
Domain Theory
Corrected and expanded version

Samson Abramsky1 and Achim Jung2

This text is based on the chapter Domain Theory in the Handbook of Logic in Com-

puter Science, volume 3, edited by S. Abramsky, Dov M. Gabbay, and T. S. E.

Maibaum, published by Clarendon Press, Oxford in 1994. While the numbering of

all theorems and definitions has been kept the same, we have included comments and

corrections which we have received over the years. For ease of reading, small typo-

graphical errors have simply been corrected. Where we felt the original text gave a

misleading impression, we have included additional explanations, clearly marked as

such.

If you wish to refer to this text, then please cite the published original version where

possible, or otherwise this on-line version which we try to keep available from the page

http://www.cs.bham.ac.uk/˜axj/papers.html

We will be grateful to receive further comments or suggestions. Please send them

to A.Jung@cs.bham.ac.uk

So far, we have received comments and/or corrections from Liang-Ting Chen,

Francesco Consentino, Joseph D. Darcy, Mohamed El-Zawawy, Miroslav Haviar,

Weng Kin Ho, Klaus Keimel, Olaf Klinke, Xuhui Li, Homeira Pajoohesh, Dieter

Spreen, and Dominic van der Zypen.

1Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, Eng-

land.
2School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England.

Contents

1 Introduction and Overview 5

1.1 Origins . 5

1.2 Our approach . 7

1.3 Overview . 7

2 Domains individually 10

2.1 Convergence . 10

2.1.1 Posets and preorders . 10

2.1.2 Notation from order theory 11

2.1.3 Monotone functions . 13

2.1.4 Directed sets . 13

2.1.5 Directed-complete partial orders 15

2.1.6 Continuous functions . 15

2.2 Approximation . 17

2.2.1 The order of approximation 18

2.2.2 Bases in dcpo’s . 18

2.2.3 Continuous and algebraic domains 19

2.2.4 Comments on possible variations 22

2.2.5 Useful properties . 24

2.2.6 Bases as objects . 25

2.3 Topology . 29

2.3.1 The Scott-topology on a dcpo 29

2.3.2 The Scott-topology on domains 30

3 Domains collectively 34

3.1 Comparing domains . 34

3.1.1 Retractions . 34

3.1.2 Idempotents . 35

3.1.3 Adjunctions . 36

3.1.4 Projections and sub-domains 39

3.1.5 Closures and quotient domains 40

3.2 Finitary constructions . 41

3.2.1 Cartesian product . 42

3.2.2 Function space . 43

3.2.3 Coalesced sum . 44

3.2.4 Smash product and strict function space 45

3.2.5 Lifting . 45

3.2.6 Summary . 45

3.3 Infinitary constructions . 46

3.3.1 Limits and colimits . 46

3.3.2 The limit-colimit coincidence 47

3.3.3 Bilimits of domains . 51

2

4 Cartesian closed categories of domains 54

4.1 Local uniqueness: Lattice-like domains 55

4.2 Finite choice: Compact domains . 57

4.2.1 Bifinite domains . 57

4.2.2 FS-domains . 60

4.2.3 Coherence . 62

4.3 The hierarchy of categories of domains 63

4.3.1 Domains with least element 64

4.3.2 Domains without least element 65

5 Recursive domain equations 68

5.1 Examples . 68

5.1.1 Genuine equations . 68

5.1.2 Recursive definitions . 68

5.1.3 Data types . 69

5.2 Construction of solutions . 70

5.2.1 Continuous functors . 70

5.2.2 Local continuity . 71

5.2.3 Parameterized equations . 73

5.3 Canonicity . 74

5.3.1 Invariance and minimality 74

5.3.2 Initiality and finality . 76

5.3.3 Mixed variance . 77

5.4 Analysis of solutions . 79

5.4.1 Structural induction on terms 79

5.4.2 Admissible relations . 80

5.4.3 Induction with admissible relations 81

5.4.4 Co-induction with admissible relations 82

6 Equational theories 85

6.1 General techniques . 85

6.1.1 Free dcpo-algebras . 85

6.1.2 Free continuous domain-algebras 87

6.1.3 Least elements and strict algebras 92

6.2 Powerdomains . 93

6.2.1 The convex or Plotkin powerdomain 93

6.2.2 One-sided powerdomains . 96

6.2.3 Topological representation theorems 97

6.2.4 Hyperspaces and probabilistic powerdomains 103

7 Domains and logic 106

7.1 Stone duality . 106

7.1.1 Approximation and distributivity 106

7.1.2 From spaces to lattices . 109

7.1.3 From lattices to topological spaces 110

7.1.4 The basic adjunction . 111

3

7.2 Some equivalences . 112

7.2.1 Sober spaces and spatial lattices 112

7.2.2 Properties of sober spaces 114

7.2.3 Locally compact spaces and continuous lattices 116

7.2.4 Coherence . 117

7.2.5 Compact-open sets and spectral spaces 117

7.2.6 Domains . 119

7.2.7 Summary . 121

7.3 The logical viewpoint . 121

7.3.1 Working with lattices of compact-open subsets 121

7.3.2 Constructions: The general technique 126

