. It is

well known from the theory of domains that the class DCPO

ep

possesses limits for

directed systems. These limits can be calculated either as directed colimits in the

category DCPO

e

or as codirected limits in the category DCPO

p

. Since the two are

isomorphic, we call it the bilimit of the system. If D is the bilimit of �nite posets

then we call it a bi�nite domain. The class of all bi�nite domains we denote by B.

We say that a functor F :D! E is continuous if it preserves bilimits.

De�nition. Let C and D be categories of dcpo's and let F :C

ep

! D

ep

be a

continuous functor. A continuous section is a class of elements (t

X

)

X2C

such that

(i) 8X 2 C : t

X

2 F (X),

(ii) 8f

E

:X ! Y : F (f

E

)(t

X

) � t

Y

,

(iii) t

limX

i

=

F

"

F (d

E

i

)(t

X

i

) for directed systems (D

i

; d

ij

) of domains and limiting

morphisms d

i

.
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Of course, we can compare two continuous sections pointwise but we run into

foundational problems if we try to form an ordered set from all continuous sections

of a functor F :C

ep

! D

ep

. The problem is that C may be a class. If C consists of

countably based algebraic dcpo's only, then there are clearly only set-many objects

in C up to isomorphism and any continuous section is determined by its values on

some set of representatives.

In the following we will need the concept of L-domains. We cite from [Jun89]

some basic results:

De�nition. A dcpo D is an L-domain if every principal ideal #x; x 2 D, is a

complete lattice.

Theorem 3.1.1 ([Jun89]) The category L of algebraic L-domains is cartesian

closed.

Theorem 3.1.2 ([Jun89]) Any cartesian closed full subcategory of the class of al-

gebraic domains is contained in either the class L of algebraic L-domains or in the

class B of bi�nite domains.

The proof is based on the following crucial lemma:

Lemma 3.1.3 Let D and E be algebraic dcpo's with property m such that the space

[D �! E] of Scott-continuous functions is algebraic. Then either K(D) has prop-

erty M or E is an L-domain.

(Reminder:

property m = for each upper bound x of a set A there is a minimal upper bound

of A below x.

property M = property m and each �nite set has only �nitely many minimal

upper bounds.)

We now show that the class of all algebraic L-domains is too big in the sense that

there are class-many sections of a functor F :L

ep

! L

ep

.

Example. For any cardinal �, let A

�

be the algebraic L-domain consisting of a

least element ?, two upper neighbors x; y of ? and �-many minimal upper bounds

of fx; yg. Figure 1 shows A

2

and A

3

.
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: c
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Figure 3.1: Two L-domains.

Note that no A

�

is embedded in any A

�

0

if � 6= �

0

. Now let F :L

ep

! L

ep

be the

functor which maps each object onto A

1

and each arrow onto the identity on A

1

. For

any � 2 CARD, we can de�ne a continuous section S

�

= (t

�

X

)

X2L

ep
where

t

�

X

=

(

x; if there is an embedding from A

�

to X;

?; otherwise.

These are continuous sections since each A

�

, which is embedded in a bilimit, must

be embedded in one of the limiting domains as embeddings preserve minimal upper

bounds where they exist. Obviously, there are class-many sections S

�

.

In the following we restrict our attention to subcategories of the category !-B

of countably based bi�nite domains. It is probably helpful to have a picture of the

hierarchy of domains here:
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s Lat

s S

s BL

sL

c ALG

s B

A

A

A

A

A

�

�

�

�

� A

A

A

A

A

�

�

�

�

�

s !-Lat

s !-S

s !-BL

c!-L

c !-ALG

s !-B

A

A

A

A

A

�

�

�

�

� A

A

A

A

A

�

�

�

�

�

The �lled dots indicate cartesian closed categories and the denotations are:

ALG: algebraic dcpo's,

L: algebraic L-domains,

B: bi�nite domains,

BL: bi�nite L-domains,

S: Scott domains,

Lat: algebraic lattices.

Theorem 3.1.4 The classes !-B

ep

; !-BL

ep

, !-S

ep

; and!-Lat

ep

are closed under the

formation of bilimits and each domain contained in one of these classes is a bilimit

of �nite posets from the respective class.

From this theorem we infer that any continuous section de�ned over one of these

categories is determined by its values on the �nite objects already. So for any con-

tinuous functor we get an ordered set of continuous sections. Following the notation

in [CGW89], we denote it by �F .

Theorem 3.1.5 ([CGW89]) If F :!-S

ep

! !-S

ep

is a continuous functor then �F

is a Scott domain.
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Figure 3.2: NL: the smallest pointed poset which is not an L-domain.

We show that the corresponding theorem for the class !-B

ep

does not hold. Ex-

ample. Let NL be the poset depicted in Figure 2. Consider the constant functor

F :!-B

ep

! !-B

ep

which maps each object onto NL, each morphism onto id

NL

.

Note that we can order the �nite posets in !-B

ep

by setting D � E if there is an

embedding from D into E. Call this ordered set S. The de�nition of �F then re-

duces to f(t

X

)

X2S

j t

X

� t

Y

if X � Y g and we see that �F is indeed isomorphic to

the space of monotone functions from S into NL. This in turn is isomorphic to the

space [Idl(S) �! NL] of Scott-continuous functions from the ideal completion of S

into NL. We apply Lemma 3 and �nd that K(Idl(S)) = S should have property M if

�F is assumed to be algebraic. But this is not the case. The posets A

2

and A

3

, see

Figure 1, are embedded in each of the posets B

n

of which Figure 3 shows B

4

and B

5

.

The image of an embedding is closed under the formation of minimal upper bounds

and this shows that for n � 4, there are only the obvious embeddings of A

2

and A

3

into B

n

. Furthermore, there is no poset strictly between fA

2

; A

3

g and B

n

. So S does

not have property M and therefore [Idl(S) �! NL]= �F is not algebraic.

Repeating the argument from [Jun90a], this can be seen directly as follows:
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Figure 3.3: L-domains which are upper bounds for fA

2

; A

3

g.

De�ne a section t = (t

X

)

X2S

of F by

t

X

=

8

>

>

>

>

>

<

>

>

>

>

>

:

a

0

1

; if A

2

� X;A

3

6� X,

a

0

2

; if A

2

6� X;A

3

� X,

a

2

; if A

2

; A

3

� X,

?; otherwise.

This should be a compact element of �F if this is an algebraic dcpo. On the other

hand, we can de�ne a section t

M

for each �nite subset M of minimal upper bounds

of fA

2

; A

3

g in S as follows:

t

M

X

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

a

0

1

; if A

2

� X;A

3

6� X,

a

0

2

; if A

2

6� X;A

3

� X,

>; if X 2 "M ,

a

1

; if X 2 "A

2

\ "A

3

n "M ,

?; otherwise.

The supremum of all t

M

is clearly above t but no t

M

itself is greater or equal to t.

3.1.2 Discussion

To our knowledge, the dependent product is the �rst domain theoretic construction

under which the class of all bi�nites is not closed. On the other hand, the convex

powerdomain construction is closed only on B! Since there is a universal domain for

!-B, see [Gun87], there is at least some way to model polymorphism with bi�nite do-
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mains, following the ideas of [ABL86]. This dichotomy should help us to understand

better the internal structure of the two models.

One wonders whether the class !-BL of bi�nite L-domains is closed under forming

dependent products. We conjecture that this is not the case. The method of this

note | taking constant functors | will not decide the problem.

More generally, we would like to ask the following question: Is there a largest

cartesian closed category which allows to form dependent products?
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3.2 Coherence and Consistency in Domains

Introduction.

The �rst structures used as a mathematical foundation for the denotational semantics

of programming languages were lattices. With lattices it was possible to solve the

necessary recursive equations and an elegant mathematical theory could be developed

using the familiar category of (countably based) algebraic lattices [Sco76] (although

it was necessary to take some care to choose the right notion of morphism). As

experience with denotational semantics grew, deeper computational intuitions were

developed and new categories were introduced in attempts to match these intuitions

to the mathematical constructs. For example, it was desirable to have a class of

domains which included such structures as the partial functions from natural numbers

to natural numbers which|under their usual ordering|do not form a lattice. Such

theories were proposed by Plotkin [Plo78], Berry [Ber78] and also Scott [Sco81b,

Sco82a, Sco82b].

The category which Scott proposed was very similar to the algebraic lattices:

a dcpo D is said to be a Scott domain (or bounded complete domain) if the dcpo

D

>

obtained by adding a top to D is an algebraic lattice (with a countable basis).

The arrows of the category are continuous functions, i.e. monotone functions which

preserve joins of directed collections of elements. The category of Scott domains is

easy to work with and has an intuitive logical character which has been the subject

of several investigations (see, in particular, [Sco82a, Abr91]). One central feature of

these treatments is the concept of consistency of data. One may think of a Scott

domain as a collection of propositions or data elements under an ordering of partial

information. An element x is ordered below an element y in a domain D if x is \more

partial" than y. The element x is a kind of partial description of y. Now, given two

data elements x

1

and x

2

, there may or may not be a third element y which they

describe. If there is such a y, then x

1

and x

2

are said to be consistent, otherwise

they are inconsistent. A crucial feature of a Scott domain is the following fact: if

two elements of a Scott domain D are consistent, then they have a join in D. This

property is commonly referred to as consistent completeness.

The use of consistent complete domains for modeling the semantics of types in

programming languages has become the general practice. However, we would like
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to note in this paper that it is not the only reasonable direction the theory could

have taken at the point that consistency was recognized as a central concept. Up

until the time we are writing this paper, almost all of the categories of domains

that have been proposed as a possible foundation for the semantics of programming

languages have been (essentially equivalent to) dcpo's which satisfy the consistent

completeness condition. This includes those categories which use stable continuous

functions [Ber78, Gir86] as well as categories related to the Scott domains (such as

the continuous lattices).

1

The one noteworthy exception is the category of !-bi�nite

domains which was introduced by Plotkin [Plo76] (where it is called SFP). These

will be discussed below.

One might apply the following line of reasoning in an attempt to deal with the

concept of consistency of data. A domain is a collection of propositions providing

partial descriptions of elements (which may also be propositions describing further

elements); a given element dominates a collection of data elements which provide

partial descriptions of it. We propose the following condition on the structure of the

partial descriptions of an element: the partial descriptions of an element must form

an algebraic lattice. Let us refer to this condition as local algebraicity. But a locally

algebraic dcpo (with a countable basis) is just a Scott domain right? No, not at all!

Aside from the fact that such a domain need not have a least element (an in�nite

discrete domain is locally algebraic for example) it is even possible that a consistent

pair of elements have no join! (See Figure 3.4.) One can show, however, that almost

all of the essential features needed to provide semantics for programming languages

are satis�ed by locally algebraic domains.

The concept of a locally algebraic domain was formulated by the second au-

thor who came across the concept in the course of his investigations into exten-

sions of Smyth's Theorem [Jun90a, Jun88]. We refer to locally algebraic domains

as L-domains to keep the terminology short. They were independently discovered

by Thierry Coquand as a special instance of his categories of embeddings [Coq89].

We will discuss some basic properties of L-domains in the next section|for a more

detailed discussion, the reader can examine [Coq89, Jun90a, Jun88]. The bulk of

the paper will focus on the properties of a subcategory of the L-domains which were

1

We omit from discussion categories of dcpo's with no assumptions about the existence of a

basis.
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Figure 3.4: A locally algebraic domain which is not consistent complete.

introduced in the �rst author's doctoral dissertation [Gun85]. The category which

was investigated there (the objects were called short domains) consisted of those

L-domains which were !-bi�nite. It was observed at that time that such domains

formed a cartesian closed category in which one could solve recursive domain equa-

tions. However, we would like to demonstrate a further fact about them below.

Namely, that there is a \universal" domain in this category.

Our construction is similar to that which appears in [Gun87] for the !-bi�nite

domains, but a more subtle ordering is needed to make things work properly. We

prove a lemma expressed in categorical terms which aids one in demonstrating the

existence of a universal domain by demonstrating the existence of what we call a

�nite relative saturation. This lemma is su�ciently general that it applies not only

to our construction of a universal !-bi�nite L-domain and the construction of a uni-

versal !-bi�nite domain as in [Gun87], but also to consistent complete domains and

even countably based algebraic lattices! The universal domains so constructed are

characterized by a property very similar to what model theories call countable satura-

tion [CK73]. We prove that a model with this property is unique up to isomorphism.

We can apply this result to show that Scott's universal domain for the consistent

completes [Sco81b, Sco82a, Sco82b] is not saturated.

The paper is divided into six sections which we overview briey. Section two

provides some de�nitions and establishes notation. A few basic propositions are also

remarked. The third section discusses the coherence condition on the topology of

a domain. We show how this condition translates into an order-theoretic one and
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discuss some important properties of domains with coherent topologies. The fourth

section discusses the universal domain construction. Since this construction seems to

have a general signi�cance, we have attempted to provide a categorical treatment of

it. This categorical treatment makes it possible to see the construction in this paper

and the one that was presented in [Gun87] as instances of a more general theory

which may have applications in other cases. In the �fth section we instantiate the

general theory for the classes !-Lat of algebraic lattices, !-S of Scott domains, !-BL

of !-bi�nite L-domains and !-B of !-bi�nite domains. The universal domains which

we thus construct are saturated. We prove in Section 6 that any saturated object

in a subclass of !-B

ep

is universal and that there is at most one such object (up to

isomorphism).

3.2.1 Basic de�nitions and facts.

For the purposes of this paper a dcpo (complete poset) is a poset (D;v) with least

element and with joins

F

M for all directed subsets M . A function f :D ! E between

dcpo's D and E is continuous if it is monotone and preserves joins of directed subsets

of D. An element x of a dcpo D is said to be compact if, whenever M is a directed

subset of D and x v

F

M , then there is a y 2 M such that x v y. Let K(D) be

the collection of compact elements of a dcpo D. A dcpo D is said to be algebraic if

every element of D is the join of a directed collection of compact elements. D is said

to be !-algebraic if it is algebraic and K(D) is countable. An algebraic lattice is an

algebraic dcpo which is a lattice.

De�nition 3.2.1 A dcpo D is locally algebraic if, for every x 2 D, the principal

ideal

#x = fy 2 D j y v xg

generated by x is an algebraic lattice.

Proposition 3.2.2 If D is locally algebraic, then it is algebraic.

Proof. Suppose c is a compact element in #x and (e

i

)

i2I

is a directed collection

of elements with supremum e above c. The principal ideal #e is by assumption an

algebraic dcpo, so in particular the element c is the supremum of a directed collection
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(c

j

)

j2J

of compact elements in the #e-sense. All these elements belong to #x as well

and since c is compact there, one of the elements c

j

must be equal to c. Going back

to #e we learn that c is equal to a compact element in this ideal, so some e

i

must be

above c. This proves that any locally compact element is also globally compact and

hence D is algebraic.

To keep the terminology short, we will refer to locally algebraic dcpo's as L-domains.

The category of L-domains properly contains the class of Scott-domains: Figure 3.4

shows an example. The di�erence between the two concepts is illustrated by the

following characterizations:

Proposition 3.2.3 Let D be an algebraic dcpo.

� D is a Scott-domain, if and only if every nonempty subset has a meet in D.

� D is an L-domain, if and only if every bounded nonempty subset has a meet in

D.

(For a proof see [Jun90a].)

The di�erence may seem a slight one but it has some important consequences.

The basis of the function space of a Scott-domain D has always the same cardinality

as K(D), whereas the cardinality may increase if D is an L-domain. However, the

following (which was found independently by Thierry Coquand) remains true:

Theorem 3.2.4 The category of L-domains and continuous functions is cartesian

closed.

In [Jun90a] it is proved that, in the category of algebraic dcpo's with least ele-

ment, there are exactly two maximal cartesian closed subcategories: the category of

L-domains and the category of bi�nite domains, which we now proceed to de�ne.

A continuous function f

L

:D ! E between dcpo's D and E is said to be an

embedding if there is a continuous function f

R

:E ! D such that f

R

� f

L

= id

D

and

f

L

�f

R

v id

E

where id

D

and id

E

are the identity functions on D and E respectively.

If there is such a function f

R

, then it is uniquely determined by f

L

and is said to

be the projection corresponding to f

L

. Pairs f = hf

L

; f

R

i:D ! E, where f

L

is
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an embedding and f

R

the corresponding projection, form the arrows of a category

DCPO

ep

which has dcpo's as its objects. Composition is given by

hf

L

; f

R

i � hg

L

; g

R

i = hf

L

� g

L

; g

R

� f

R

i:

It is a basic fact in the theory of domains that DCPO

ep

has directed colimits, which

we call bilimits since they can be gotten either from the directed system of embeddings

or from the codirected system of projections.

Theorem 3.2.5 The category of L-domains and embedding-projection pairs has

bilimits.

If a dcpo is a bilimit in DCPO

ep

of a family of �nite posets with least element,

then it is said to be a bi�nite domain. It is possible to show that bi�nite domains must

be algebraic. Let B and B

ep

be the categories of bi�nite domains with continuous

functions and embedding-projection pairs respectively. It is possible to show that B is

a cartesian closed category and B

ep

has bilimits of directed families [Gun85, Gun87].

Bi�nite domains with a countable basis and least element are the \SFP-objects" of

Plotkin [Plo76]. We will follow Smyth's terminology [Smy83] and refer to them as !-

bi�nite domains. We write !-B for the category with continuous functions and !-B

ep

for the category with embedding-projection pairs. It is not hard to see that !-B is a

cartesian closed category and !-B

ep

has bilimits for countable directed families.

3.2.2 Coherence.

In order to get a satisfactory class of spaces as domains for denotational semantics it

is desirable to impose a more restrictive condition than local algebraicity. Suppose

one wished to de�ne a notion of computability on L-domains. It might be possible

to do this for the L-domains with a countable basis. So why not restrict oneself to

these? The problem is that the L-domains with countable basis are not closed under

the exponential! Consider the poset K pictured in Figure 3.5. This is an L-domain

with a countable basis but [K �! K] has a basis with continuum many members.

Since M. Smyth [Smy83] has proved that any domain which has an !-algebraic

function space is in fact bi�nite, it is reasonable to investigate the category !-BL of

bi�nite L-domains which have countable bases and least elements, i.e. the !-bi�nite
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Figure 3.5: K has a countable basis, but [K �! K] does not.

L-domains. The poset in Figure 3.5 is a typical example of an L-domain that fails

to be bi�nite.

An unfortunate drawback to the bi�niteness condition is the fact that it is not

very easy to understand. Although intrinsic descriptions are possible and these do

help in reasoning about bi�nite domains, it would still be nice to work with a simpler

class of structures. However, it turns out that the !-bi�nite domains which are

L-domains may be somewhat more easily characterized than !-bi�nite domains in

general. In particular, they may be identi�ed as those L-domains which have a \nice"

Scott topology.

We will follow the de�nitions and notation in Johnstone [Joh82]. A dcpo D can

be given a topology as follows. The open subsets of the topology are those which

satisfy:

1. whenever x 2 U and x v y, then y 2 U , and

2. whenever M � D is directed and

F

M 2 U , then M ^ U 6= ;.

This is usually called the Scott topology on D and it will be denoted �D. It is possible

to show that a function f :D ! E between dcpo's D and E is continuous in the sense

that f(

F

M) =

F

f(M), for any directed M � D, if and only if it is continuous in

the usual topological sense|with respect to the Scott topology.