7.3.3 The function space construction 130

7.3.4 The Plotkin powerlocale . 132

7.3.5 Recursive domain equations 136

7.3.6 Languages for types, properties, and points 137

8 Further directions 145

8.1 Further topics in “Classical Domain Theory” 145

8.1.1 Effectively given domains 145

8.1.2 Universal Domains . 145

8.1.3 Domain-theoretic semantics of polymorphism 146

8.1.4 Information Systems . 146

8.2 Stability and Sequentiality . 147

8.3 Reformulations of Domain Theory 147

8.3.1 Predomains and partial functions 148

8.3.2 Computational Monads . 148

8.3.3 Linear Types . 149

8.4 Axiomatic Domain Theory . 150

8.5 Synthetic Domain Theory . 151

9 Guide to the literature 152

References 153

Index 165

4

1 Introduction and Overview

1.1 Origins

Let us begin with the problems which gave rise to Domain Theory:

1. Least fixpoints as meanings of recursive definitions. Recursive definitions of

procedures, data structures and other computational entities abound in program-

ming languages. Indeed, recursion is the basic effective mechanism for describ-

ing infinite computational behaviour in finite terms. Given a recursive definition:

X = . . . X . . . (1)

How can we give a non-circular account of its meaning? Suppose we are work-

ing inside some mathematical structure D. We want to find an element d ∈ D
such that substituting d for x in (1) yields a valid equation. The right-hand-side

of (1) can be read as a function of X , semantically as f : D → D. We can now

see that we are asking for an element d ∈ D such that d = f(d)—that is, for a

fixpoint of f . Moreover, we want a uniform canonical method for constructing

such fixpoints for arbitrary structures D and functions f : D → D within our

framework. Elementary considerations show that the usual categories of math-

ematical structures either fail to meet this requirement at all (sets, topological

spaces) or meet it in a trivial fashion (groups, vector spaces).

2. Recursive domain equations. Apart from recursive definitions of computa-

tional objects, programming languages also abound, explicitly or implicitly, in

recursive definitions of datatypes. The classical example is the type-free λ-

calculus [Bar84]. To give a mathematical semantics for the λ-calculus is to find

a mathematical structure D such that terms of the λ-calculus can be interpreted

as elements of D in such a way that application in the calculus is interpreted

by function application. Now consider the self-application term λx.xx. By the

usual condition for type-compatibility of a function with its argument, we see

that if the second occurrence of x in xx has type D, and the whole term xx has

type D, then the first occurrence must have, or be construable as having, type

[D −→ D]. Thus we are led to the requirement that we have

[D −→ D] ∼= D.

If we view [. −→ .] as a functor F : Cop × C → C over a suitable category C

of mathematical structures, then we are looking for a fixpoint D ∼= F (D,D).
Thus recursive datatypes again lead to a requirement for fixpoints, but now lifted

to the functorial level. Again we want such fixpoints to exist uniformly and

canonically.

This second requirement is even further beyond the realms of ordinary mathemati-

cal experience than the first. Collectively, they call for a novel mathematical theory to

serve as a foundation for the semantics of programming languages.

5

A first step towards Domain Theory is the familiar result that every monotone

function on a complete lattice, or more generally on a directed-complete partial or-

der with least element, has a least fixpoint. (For an account of the history of this

result, see [LNS82].) Some early uses of this result in the context of formal lan-

guage theory were [Ard60, GR62]. It had also found applications in recursion theory

[Kle52, Pla64]. Its application to the semantics of first-order recursion equations and

flowcharts was already well-established among Computer Scientists by the end of the

1960’s [dBS69, Bek69, Bek71, Par69]. But Domain Theory proper, at least as we un-

derstand the term, began in 1969, and was unambiguously the creation of one man,

Dana Scott [Sco69, Sco70, Sco71, Sco72, Sco93]. In particular, the following key

insights can be identified in his work:

1. Domains as types. The fact that suitable categories of domains are cartesian

closed, and hence give rise to models of typed λ-calculi. More generally, that

domains give mathematical meaning to a broad class of data-structuring mecha-

nisms.

2. Recursive types. Scott’s key construction was a solution to the “domain equa-

tion”

D ∼= [D −→ D]

thus giving the first mathematical model of the type-free λ-calculus. This led

to a general theory of solutions of recursive domain equations. In conjunction

with (1), this showed that domains form a suitable universe for the semantics of

programming languages. In this way, Scott provided a mathematical foundation

for the work of Christopher Strachey on denotational semantics [MS76, Sto77].

This combination of descriptive richness and a powerful and elegant mathemati-

cal theory led to denotational semantics becoming a dominant paradigm in The-

oretical Computer Science.

3. Continuity vs. Computability. Continuity is a central pillar of Domain theory.

It serves as a qualitative approximation to computability. In other words, for

most purposes to detect whether some construction is computationally feasible

it is sufficient to check that it is continuous; while continuity is an “algebraic”

condition, which is much easier to handle than computability. In order to give

this idea of continuity as a smoothed-out version of computability substance, it

is not sufficient to work only with a notion of “completeness” or “convergence”;

one also needs a notion of approximation, which does justice to the idea that

infinite objects are given in some coherent way as limits of their finite approx-

imations. This leads to considering, not arbitrary complete partial orders, but

the continuous ones. Indeed, Scott’s early work on Domain Theory was semi-

nal to the subsequent extensive development of the theory of continuous lattices,

which also drew heavily on ideas from topology, analysis, topological algebra

and category theory [GHK+80].

4. Partial information. A natural concomitant of the notion of approximation in

domains is that they form the basis of a theory of partial information, which ex-

tends the familiar notion of partial function to encompass a whole spectrum of

6

“degrees of definedness”. This has important applications to the semantics of

programming languages, where such multiple degrees of definition play a key

role in the analysis of computational notions such as lazy vs. eager evaluation,

and call-by-name vs. call-by-value parameter-passing mechanisms for proce-

dures.

General considerations from recursion theory dictate that partial functions are

unavoidable in any discussion of computability. Domain Theory provides an

appropriately abstract, structural setting in which these notions can be lifted to

higher types, recursive types, etc.

1.2 Our approach

It is a striking fact that, although Domain Theory has been around for a quarter-

century, no book-length treatment of it has yet been published. Quite a number of

books on semantics of programming languages, incorporating substantial introduc-

tions to domain theory as a necessary tool for denotational semantics, have appeared

[Sto77, Sch86, Gun92b, Win93]; but there has been no text devoted to the underlying

mathematical theory of domains. To make an analogy, it is as if many Calculus text-

books were available, offering presentations of some basic analysis interleaved with its

applications in modelling physical and geometrical problems; but no textbook of Real

Analysis. Although this Handbook Chapter cannot offer the comprehensive coverage

of a full-length textbook, it is nevertheless written in the spirit of a presentation of Real

Analysis. That is, we attempt to give a crisp, efficient presentation of the mathematical

theory of domains without excursions into applications. We hope that such an account

will be found useful by readers wishing to acquire some familiarity with Domain The-

ory, including those who seek to apply it. Indeed, we believe that the chances for

exciting new applications of Domain Theory will be enhanced if more people become

aware of the full richness of the mathematical theory.

1.3 Overview

Domains individually

We begin by developing the basic mathematical language of Domain Theory, and then

present the central pillars of the theory: convergence and approximation. We put con-

siderable emphasis on bases of continuous domains, and show how the theory can be

developed in terms of these. We also give a first presentation of the topological view

of Domain Theory, which will be a recurring theme.

Domains collectively

We study special classes of maps which play a key role in domain theory: retractions,

adjunctions, embeddings and projections. We also look at construction on domains

such as products, function spaces, sums and lifting; and at bilimits of directed systems

of domains and embeddings.

7

Cartesian closed categories of domains

A particularly important requirement on categories of domains is that they should be

cartesian closed (i.e. closed under function spaces). This creates a tension with the

requirement for a good theory of approximation for domains, since neither the category

CONT of all continuous domains, nor the category ALG of all algebraic domains

is cartesian closed. This leads to a non-trivial analysis of necessary and sufficient

conditions on domains to ensure closure under function spaces, and striking results

on the classification of the maximal cartesian closed full subcategories of CONT and

ALG. This material is based on [Jun89, Jun90].

Recursive domain equations

The theory of recursive domain equations is presented. Although this material formed

the very starting point of Domain Theory, a full clarification of just what canonicity of

solutions means, and how it can be translated into proof principles for reasoning about

these canonical solutions, has only emerged over the past two or three years, through

the work of Peter Freyd and Andrew Pitts [Fre91, Fre92, Pit93b]. We make extensive

use of their insights in our presentation.