De�nition 3.2.6 Let D be an algebraic dcpo. The topology �D is said to be coherent

if the quasicompact open subsets of D are closed under �nite intersections.
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We would like to make two brief remarks about this terminology. First, to keep

things simple, we have restricted the de�nition to algebraic dcpo's; the de�nition

above would not correspond to the usual notion of a coherent topology if D were

allowed to be an arbitrary dcpo. Second, we would like to comment that the meaning

for the term \coherent" which we have given should not be confused with other

meanings from the domain theory literature. In particular, a poset is sometimes said

to be coherent if any pairwise consistent set has a least upper bound. This condition

is stronger than consistent completeness and certainly does not correspond to the

condition we are using here!

Coherence is an elegant condition on the topology of a domain D which has an

important signi�cance for the order structure of D. Let us say that a poset P has

the strong minimal upper bounds property (or property M for short) if, for every �nite

subset A � P , the set mub(A) of minimal upper bounds of A satis�es the following

properties:

1. mub(A) has only �nitely many elements and

2. mub(A) is complete in the sense that for every p 2 P , if x v p for every x 2 A,

then y v p for some y 2 mub(A).

We have the following:

Proposition 3.2.7 Let D be an algebraic dcpo. Then �D is coherent if and only if

the basis K(D) of D has property M.

Proof. Since the sets of the form "c, with c a compact element of D, form a basis

of the Scott topology, a set A is quasicompact open if and only if it is a �nite union

of such principal �lters.

So letA and A

0

be upper sets generated by �nite sets M;M

0

� K(D), respectively.

Each element of A ^A

0

is above some element of M and above some element of M

0

.

So A ^ A

0

is generated by the �nite set

T

m2M;m

0

2M

0
mub(m;m

0

) and hence itself

quasicompact.

For the converse let m � K(D) be a �nite set. Each set "m, m 2 M is quasicom-

pact open and, by coherence, so is

T

m2M

"m. The latter set is therefore covered by

�nitely many principal open �lters and hence generated by �nitely many compact

elements. This proves that K(D) has property M.



3.2. COHERENCE AND CONSISTENCY IN DOMAINS 73

The central theorem of this section states that a bi�nite L-domain may be char-

acterized using the coherence condition:

Theorem 3.2.8 Let D be an L-domain. Then �D is coherent if and only if D is

bi�nite.

Proof. It is well known (see [Plo76], for example) that the basis of a bi�nite domain

has property M, so by the previous proposition the `only if'-part is taken care of.

For the converse we know that D is an L-domain and that K(D) has property M.

Given any �nite set A of compact elements and any element x of D there is a

supremum of the set #x ^ A in the principal ideal generated by x. Mapping each

element onto this supremum is a continuous function, since A consists of compact

elements only and suprema of compact elements are again compact in a lattice. The

image of this function is �nite by property M. This shows that D is isomorphic to

a bilimit of �nite posets. (A more detailed account of this well known fact can be

found in any of the following sources [Plo76, Gun85, Jun88].

Since the bi�nite L-domains lie at the intersection of two \nice" categories, they

inherit some of that niceness themselves:

Proposition 3.2.9 The category of bi�nite L-domains and continuous functions is

a cartesian closed category.

Proposition 3.2.10 The category of bi�nite L-domains and embedding-projection

pairs has bilimits for directed collections.

3.2.3 Building universal domains.

The concept of a \universal domain" dates back at least to Scott's paper [Sco76]

on P! and is widely used in the current literature. The term \universal domain"

is somewhat vaguely de�ned, however. We see basically two uses as being the most

common. The easiest of these to understand is what one might call a \poor man's

universal domain". Typically it is a domain which satis�es an isomorphism

V

�

=

(V ! V ) + F

1

(V ) + � � � + F

n

(V ) (3.1)
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where F

1

; : : : ; F

n

are operators over which domain equations must be solved.

One often sees such universal domains being used in the type theory litera-

ture [MPS86, Car84]. The theory of domains provides us with all of the mathematical

tools generally needed for solving equations like (3.1) so that we may employ such

de�nitions quite freely and con�dently. On the other hand, the poor man's universal

domain depends on the choice of the functors F

i

and it would be nice to know more

facts about the order structure of the solution than the existence result for the solu-

tion tells us. It is therefore appealing to have a single universal domain U which has

all domains of interest as retracts. Of course, this is subject to one's interpretation

of \domains of interest", but it is not dependent on a commitment to some �nite list

of functors. We refer the reader to Taylor [Tay87b] for a full discussion of universal

domains (which he calls \saturated domains"). For the purpose of clarity, let us

propose a de�nition of \universal domain" which will give the reader some idea what

we are after.

De�nition 3.2.11 Let C be a category. An object U is universal in C if it is weakly

terminal, i.e. for every object A of C, there is a (not necessarily unique) arrow

f :A! U .

The term \universal domain" probably comes from the model theoretic notion

of a \universal model" which has a similar de�nition [CK73]. Universal models can

be built using the concept of saturation �rst presented in [Vau61] and it will be our

goal below to convert this model-theoretic technique to domain-theoretic ends. Of

course, any category that has a terminal object has a universal domain. However, one

typically has it in mind that the arrows of the category C are monics. In particular,

we show that the category !-BL

ep

of !-bi�nite L-domains with embedding-projection

pairs has a universal domain.

The proof uses techniques from Gunter [Gun87]. However, naively mimicking the

construction which appears there will not work. We therefore begin by devising a

general theory which can be applied to obtain a universal domain for both !-B

ep

(as

described in [Gun87]) and !-BL

ep

. We also derive universal domains for !-S

ep

(the

category of Scott domains) and !-Lat

ep

(the category of algebraic lattices), which

di�er from the ones given by Scott in [Sco76, Sco81b].

In particular, we provide a categorical treatment of the essential ingredients that

make the universal domain construction work. The construction is reminiscent of
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one from general model theory. For example, �x a �rst order theory T in a countable

language and suppose that T has a countable homogeneous model A. One can show

that A is elementarily embedded in a countable model of T as follows. It is easy to

see that A is elementarily embedded in a countable model A

1

which is homogeneous

with respect to �nite sequences taken from A. One can use a similar construction to

build a sequence of models A

i

such that, for each j < i, the model A

i

is homogeneous

with respect to �nite sequences of elements from A

j

and A

j

is elementarily embedded

in A

i

. The colimit of this chain will be the desired homogeneous extension of A. The

reader can �nd many constructions that use this basic idea in a standard book on

model theory such as [CK73].

We begin with the following concept:

De�nition 3.2.12 An arrow f :A! B is an increment if, whenever f = h� g, then

either h or g is an isomorphism.

Perhaps the simplest example of an increment is the inclusion map f :S ! T between

�nite sets S and T , such that S = T [ fxg for some x. If C is a poset (considered as

a category), then an arrow x v y is an increment if and only if there is no element

of C between x and y. If we consider the category of L-domains with embedding-

projection pairs, then an arrow s:A! A

0

from a �nite L-domain A into an L-domain

A

0

is an increment if and only if A

0

has at most one more point than A. Figure 3.6

indicates a typical increment in this category. The increment embeds a four element

poset into a poset with �ve elements; the closed circle indicates the \new" element.

An !-chain in a category C is a functor F :!! C from the ordinal ! (considered

as a category) into C. In essence, an !-chain is a sequence of objects A

i

where i < !

and a collection of arrows a

ji

:A

i

! A

j

where i � j < !. For each i, the arrow a

ii

is

the identity on A

i

and, for any i � j � k, one has a

kj

� a

ji

= a

ki

.

De�nition 3.2.13 A concrete category C is incremental if

1. C has an initial object,

2. C has bilimits of !-chains,

3. every object A of C is a bilimit of an !-chain (A

i

; a

ij

) where A

0

is initial,

each A

i

is �nite (in the category C) and each arrow a

i+1;i

:A

i

! A

i+1

is an

increment.
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Figure 3.6: A typical increment in !-BL

ep

. The poset on the left is embedded in the

poset on the right. The open circles show the image of the embedding.

For example, the category of countable sets and injections is incremental. How-

ever, we are interested in a more subtle example:

Theorem 3.2.14 The category !-B

ep

of !-bi�nite domains and embedding-

projection pairs is incremental.

Proof. This is Theorem 22 (the Enumeration Theorem) of [Gun87].

Corollary 3.2.15 The categories !-BL

ep

, !-S

ep

, and !-Lat

ep

are incremental.

Proof. Let D be a !-bi�nite L-domain (Scott domain, Lattice) and let (D

i

; d

ij

) be

an !-chain of increments with bilimitD in !-B

ep

. By de�nition, each D

i

is embedded

in D and must therefore itself be a !-bi�nite L-domain (Scott domain, Lattice).

Let C be an incremental category and let A be an object of C. An object A

+

and arrow s:A! A

+

is a relative saturation of A (or just a saturation for short) if,

for every increment f :B ! B

0

and arrow g:B ! A, there is an arrow h which makes

the following diagram commute:

A

B

A

+

B

0

g

h

s

f

? ?

-

-
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Let us say that an incremental category C has �nite saturations if, for every �nite

object A of C, there is a saturation s:A! A

+

where A

+

is �nite.

Theorem 3.2.16 If an incremental category has �nite saturations, then it has a

universal object.

Proof. Suppose C is an incremental category with �nite saturations. Let S

0

be any

initial object of C. Build the chain S

0

; S

1

= S

+

0

; :::; S

i+1

= S

+

i

; ::: where s

i+1;i

is a

saturation for each i. Let U be a bilimit for this chain. We claim that U is universal.

To see this, suppose A is any object of C and we will demonstrate an arrow f :A! U .

Since C is incremental, A is the bilimit of a chain (A

i

; a

ij

) of �nite objects where A

0

is initial and each arrow a

i+1;i

:A

i

! A

i+1

is an increment. Now, there is an arrow

f

0

:A

0

! S

0

since A

0

is initial. Suppose an arrow f

i

:A

i

! S

i

is given. Since a

i+1;i

is

an increment and s

i+1;i

is a saturation, there is an arrow f

i+1

such that the following

diagram commutes:

S

i

A

i

S

i+1

A

i+1

f

i

f

i+1

s

i+1;i

a

i+1;i

? ?

-

-

This collection of arrows f

i

gives rise to a cocone with vertex U over the chain (A

i

; a

ij

)

whose vertex is U . Since A is a bilimit of this chain, there must consequently be a

mediating arrow f :A! U as desired.

Thus, to prove that there is a universal object in the category of !-bi�nite domains

(as was done in [Gun87]) or that of !-bi�nite L-domains, it su�ces to demonstrate

that the category in question has �nite saturations. The fact that !-B

ep

has �nite

saturations is proved in [Gun87]. We show how to derive this result for !-B

ep

,

!-BL

ep

, !-S

ep

, and !-Lat

ep

in the next section. By Theorem 3.2.16 this will prove:

Theorem 3.2.17 The following categories have universal domains:

1. !-B

ep

2. !-BL

ep

3. !-S

ep

4. !-Lat

ep
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3.2.4 Constructing saturations.

In this section we will construct �nite saturations for !-B

ep

, !-BL

ep

, !-S

ep

, and

!-Lat

ep

. We saw earlier that if D is a �nite poset then an increment f :D ! D

0

adds

at most one point x

f

to D. The idea for constructing a saturation D

+

is to take all

points which may be added by an increment.

Since each increment f :D ! D

0

corresponds to a unique projection g:D

0

! D,

there is some element u

f

2 D onto which x

f

is mapped by g. In fact, f(u

f

) is the

largest element of f(D) below x

f

. Similarly, the set "x

f

^ f(D) corresponds to an

upper set U

f

in D. This suggests the following de�nition for a �nite poset D 2 !-B

ep

:

D

+

= f(u;U) j u 2 D;u v U = "U � Dg;

with the intended meaning that (u;U) stands for a new element x

f

just above u = u

f

and below all elements of U = U

f

. Obviously there cannot be any new element

between u and "u, so the pairs (d; "d); d 2 D represent D inside D

+

.

We have to be a little bit more careful in de�ning D

+

for L-domains, however.

Recall that D is an L-domain if and only if each bounded nonempty subset of D

has a global meet. A new element added by an increment must not destroy this

property. This implies that if x

f

is a new element added to D by an increment in

!-BL

ep

and if d; d

0

v b are contained in U

f

then x

f

is a lower bound for fd; d

0

g and

must consequently be below or directly above d^d

0

. This says that d^d

0

must belong

to U

f

or it must be equal to u

f

. We add this property to the de�nition of D

+

for

�nite L-domains D:

D 2 !-BL

ep

: D

+

= f(u;U) j D 3 u v U = "U � D

and fug [ U is closed under bounded

nonempty meets.g:

Similarly for the two remaining categories:

D 2 !-S

ep

: D

+

= f(u;U) j D 3 u v U = "U � D

and fug [ U is closed under nonempty meets.g;

D 2 !-Lat

ep

: D

+

= f(u;U) j D 3 u v U = "U � D

and fug [ U is closed under meets.g:
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The order on D

+

is de�ned uniformly by

(u;U) � (v; V ) , v 2 U or (v = u and V � U):

Note that (u;U) � (v; V ) implies u v v and V � U , so � is indeed a partial order on

D

+

. It is also helpful to recognize that for a given u 2 D the set of all U � D such

that (u;U) 2 D

+

, is a lattice. This follows from the observation that (u; "u) 2 D

+

and that if (u;U

1

); (u;U

2

) 2 D

+

then (u;U

1

^ U

2

) 2 D

+

. We denote the smallest set

U which contains a set X � D and for which (u;U) belongs to D

+

by hXi

u

.

Lemma 3.2.18 If D is a �nite L-domain (bounded-complete domain, lattice) then

so is D

+

.

Proof. We have to show that D

+

has in�ma for bounded sets. So let

(u;U); (u

0

; U

0

) � (v; V ) be three elements in D

+

. Since fu; u

0

g is bounded by v,

the in�mum u ^ u

0

exists in D. The corresponding upper set U

00

must at least

contain U and U

0

but depending on whether u ^ u

0

is contained in fu; u

0

g or not

it may be necessary to include also u and/or u

0

. We can express this as follows:

U

00

= hU [ U

0

[ (fu; u

0

g n fu ^ u

0

g)i

u^u

0

. If (w;W ) is any other lower bound then

either w = u ^ u

0

or w < u ^ u

0

. In the �rst case W must contain U

00

as we took U

00

as small as possible. In the second case, W must contain u and u

0

and hence also

u ^ u

0

.

The proof for Scott-domains is the same with the single di�erence that

f(u;U); (u

0

; U

0

)g is not necessarily bounded. In order to show that D

+

is a lat-

tice if D belongs to !-Lat

ep

it su�ces to note that (>; �) is the largest element of

D

+

.

Lemma 3.2.19 If D is a �nite poset (L-domain, Scott-domain, lattice) then D

+

is

a saturation for D in the respective category.

Proof. We indicated above that D is embedded in D

+

via the mapping d 7! (d; "d).

The corresponding projection is given by (u;U) 7! u.

Let f :D! D

0

be an increment and let u

f

2 D and U

f

� D be de�ned as above.

In the de�nition of D

+

we already argued that (u

f

; U

f

) belongs to D

+

in all four

cases. It therefore remains to show that D

0

is embedded in D

+

. We identify D

0

with

the subset f(d; "d) j d 2 Dg [ f(u

f

; U

f

)g of D

+

. For each (u;U) 2 D

+

there is a
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largest element of D

0

below it: if (u

f

; U

f

) � (u;U) then either u = u

f

, in which case

(u

f

; U

f

) is the largest element of #(u;U) ^D

0

, or u is contained in U

f

. In the latter

case we have that (u

f

; U

f

) � (u; "u) � (u;U) and (u; "u) is the largest element of D

0

below (u;U). Hence there is a projection from D

+

onto D

0

.

An illustration of the four di�erent constructions can be found in Figure 3.7 at

the end of the paper. The reader is challenged to check that the �gure labelled A

+

in

!-B

ep

is, in fact, not an L-domain whereas the �gure labelled A

+

in !-BL

ep

is one.

Similarly, the �gure labelled B

+

in !-BL

ep

is not a Scott domain although the �gure

to its right is a Scott domain. The third trio of examples is a similar illustration for

algebraic lattices.

3.2.5 Saturated domains.

We hope that the reader can now appreciate how Theorem 3.2.16 can be used to

demonstrate the existence of a universal object. In the proof of that theorem, there

is a construction of a universal domain using the saturations that exist in the cat-

egory. Since a given �nite object may have many non-isomorphic saturations, it is

possible that the construction used there may give di�erent universal domains if one

uses di�erent saturations. In this section we demonstrate that this is not the case

in a category of !-bi�nite domains: regardless of the choice of saturations, the con-

struction in Theorem 3.2.16 is unique up to isomorphisms. In particular, we will

de�ne the notion of a saturated domain by analogy with the concept of a saturated

model of a �rst order theory [CK73]. We then show, as one shows the corresponding

model-theoretic result, that there is a unique saturated domain up to isomorphism.

It is then shown that the universal domain constructed in Theorem 3.2.16 is, in fact,

saturated. This shows that there is a \canonical" choice of universal domain for many

of the categories of domains used in denotational semantics [GS90]. It is remarked

that the bounded complete universal domain of Scott [Sco81b, Sco82a, Sco82b] is not

saturated and is therefore not isomorphic to the universal bounded complete domain

constructed in the previous section.

As an abbreviation, let us refer to an incremental full sub-category C � !-B

ep

as

a category of domains if it is closed under embeddings: i.e. if E 2 C, D 2 !-B and

there is an embedding-projection pair f :D ! E, then D is in C. The key concept
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of this section is given in the following:

De�nition 3.2.20 Let C be a category of domains. An object U 2 C is fully sat-

urated in C (or saturated, for short) if, for every pair of �nite domains M;N and

embedding-projection pairs, f :M ! U and g:M ! N , there is a (not necessarily

unique) embedding-projection pair h which completes the following diagram:

M

N U

g

h

f

?

@

@

@

@

@

@R

-

Theorem 3.2.21 Let U be a fully saturated object in a category C of domains. Then

U is universal for C.

Proof. Each !-bi�nite domainD is the bilimit of an !-chain (A

i

; a

ij

) of �nite posets.

We may assume that A

0

= f?g. Clearly, A

0

is embedded in U 2 C and so by de�ni-

tion A

1

; A

2

; : : : are embedded in U . This cocone over U gives rise to an embedding

g:D ! U .

To prove the desired results about saturated domains, it is useful to introduce a

few notations and facts which are useful in dealing with categories of domains. If

f :D ! E is an embedding-projection pair and f

L

is an inclusion map then we write

D /E. The following lemma is easy to prove and will be used implicitly in the proof

of the theorem below:

Lemma 3.2.22 1. If M is a �nite poset such that M / U , then M � K(U).

2. If D is !-bi�nite and S � K(D) is �nite, then there is a �nite N /D such that

S � N .

3. If M / D, N / D and M � N , then M / N .

Lemma 3.2.23 Let U be an object in a category of domains. If U is saturated, then

for every �nite M / U and embedding-projection pair f :M ! N into a �nite poset

N , there is a poset N

0

/ U such that N

�

=

N

0

.
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Proof. Let N

0

be the image under the embedding h whose existence is guaranteed

by de�nition.

Theorem 3.2.24 If a category of domains has a saturated object, then it is unique

up to isomorphism.

Proof. Let C be a category of domains and suppose that U and V are saturated

objects of C. Let u

0

; u

1

; : : : and v

0

; v

1

; : : : be enumerations of the bases of U and

V respectively. Assume that u

0

= ?

U

and v

0

= ?