Equational theories

We present a general theory of the construction of free algebras for inequational theo-

ries over continuous domains. These results, and the underlying constructions in terms

of bases, appear to be new. We then apply this general theory to powerdomains and

give a comprehensive treatment of the Plotkin, Hoare and Smyth powerdomains. In ad-

dition to characterizing these as free algebras for certain inequational theories, we also

prove representation theorems which characterize a powerdomain over D as a certain

space of subsets of D; these results make considerable use of topological methods.

Domains and logic

We develop the logical point of view of Domain Theory, in which domains are charac-

terized in terms of their observable properties, and functions in terms of their actions

on these properties. The general framework for this is provided by Stone duality; we

develop the rudiments of Stone duality in some generality, and then specialize it to

domains. Finally, we present “Domain Theory in Logical Form” [Abr91b], in which a

metalanguage of types and terms suitable for denotational semantics is extended with

a language of properties, and presented axiomatically as a programming logic in such

a way that the lattice of properties over each type is the Stone dual of the domain de-

noted by that type, and the prime filter of properties which can be proved to hold of

a term correspond under Stone duality to the domain element denoted by that term.

This yields a systematic way of moving back and forth between the logical and deno-

tational descriptions of some computational situation, each determining the other up to

isomorphism.

8

Acknowledgements

We would like to thank Jiřı́ Adámek, Reinhold Heckmann, Michael Huth, Mathias

Kegelmann, Philipp Sünderhauf, and Paul Taylor for very careful proof reading. Achim

Jung would particularly like to thank the people from the “Domain Theory Group” at

Darmstadt, who provided a stimulating and supportive environment.

Our major intellectual debts, inevitably, are to Dana Scott and Gordon Plotkin. The

more we learn about Domain Theory, the more we appreciate the depth of their insights.

9

2 Domains individually

We will begin by introducing the basic language of Domain Theory. Most topics we

deal with in this section are treated more thoroughly and at a more leisurely pace in

[DP90].

2.1 Convergence

2.1.1 Posets and preorders

Definition 2.1.1. A set P with a binary relation ⊑ is called a partially ordered set or

poset if the following holds for all x, y, z ∈ P :

1. x ⊑ x (Reflexivity)

2. x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z (Transitivity)

3. x ⊑ y ∧ y ⊑ x =⇒ x = y (Antisymmetry)

Small finite partially ordered sets can be drawn as line diagrams (Hasse diagrams).

Examples are given in Figure 1. We will also allow ourselves to draw infinite posets

by showing a finite part which illustrates the building principle. Three examples are

given in Figure 2. We prefer the notation ⊑ to the more common ≤ because the order

on domains we are studying here often coexists with an otherwise unrelated intrinsic

order. The flat and lazy natural numbers from Figure 2 illustrate this.

If we drop antisymmetry from our list of requirements then we get what is known

as preorders. This does not change the theory very much. As is easily seen, the sub-

relation ⊑ ∩ ⊒ is in any case an equivalence relation and if two elements from two

equivalence classes x ∈ A, y ∈ B are related by ⊑, then so is any pair of elements

from A and B. We can therefore pass from a preorder to a canonical partially ordered

set by taking equivalence classes. Pictorially, the situation then looks as in Figure 3.

Many notions from the theory of ordered sets make sense even if reflexivity fails.

Hence we may sum up these considerations with the slogan: Order theory is the study

of transitive relations. A common way to extract the order-theoretic content from a

relation R is to pass to the transitive closure of R, defined as
⋃

n∈N\{0}R
n.

Ordered sets can be turned upside down:

Proposition 2.1.2. If 〈P,⊑〉 is an ordered set then so is P op = 〈P,⊒〉.

❜
The flat booleans

⊥

❜true ❜false

❅
❅�

� ❜
The four-element lattice

❜ ❜
❜

❅
❅
�
�❅

❅
�

� ❜
The four-element chain

❜
❜
❜

Figure 1: A few posets drawn as line diagrams.

10

❜
ordinal

0

❜ 1

❜ 2

❜ ω
❵❵❵

❜
flat

⊥

❜0 ❜1 ❜2 ❜3 ❵ ❵ ❵❍❍❍❍❅
❅

�
� ❜

lazy

❜0 ❜
❜1 ❜

❜2

❜
❵ ❵ ❵

❅
❅�

�
�
�

��

❅
❅

❅
❅

Figure 2: Three versions of the natural numbers.