V

. We construct an isomorphism

between K(U) and K(V ) by a \back and forth" construction. The �rst partial isomor-

phism is the unique arrow f

0

: fu

0

g

�

=

fv

0

g. Suppose now that we have �nite posets

L/U and L

0

/V such that there is an isomorphism f

n�1

:L

�

=

L

0

. Suppose further that

fu

0

; : : : ; u

n�1

g � L and fv

0

; : : : ; v

n�1

g � L

0

. We wish to extend the isomorphism

f

n�1

to an isomorphism f

n

:M

�

=

M

0

where M /U and M

0

/ V are �nite and u

n

2M

and v

n

2 M

0

. Now, we know that there is a �nite poset N / U with L [ fu

n

g � N .

From the inverse of the isomorphism f

n�1

we can build an embedding-projection

pair f :L

0

! N . Since V is saturated, there is a poset N

0

/ V and an isomorphism

g:N

0

�

=

N . To complete the argument, we add fv

n

g to N

0

and �nd a subset M

0

� V

such that fv

n

g [ N

0

� M

0

. Since U is saturated we �nd an isomorphic copy M of

M

0

inside U , containing L, such that the isomorphism g

�1

:N

�

=

N

0

is extended to

an isomorphism f

n

:M

�

=

M

0

. In this way we obtain a sequence f

0

; f

1

; : : : of isomor-

phisms whose union is an isomorphism between K(U) and K(V ). This isomorphism

extends to an isomorphism between U and V .

Theorem 3.2.25 If an incremental category of domains has �nite saturations, then

it has a saturated object.

Proof. Recall the construction in the proof of Theorem 3.2.16. Suppose C is an

incremental category with �nite saturations. Let S

0

be any initial object of C. Build

the chain S

0

; S

1

= S

+

0

; :::; S

i+1

= S

+

i

; ::: where s

i+1;i

is a saturation for each i. Let

U be a bilimit for this chain. It will simplify matters to assume that each of these

saturations is an inclusion by replacing each S

i

by its embedded image in U . Suppose

M / U and there is an embedding-projection pair f :M ! N for some �nite N 2 C.

We must show that there is is an h such that
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M

N U

f

h

/

?

@

@

@

@

@

@R

-

The proof is by induction on the number n of elements of N not in the image of f .

If n = 0, then f is an isomorphism so we may take the coextension of f

�1

to U as h.

If n � 1, then it is possible to �nd an increment f

0

:M ! N

0

such that f

0

extends f

and N

0

/ N and there is exactly one element in N

0

which is not in the image of f

0

.

Since M is �nite, there is an i such that M � S

i

. Since f

0

is an increment, there is

an h

0

such that

M

N

0

S

i+1

= S

+

i

f

0

h

0

/

?

@

@

@

@

@

@R

-

We can now apply our inductive hypothesis to �nd an h such that

N

0

N U

/

h

h

0

?

@

@

@

@

@

@R

-

By putting these last two diagrams together we see that h has the desired properties.

Corollary 3.2.26 There are saturated objects in each of the following categories:

1. !-B

ep

2. !-BL

ep

3. !-S

ep
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4. !-Lat

ep

It is interesting to note that Scott's universal domain for the consistently complete

domains [Sco81b, Sco82a, Sco82b] is not saturated. To see this, it su�ces to note that

the meet of compact elements in the saturated consistently complete domain is not

compact whereas the intersection of compact elements in Scott's universal domain is

compact.
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Figure 3.7: Saturations in di�erent categories.
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Chapter 4

Types for database languages

In the previous chapter we saw how di�cult it is to give a good mathematical account

of the computational phenomena of sequentiality and polymorphism. In this chapter

the situation is exactly the reverse, we address the problem of incorporating the

mathematical notion of a set into functional languages. In a nutshell, the di�culty

arises from the fact that while we have ways to construct and manipulate sets there

is no deterministic way to destruct them, that is, to retrieve their elements.

Relational database theory rests �rmly on the concept of a relation, that is, a set

of tuples. The problem just mentioned does not appear in database query languages

because all one can do is writing queries the result of which is a print-out of tuples.

The order, in which these tuples appear on the screen, plays no role. More precisely,

all programs in a query language have type query� relation ! relation, there is no

connection with other data types nor are there higher types.

This problem has long been in the focus of Peter Buneman's research interests.

Around 1986 he turned to the semantic models for functional programming languages,

that is to domains, for gaining some understanding of how a type system including

sets might be designed. The results of this research where recorded in [BDW91] and

in a precursor of the paper reprinted below. I became interested in this problem

during a visit to the University of Pennsylvania in Summer 1988. On the invitation

of Peter Buneman I returned to Philadelphia for six weeks in early Spring 1989.

I studied his draft paper and found that from the domain theoretic side a lot more

could be done. The result was a thorough reworking of Sections 4.1.1{4.1.4 by me.

The main de�nitions, however, are due to Peter Buneman. The paper appeared as

87
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[BJO91] in Theoretical Computer Science.

The paper achieves a rather neat abstract view of relations and it is shown that

the usual database operations have conservative extensions to the abstract setting.

However, the problem mentioned in the beginning is not solved, that is, a de�nition

of how to order abstract relations, so that they form another domain, is still missing.

The smoothness with which we could extend database operations to domains in

that paper raised the question in how far traditional database algebra had really

been generalized. Put in domain theoretic terms, the question was whether certain

domains could be represented as subsets of products of at domains. The research

on this was carried out during Summer 1989, in the early phases with the help of

Hermann Puhlmann, then working towards his diploma at Technische Hochschule

Darmstadt. The decomposition theory I developed is very similar to a technique

in distributive lattices [BD74] but due to the fact that domains need not have top

elements the decomposition is rather more interesting.

During the course of writing a paper on these results (which was my task in

this case) it emerged that Leonid Libkin in Philadelphia had similar ideas. We

agreed to to prepare a joint submission to the conference Mathematical Foundations

of Programming Semantics to take place in Pittsburgh in 1991. It was accepted and

the paper appeared as [JLP92]. However, it turned out that our approaches were

quite orthogonal after all and so the paper consists of two independent parts. For

the present purposes I have included only my part.

I would like to make a few comments about this paper from today's perspective.

First of all, while Theorem 4.2.18 is true, I did not have a correct proof of it at the

time the paper was published. This was noticed and a complete proof was provided

by Christian Haack in [Haa93]. Secondly, my hope that the decomposition theory

would lead to a positive solution of the Full Abstraction Theorem for PCF was too

optimistic. This can be seen from the unsuccessful attempts made by Steve Brookes

and Shai Geva [BG92a, BG92b, BG93] which are based on similar ideas cast in

the form of generalized concrete data structures. Thirdly, regarding the problem of

de�ning a sensible power type, whose elements stand for partial descriptions of sets,

some progress has been made. There are quite a few papers by Leonid Libkin and

Limsoon Wong concerned with this question [Lib91, LW92, LW93] and I should also

mention Hermann Puhlmann's PhD work which concentrates on what he calls the
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\snack powerdomain" [Puh93]. When looked at localically (in the spirit of [Abr91])

then this construction exhibits a very natural logical structure. On the other hand,

the localic viewpoint also shows that Peter Buneman's concept of \semi-factor" must

be re�ned.
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4.1 Using Powerdomains to Generalize Relational

Databases

Introduction

There are two motivations for this study. The �rst is to draw together a number of

approaches to data models and to examine the extent to which they can be viewed

as generalizations of the relational data model. The second is to try to draw out the

connection between data models and data types, something that is crucial if we are

to achieve a proper integration of databases [Atk78, AB87, Sch77] and programming

languages.

The main focus of this paper is the �rst of these. There are a number of attempts

to generalize the relational data model beyond �rst-normal-form relations [FT83,

RKS85,

�

OY85]; there are also numerous formulations of other data models [AB84,

HM81, BK86, HY84] that at �rst sight appear to have little to do with relations.

We shall see that by exploiting the basic ideas of domain theory, well known in the

study of semantics of programming languages, we can obtain generalizations of many

of the basic results of relational databases in a way that has very little to do with

the details of the data structures that are used to de�ne them; and which allows the

application of relational database principles to a much wider range of data models.

Although some observations have been made [Ris85, Car85] that suggest a connection

between database and programming language semantics, there appears to have been

no attempt directly to characterize relational databases in the appropriate semantic

domains.

To the hardened �rst-normal-form relational database theorist this paper o�ers

little more than alternative, and perhaps simpler, derivations of some existing re-

sults. However, given the recent activity in the study of \higher order" relations,

which attempts to apply the basic results of relational databases to other structures,

it is interesting to ask how far this work can be pushed. What are the properties of

the data model that allow us to de�ne relational operators, functional dependencies

etc.? In doing this, we shall �nd it useful to produce a simple denotational semantics

for relations and other structures, which is an extension to the semantics for missing

values proposed by Lipski [Lip79]. The idea is that these structures denote sets of val-
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ues in some space which we may think of as the \real world". One of the advantages

of our approach is that it allows us to provide a denotational semantics for structures

such as sets of attribute names, which usually receive an operational treatment. Such

a semantics will, we hope, ultimately be useful if we are ever to achieve our second

goal of achieving a healthy marriage of databases and programming languages.

The organization of this paper is as follows. In Section 2 we describe the prop-

erties of the underlying domains that we shall need. Section 3 then shows how

powerdomain orderings (orderings on sets of values) can be used to characterize the

various joins that are discussed in relational algebra. In Section 4, in trying to char-

acterize projection, we introduce the notion of schemes, which generalize relational

schemes (sets of column names). Schemes enjoy some nice properties with respect

to powerdomain orderings and allow us to characterize functional dependencies and

universal relations, which is done in the following sections. Section 7 concludes by

showing how these ideas can be applied to various extensions of relational databases

including typed relations, relations with null values and various forms of higher order

relations; it also suggests that there may be some limitations to what one can do with

non �rst-normal-form relations. The reader who is more interested in data types and

structures rather than some of the more esoteric areas of database theory may wish

to skip much of Sections 5 and 6, and turn directly to Section 7.

4.1.1 Orderings and Domains

The idea that is fundamental in denotational semantics is that expressions denote

values, and that the domain of values is partially ordered. In the same way we can

think of database structures as descriptions and that these descriptions are partially

ordered by how well they describe the real world. Without putting any particular

structure on the real world, we can de�ne the meaning JdK of a description d as the

set of all real-world objects described by d. We can then say that a description d

1

is

better than d

2

, d

1

w d

2

, if d

1

describes a subset of the real-world objects described

by d

2

, i.e. Jd

1

K � Jd

2

K.

An example of such an ordering is to be found in at record structures. A at

record is a partial function from a set L of labels to an unordered set V of values. If

r

1

and r

2

are two such functions, then r

1

w r

2

if the graph of r

1

contains the graph

of r

2

. For example,
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fName)

0

J. Doe

0

;Dept)

0

Sales

0

;O�ce)33g

w fName)

0

J. Doe

0

;Dept)

0

Sales

0

g

Using the term \real world" to describe the semantics of such records is, of course,

contentious. It is better to think of these records as partial descriptions (or approx-

imations) to elements in some space or \universe" of total descriptions, in this case

large { possibly in�nite { record structures. Suppose that this universe were the

function space L ! V where L = fName;Dept ;O�ceg, we would then have

JfName)

0

J. Doe

0

;Dept)

0

Sales

0

gK =

ffName)

0

J. Doe

0

;Dept)

0

Sales

0

;O�ce) vg j v 2 Vg

Note that this formulation of the denotation of a record with incomplete informa-

tion corresponds with that given in [Lip79], and as it will shortly appear, this space of

at records provides the basis for the relational model; however there are a number of

other orderings that we shall examine later in this paper. These include Bancilhon's

complex objects [BK86], orderings on tree structures that give rise to higher order

relations [FT83, AB84, RKS85, RKS84,

�

OY85], the feature structures in uni�cation-

based grammar formalisms (see [Shi85] for a survey), �nite state automata [RK85],

 -terms [AK86]. In this catalog we should also include Scott's aptly-named \infor-

mation systems" { consistent, deductively closed sets of predicates [Sco82a]. In all

of these it is possible to describe certain generalizations of relational operations.

We shall require somewhat more structure on our space D of partial descriptions

than being partially ordered. The most important property is that it is bounded

complete:

1. any non-empty subset S of D has a greatest lower bound uS,

In addition we shall also make two further assumptions that are common in denota-

tional semantics [Sch86]:

2. any directed subset S of D has a least upper bound tS,

3. the set K(D) of compact elements in D forms a countable basis for D.

Partially ordered sets (D;v) with these properties are widely used in the se-

mantics of programming languages, and are often called Scott domains [Sco82a].
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Throughout this paper we shall refer to them as domains. We shall also use the

notation s

1

t s

2

and s

1

u s

2

for tfs

1

; s

2

g and ufs

1

; s

2

g respectively.

It is an immediate consequence of the �rst condition that any subset of S of

D that is bounded above has a least upper bound tS and also that that D has a

bottom element, ?

D

. The second condition, when taken with the axiom of choice,

ensures that every member of D is bounded above by some member of D

max

, the set

of maximal elements of D. We shall therefore use D

max

as the universe of complete

descriptions; and the de�nition of JdK is then simply fx 2 D

max

j d v xg = "d\D

max

.

Apart from some remarks at the end of the paper, we shall not make any use of the

third condition; however we should note that in any practical database context this

condition will surely be satis�ed.

There is one extra condition which we shall need when we introduce schemes

below:

4. A domain D is distributive if every principal ideal #x is a distributive lattice.

Note that the space of at record structures is a distributive domain. Even more is

true of this domain: each principal ideal is a complete atomic boolean algebra, that

is, a powerset. We shall not need to assume this in general, however.

We shall see that there are a number of ways to construct domains that represent

the kinds of data structures we use in databases; particularly simple are the at

domains. Given a set of atomic values V, a at domain V

?

of V is obtained by

adding bottom element ? to V and ordering them as x v y if and only if x = y

or x = ?. This domain is a domain of atomic descriptions; an element v 2 V

?

is

either a complete description (v 6= ?) with the meaning fvg or the non-informative

description ? with the meaning V. The bottom element introduced in V

?

can be

interpreted as a null value representing \unknown values". There are number of other

approaches to null values, some of them distinguish \inappropriate" and \unknown"

values. Such an approach is entirely consistent with what we develop here and can

be modeled by domains that are more complicated than V

?

. Later we shall comment

more on null values.

We can now describe more precisely the domain of labeled records that we dis-

cussed in the introduction. Given a countable set of labels L and a domain D, a

domain of labeled record L ! D over D is a set of total functions from L to D
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with the ordering de�ned as r

1

v r

2

if and only if for all l 2 L, r

1

(l) v r

2

(l).

This can be thought of as a domain of descriptions by attributes. This ordering

represents the fact that r

2

is a better description that r

1

if r

2

has better descrip-

tions than r

1

in all attributes. The minimal element ?

L!D

in L ! D is the con-

stant function ?

D

and if S is a set of functions, then uS is the function r such

that for all l, r(l) = ufs(l) j s 2 Sg, and tS is the function r

0

such that for all

l; r

0

(l) = tfs(l) j s 2 Sg provided that all the least upper bounds exist.

The space of at records is a special case of a domain of records where D is a

at domain V

?

. Indeed, the space of partial functions from L to V is isomorphic to

L ! V

?

. To make our notation for records precise, fl

1

) d

1

; � � � ; l

n

) d

n

g denotes

an element r in L ! D such that r(l

i

) = d

i

for 1 � i � n otherwise r(l) = ?

D

. For

example, in L ! V

?

, if

r

1

= fEmp#)12345;Name)

0

J. Doe

0

g

and

r

2

= fEmp#)12345;Sal)20000g

then

r

1

u r

2

= fEmp#)12345g

and

r

1

t r

2

= fEmp#)12345;Name)

0

J. Doe

0

;Sal)20000g:

However fEmp#)12345;Name)

0

J. Doe

0

gtfName)

0

K. Smith

0

g does not exist. An

advantage of treating the space of at records as L ! V

?

is that many results

concerning at records can be regarded as special cases of more general records and

are readily applied to L ! D for a more complicated domain D.

As an example consider a database which lists the values of physical constants

as they have been determined in particular experiments. Set up as a relational

database, a typical entry might contain the following �elds (among others): author,

publication, name of constant, lower bound, upper bound, dimension. Being forced

to express every record in �rst-normal-form has two obvious disadvantages. First,

it does not reect the property that the intervals [lower bound, upper bound] are

partially ordered, smaller intervals being better approximations, and, second, there

is no way how the obvious dependency (name of constant =) [lower bound, upper
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Name Dept Sal O�ce

0

K. Smith

0 0

Mktg

0

30,000 275

0

J. Doe

0 0

Sales

0

20,000 147

ffName)

0

J. Doe

0

; Dept)

0

Sales

0

; Sal)20,000; O�ce)147g,

fName)

0

K. Smith

0

;Dept)

0

Mktg

0

; Sal)30,000 O�ce)275gg .

Figure 4.1: A relation and its representation as a set of records

bound]) could be expressed in ordinary relational algebra. Our formalism as developed

below will allow to state such a dependency and will provide a simple formula for

checking the consistency of the database. (An inconsistency is reached in our example

if asserted intervals for the same constant do not overlap.)

4.1.2 Powerdomains and Relational Algebra

Databases usually contain sets of values which, from our foregoing discussion, we

would expect to describe sets of objects in the real world. If we interpret data-

base values as elements in a domain, then database sets, such as relations, must

be interpreted as sets of elements in that domain. Indeed, we can interpret a �rst-

normal-form relation r of a relational scheme (a set of attribute names) R in the

relational model as a set S of elements in the domain of at records L ! V

?

such

that for any d 2 S; fl j d(l) 6= ?g = R. Later in this section, we shall see that

this interpretation is faithful to various relational operations and that the domain

of at records, therefore, serves as a domain of the relational model. This is how

relations are described in languages such as Pascal/R [Sch77], and extensions of this

representation are to be found in Taxis [BMW80] and Galileo [ACO85]. Figure 4.1

shows a very simple relation and its representation as a set of at records.

If we consider these sets of elements in a domain as sets of descriptions then we

would like to order the sets themselves by how good they describe sets of real-world

objects, but how? The study of the semantics of non-determinism, which attempts to

describe the behavior of sets of processes, provides us with some answers. However,
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A B

a b

a ?

(i)

A B C

a b ?

a ? c

(ii)

Figure 4.2: Some problematic relations

we must �rst decide whether we are prepared to work arbitrary sets, or whether some

restrictions are needed.

Given a domain (D;v), a set S � D is a co-chain if no member of S is greater

than any other member of S, i.e. 8x; y 2 S:x w y implies x = y. If S � D has the

property that any two members of S are inconsistent, i.e. they do not have a de�ned

join, then we shall call S independent. Note that an independent set is necessarily a

co-chain.

First-normal-form relations are independent sets. If, however, we admit null

values in relations by relaxing the condition fl j d(l) 6= ?g = R of �rst-normal-

relation to fl j d(l) 6= ?g � R, we have to decide whether structures such as (i)

or (ii) of �gure 4.2 are valid relations. (i) fails to be a co-chain because fA)ag v

fA)a; B)bg, and (ii) fails to be independent because fA)a; B)bgtfA)a; C)cg

is de�ned.

In what follows we shall assume that database sets are �nite co-chains and we

shall use the words �nite co-chain and relation interchangeably. Using our simple

notion of database semantics, we might justify this assumption by saying that if d

1

and d

2

are descriptions with d

2

a better description than d

1

then d

1

is redundant and

can be eliminated from the database. This is equivalent to saying that for all pairs

d

1

; d

2

in S neither Jd

1

K � Jd

2

K nor Jd

1

K � Jd

2

K. Whether or not this justi�cation is

reasonable depends on the intended semantics of the operations on co-chains which,

in turn, depends on the circumstances in which they are used. See [Oho86] for a

more detailed examination of the semantics of relational operations. Independence

means that no two descriptions in S can describe the same real-world object, i.e.

Jd

1

K \ Jd

2

K = ;. We shall need to discuss independent sets when we generalize the
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R

1

Dept O�ce

0

Mktg

0

275

0

Sales

0

147

R

2

Name Dept O�ce

0

K. Smith

0 0

Mktg

0

275

0

L. Jones

0 0

Mktg

0

275

R

3

Name Dept O�ce

0

K. Smith

0 0

Mktg

0

275

0

L. Jones

0 0

Mktg

0

275

0

J. Doe

0 0

Sales

0

147

0

M. Blake

0 0

Sales

0

147

R

1

v

]

R

2

R

2

v

[

R

3

R

1

v

\

R

3

Figure 4.3: Examples of the three orderings

notion of schemes. We shall use C

D

to refer to the set of �nite co-chains in D and

I

D

for the set of �nite independent sets.

To return to the problem of �nding orderings on sets the study of the semantics

of non-determinism provides us with three orderings

1

:

A v

[

B if 8a 2 A9b 2 B:a v b

A v

]

B if 8b 2 B9a 2 A:a v b

A v

\

B if A v

[

B and A v

]

B

respectively called the Hoare, Smyth, and Egli-Milner ordering. Figure 4.3 shows

examples of these orderings in �rst-normal-form relations.

For arbitrary sets, these are not orderings; they are pre-orderings and orderings

are derived by taking equivalence classes. However, in each case there are canonical

representatives for each equivalence class:

Lemma 4.1.1 Let P be a partial order. Then the following is true for all subsets A

and B of P .

(i) A =

[

#A.

1

This melodious notation was suggested to us by Carl Gunter.
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(ii) A v

[

B () #A � #B.

(iii) A =

]

"A.

(iv) A v

]

B () #A � "B.

(v) A =

\

"A \ #A.

So in reasoning about these orderings it is helpful to think in terms of lower

sets, upper sets, and order-convex sets, respectively. We said before that we want to

model database sets (or relations) as �nite co-chains in our domains. Since databases

tend to get bigger and bigger during their existence one might think that the Hoare

ordering is the most natural for them. However, viewed as approximations of sets of

real world objects it is the Smyth ordering which corresponds to this semantics. We

regard it as a strength of our approach that it allows to formalize di�erent intuitions

about databases. The mathematics is nice in each case:

Lemma 4.1.2 If D is a domain then (C

D

;v

[

) and (C

D

;v

]

) are distributive lattices

with bottom element. (C

D

;v

]

) also has a top element, namely, the empty co-chain.

Proof. Given two �nite co-chains S

1

and S

2

, it is clear how the sup and inf are

found for each of the two orderings:

S

1

t

[

S

2

= the maximal elements of #S

1

[#S

2

= the maximal elements of S

1

[

S

2

.

S

1

u

[

S

2

= the maximal elements of #S

1

\ #S

2

� S

1

u S

2

= fs

1

u s

2

j s

1

2

S

1

; s

2

2 S

2

g.

S

1

t

]

S

2

= the minimal elements of "S

1

\ "S

2

� S

1

u S

2

.

S

1

u

]

S

2

= the minimal elements of "S

1

[ "S

2

� S

1

[ S

2

.

Distributivity follows because we can embed C

D

in the distributive lattice of all lower

(upper) sets in D.

We wish to remark that these lattices are not complete: Neither (C

D

;v

[

) nor

(C

D

;v

]

) contain sups for directed subsets. If we want completeness then we have

to take certain computability considerations into account which translate into topo-

logical restrictions on in�nite subsets of a domain. We have no need to pursue this
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theme further but note that sup and inf in both orderings are de�ned for any set of

subsets of a domain. They may not be representable by their subset of minimal or

maximal elements, however.

It the space of �nite co-chains with the three orderings in which we represent

various operations on database sets, some of which will emerge as generalizations

of relational operations. We also mention that these ordered spaces are not the

same as powerdomains in the programming language literature [Plo76, Smy78], where

the ordered spaces of sets are constructed in such a way that they are themselves

domains. True powerdomain constructions are not needed until we discuss higher-

order relations, where a tuple can itself contain a set as an attribute value. We shall

discuss how our presentation of database sets can also contain these higher-order

values in Section 7, but for the time being we shall exploit the representation of

database sets in the space of �nite co-chains.

There is an immediate connection with relational algebra that indicates the im-

portance of these orderings.

Theorem 4.1.3 Interpreting relations as �nite co-chains A;B in L ! V

?

, A t

]

B

is the natural join of A and B. If a least upper bound for A;B exists in v

\

then it is

a lossless join.

This statement is actually more of a de�nition than a result. We can only prove it

in the case of �rst-normal-form relations, for it is only then that we have accepted

de�nitions for the various joins. Given relation schemes (sets of attribute names)

R

1

; R

2

� L and relation instances r

1

; r

2

, let r

0

1

; r

0

2

and r

0

3

be the interpretations of

r

1

; r

2

and r

1

./ r

2

in L ! V

?

. Suppose t 2 r

0

3

, then by the conventional de�nition of

natural join, there are t

1

2 r

0

1

such that t(l) = t

1

(l) for all l 2 R

1

and t

2

2 r

0

2

such

that t(l) = t

2

(l) for all l 2 R

2

. By the de�nition of the interpretation, t

1

(l) 6= ? i�

l 2 R

1

; t

2

(l) 6= ? i� l 2 R

2

. This implies t

1

v t and t

2

v t and clearly t is minimal

with respect to this property. Therefore t 2 r

0

1

t

]

r

0

2

. Conversely suppose t 2 r

0

1

t

]

r

0

2

.

There must exist t

1

2 r

1

; t

2

2 r

2

such that t

1

v t and t

2

v t. Since V

?

is at this

implies that t(l

1

) = t

1

(l

1

) when l

1

2 R

1

and t(l

2

) = t

2

(l

2

) when l

2

2 R

2

. By the

minimality of t with respect to v, t(l) = ? i� l 62 R

1

[R

2

. Hence t 2 r

0

3

. See [Oho86]

for a discussion of the semantics of lossless join and the proof of the second part of

this result.
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r

1

= f fName)

0

J. Doe

0

;Status)f Student-status)

0

Graduate

0

gg

fName)

0

M. Blake

0

;Status)f Student-status)

0

Undergraduate

0

ggg

r

2

= f fName)

0

J. Doe

0

; Status)f Employee-status)

0

TA

0

gg

fName)

0

L. Jones

0

; Status)f Employee-status)

0

Faculty

0

ggg

r

1

t

]

r

2

= f fName)

0

J. Doe

0

;

Status)f Student-status)

0

Graduate

0

;Employee-status)

0

TA

0

ggg

Figure 4.4: Natural join in \nested" records

The importance of this result is that it provides a generalization of natural join

to sets of values in arbitrary domains. Figure 4.4 shows an example of natural join

in nested records.

A more intuitive way of thinking of these results is to view the natural join as the

appropriate operation when two sets of database descriptions \over-approximate"

some desired set in the real world. Suppose, for example, that we want to �nd the

set of TEACHING-FELLOWS, but we only have available database sets describing

EMPLOYEES and STUDENTS. Both of these over-approximate our desired set (any

teaching fellow is both an employee and a student) and so the appropriate operation

to achieve a better approximation to TEACHING FELLOWS is to take the natural

join of EMPLOYEES and STUDENTS.

The partial ordering v

\

does not give rise to least upper bounds when applied

to co-chains. However, if two database sets have a least upper bound in v

\

, then

any real world set that is \exactly" described by (i.e. above in v

\

) the two database

sets is also \exactly" described by the least upper bound. Since a least upper bound

in v

\

is also a least upper bound in v

]

, if t

\

exists then the natural join is the

lossless join. Traditionally the lossless join condition is stated operationally, in terms

of projections; from this we see that it has a simple denotational interpretation.

We might also ask whether t

[

corresponds to anything in the relational algebra.

S

1

t

[

S

2

is simply the set of maximal elements in S

1

[S

2

and is awkward to deal with

in relational algebra as it generally requires the introduction of null values. However

we shall make some use of this operator later. If we are prepared to introduce null

values, then t

[

is what [RKS84] calls the \null union", and S

1

t

[

(S

1

t

]

S

2

) t

[

S

2
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is what is sometimes called the outer join. Merrett [Mer84] describes this operation

and also the \left-wing" and \right-wing" operations, which are S

1

t

[

(S

1

t

]

S

2

) and

(S

1

t

]

S

2

) t

[

S

2

respectively.

In some cases these operations preserve independence:

Lemma 4.1.4 If S

1

and S

2

are independent, so are S

1

t

]

S

2

, S

1

t

[

(S

1

t

]

S

2

) t

[

S

2

,

S

1

t

[

(S

1

t

]

S

2

) and (S

1

t

]

S

2

) t

[

S

2

.

However, the other operators (u

[

;u

]

and t

[

) do not, in general, carry independent

sets into independent sets.

We should also note that the co-chain S

1

u

]

S

2

is the set of minimal elements of

S

1

[ S

2

. When S

1

[ S

2

is a co-chain, S

1

u

]

S

2

= S

1

t

[

S

2

. The operator u

[

is, as we

shall see in the next section, a general form of projection.

In order to conform to traditional notation, we shall generally replace the symbol

t

]

by what is conventionally used in databases, ./.

4.1.3 Projection

The main point of the previous section is that we are able to de�ne various joins

without reference to the special structure of relations. In particular, we do not require

any notion of sets of column names (or schemes as they are called in the relational

database literature [Mai83, Ull82a]) in order to characterize natural join. Projection,

however, makes explicit mention of a scheme. For example fName, O�ceg is a

scheme and the projection �

fName, O�ceg

(R) where R is the relation shown in

Figure 4.1 is

ffName)

0

J. Doe

0

;O�ce)147g,

fName)

0

K. Smith

0

; O�ce)275gg .

If, therefore, we are to carry further the idea of casting relational algebra in the theory

of domains, we need to generalize the notion of relational schemes and projection.

We have essentially two options: the �rst is to look at what properties are desired

of the projection function itself; the second is to identify schemes with some set of

elements in the underlying domain D. The second approach is motivated by the

idea that a set of column names gives rise to a smaller universe of descriptions. For

example, we might say that the relational scheme fName, O�ceg denotes the set of
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all descriptions (functions) of the form ffName) v, O�ce) wg j v;w 2 Vg. The

course we shall follow is to look at both possibilities with the goal of �nding some

characterization that is natural in the sense that it admits some natural algebra over

the set of schemes. This is essential if we are to generalize ideas about functional

dependencies which are usually cast in the boolean algebra of sets. However, the

authors should admit here that the generalization of schemes that we are going to

provide, while it arises from extremely natural conditions and captures a number

of relational database constructs, may require further re�nement if it is to be used

for all of relational database theory. We do not know, for example, whether we can

represent multi-valued dependencies using our characterization.

We start from the observation that in relational databases we can say what pro-

jection means for a single tuple. It is simply the function that throws away certain

�elds from a tuple or record. More generally, we can think of projection as a func-

tion p 2 D ! D that is decreasing, idempotent and monotone, i.e. for all x; y 2 D,

p(x) v x, p(p(x)) = p(x), and p(x) v p(y) whenever x v y. Computability of a pro-

jection is reected in the property of preserving directed sups: p(

F

i2I

x

i

) =

F

i2I

p(x

i

).

Such functions are also known as projections in domain theory, and it is clear that a

(relational) projection onto a set of column names satis�es these conditions.

Projections are completely determined by their image:

Lemma 4.1.5 Let D be a domain and p; p

0

be projections on D.

(i) p(x) =

F

fy j p(y) = y v xg.

(ii) p v p

0

() im(p) � im(p

0

) () p � p

0

= p

0

� p = p.

(iii) p preserves inf's of nonempty sets.

(iv) im(p) is closed under existing sup's.

We feel that arbitrary projections as de�ned above do have a signi�cance in mod-

eling databases domain theoretically. In this paper, however, we shall concentrate

on a more restricted notion of projection which we shall develop in two steps.

In the case of a relational domain L ! V

?

, restricting the set of labels to some

subset L of L gives rise to a downward closed subset of L ! V

?

, namely the set of

all functions s for which s(l) = ? if l 62 L.
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De�nition. Let D be a domain. A strong ideal in D is a downward closed subset

A of D which is closed under existing joins. By p

A

we denote the unique projection

on D with image A.

Projections onto strong ideals enjoy several desirable properties:

Lemma 4.1.6 (i) Let A be a strong ideal in a domain D and let y be an element

of A above p

A

(x) for some x 2 D. Then p

A

(x) = x u y.

(ii) If D is distributive then p

A

preserves all existing sup's.

Proof. (i) By de�nition we have p

A

(x) v x and p

A

(x) v y so p

A

(x) v x u y. On

the other hand, x u y is an element of A below x and p

A

(x) is the sup of all those

elements, hence x u y v p

A

(x).

(ii) Suppose x t y exists. Then p

A

(x) t p

A

(y) = (x u p

A

(x t y))t (y u p

A

(x t y))

(by (i)) = p

A

(xty)u (xty) (distributivity) = p

A

(xty). The sup of any set is equal

to the directed sup of its �nite subsets. Our projection preserves both kinds of sups,

hence arbitrary sups.

The intersection of an arbitrary set of strong ideals is again a strong ideal. This

immediately gives us the following

Theorem 4.1.7 The set (SI

D

;�) of strong ideals on a (distributive) domain D is

a (distributive) algebraic lattice.

The second condition on projections we want to consider here is also easily mo-

tivated by the example of at record structures L ! V

?

. Suppose we project onto

records with labels from some subset L of L and we �nd that a record s is projected

onto p

L

(s) below some s

0

2 L! V

?

. This means that p

L

(s) contains null values for

some labels from L and can be updated using the corresponding entries of s

0

. It is

clear, then, that s itself can be updated, resulting in the record sts

0

. We incorporate

this property in our model as follows.

De�nition. A strong ideal A in a domain D satis�es the slide condition if

8x 2 D:8y 2 A:(p

A

(x) v y =) x t y exists). A co-chain S in D is a scheme if #S

is a strong ideal which satis�es the slide condition. The corresponding projection we

denote by p

S

(instead of p

#S

).



104 CHAPTER 4. TYPES FOR DATABASE LANGUAGES

We �rst note that projections de�ned by schemes �t in with our proposed seman-

tics:

Theorem 4.1.8 A strong ideal A on a domain D is generated by a scheme if and

only if 8x 2 D: p

A

JxK

D

= Jp

A

(x)K

A

.

Proof. \=)" Let x be maximal in D and suppose p

A

(x) is not maximal in A,

that is, p

A

(x) @ y 2 A. By the slide condition, x t y exists and since x is maximal,

xty = x and p

A

(x) w y. Contradiction. Given any x 2 D and any y 2 Jp

A

(x)K

A

, the

sup of x and y exists and is below some maximal element z of D. Clearly, p

A

(z) = y

by the maximality of y.

\(" Given x 2 D and y 2 A, y w p

A

(x), let y

0

be an element of A

max

above y.

This element must be in the image of p

A

JxK

D

, that is, there exists an element z of

D

max

\"x which is mapped onto y

0

. Therefore x and y are bounded and xty exists.

In Section 7.1 we shall further substantiate our claim that schemes properly gen-

eralize the notion of schemes in relational database theory by showing that schemes

in the domain L ! V

?

of at record structures correspond exactly to the subsets

of L.

Lemma 4.1.9 Let D be distributive domain.

(i) If A and B are strong ideals generated by schemes then so is A tB = fa t b j

a 2 A; b 2 Bg.

(ii) If A and B are strong ideals generated by schemes then so is A \B.

(iii) If (A

i

)

i2I

is any set of strong ideals generated by schemes then so is

F

i2I

A

i

=

f

F

i2I

a

i

j a

i

2 A

i

g.

(iv) If A;B are schemes then so is A tB = fa t b j a 2 A; b 2 Bg.

(v) If (A

I

)

i2I

is any set of schemes then so is

F

i2I

A

i

= f

F

i2I

a

i

j a

i

2 A

i

g.

Proof. (i) A t B is downward closed: x v a t b implies x = x u (a t b) =

(xua)t (xu b) and xua is in A and xu b is in B. If M is a bounded subset of AtB

then M

A

= fa 2 A j 9b 2 B:a t b 2 Mg and M

B

= fb 2 B j 9a 2 A:a t b 2 Mg are

bounded and

F

M

A

= m

A

2 A and

F

M

B

= m

B

2 B. Hence

F

M = m

A

tm

B

is in
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AtB. As for the slide condition, assume that x is an element of D and that p

AtB

(x)

is below some a t b. Because p

A

(a t b) w a and p

B

(a t b) w b we may assume that

a = p

A

(a t b) and b = p

B

(a t b). We can then calculate: p

A

(x) = p

A

(p

AtB

(x)) v

p

A

(a t b) = a and similarly p

B

(x) v b. Since A satis�es the slide condition, the sup

of a and x exists and by Lemma 4.1.6 p

B

(at x) = p

B

(a)t p

B

(x) v p

B

(at b)t b = b.

Using the slide condition for B we �nd that the sup of a t x and b must exist. This

proves the slide condition for A tB.

(ii) A u B is clearly a strong ideal. The slide condition is seen to hold by the

following argument. If p

AuB

(x) is below y 2 A uB then because of p

AuB

= p

A

� p

B

,

p

A

maps p

B

(x) below y. Hence y t p

B

(x) exists and is an element of B. Using the

slide condition for B we see that y t x exists.

(iii) If I is empty then

F

i2I

A

i

equals f?g which is a scheme. If I is in�nite

then we may think of I as the directed union of its �nite subsets. From part (i) we

already know how to construct the sup of a �nite set of strong ideals, so it remains to

consider directed collections. Assume, therefore, that I is directed and that A

i

� A

j

whenever i � j. Given an element x of A =

F

i2I

A

i

�rst note that x =

F

i2I

p

A

i

(x)

and that this join is directed. It is clear that A is a strong ideal. Let X be any

element of D and let y 2 A be above p

A

(x). Then for each i 2 I, p

A

i

(y) is above

p

A

i

(p

A

(x)). So the sup z

i

= p

A

i

(y) t x exists and the directed sup of all z

i

gives us

the sup of y and x. Therefore A satis�es the slide condition.

(iv) By (i) it remains to show that A t B is an independent set. Indeed, if x is

above a

1

t b

1

and a

2

t b

2

it follows that a

1

= a

2

and b

1

= b

2

because both A and B

are independent sets.

(v) Same proof as for (iv).

Distributivity is essential for Part (i) of this lemma, as the example shown in

Figure 4.5 demonstrates. There the pointwise sup of the schemes fa

1

; a

2

;?g and

fb

1

; b

2

;?g does not satisfy the slide condition.

We plan to present a deeper investigation into the mathematics of schemes in a

later paper, but mention that ideals generated by schemes form a complete lattice:

Theorem 4.1.10 If D is a distributive domain then (S

D

;v

[

) is a distributive com-

plete lattice.
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Figure 4.5: A domain where the join of two schemes cannot be calculated pointwise.

In the remainder of this section we shall work the generating co-chain of an ideal,

that is, with schemes. It turns out that the ordering � on strong ideals is replaced

by the Egli-Milner ordering v

\

on schemes.

Theorem 4.1.11 If A and B are schemes on a domain D then A v

[

B if and only

if A v

]

B.

Proof. \=)" Let x be an element of B and let y be maximal above x in D.

Then p

A

(y) = p

A

(p

B

(y)) = p

A

(x) and therefore p

A

(x) is maximal in #A which means

that it is contained in A.

\(" If x is an element of A, let y be maximal in D above x. Since x = p

A

(y) w

p

A

(p

B

(y)), the sup of x and p

B

(y) exists. p

B

(y) is maximal in #B and because of

A v

]

B it is above some x

0

2 A. The set fx; x

0

g is bounded by x t p

B

(y) which is

only possible if x = x

0

. Hence x v p

B

(y) and A v

[

B.

So far we have discussed the projection of individual elements (\records") into

strong ideals. We shall now proceed to discuss the projection of relations, that is,

�nite co-chains. The obvious choice, namely, to apply the projection pointwise, has

its particular applications. However, we might not get a co-chain as the image.

Throwing away redundant information means in our case to keep only the maximal

elements of the image.



4.1. POWERDOMAINS TO GENERALIZE RELATIONAL DATABASES 107

De�nition. Let D be a domain and A be a scheme in D.

(i) The function �

A

: C

D

! C

D

is de�ned by �

A

(R) = fx 2 p

A

(R) j x maximal

in p

A

(R)g.

(ii) If R 2 C

D

is a subset of A, we shall call R an instance of A.

(iii) If R 2 C

D

is a subset of #A, we shall call it a subinstance of A.

Theorem 4.1.12 Let A;B be schemes in a distributive domain D.

(i) If R is an instance of A then R v

[

A and A v

]

R.

(ii) If R is an (sub-)instance of A and S is an (sub-)instance of B then R ./ S and

R t

\

S (if it exists) are (sub-)instances of A t B and R t

[

S is a subinstance

of A tB.

(iii) If R is an instance of A then �

B

(R) is a subinstance of B.

(iv) If R is a �nite co-chain in D then p

A

(R) ./ R = R.

(v) If R is a �nite co-chain in D then �

A

(R) ./ R w

]

R.

(vi) If R is a �nite independent set in D then �

A

(R) ./ R w

\

R.

Proof. Of these only (vi) is nontrivial. One half of the Egli-Milner ordering

follows from (v). As for the \Hoare"-part we can copy the corresponding proof of

Theorem 4.1.11.

Let us recapitulate the development of our theory so far. We have exhibited

a general structure which may take the place of attribute value sets in relational

database, namely distributive Scott-domains. We proposed to model relations as

�nite co-chains in these domains. In Lemma 4.1.2 we have shown that relations form a

distributive lattice under two natural orderings which correspond to the two intuitions

one might have about a relation: One being that a relation gives information about a

part of a set of real world objects, the other being that a relation approximates every

element of a set of real world objects. We then proceeded to model the notions of

scheme and projection and found (Theorem 4.1.10) that schemes form a distributive

complete lattice. This says that the set of schemes is nearly a powerset and allows to
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interpret intuitionistic logic in it. Along the way we have indicated the possibilities for

�ne tuning in this model: Using independent sets instead of co-chains or generalizing

schemes to strong ideals. We shall now go on to test our theory in two �elds, that of

functional dependencies and that of universal relations.

4.1.4 Functional Dependencies

We start again with the familiar example of a relational database. Given some

set of functional dependencies and given a set A of attribute names one can use

Armstrong's Axioms in order to produce a set A

0

� A which contains all attribute

names depending on A. In our domain theoretic setting we may view this process as

a function on the lattice of schemes, which is monotone, idempotent and increasing.

These functions are the exact counterpart of projections as discussed in the previous

section.

De�nition. A closure on a domain D is a monotone function f :D ! D, such

that f � f = f w id

D

.

Lemma 4.1.13 Let D be a domain and f; f

0

be closures on D.

(i) f(x) = ufy j f(y) = y w xg.

(ii) f w f

0

() im(f) � im(f

0

) () f � f

0

= f

0

� f = f .

(iii) f preserves all existing sup's.

(iv) im(f) is closed under nonempty inf's.

This is, of course, the exact dual of Lemma 4.1.5. Note that because of part (iii),

closures are always continuous.

Given a function f : D! D, we can de�ne a relation

e

f � D�D by

e

f = f(x; y) j

y v f(x)g and obtain an immediate connection with Armstrong's Axioms.

Theorem 4.1.14 If f is a closure in D ! D,

e

f satis�es

(a) 8x; y 2 D if x w y then (x; y) 2

e

f ,

(b) if S � D is such that 8y 2 S:(x; y) 2

e

f then tS exists and (x;tS) 2

e

f , and
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(c) 8x; y; z 2 D:(x; y) 2

e

f and (y; z) 2

e

f =) (x; z) 2

e

f .

When D is �nite (b) may be replaced by

(b

0

) for x; y; w 2 D if (x; y) 2

e

f and xtw exists then wty exists, and (wtx;wty) 2

e

f .

Conversely, suppose

e

f � D �D satis�es (a), (b) or (b') as appropriate, and (c)

above, and de�ne f : D ! D by f(x) = tfy j (x; y) 2

e

fg. Then f is a closure.

From which (a), (b

0

) and (c) are immediately seen to be generalizations of Arm-

strong's Axioms. Before discussing the connection, we should prove this result. (a)

follows immediately from the de�nition of a closure since if y v x, then y v f(x)

and (x; y) 2

e

f . (b) is also immediate because f(x) must be a bound for S, there-

fore tS exists and tS v f(x). To show (c), if (x; y) 2

e

f then y v f(x) and by

monotonicity and idempotence f(y) v f(x). The conditions also imply z v f(y).

Combining these last two inequalities we have z v f(x), i.e. (x; z) 2

e

f . Con-

versely, we �rst note that condition (b) implies that tfy j (x; y) 2

e

fg exists and f

is well de�ned. If x

1

v x

2

and (x

1

; y) 2

e

f then (x

2

; y) 2

e

f by (a) and (c) so that

fy j (x

1

; y) 2

e

fg � fy j (x

2

; y) 2

e

fg, and hence f(x

1

) v f(x

2

) guaranteeing mono-

tonicity. By (a) (x; x) 2

e

f , so f(x) w x. Finally, by (b) (x;tfy j (x; y) 2

e

fg) 2

e

f ,

and so (x; f(x)) 2

e

f ; similarly (f(x); f(f(x))) 2 f . Using (c), (x; f(f(x)) 2

e

f and so

f(f(x)) v f(x). But we have just shown that f is increasing. Hence f(f(x)) = f(x).

Suppose (a), (b), (c) hold and that (x; y) 2

e

f . For any w 2 D, (wtx;w) 2

e

f and

(wtx; x) 2

e

f by (a), and by (c) (w tx; y) 2

e

f . Therefore, by (b) (wtx;wt y) 2

e

f .

Conversely, assume D �nite. First note that, by putting w = x in (b

0

) we have

x t y exists. Suppose 8y 2 S:(x; y) 2

e

f . If S has just two members, y

1

; y

2

then

(x; x t y

1

) 2

e

f by (b

0

) and (x; x t y

1

t y

2

) 2

e

f by (c), therefore y

1

t y

2

exists. Using

(c) and (a) we get (x; y

1

t y

2

) 2

e

f , i.e. (x;tS) 2

e

f . By induction, we can repeat this

argument to derive (b) for any �nite S.

Armstrong's Axioms are precisely (a), (b

0

), (c) when applied to the lattice of sub-

sets of the set of attribute names. Related characterizations of Armstrong's Axioms

in a lattice-theoretic setting have been given by [JS87]. It is also interesting that in

Scott's information systems [Sco82a] functions on domains are de�ned by a similar

device of taking approximating relations.
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We now connect this abstract notion of a functional dependency with our earlier

semantics in which sets of attribute names are represented by schemes. A relation

satis�es a functional dependency A! B if any two tuples that agree on the attribute

names A agree on the attribute names B. Another way of stating this is to follow

[CKS86] and say that a relation r satis�es A ! B if the partition on r induced by

A (i.e. the equivalence relation induced on the tuples by equality on A) is �ner than

the partition induced by B. In the standard theory there are no null values allowed

in places corresponding to attributes from A[B. We keep this strong interpretation

of satisfaction.

De�nition. Let A;B be schemes in a domain D. A relation R 2 C

D

satis�es the

functional dependency A ! B if R w

]

A and R w

]

B and if p

A

(x) = p

A

(y) implies

p

B

(x) = p

B

(y) for all x; y 2 R.

Theorem 4.1.15 For relations in distributive domains Armstrong's Axioms are con-

sistent and complete.

Proof. Given a relation R in a distributive domain D and given a schemeA v

]

R

it is clear that R satis�es A! A. If S is a collection of schemes and R satis�esA! B

for all B 2 S and some scheme A, then S is bounded by R in the Smyth ordering.

We claim that the sup of S is also below R: If x is an element of R and B is a

scheme contained in S then x is above some element x

B

of B. Therefore x bounds

the set X = fx

B

j B 2 Sg. The sup of X is an element of

F

S by Lemma 4.1.9,

(v) and is below x. This proves

F

S v

]

R. Assume, then, that p

A

(x) = p

A

(y).

By assumption we know that p

B

(x) = p

B

(y) for all B 2 S. Hence we also have

p

tS

(x) =

F

B2S

p

B

(x) =

F

B2S

p

B

(y) = p

tS

(y), which proves A!

F

S.

It is clear that transitivity holds. This proves that Armstrong's Axioms are correct

with respect to our de�nition of satisfaction.

Completeness is trivial because we have more models available than in the rela-

tional case.

It is an immediate consequence of the preceding theorem and Theorem 4.1.14 that

a relation R 2 C

D

induces a closure f on the lattice of schemes with the property

f(A) w B if and only if R satis�es A! B.
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Our de�nition of satisfaction of a dependency requires that the relation under

consideration contains no partial information. If a relation does contain partial ele-

ments, a di�erent concept is called for.

De�nition. Let A;B be schemes in a domain D. A relation R 2 C

D

is consistent

with the functional dependency A! B if there is a relation R

0

w

\

R which satis�es

A! B.

This is natural enough. However, in a practical instance consistency may be

hard to check. We therefore introduce a weaker notion of consistency with a more

operational avor. Given a scheme (or any independent set) A and a relation R then

A induces a partial equivalence relation �

A

on R: x �

A

y if there is a 2 A such that

a v x; y. We may say that �

A

identi�es those elements in R which contain the same

total information in their A-part. By R=A we denote the set of equivalence classes

of �

A

.

Now assume that A ! B is a dependency where A v

\

B and that R is some

relation. The result of restricting R to the `columns' of B is expressed by �

B

(R).

Wherever two elements of �

B

(R) contain the same total information in their A-part,

consistency with A ! B implies that their B-part can be updated to a common

(total) value. This amounts to saying that each equivalence class in �

B

(R)=A has

an upper bound in D. Let us denote the resulting set of suprema by (�

B

(R)=A)

t

.

Formally we de�ne

De�nition. For A v

\

B schemes and R a relation in a domain D, we say that

R is weakly consistent with the dependency A! B if (�

B

(R)=A)

t

exists.

Remember the example of physical constants, given in Section 2. Certainly we

expect that the name of a constant will imply its value, although the exact numbers

will never be known. To say that our database is weakly consistent with the impli-

cation name of constant ! [ lower bound, upper bound] amounts to the requirement

that the entries for the same constant report intervals with at least one common

point.

The reader will have noticed that weak consistency makes no requirement about

those elements of the relation R which contain partial information in their A-part.

The philosophy here is that any �nite set of elements with partial information over

some scheme A can be updated in such a way that its elements are pairwise di�erent
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in their A-part. We may call a domain in which this is always the case rich and

obtain the following immediate characterization.

Lemma 4.1.16 A domain D is rich if and only if for each x 2 D the denotation

JxK of x cannot be covered by a �nite set of denotations Jy

i

K with all y

i

6v x.

With this we can formulate

Theorem 4.1.17 Let A v

\

B be schemes in a domain D. Let R be a relation in D.

If R is consistent with A ! B then R is weakly consistent with A ! B. If #A is

rich and D distributive then the converse also holds. Moreover, if R

0

w

\

R and R

0

satis�es A! B then R

0

w

[

(�

B

(R)=A)

t

.

Proof. Suppose R

0

w

\

R and R

0

satis�es (A;B), then �

B

(R

0

) w

[

�

B

(R) and the

members of (�

B

(R

0

)=A) are singleton sets. Thus any class in (�

B

(R)=A) is bounded

above by one of these singletons, and (�

B

(R)=A)

t

exists. This also establishes the

second part of the theorem. Conversely, if (�

B

(R)=A)

t

exists, we have, for each a 2 A,

the element b

a

= tfr j r 2 �

B

(R) and r w ag 2 #B. Now for each r 2 R \ "A form

the point r

0

= b

A

tr with a 2 A being the unique element of A below r. (This is where

the slide condition comes in.) The set R

0

of these points certainly satis�es A ! B.

But we also have to update the other elements of R which contain partial information

in their A-part. We use the assumption that #A is rich for this. The set p

A

(Rn"A) is

a �nite poset contained in #A. Because #A is rich, we can �nd elements �r 2 JpK

A

(r)

A

such that r

1

6= r

2

implies �r

1

6= �r

2

and also �r 6= p

A

(r

0

) for all r

0

2 R

0

. (Given

r 2 p

A

(R n "A), choose �r 2 JrK

A

n (

S

f"s j s 6v r; s 2 p

A

(R n "A)g[

S

f"r

0

j r

0

2 R

0

g).)

Finally let ~r be the unique element of B above �r for each r 2 p

A

(R n "A). The set

~

R

of all these elements satis�es A! B and so does R

0

[

~

R.

Dependencies are often divided [Ull82a, Mai83] into two classes: those like func-

tional dependencies that generate equality constraints, and those that generate new

tuples. The \chase" is a procedure that performs all possible inferences on a set R

to produce a new set R

0

where R

0

w

\

R. In fact, we can also use functional depen-

dencies in the same way. The co-chain (�

B

(R)=A)

t

describes the inferences that can

be made, given that R is consistent with A! B. In fact the co-chain

T = ((�

B

(R)=A)

t

./ R) t

[

R (4.1)
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is the least (in v

[

) set that contains all these inferences. Note that T is the outer

join of (�

B

(R)=A)

t

and R and that R v

\

T .

4.1.5 Universal Relations

Without involving ourselves in a discussion of the usefulness or practicality of the

Universal Relation Assumption [Ull82b, Ull83, Ken83, AP82], we now investigate a

general characterization of universal relations that shows how the general form of

their implementation can be derived from their abstract properties. Behaviorally, a

universal relation can be thought of as a simple query language, or transducer, in

which the possible queries, or inputs, are sets of column names and the output from

the input of a given set of column names is a relation de�ned on those names. More

precisely, we can think of a universal relation as a function � : S

D

! C

D

with the

property that �(S) is an instance of S, i.e. �(S) � S.

In a survey [MRW86] of the various de�nitions of universal relations Maier et al

give a condition, \containment", that all reasonable de�nitions satisfy. The condi-

tion, which is also noted in [Sci80], is that if A;B are schemes with A v

\

B, then

�

A

(�(B)) � �(A). This is equivalent to requiring that � be monotone as a function

from schemes under the natural ordering to the �nite cochains C

D

under the Smyth

ordering, i.e. if A v

\

B then �(A) v

]

�(B). There are various ways of obtaining such

a function. A particularly simple method is given the total projection of an arbitrary

subset T of D onto the schemes of D:

�(A) = �

A

(T \ "A) (4.2)

(the expression �

S

(T \ "A) is called the total projection of T onto the scheme A.)

A more general method is obtained by projecting onto A those subsets T of some

collection T of �nite subsets of D that are contained in the upward closure of A:

�(A) = [f�

A

(T ) j T 2 T and T � "Ag (4.3)

Most of the various de�nitions of universal relations given in [MRW86] appear to be

expressible in this form. By using a result that is readily proved from theorem 4.1.12,
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Lemma 4.1.18 If A is a scheme, and S

1

; S

2

are co-chains in D with S

1

w

]

A and

S

2

w

]

A then �

A

(S

1

u

]

S

2

) = �

A

(S

1

) [ �

A

(S

2

)

we can write (4.3) as �(A) = �

A

(u

]

fT 2 T j T v

]

Ag). We shall call a universal

relation that can be described in this fashion a closure universal relation (because

this last equation is closely related to the de�nition of a closure in (C

D

;v

]

). By

taking T as a collection of singleton sets, equation (4.2) can be seen as a special case

of (4.3). An example of a universal relation satisfying (4.2) is the Universal Instance

Assumption, which says that �(A) = �

A

(I) where I is a subset of the maximal

elements of D.

Theorem 4.1.19 A universal relation de�ned by the universal instance assumption

is a closure relation.

The proof follows immediately from the observation that I, being a �nite set of

maximal elements, is contained in "A for any scheme A

Another reason for believing that closure universal relations are an appropriate

class to consider is given by the following result.

Theorem 4.1.20 In the relational domain D = L ! V

?

, any universal relation

satisfying the containment condition is a closure universal relation.

Proof. If � is the given universal relation de�ne

�

0

(A) = �

A

(u

]

f�(B) j B 2 S

D

and �(B) � "Ag):

�

0

is then a closure universal relation, and we need to show that, for any scheme A,

�(A) = �

0

(A). Because we are dealing with the relational domain, if B is a scheme

such that � 6= �(B) � "A then B w

\

A. Using this fact and the containment

condition, whenever �(B) � "A, we must have �

A

(�(B)) � �(A). Hence �(A) =

�

0

(A) for any scheme A.

It is not true that any universal relation satisfying the containment condition

can be cast in the form of a closure relation. Consider, for example, the domain in

�gure 4.6, in which the schemes areA

1

= f?g, A

2

= fa

1

; a

2

; dg, A

3

= fb

1

; b

2

; dg, A

4

=

fa

1

; a

2

; e

1

; e

2

g, A

5

= fb

1

; b

2

; e

1

; e

2

g, and A

6

= fc

1

; c

2

; c

3

; c

4

; e

1

; e

2

g. Now consider a

universal relation � such that �(A

1

) = f?g, �(A

2

) = �(A

3

) = fdg, �(A

4

) = fe

1

; e

2

g,
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Figure 4.6: A universal relation not extending to a closure

�(A

5

) = fe

1

g, and �(A

6

) = fe

1

g, which satis�es the containment condition. If � is

a closure universal relation, then T (as used in equation 4.3) must contain a set T

which contains e

2

such that T � "A

4

, but T cannot be contained in "A

5

because e

2

is not a member of �(A

5

). Therefore T must contain a

1

or a

2

. But if this happens

then �(A

4

) must also contain a

1

or a

2

, which contradicts the de�nition of �.

A more sophisticated example of a universal relation de�nition arises from the

F-weak instance universal relation [MRW86]. Suppose we are given a set of schemes

fR

1

; R

2

; : : : ; R

n

g in D and instances r

i

� R

i

, i 2 1 : : : n. Suppose we are also given

a set F of functional dependencies and that t

[

fr

i

j i 2 1 : : ng is consistent with F .

Consider the universal relation de�ned by

�(C) = \f�

C

(S

0

) j S

0

w

[

r

i

; i 2 1 : : : n; S

0

2 C

D

; and S

0

satis�es Fg (4.4)

which, for each scheme C de�nes an instance of C. Let us assume, for simplicity,

that F+ is generated by the single non-trivial dependency (A;B) where B w

\

A.

From (4.1) of the previous section, we can write �(C) as

�(C) = �

C

(((�

B

(S)=A)

t

./ S) t

[

S) (4.5)

where S = t

[

fr

i

j i 2 1 : : ng and �

C

(T ) is the total projection of a set T onto C,

�

C

(T ) = �

C

(T \ "C).

By manipulation of (4.5) we can now write it in a form consistent with the general

form for closure universal relations given in (4.3). First observe that if S

1

; S

2

are co-

chains in D, then �

C

(S

1

t

[

S

2

) = �

C

(S

1

) [ �

C

(S

2

). Therefore we can rewrite (4.5)
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as

�(C) = �

C

((�

B

(S)=A)

t

./ S) [ [�

C

(fr

i

j R

i

w

\

Cg) (4.6)

Now consider the set Q = (�

B

(S)=A)

t

which, by the de�nition of S is (�

B

(t

[

fr

i

j

i 2 1 : : ng)=A)

t

, By the distributivity of (C

D

;v

[

), Q = (t

[

f�

B

(r

i

) j i 2 1 : : ng=A)

t

.

A point in Q is the least upper bound of some set of points, each chosen from some

�

B

(r

i

) where R

i

w

\

A. Let I be the set of indices of all such schemes, I = fi j i 2

1 : : n and R

i

w

\

Ag. We can then express Q as

Q = t

[

f./

i2I

0

�

B

(r

i

) j I � I

0

� 1 : : ng (4.7)

The term �

C

((�

B

(S)=A)

t

./ S), which is the left-hand component of (4.6) can there-

fore be written as the union of total projections of terms of the form

r

i

0

./ �

B

(r

i

1

) ./ �

B

(r

i

2

) ./ � � � ./ �

B

(r

i

k

) (4.8)

where R

i

j

w

\

A for j 2 1 : : k. The right hand component can, trivially, be written in

this form too.

We have therefore succeeded in reducing the universal relation de�nition given in

equation (4.5) to the projection of the union of a set of joins. More importantly, (4.5)

is an example of an \FD-join" expression. A theorem of Maier et. al. and Chan

[MRW86, Cha84] shows that the F -weak instance universal relation (4.5) can be

computed as the union of FD-joins. Their proofs work by considering the properties

of speci�c algorithms, whereas by considering the general properties of the spaces

involved we have been able to produce a reasonably concise algebraic derivation. It

should be noted that the proof outlined here is incomplete. We need to close this o�

under all functional dependencies; but this presents no di�culties.

4.1.6 Higher Order Relations and Other Models

One of the contentions of this paper is that much of our theory of relational databases

is independent of the detailed structure of the relational model and depends only on

some rather general properties of the spaces out of which we can construct such a

model. It should be stressed that we have based the preceding analysis only on the

assumption that the underlying space was a domain. Nowhere did we assume that we
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were dealing with relations, although we frequently appealed to the �rst-normal-form

relations for examples.

In trying to generalize various operations, we had no problem with the natural

join, but in order to make projection generalize smoothly when dealing with func-

tional dependencies and universal relations, we had to characterize �rst independent

sets and then schemes. We shall therefore be particularly interested in identifying

schemes in these other models. If we can do that, we can be sure that the basic ideas

of functional dependencies, universal relations etc., generalize properly.

Typed �rst-normal-form relations

We have seen that the domain L ! V

?

of at records is a domain of the relational

model in the preceding sections, and it deserves little extra comment here. As we

have noted earlier, this domain is a special case of a product domain.

Given a function F from a set of labels L to a set of sets S, a labeled product

Q

l2L

F (l) is the set of functions f : L !

S

S such that for all l 2 L; f(l) 2 F (l). If S is

a set of domains, then

Q

l2L

F (l) is also a domain, a domain of labeled products, under

the componentwise ordering, i.e. f

1

v f

2

i� f

1

(l) v f

2

(l) for all l 2 L. Furthermore,

a scheme in a domain of labeled products is a product of schemes, i.e. it is easy to

show that:

Lemma 4.1.21 The set of schemes in

Q

l2L

F (l) is the set of labeled products of

the form

Q

l2L

�(l), where � is any function from L to

S

fS

S

j S 2 Sg such that

�(l) 2 S

F (l)

�

Since the domain of at records L ! V

?

is the domain of labeled product

Q

l2L

V

?

,

where we take V

?

as the constant function on L, the above result shows that a

scheme in this domain is a product

Q

l2L

�(l) where � is any function from L to S

V

?

.

Since S

V

?

= ff?g;Vg, each such function � : L ! S

V

?

is identi�ed by the subset

L = fl j �(l) 6= f?gg of L and the corresponding scheme is isomorphic to the set

of total functions from L to V. Therefore the set of all schemes in this domain is

isomorphic to the set of spaces of total functions L ! V; L � L and is identi�ed

by the set of all subsets of L. However, restrictions on these function spaces do not

produce schemes, for example

ffName)s; Age)i;Shoe-size)ig j s; i 2 Vg
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Figure 4.7: A domain V

i

with null values

is not a scheme if V has more than one element.

If we require that the columns of a relation are \typed", we are given a set of

at domains V and an assignment of domains in V to labels in L, i.e. a function

� : L ! V (�(l) are called \domains" in database parlance). Then the domain of

typed at records D

�

is the domain of labeled products D

�

=

Q

l2L

�(l). A scheme

in this domain is a product

Q

l2L

�(l) where � is any function � : L !

S

l2L

S

�(l)

such

that for all l 2 L; �(l) 2 S

�(l)

. Since each �(l) is a at domain, S

�(l)

is either f?g or

the set of all maximal elements in �(l). Thus the set of all schemes in this domain

is isomorphic to the set of all product domains of the form

Q

l2L

�(l); L � L. If each

�(l) is represented by a type �

l

, then for a �nite L = fl

1

; : : : ; l

n

g, a scheme

Q

l2L

�(l)

is represented by the type fl

1

: �

l

1

; : : : ; l

n

: �

l

n

g.

Null values

Our �rst \non-at" example arises from the introduction of null values, which give

rise to an ordering on tuples. The framework that we have developed here should

allow us to ascribe semantics to the various kinds of null values and to investigate

how the mathematical properties generalize.

Combining work in [Bis81, Lie82, Sci79] Zaniolo [Zan84] introduced an ordered

space V

i

with null values shown in �gure 4.7.

?

i

is interpreted as no information; ne

i

means non-existent, or wrong; uk

i

means

unknown { a value exists (other than ne

i

), but it is not yet known.



4.1. POWERDOMAINS TO GENERALIZE RELATIONAL DATABASES 119

Tree-like domains such as this are domains with a particularly simple structure.

In fact we can call a domain D a tree if, whenever x; y 2 D and x t y exists then

x v y or y v x. A section of a tree D is a set S such that any path in D from the root

(?) to a leaf contains exactly one member of S. The following results characterize

independent sets and schemes in a tree.

Lemma 4.1.22 D is a tree i� C

D

= I

D

(i.e. the co-chains are the independent

sets)�

Lemma 4.1.23 S is a section of D i� it is a scheme for D�

For example, the schemes for V

i

in �gure 4.7 are f?

i

g, fne

i

;uk

i

g and

fne

i

; v

1

i

; : : : ; v

n

i

i

g.

We can use this to de�ne domains of typed records with null values by simply

replacing at domains with tree-like domains in the previous development. Given a

set T of tree-like domains and a type assignment � : L ! T, a domain of typed

records D

�

is the domain D

�

=

Q

l2L

�(l) of labeled products. A scheme in this

domain is a product

Q

l2L

�(l) where � is a function � : L !

S

l2L

S

�(l)

such that

for all l 2 L; �(l) 2 S

�(l)

. Unlike the case of typed at records, S

�(l)

may contain

schemes which are neither f?g nor the set of maximal elements in �(l) and the set

of schemes in this domain is no longer isomorphic to the set of products of the form

Q

l2L

�(l); L 2 L. In order to represent schemes in this domain in a type system, we

need to de�ne \scheme-types" to represent schemes S

T

;T 2 T. We will show an

example of such de�nition in the next section.

This allows us to establish that the whole apparatus of functional dependencies,

universal relations, etc. works smoothly in the domain of relations with null values,

i.e. relations de�ned over tree-like domains.

To take an example, in a payroll database, the values fv

1

i

; : : : ; v

n

i

i

g could be

the state tax rate with ne

i

being used when such a tax was inappropriate, e.g.,.

for overseas employees. There is then a functional dependency ADDRESS!

fne

i

; v

1

i

; : : : ; v

n

i

i

g and an inferred dependency ADDRESS! fne

i

;uk

i

g. The investi-

gation of such dependencies may be useful when attempting to do database design

on databases with exceptional values such as those investigated in [Bor85].
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Record structures

In programming languages such as Pascal, record types are constructed both by

giving a labelled set of �elds and by giving a case statement or discriminated union.

Moreover record types can be components of other record types, and we can carry

this construction to any depth. The domains of such records allows us a further

generalization of the domains we have just considered. These domains can be also

regarded as the domain of feature structures which are used to represent linguistic

information [Shi85].

In the previous sections, we have constructed domains and their schemes of �rst-

normal form relations with null values by using labeled product constructors. By

simply iterating this construction process, we can construct domains and schemes

of general record structures without discriminated union. Domains corresponding to

discriminated union can be constructed by labeled sum constructors.

Given a function F from a set of labels L to a set of sets S, a labeled sum

P

l2L

F (l) is the set of pairs f< l; v >j v 2 F (l)g. If S is a set of domains, we de�ne

the domain of labeled sums

P

?

l2L

F (l) to be the set f< l; v >j v 2 F (l)g [ f?g. This

is indeed a domain under the ordering de�ned as x v y if and only if either x = ?

or x =< l; v > and y =< l; v

0

and v v v

0

. Corresponding to the result for labelled

products (lemma 4.1.21), a scheme in a domain of labeled sums is a labeled sum of

schemes, i.e. it is easy to show that:

Lemma 4.1.24 A scheme in

P

?

l2L

F (l) is either the singleton set f?g or a labeled

sum

P

l2L

S(l), where S is any function from L to

S

fS

S

j S 2 Sg such that S(l) 2

S

F (l)

�.

Starting with given primitive domains such as the at domain of integers, we can

now construct domains of record structures by applying product and sum construc-

tions. We can then identify the set of schemes in those domains. Suppose we are

given primitive domains B

1

; : : : ;B

n

with corresponding sets of schemes S

B

1

; : : : ;S

B

n

.

Then we can de�ne the family Dom of domains with associated sets of schemes

generated by B

i

's as:

(1) B

i

2 Dom. The associated set of scheme is S

B

i

,

(2) If D � Dom with associated sets of schemes S

D

;D 2 D, then for any function
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� : L ! D, D

�

=

Q

l2L

�(l) 2 Dom with the set of schemes

S

D

�

= f

Q

l2L

�(l) j 9� : L !

S

D2D

S

D

: 8l 2 L: �(l) 2 S

�(l)

g.

(3) If D � Dom with corresponding sets of schemes S

D

;D 2 D, then for any

function � : L ! D, D

�

=

P

?

l2L

�(l) 2 Dom with the set of schemes

S

D

�

= f

P

l2L

�(l) j 9� : L !

S

D2D

S

D

: 8l 2 L: �(l) 2 S

�(l)

g.

Dom corresponds to domains of record structures generated from primitive values

in B

1

; : : : ;B

n

.

We give an example of concrete representation of domains of record structures.

By the analogy of a type system of a programming language, we call expression

representing domains types and de�ne the membership relation between records and

domains as typing rules. We will comment more on the relationship between domains

and types in a programming language later. We start with types. A type expression

is one that can be constructed by the following rules:

(1) B

1

; : : : ; B

n

, the (names of) base types such as int, bool, string etc. are type

expressions.

(2) If �

1

; �

2

; : : : ; �

n

are type expressions then fl

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

g is a type

expression.

(3) If �

1

; �

2

; : : : ; �

n

are type expressions then [l

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

] is a type

expression.

The notation [l

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

] indicates a discriminated union. An example

of such a type expression is

�

1

= fName:string; Age:int; Status :[Employee:fO�ce:string; Extension :intg;

Consultant :fAddress:string; Telephone :intg]g

The syntax for records is similarly de�ned:

(1) For each base type B, we assume that we are given the corresponding primitive

domain B such as the at domain N

?

of integers. Then elements in B are

records. ?

B

represents a null value in B.

(2) If r

1

; r

2

; : : : ; r

n

are records then fl

1

=) r

1

; l

2

=) r

2

; : : : ; l

n

=) r

n

g is a record.
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(3) If r is a record, [l =) r] is a record.

(4) If � is a discriminated union type then ?

�

is a record.

The following is an example of record:

r

1

= fName)

0

J. Doe

0

; Age)21; Status)[Employee)fO�ce)G7; Extension)5556g]g

Moreover, we regard the record r

1

having the type �

1

. Formally, a record r has type

� if one of the following conditions hold:

(1) r 2 B and � is the base type B corresponding to B.

(2) r = fl

1

=) r

1

; l

2

=) r

2

; : : : ; l

n

=) r

n

g, � = fl

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

g, and r

i

has type �

i

for 1 � i � n.

(3) r = [l

i

=) r

i

], � = [l

1

: �

1

; l

2

: �

2

; : : : ; l

m

: �

m

], i � m, and r

i

has type �

i

.

(4) r = ?

�

; � = [l

1

: �

1

; : : : ; l

n

: �

n

]

Records are ordered by the following rules:

(1) v v v

0

if v; v

0

2 B and v; v

0

are ordered in B.

(2) fl

1

=) r

1

; l

2

=) r

2

; : : : ; l

n

=) r

n

g v fl

1

=) r

0

1

; l

2

=) r

0

2

; : : : ; l

n

=) r

0

n

g if

r

i

v r

0

i

for all 1 � i � n.

(3) [l =) r] v [l =) r

0

] if r v r

0

.

(4) ?

�

v ?

�

for any discriminated union type � .

(5) ?

[l

1

:�

1

;:::;l

n

:�

n

]

v [l

i

=) r] if 1 � i � n and r has the type �

i

.

Informally, one record is better than another if it has better values in same �elds.

For example, if

r

2

= fName)

0

J. Doe

0

; Age)?

int

; Status)[Employee)fO�ce)G7; Extension)?

int

]g

then r

2

v r

1

. From these de�nitions we can immediately see that the set of all records

of a type � is a domain D

�

belonging to the family of domains Dom constructed

from the set of primitive domains B

1

; : : : ;B

n

and the ordering relation on records

corresponds exactly to the orderings on domains in Dom.

We next de�ne the syntax of scheme-types for a type � . �

0

is a scheme-type for �

if:
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(1) � is a base type and �

0

= � or �

0

= unit

�

. unit

�

denotes the trivial scheme

f?

B

g in B.

(2) �

0

= fl

1

: �

0

1

; l

2

: �

0

2

; : : : ; l

n

: �

0

n

g, � = fl

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

g and �

0

i

is a

scheme-type for �

i

, for 1 � i � n.

(3) �

0

= [l

1

: �

0

1

; l

2

: �

0

2

; : : : ; l

n

: �

0

n

], � = [l

1

: �

1

; l

2

: �

2

; : : : ; l

n

: �

n

], and �

0

i

is a

scheme-type for �

i

, for 1 � i � n.

(4) �

0

= unit

�

and � is any discriminated union type. unit

�

denotes the trivial

scheme f?

�

g in D

�

.

The following is a scheme-type of the type �

1

de�ned in our example of a record type

above:

�

2

= fName:string; Status :[Employee:fO�ce:string; Extension :unit

int

g;

Consultant :fAddress:string; Telephone :unit

int

g]g

Moreover, we regard the record r

2

having the above scheme-type �

2

. Formally, a

record r has a scheme type � if:

(1) r 2 B

i

and � = B

i

.

(2) r = ?

B

i

, � = unit

B

i

.

(3) r = fl

1

=) r

1

; : : : ; l

n

=) r

n

g, � = fl

1

: �

1

; : : : ; l

n

: �

n

g and r

i

has the scheme-

type �

i

for 1 � i � n.

(4) r = [l

i

=) r

i

],� = [l

1

: �

1

; : : : ; l

n

: �

n

], i � n and r

i

has scheme-type �

i

.

(5) ?

�

0

and � is any scheme-type of any discriminated union type �

0

.

Then by the de�nition of the scheme-types, we can also see that the set of all records

of the scheme-type �

0

for the type � is a scheme in D

�

.

Sets of records belonging to a given type therefore form an interesting general-

ization of �rst-normal-form relations for which we can de�ne relational operations,

functional dependencies etc.
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Figure 4.8: Restricted higher-order relation and equivalent relation

Structures that contain sets

An extension to the relational model that has recently enjoyed some popularity is

the study of higher-order relations [FT83, AB84, RKS84,

�

OY85]. In these model a

value in a tuple can itself be a set of values, i.e. another relation. In order to obtain a

class of higher-order relations that behave well under relational operations, [RKS84]

describes partition normal form relations. In such relations the attributes with simple

(atomic) values functionally determine the attributes with higher-order values, which

must also be in partition normal form. However, because of this severe restriction,

sets are not treated as �rst-class values in this model. Indeed, it is not hard to

show that partition-normal form relations are isomorphic to relations over record

structures (without labeled sums) de�ned in the previous section. For example, the

relation (a) in �gure 4.8 is equivalent to the relation (b).

In order to obtain a data model in which sets are treated as �rst-class values, we

need to construct a space of sets as a domain. Since, in de�ning various database

operations, we have only assumed that the underlying space is a domain, once we

have done this then sets can be also treated as regular values. In order to construct

a domain of sets, we need to de�ne an ordering on sets as database values. One

obvious possibility is to treat the space of sets as a at domain so that two sets are

comparable i� there are equal. However, as we have seen, a at domain has only

two schemes, the set of all maximal elements and the trivial scheme containing only
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bottom element, and does not yield interesting structures.

A second possibility is to regard sets as ordered by v

[

, which is what Bancilhon

used in his complex object model [BK86]. Given a domainD, it can be shown [Sco82a]

that we can construct a domain P

[

(D) corresponding to the space of sets of elements

in D ordered by v

[

(the Hoare powerdomain of D). Since P

[

(D) is a domain, the

results of previous sections are readily applicable. However, it is probably rather

di�cult to �nd semantics of a natural join since a natural join is determined by

the ordering v

]

and therefore database sets and sets appears as values in database

objects are treated di�erently. We should also note that, since P

[

(D) is a lattice,

Lemma 4.1.25 For a domain D, the schemes in P

[

(D) are the singleton sets ffdgg

where d 2 D �

which means that functional dependencies in such a domain are rather trivial con-

straints.

Another possibility is to consider sets as values ordered by v

]

, which is done

in [Bun85, BO86, Oho90]. Smyth showed that [Smy78] for any domain D, a domain

P

]

(D) corresponding to the space of of sets of elements in D ordered by v

]

, called

Smyth powerdomain of D, can be constructed. Under this approach, a natural join

can be given coherent semantics. Again there are no non-trivial schemes in P

]

(D).

However, if we relax our de�nition of a scheme, we can make some progress. Recall

that a scheme A is an independent set in a domain D satisfying

p

A

(D) = A

and

8x 2 D: p

�

A

JxK

D

= Jp

A

(x)K

A

One way to generalize this is to specify directly a subset of D that is not necessarily

downward closed. We say that a subset S of D is a generalized scheme in D if

(1) S is closed under bounded join, (2) S has a minimal element and (3) the set

of maximal elements maxset(S) of S satis�es the second condition of schemes, i.e.

8x 2 D: p

�

S

JxK

D

= Jp

S

(x)K

S

where p

S

(x) = tfs j s 2 S; s v xg. The original

de�nition of schemes is a special case of generalized schemes. We can then �nd

interesting schemes in P

]

(D).
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r

1

= ffPname)
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Figure 4.9: Natural Join of Higher-order Relations

Lemma 4.1.26 If S is a generalized scheme in a domain D then the set P

]

(S) is a

generalized scheme in P

]

(D)

This suggests that if we regard sets as values ordered by v

]

, then the previously

described type systems can be extended to include a set type constructor by adding

the following rules:

(1) If � is a type then f�g is a type.

(2) If �

0

is a scheme type of � then f�

0

g is a scheme-type of f�g.

(3) If v

1

; : : : ; v

n

are database objects of type � then minset(fv

1

; : : : ; v

n

g) is a data-

base object of type f�g.

In the third rule, a given set of database objects is coerced to a canonical repre-

sentative of an element in P

]

(D) by taking its minimal elements. Natural join and

projection work properly on the extended structures. Figure 4.9 shows an example

of a natural join in the domain of records extended by these rules.

One restriction of the above approach is that we presuppose the meaning of sets

of database objects by choosing the ordering v

]

, i.e. sets are overdescribing some

desired set of objects. This choice may not be appropriate for some applications. An
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idea that merits further investigation is to look at partial descriptions that consist of

pairs of sets: a complete and a consistent description of some target set. This may be

particularly valuable in constructing a semantics for database merging [MB81] where

the individual databases may not form a complete description of the real world.

Recursive structures

It is reasonable to suppose that we can also generalize database theory to work for

recursive types, which can be used to give a type to unbounded structures such as

lists. For example, given a domain D represented by a type � , we can de�ne a type

for � -lists as the type satisfying the following equation:

list(� ) = [null : fg;nonnull : ffirst : � ; rest : list(� )g]

This is the type of all lists of elements in D. Then for any scheme-type �

0

for � ,

list(�

0

) is a scheme-type for list(� ). There are also other scheme-type for list(� )

than in the above form. For example, the following is also a scheme-type for list(� )

that corresponds to the set of all lists of length less than or equal to one.

onelist = [null : fg;nonnull : ffirst : � ; rest : unit

list(�)

g]

where unit

list(�)

is the scheme-type list(unit

�

) for list(� ).

The domain D

list(�)

corresponding to list(� ) can be de�ned as the domain equa-

tion:

D

list(�)

= Null + (D �D

list(�)

)

whereNull is the trivial one element domain. Let S be the scheme inD corresponding

to the scheme-type �

0

. Then the scheme corresponding to the scheme-type list(�

0

) is

the set of maximal elements in the domain de�ned by the equation:

D

list(�

0

)

= Null+ (S �D

list(�

0

)

)

The scheme corresponding to the scheme-type onelist can be also de�ned.

The general form of schemes in recursive types such as these requires further

investigation.
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4.1.7 Conclusion and Further Investigation

We have tried to show that the application of domain theory allows us to provide a

clean semantics for relational databases and provides a generalization of many of the

ideas in relational database theory { especially those concerned with database design

{ into a large class of higher-order and recursive structures.

One major limitation of our work is that our characterization of the relational

databases is restricted to a single domain. Operations and notions such as join

and functional dependency are de�ned only within a given domain. It is however

desirable to allow databases to contain values of di�erent domains. This becomes

essential if we want to treat values in a database as typed data structures and to

integrate them into a type system of a programming language. In previous section we

have constructed a collection of domains of records. As we suggested, each domain

corresponds to a type in a type system of a programming language. In such a type

system, it is natural to represent a database as a collection of relations of di�erent

types. Our formalism cannot be directly applied to such a database. One way to

overcome this limitation would be to develop a theory of the relationship between

various domains and to extend our characterization of the relational databases to

a family of domains. [Oho90] proposed one such theory for join and projection

and showed that a family of database domains can be integrated in an ML style

type system. In [OB88] we have also shown that ML type inference method can be

generalized to such an integrated type system. We further hope that the theory of

functional dependencies and universal relations we have developed in this paper can

be also generalize to families of domains.

Finally we should note that in database programming languages [BMW80,

ACO85, SFL83], in knowledge bases [BS85] and in A��t-Kaci's [AK86] calculus for type

subsumption the ordering is not completely derived from the structure of the objects

themselves. There is also an imposed lattice or partial order of \entities", \concept-

s", or \head-terms". The possibility of generalizing relational database notions into

these systems may require these imposed orderings to have certain properties.



4.2. DECOMPOSITION OF DOMAINS 129

4.2 Decomposition of Domains

Introduction

This work was initiated by Peter Buneman's interest in generalizing relational data-

bases, see [BJO91]. He | quite radically | dismissed the idea that a database should

be forced into the format of an n-ary relation. Instead he allowed it to be an arbi-

trary anti-chain in a Scott-domain. The reason for this was that advanced concepts

in database theory, such as `null values', `nested relations', and `complex objects'

force one to augment relations and values with a notion of information order. Fol-

lowing Buneman's general approach, the question arises how to de�ne basic database

theoretic concepts such as `functional dependency' for anti-chains in Scott-domains.

For this one needs a way to speak about `relational schemes' which are nothing but

factors of the product of which the relation is a subset. Buneman successfully de�ned

a notion of `scheme' for Scott-domains and it is that de�nition which at the heart

of this work. We show that his generalized `schemes' behave almost like factors of

a product decomposition. (Consequently, we choose the word semi-factor for them.)

In the light of our results, Peter Buneman's theory of generalized databases becomes

less miraculous: a large class of domains can be understood as sets of tuples.

Buneman's de�nition of scheme was discussed in [Lib91] and an alternative def-

inition was proposed. The idea of both de�nitions is that the elements of a domain

are treated as objects, and projecting an element into a scheme corresponds to los-

ing some information about this object. The de�nition of [Lib91] is based on the

assumption that the same piece of information is lost for every object. For example,

if objects are records, it means that we lose information about some attributes' val-

ues. The idea of [BJO91] is that every scheme has a sort of complement, and if we

project one object to a scheme and the other to its complement, then there exists

a join of two projections, i.e. every object consists of two independent \pieces of

information". Intuitively it means that the domain itself could be decomposed into

two corresponding domains.

The de�nition of [BJO91] is stronger than the de�nition of [Lib91]. It is the

�rst de�nition that is used in our decomposition theory while the second de�nition

serves as a tool to describe direct product decompositions of domains. Combining the

decomposition theorems, we will prove a formal statement that clari�es the informal
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reasonings from the previous paragraph.

There is also a more philosophical or pedagogical motivation for this work. A

feature that novices to domain theory frequently �nd unsettling is the profusion of

di�erent de�nitions it o�ers. Often these de�nitions are laid out at the beginning

and the relation to the semantics of programming languages is established only later.

In particular, useful closure properties of the respective categories are derived. In his

`Pisa Lecture Notes' [Plo81], Gordon Plotkin chose a rather more gentle approach.

The `domains' he considers are very primitive at the beginning, just sets, and step by

step new constructs and properties are added to them: a bottom element transforms

sets into at domains, and thus the information order is introduced; next come

slightly more complicated orders created by forming �nite products of at domains;

function spaces call for the de�nition of dcpo and Scott-continuous function and,

via bilimits and powerdomains, he �nally arrives at bi�nite domains. Furthermore,

along the way he develops a syntax which allows to denote (most of) the elements

of the domains, making them available for computation: the product appears as

a set of arrays, the function space as a set of �-terms, etc. (This aspect is also

described elegantly and comprehensively in [Abr91].) In this way, Plotkin creates the

impression that all (bi�nite) domains are built up from at domains using various

domain constructors. This may be reassuring for the novice but of course it is

not explicitly con�rmed in the text. Plotkin is just very carefully expanding his

de�nitions and motivating each new concept. But we may still ask to what extent

this �rst impression could be transformed into a theorem. To be more precise, we

may ask: \Is it true, that every bi�nite domain can be derived from at domains

using only lifting, product, coalesced sum, function space and convex powerdomain

as constructors?" (A similar question was in fact asked | and found di�cult | by

Carl Gunter for the universal bi�nite domain.)

How would one attack such a problem? We think the natural way to do it is

to work backwards and to try to decompose domains into pieces that decompose no

further. If we can show that the only irreducible domains are the at domains then

we are done.

At this point the informed reader may already have become nervous because

he may know small �nite counterexamples to the above question. But there are

many variations of it which are equally interesting. We can restrict (or augment)
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the number of allowed constructions, we can change the class of domains we want to

analyze, we can allow more (or fewer) primitive (i.e. irreducible) building blocks. The

choice we have made for this paper is to consider Scott and dI-domains (cf. [Ber78,

Ber79]) and a single, albeit rather general, constructor, and instead of prescribing

the irreducible factors, we are curious what they will turn out to be. The advantage

of a decomposition theorem of this kind is apparent: instead of proving a property

for general domains we can prove that it holds for the irreducible factors and that it

is preserved under the constructions. We allow ourselves to compare this endeavor

with the similar (and only recently completed) project of decomposing �nite groups

into �nite simple groups, although the comparison is somewhat attering: we cannot

expect to �nd so much mathematically intriguing structure in domains.

What are the practical implications of our decomposition theorem? Well, in

our particular setting we derive a very concrete representation of dI-domains as a

set of `tuples' which should simplify the implementation of dI-domains as abstract

data types. Of course, there is a well-developed theory of e�ective representations

(see [Smy77, Kan79, WD80, LW84]), where one enumerates the set of compact ele-

ments and represents (a subset of) the in�nite elements by recursively enumerable

sets of compact approximations. However, this is more theoretical work and no one

expects that we really ever use domains as data types represented this way. Instead,

our representation is much more concrete. To give an example, consider a domain

which is the product of two at domains. The traditional e�ective domain theory

simply enumerates all elements, and, if enumerations of the elements of the two fac-

tors are already given, then these are combined with the help of pairing functions.

We work rather in the opposite direction. For a given domain we seek to decompose

it as far as possible and we will only enumerate the bases of the (irreducible) factors

in the traditional way. The representation of the original domain is then put together

as a set of `tuples'.

The paper is organized as follows. In the next section we shall quickly review

some basic de�nitions from domain theory, mostly to �x notation and to remind the

reader of a few less common concepts. In Section 4.2.2 we introduce semi-factors and

prove basic properties of them. We apply these ideas and get a �rst decomposition

theorem. This representation still contains a lot of redundancy and in Section 4.2.3

we show how to `factor away' this redundancy. The resulting decomposition theorem
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yields a representation of dI-domains which is very tight. (These sections report work

by the �rst and the third author.)

A direct product decomposition is a particular and interesting instance of our

general goal and deserves more detailed study. In Sections 5 and 6 (which were

written by the second author) this is done by establishing a relationship between

these decompositions and particular instances of congruence relations and neutral

ideals. The idea to describe direct product decompositions via neutral ideals is

borrowed from lattice theory where neutral ideals describe decompositions of bounded

lattices. For domains we will obtain a more general kind of decomposition including

direct product and coalesced sum as limit cases. These decompositions are given by

families of subsets of a domain such that every element of the domain has a unique

representation as the join of suitably chosen representatives of these sets. Pairs of

permutable complemented congruences also describe direct product decompositions

as well as they describe decompositions of algebras. Having proved characterizations

of decompositions, we establish the result showing the relationship between the two

notions of scheme.

4.2.1 De�nitions

We are using the standard de�nitions such as they can be found in [Jun89] and

in [Abr91]. In particular, dcpo's are directed-complete partial orders and they have

suprema for all directed sets. Most of the time they have a least element, which we

denote by ?. Compact elements in a domain are such that they cannot be below a

supremum of a directed set without being below some element of that set already,

and if there are enough compact elements such that every element is the supremum

of a directed collection of them, we call the dcpo algebraic. More suprema than

just those of directed sets can exist: if every bounded set has a join then we call

the dcpo bounded-complete; if every set has a join then we have a complete lattice.

In case a bounded-complete dcpo is also algebraic we call it a Scott-domain. The

expression `algebraic complete lattice' is shortened to algebraic lattice. We will mostly

study distributive Scott-domains, for which it is su�cient to require the distributive

law to hold in the principal ideals. (The standard textbook on distributive lattices

is [BD74]). Even more restrictive is the de�nition of dI-domains (cf. [Ber78, Ber79]):

they are distributive Scott-domains in which every principal ideal generated by a
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compact element is �nite. Because of this strong �niteness property we can usually

derive theorems about dI-domains very quickly from the same theorems stated for

�nite distributive Scott-domains.

All our functions are Scott-continuous, which means they carry the supremum of

a directed set to the supremum of the image of the set. We do not make much use of

them in this generality but mostly consider projections, which are in addition idem-

potent and below the identity. Recall that projections always preserve existing in�ma

and are completely determined by their image. Even the order between projections

can be read o� their image: it is simply inclusion. For more detailed information we

refer to [GHK

+

80].

An element x in a lattice is join{ (meet{) irreducible if from the equation y_z = x

(y ^ z = x) we can deduce that x equals y or z. (In the presence of distributivity

this is equivalent to the stronger property of join{ (meet{) primeness, but we will

not make much use of this.)

Domain theory also includes the concept of ideal which is a directed and downward

closed subset. This is a generalization of `ideal' as it is known in lattice theory, where

these are sets which are downward closed and closed under �nite suprema. We need

a generalization which goes in a di�erent direction:

De�nition 4.2.1 A stable subdomain in a Scott-domain D is a downward closed

subset which is closed under all existing joins.

The same concept is de�ned in [BJO91] and in [Cur86] where such subsets of

Scott-domains are called strong ideal and complete ideal, respectively. We �nd either

expression rather misleading as we are not dealing with a special kind of domain

theoretic ideal but with a completely di�erent concept. Instead we take the viewpoint

that such subsets are special substructures, i.e. special subdomains. As it happens,

they correspond one-to-one to images of projections p for which y � x implies p(y) =

y ^ p(x). (An even stronger property holds, see Proposition 4.2.4 (ii) below.) In

domain theory such functions are known as stable projections, hence our terminology.

Factors of products of dcpo's with bottom have the property that there is always

a canonical projection onto them. This is also true for stable subdomains in Scott-

domains:
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Lemma 4.2.2 Let A be a stable subdomain of the Scott-domain D. Then p

A

:D !

D, de�ned by

p

A

(x) =

_

(#x \A)

is a projection on D with image A.

Our �rst decomposition has the form of a general categorical limit. A concrete

description is given in terms of certain elements of the product of the dcpo's involved.

De�nition 4.2.3 Let D be a set of dcpo's and let F be a set of Scott-continuous

functions between elements of D (in the language of category theory: a diagram in

DCPO). Furthermore, let �x = (x

D

)

D2D

be an element (a tuple) of the cartesian

product of all elements of D. We say that �x is commuting if the equation x

E

= f(x

D

)

holds for all functions f :D ! E, f 2 F , and all elements D;E in D. Similarly, it

is called hyper-commuting if the inequality x

E

� f(x

D

) holds.

The set of all commuting tuples forms the categorical limit of the diagram (D;F)

and we denote it by lim

F

D. The set of hyper-commuting tuples we call the hyper-limit

and we reserve the notation hyperlim

F

D for it. The latter construction is a special

case of a more general concept developed in the theory of 2-categories, namely, lax

limits. It is easy to see that DCPO is closed under limits and this kind of lax

limit. Whether any of the other properties generally associated with domains is

preserved depends on the structure of the diagram. For more detailed information

consult [Tay87a].

4.2.2 Stable subdomains, semi-factors, and the First Decom-

position Theorem

We begin by recalling from [BJO91] and [Puh90] some of the properties of stable

subdomains.

Proposition 4.2.4 Let D be a Scott-domain. Then the following hold:

(i) f?

D

g and D are stable subdomains of D.

(ii) If x is an element of a stable subdomain A of D and if p

A

(y) is less than x

then p

A

(y) = x ^ y.
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(iii) If D is distributive then p

A

preserves existing suprema.

(iv) The set Q

D

of all stable subdomains of D ordered by inclusion is an algebraic

lattice.

(v) If D is distributive then Q

D

is distributive.

(vi) In Q

D

, the �nite meet of stable subdomains is given by their intersection and

p

A\B

= p

A

� p

B

= p

B

� p

A

.

(vii) If D is distributive then (arbitrary) suprema in Q

D

can be calculated pointwise,

and for A � Q

D

; x 2 D : p

W

A

(x) =

W

A2A

p

A

(x).

(Proofs can be found in [BJO91].)

The concept of `stable subdomain' is still too general to serve as a de�nition of

`distinguished piece of a domain'. For example, every elementx of a domain generates

a stable subdomain #x, but in general such a principal ideal cannot be hoped to lead

to a sensible decomposition. In [BJO91] a more restrictive de�nition is introduced,

that of a scheme, and it is motivated by the database applications we had in mind

there. Here we can give a new motivation based on the desired decomposition result.

Consider the following theorem:

Theorem 4.2.5 Let D be a �nite distributive Scott-domain and let A be a set of

stable subdomains the supremum of which equals D = >

Q

D

. Let F be the set of

projections p

A

j

B

:B ! A where A � B are two elements of A. Furthermore, let

^

D

consist of those commuting tuples �x = (x

A

)

A2A

for which the set fx

A

j A 2 Ag is

bounded in D. Then

^

D is isomorphic to D with the isomorphisms

	:D!

^

D;	(x) = (p

A

(x))

A2A

�:

^

D ! D;�(�x) =

_

fx

A

j A 2 Ag:

The proof of this theorem is straightforward, one only has to bear in mind that

suprema in Q

D

are calculated pointwise. The theorem is unsatisfying, however,

because in order to represent D through a set of stable subdomains, we need to

include information that can only be gained by looking at D itself: the boundedness

of the coordinates of �x. We shall now give a de�nition of a semi-factor, such that

boundedness comes for free if only the tuple commutes.
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De�nition 4.2.6 A stable subdomain A of a Scott-domain D is called semi-factor if

p

A

(x) � a implies that x and a are bounded, for all x 2 D and a 2 A.

In [BJO91] and in [Puh90] it is shown that this de�nition works well in the test

case of direct product decompositions: the semi-factors of a direct product D � E

are in 1{1 correspondence with products of semi-factors of D and E. In particular,

D � f?

E

g and f?

D

g � E are semi-factors in D � E.

We collect the basic properties of semi-factors in a fashion similar to that for

stable subdomains:

Proposition 4.2.7 Let D be a distributive Scott-domain. Then the following hold:

(i) f?

D

g and D are semi-factors of D.

(ii) The set S

D

of all semi-factors of D, ordered by inclusion, is a distributive,

complete lattice.

(iii) If S and T are semi-factors of D, then so are S \ T and S _ T , where again

the join is taken pointwise. (The latter also holds for arbitrary joins.)

(iv) S

D

is a sublattice of Q

D

.

(For the proofs see [BJO91].)

The following lemma states that our de�nition yields the desired extension prop-

erty:

Lemma 4.2.8 Let S be a family of semi-factors of a �nite distributive Scott-

domain D and let F consist of all connecting projections as in Theorem 4.2.5 above.

Let S be such that with S; T 2 S we also have S \ T 2 S. If �x = (x

S

)

S2S

is a

commuting tuple, then the set fx

S

j S 2 Sg is bounded in D.

Proof. We �rst show this for the case in which S consists of just three semi-factors,

S; T and S \ T . Let �x be a commuting tuple in S � T � S \ T .

x

T

� p

S\T

(x

T

) (p

S\T

� id

D

)

= x

S\T

(�x is commuting)

= p

S\T

(x

S

) (ditto)

= p

T

� p

S

(x

S

) (4:2:4 � vi & 4:2:7� iii)

= p

T

(x

S

) (p

S

j

T

= id

T

)
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By the de�ning property of semi-factors, fx

S

; x

T

g is bounded in D.

The general proof is by induction. Set S =

W

n

i=1

S

i

and T = S

n+1

. By the

induction hypothesis the join of fx

S

1

; : : : ; x

S

n

g exists and we may set x

S

=

W

n

i=1

x

S

i

.

The tuple (x

S

; x

T

; p

S\T

(x

S

)) is commuting for the three semi-factors S; T and S \

T , because projections preserve suprema by 4.2.4-(iii): p

S\T

(x

S

) = p

T

� p

S

(x

S

) =

p

T

(x

S

) = p

T

(

W

n

i=1

x

S

i

) =

W

n

i=1

p

T

(x

S

i

) =

W

n

i=1

x

S

i

\T

=

W

n

i=1

p

S

i

(x

T

) = p

S

(x

T

) =

p

S

�p

T

(x

T

) = p

S\T

(x

T

): So we can apply the result for the three element case for the

induction step.

In our decomposition theorem we want to use as few semi-factors as possible,

which in turn should be as primitive as possible. As a �rst approximation we choose

the set J(S

D

) of semi-factors which are join-irreducible in Q

D

. This set has two

properties which make it attractive: every semi-factor is a join of irreducibles (in

the �nite case, but it will generalize to dI-domains) and a join-irreducible cannot be

reached by a join of strictly smaller semi-factors, so it is in a sense unavoidable. But

in order to apply the previous lemma we need a set closed under �nite intersections,

and in general J(Q

D

) will not do us this favor. We need another preparatory lemma:

Lemma 4.2.9 Let D be a �nite distributive Scott-domain and let J(S

D

) be the set

of join-irreducible semi-factors of D. Let �x = (x

S

)

S2J(S

D

)

be a commuting tuple

for J(S

D

) and the connecting projections F . Let F

0

be the appropriately extended

set of connecting projections for all of S

D

. Then �x can be extended uniquely to a

commuting element �x

0

for S

D

;F

0

.

Proof. We �rst show that for two join-irreducible semi-factors U and V we have the

following commutation rule: p

U

(x

V

) = p

V

(x

U

). Indeed, if U\V is the join of the join-

irreducible semi-factors U

1

; : : : ; U

n

then we can calculate: p

U

(x

V

) = p

U

� p

V

(x

V

) =

p

U\V

(x

V

) =

W

n

i=1

p

U

i

(x

V

) =

W

n

i=1

x

U

i

=

W

n

i=1

p

U

i

(x

U

) = p

U\V

(x

U

) = p

V

� p

U

(x

U

) =

p

V

(x

U

).

We extend the tuple �x to all of S

D

by setting

x

S

=

_

fx

U

j S � U 2 J(S

D

)g:

We have to show that �x

0

= (x

S

)

S2S

D

is commuting, so let S � T be two semi-factors

of D. Then we have

p

S

(x

T

) = p

S

(

_

fx

U

j T � U 2 J(S

D

)g) (by def.)
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=

_

fp

S

(x

U

) j T � U 2 J(S

D

)g (4:2:4� iii)

=

_

fp

V

(x

U

) j T � U 2 J(S

D

); S � V 2 J(S

D

)g (4:2:4 � vii)

=

_

fp

U

(x

V

) j T � U 2 J(S

D

); S � V 2 J(S

D

)g (as shown before)

=

_

fp

T

(x

U

) j S � V 2 J(S

D

)g (4:2:4� vii)

=

_

fx

V

j S � V 2 J(S

D

)g (V � S � T )

= x

S

(by def.)

We can now state

Theorem 4.2.10 (The First Decomposition Theorem) Let J(S

D

) be the set

of all join-irreducible semi-factors of the �nite distributive Scott-domain D and let F

be the set of connecting projections. Then D is isomorphic to the limit of J(S

D

)

over F . The isomorphisms are given by

	:D ! lim

F

J(S

D

)

x 7! (p

S

(x))

S2J(S

D

)

and

�: lim

F

J(S

D

) ! D

(x

S

)

S2J(S

D

)

7!

_

S2J(S

D

)

x

S

:

The proof of this theorem is contained completely in the previous lemma, where

we showed how to extend a commuting tuple to all of S

D

, in particular to D 2 S

D

itself.

We illustrate the First Decomposition Theorem for three �nite domains.

Example 1: D = M

?

, M a �nite set, i.e. D is a at domain. We �nd that

D possesses only the trivial semifactors f?g and D, the latter being join-irreducible

in S

D

. Hence we conclude:

Observation 1: Flat domains are indecomposable.

Example 2: D = 2�2, the four-element Boolean algebra. Since D is a lattice, it

is isomorphic to its lattice of semi-factors. The join-irreducibles are (>;?) and (?;>)

and the decomposition yields D ' #(>;?)�#(?;>), where #(>;?) ' #(?;>) ' 2.

This is not a coincidence:
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Observation 2: Direct product structure is recognized.

Example 3:

D c

a

c

b

c

c

c

c

d

c

c c

@

@

@

@

@

@

�

�

�@

@

@�

�

� @

@

@

�

�

�

�

�

�

�

�

�@

@

@

S

D

c

c c

c

c

@

@

@

�

�

�@

@

@

�

�

�

We �nd that D is join-irreducible in S

D

and hence must be contained in any

decomposition based on the First Decomposition Theorem. This is obviously not

satisfactory and we shall derive a better decomposition theory below. Before doing

so, let us study the situation for in�nite domains. Here we have to deal with the

following complication: the intersection of an in�nite family of semi-factors is not

necessarily a semi-factor again. We therefore do not know whether S

D

is algebraic

in general. We view this as the major open problem in our decomposition theory. In

the case of dI-domains we are �ne:

Proposition 4.2.11 Let D be a dI-domain. Then S

D

is algebraic and co-algebraic

(i.e. S

op

D

is algebraic).

Proof. We only give an outline because we don't have the space to introduce the

details of the theory of approximation via compact elements in domains in general

and in our decomposition theory in particular.

One �rst observes that stable subdomains and semi-factors are completely de-

termined by the set of compact elements they contain. Also, the canonical pro-

jection onto a stable subdomain can be seen as mapping each element onto the

supremum of those compact elements of the subdomain which are below it: p

A

(x) =

W

#x\K(D)\A. Furthermore, the canonical projection, as a Scott-continuous map,

is completely determined by its behavior on compact elements. Since it is also suf-

�cient to state the extension property of semi-factors for compact elements only, we

have reduced the whole theory to K(D), the set of compact elements in D. With this

in mind, it is now easy to see that the arbitrary intersection of semi-factors is again
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a semi-factor: below a compact element in a dI-domain there are only �nitely many

elements at all and so for a particular compact element the intersection behaves as

if it were over a �nite index set.

Similarly, it is easy to see that the directed union of semi-factors yields a semi-

factor again. Together this shows that the set S

D

of semi-factors forms an inductive

hull system on D, which implies algebraicity. A semi-factor is compact in S

D

if and

only if it is generated by a �nite set of compact elements of D.

The co-compact elements are found as follows: suppose a semi-factor S does

not contain a certain element x of D. By algebraicity of D it follows that there is a

compact element c of D which S does not contain. Furthermore, because #c is a �nite

distributive lattice, there is a join-irreducible k below c which again does not belong

to S. On the other hand, if k is join-irreducible (hence: prime) in K(D), then the join

of all semi-factors which do not contain k, will again not contain this element. From

this it follows along standard lines that any �nite set of join-irreducible elements

of K(D) de�nes a co-compact semi-factor and that there are enough co-compact

semi-factors to generate the whole lattice S

D

. So it is co-algebraic as well.

From [GHK

+

80] we recall that algebraic lattices have an inf-basis of meet-ir-

reducible elements, and so for a dI-domain D the distributive lattice S

D

has both a

sup-basis of join-irreducibles and an inf-basis of meet-irreducibles. We can therefore

state:

Corollary 4.2.12 The First Decomposition Theorem holds for dI-domains.

4.2.3 Factoring by stable subdomains and the Second De-

composition Theorem

In group theory and in ring theory we are familiar with the following technique. For

a given strong substructure (normal subgroup, ideal, respectively) one studies the

equivalence relation which identi�es those elements which di�er only by an amount

contained in the substructure. A similar notion works for ideals in distributive lat-

tices: If A is an ideal in L then we can set x � y if there is an a 2 A such that

x _ a = y _ a. (for details see [BD74].) Since domains lack arbitrary suprema we

have to rework this de�nition a little bit:
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De�nition 4.2.13 Let A be a stable subdomain in a distributive Scott-domain D.

On D de�ne a binary relation �

A

by setting x �

A

y if there is a 2 A such that y = x_a.

Let �

A

be the symmetric and transitive hull of � that is the smallest equivalence

relation containing �

A

. (�

A

can be described concretely as

S

n2N

(�

�1

A

� �

A

)

n

.)

This de�nition proves to be extremely fruitful. We list the following properties:

Proposition 4.2.14 Let D be a �nite distributive Scott-domain and let A be a stable

subdomain in D. Then the following hold:

(i) x �

A

y =) x � y.

(ii) x �

A

y =) y = x _ p

A

(y), and for all a 2 A,if y = x _ a, then a � p

A

(y).

(iii) �

A

� �

A

=�

A

.

(iv) x �

A

y; z 2 D =) z ^ x �

A

z ^ y and z _ x �

A

z _ y. (Provided the suprema

exist.)

(v) �

A

is a congruence relation on D with respect to �nite in�ma and existing

suprema.

(vi) Each equivalence class of �

A

contains a least element.

(vii) �

A

=�

A

\ �.

(viii) Each equivalence class of �

A

is order convex.

(ix) �

A

=�

�1

A

� �

A

.

(x) p

A

is injective on every equivalence class of �

A

.

We denote the function which maps each element onto the smallest element in its

equivalence class by q

A

. With this notation we can add the following clauses:

(xi) q

A

is a projection on D.

(xii) q

A

preserves existing suprema.
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Proof. (i) is trivial, for (ii) recall that p

A

is join-preserving by 4.2.4-(iii).

(iii) x �

A

y �

A

z =) y = x _ a

1

and z = y _ a

2

= x _ a

1

_ a

2

, and with a

1

and a

2

elements of A, their join is again in A.

(iv) x �

A

y =) y = x _ a =) z ^ y = z ^ (x _ a) = (z ^ x) _ (z ^ a), and

with a 2 A, the element z ^ a is again in A. For suprema: x �

A

y =) y = x _ a =)

z _ y = (z _ x) _ a.

(v) It is immediate from the de�nition of �

A

as a union of products of �

A

and �

�1

A

that (iv) also holds for �

A

. Now, if x �

A

y and x

0

�

A

y

0

then x^x

0

�

A

y^x

0

�

A

y^y

0

,

and analogously for suprema.

(vi) follows from (v) by taking the in�mum of the equivalence class.

(vii) Suppose x � y and x �

A

y. Then by de�nition there is a chain x

1

; x

2

; : : : ; x

n

of elements such that x = x

1

�

�1

A

x

2

�

A

x

3

�

�1

A

x

4

: : : x

n�1

�

A

x

x

= y. By taking

the supremum of each element of this sequence with x and then the in�mum with y

we derive a new sequence which is completely contained in the interval [x; y]. x

2

is then necessarily equal to x. We further shorten the sequence as follows: x =

x

2

= x

2

^ x

4

�

A

x

3

^ x

4

�

�1

A

x

4

^ x

4

= x

4

�

A

x

5

: : : Since x

3

^ x

4

is below x

4

and in

relation �

�1

A

it is actually equal to x

4

, so the sequence now reduces to x �

A

x

4

�

A

x

5

: : :

Applying (iii) we �nd that x is in �

A

-relation to x

5

already. Continuing in this fashion

will reduce the sequence eventually to x �

A

y which is what we want.

(viii) Assume x �

A

y and x � z � y. By (vii) we have x �

A

y which implies

y = x_ a for some a 2 A. But then z = z ^ y = (x_ z)^ (x_ a) = x_ (z ^ a) which

gives us x �

A

z. The relation z �

A

y follows directly from y = x _ a.

(ix) Combining (vi) and (vii) we �nd that the least element of an equivalence

class is in �

A

-relation to each member.

(x) A projection always preserves in�ma and so if p

A

maps two elements x and y

to the same image a, it will map x ^ y to a as well, and, if x �

A

y then x ^ y �

A

y

and by (vii) x ^ y �

A

y. So consider w.l.o.g. x �

A

y and p

A

(x) = p

A

(y). We directly

get y = x _ p

A

(y) = x _ p

A

(x) = x.

(xi) We only have to show that q

A

is monotone. So suppose x � y. By (vii) we

have q

A

(y) �

A

y which yields with (iv): x ^ q

A

(y) �

A

x ^ y = x. But q

A

(x) is the

smallest element in the equivalence class of x. Hence q

A

(x) � x ^ q

A

(y) � q

A

(y)

follows.
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Figure 4.10: Decomposition of a domain by a semi-factor S.

(xii) From z = x _ y; q

A

(x) �

A

x; q

A

(y) �

A

y we conclude by (iv) that q

A

(x) _

q

A

(y) �

A

x_ y = z. Since q

A

is monotone it follows that q

A

(x)_ q

A

(y) must be equal

to q

A

(z).

Given a representation of a poset P as the cartesian product of two posets R and S

we can understand P as follows: it consists of jRj many copies S

x

of S, and if x � y

in R then each element of S

x

is below the corresponding element of S

y

. A semi-

factor S in a �nite domain leads to a similar representation: for each element x in

the image R of q

S

we take the principal �lter F

x

= "p

S

(x) in S (instead of the whole

semi-factor). These �lters are connected as before, that is, if x � y in R, then each

element of F

x

is below the corresponding element of F

y

. However, there may be

elements of F

x

for which there is no corresponding element in F

y

. This is the content

of the following proposition. A picture illustrating this representation is given in

Figure 4.10.

Knowing S; im(q

S

) and the action of p

S

on the image of q

S

we can reconstruct the

domain:

Proposition 4.2.15 Let D be a �nite distributive domain and let S be a semi-factor

in D.

(i) The image of an equivalence class of �

S

under p

S

is upward closed in S.
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(ii) D is isomorphic to the set

^

D = f(x; s) 2 im(q

S

) � S j p

S

(x) � sg ordered

pointwise. The isomorphism is given by q

S

� p

S

:D !

^

D and by the supremum

function for the other direction.

(iii) If 8x 2 D : p

S

� q

S

(x) = ?

D

then S is a direct factor of D.

Proof. (i) If s is above p

S

(x) in S then by the extension property of semi-factors

s_x exists and is in �

�1

S

-relation to x. Also, p

S

(s_x) = p

S

(s)_p

S

(x) = s_p

S

(x) = s.

(ii) For x 2 D we have q

S

(x) � x and therefore p

S

(q

S

(x)) � p

S

(x). So the pair

(q

S

(x); p

S

(x)) belongs to

^

D. The mapping q

S

� p

S

is injective by Proposition 4.2.14-

(x). We claim that the inverse is given by the supremum function. First of all,

the supremum exists for the pairs in

^

D because S is a semi-factor. It is clearly

monotonic and it inverts q

S

� p

S

because q

S

� p

S

(x _ s) = (q

S

(x _ s); p

S

(x _ s)) =

(q

S

(x)_q

S

(s); p

S

(x)_p

S

(s)) = (x_?; p

S

(x)_s) = (x; s) and for the other composition:

q

S

(x) _ p

S

(x) = x because q

S

(x) �

S

x by de�nition.

(iii) This follows because for p

S

� q

S

= ?

[D �! D]

the condition in the de�nition

of

^

D is always satis�ed.

This proposition works with elements of the domain. But there is also a way of

looking at this situation using congruence relations. Recall that every homomorphism

f :D ! E induces a canonical congruence relation on D, called the kernel of f (kerf),

which identi�es exactly those elements of D which are mapped to the same element.

Obviously, kerq

A

=�

A

. Let Con(D) be the complete lattice of all congruences (with

respect to �nite in�ma and existing suprema) on D.

Proposition 4.2.16 Let D be a �nite distributive Scott-domain and let A be a stable

subdomain in D. Then the following is true:

(i) kerp

A

is a congruence with respect to arbitrary in�ma and arbitrary (existing)

suprema.

(ii) kerp

A

\ �

A

= �

D�D

= 0

Con(D)

.

(iii) kerp

A

_ �

A

= D �D = 1

Con(D)

.
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Proof. (i) holds because p

A

is a projection on a distributive domain, (ii) re-

states 4.2.14-(x) and, �nally, (iii) follows because every x 2 D is related to ? in

the following way:

x �

A

q

A

(x) (kerp

A

) p

A

(q

A

(x)) �

A

?.

The results of this section extend to dI-domains:

Proposition 4.2.17 Proposition 4.2.14 and Proposition 4.2.16 hold for dI-domains,

in particular, equivalence classes of �

A

and kerp

A

are closed under directed suprema

and q

A

is Scott-continuous.

Proof. The main technical di�culty is to prove that equivalence classes of �

A

have

a least element. For details we refer the reader to [Puh90].

We use factorization to improve on our First Decomposition Theorem. We ob-

served that it produces representations which are redundant, namely, if two com-

parable semi-factors S � T are join-irreducible in S

D

then both take part in the

representation, T repeating the information given by S. We shall now factor out this

repeated information. Given a collection S of semi-factors we de�ne for each element

S 2 S its lower S-cover S

0

by S

0

=

W

fT 2 S j T � Sg. Also, if S � T 2 S

D

let S=

T

stand for im(q

T

S

). With this notation we are now ready to formulate:

Theorem 4.2.18 (The Second Decomposition Theorem) Let D be a �nite

distributive Scott-domain (a dI-domain) and let J(S

D

) be the set of all join-irreducible

semi-factors of D. De�ne

RJ(S

D

) = fS=

S

0

j S 2 J(S

D

)g

and

F = fq

S

0

� p

S

�

�

�

T=

T

0

j S � T 2 J(S

D

)g:

Then D is isomorphic to the hyper-limit of RJ(S

D

) over F with the isomorphisms

	:D ! hyperlim

F

RJ(S

D

)

x 7! (q

S

0

� p

S

(x))

S2J(S

D

)



146 CHAPTER 4. TYPES FOR DATABASE LANGUAGES

c

c c c

c c c

@

@

@

@

@

@�

�

�

@

@

@�

�

�

�

�

�

Figure 4.11: A non-at indecomposable dI-domain.

and

�: hyperlim

F

RJ(S

D

) ! D

(x

S

)

S2J(S

D

)

7!

_

S2J(S

D

)

x

S

:

(The proof of this should be clear from the First Decomposition Theorem and

Proposition 4.2.15.)

We illustrate the representation of domains provided by the Second Decompo-

sition Theorem with Example 3 from the last section. The three join-irreducible

semi-factors are #a; #b, and D itself. By factoring D through the join of #a and #b

we can replace it by the three element domain f?; c; dg.

Decomposition into at domains is particularly satisfying and one may wonder

whether it is achievable for all distributive Scott-domains or for all dI-domains. The

answer is `no'; a counterexample is given in Figure 4.11.

However, it turns out that the category F of those distributive Scott-domains

which are representable as hyperlimits of at domains, is cartesian closed and contains

strictly all concrete domains (cf. [KP93, Win81]). Indeed, the connection to concrete

domains seems to be very strong. Recent work by Geva and Brookes (see [BG92a])

suggests that every domain in F can be represented as a generalized concrete data

structure.
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