❜ ❜ ❜ ❜

❜ ❜ ❜ ❜ ❜

❜

❆
❆❆

✁
✁✁

✁
✁✁

❆
❆❆

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

Figure 3: A preorder whose canonical quotient is the four-element lattice.

One consequence of this observation is that each of the concepts introduced below

has a dual counterpart.

2.1.2 Notation from order theory

The following concepts form the core language of order theory.

Definition 2.1.3. Let (P,⊑) be an ordered set.

1. A subset A of P is an upper set if x ∈ A implies y ∈ A for all y ⊒ x. We denote

by ↑A the set of all elements above some element of A. If no confusion is to be

feared then we abbreviate ↑{x} as ↑x. The dual notions are lower set and ↓A.

2. An element x ∈ P is called an upper bound for a subset A ⊆ P , if x is above

every element of A. We often write A ⊑ x in this situation. We denote by ub(A)
the set of all upper bounds of A. Dually, lb(A) denotes the set of lower bounds

of A.

3. An element x ∈ P is maximal if there is no other element of P above it: ↑x∩P =
{x}. Minimal elements are defined dually. For a subset A ⊆ P the minimal

elements of ub(A) are called minimal upper bounds of A. The set of all minimal

upper bounds of A is denoted by mub(A).

11

4. If all elements of P are below a single element x ∈ P , then x is said to be the

largest element. The dually defined least element of a poset is also called bottom

and is commonly denoted by ⊥. In the presence of a least element we speak of a

pointed poset.

5. If for a subset A ⊆ P the set of upper bounds has a least element x, then x
is called the supremum or join. We write x =

⊔

A in this case. In the other

direction we speak of infimum or meet and write x =
d
A.

6. A partially ordered set P is a ⊔-semilattice (⊓-semilattice) if the supremum (in-

fimum) for each pair of elements exists. If P is both a ⊔- and a ⊓-semilattice

then P is called a lattice. A lattice is complete if suprema and infima exist for all

subsets.

The operations of forming suprema, resp. infima, have a few basic properties which

we will use throughout this text without mentioning them further.

Proposition 2.1.4. Let P be a poset such that the suprema and infima occurring in the

following formulae exist. (A,B and all Ai are subsets of P .)

1. A ⊆ B implies
⊔

A ⊑
⊔

B and
d
A ⊒

d
B.

2.
⊔

A =
⊔

(↓A) and
d
A =

d
(↑A).

3. If A =
⋃

i∈I Ai then
⊔

A =
⊔

i∈I(
⊔

Ai) and similarly for the infimum.

Proof. We illustrate order theoretic reasoning with suprema by showing (3). The el-

ement
⊔

A is above each element
⊔

Ai by (1), so it is an upper bound of the set

{
⊔

Ai | i ∈ I}. Since
⊔

i∈I(
⊔

Ai) is the least upper bound of this set, we have
⊔

A ⊒
⊔

i∈I(
⊔

Ai). Conversely, each a ∈ A is contained in some Ai and there-

fore below the corresponding
⊔

Ai which in turn is below
⊔

i∈I(
⊔

Ai). Hence the

right hand side is an upper bound of A and as
⊔

A is the least such, we also have
⊔

A ⊑
⊔

i∈I(
⊔

Ai).

Let us conclude this subsection by looking at an important family of examples of

complete lattices. Suppose X is a set and L is a family of subsets of X . We call

L a closure system if it is closed under the formation of intersections, that is, when-

ever each member of a family (Ai)i∈I belongs to L then so does
⋂

i∈I Ai. Because

we have allowed the index set to be empty, this implies that X is in L. We call the

members of L hulls or closed sets. Given an arbitrary subset A of X , one can form
⋂

{B ∈ L | A ⊆ B}. This is the least superset of A which belongs to L and is called

the hull or the closure of A.

Proposition 2.1.5. Every closure system is a complete lattice with respect to inclusion.

Proof. Infima are given by intersections and for the supremum one takes the closure of

the union.

12

2.1.3 Monotone functions

Definition 2.1.6. Let P and Q be partially ordered sets. A function f : P → Q is

called monotone if for all x, y ∈ P with x ⊑ y we also have f(x) ⊑ f(y) in Q.

‘Monotone’ is really an abbreviation for ‘monotone order-preserving’, but since we

have no use for monotone order-reversing maps (x ⊑ y =⇒ f(x) ⊒ f(y)), we have

opted for the shorter expression. Alternative terminology is isotone (vs. antitone) or

the other half of the full expression: order-preserving mapping.

The set [P
m
−→ Q] of all monotone functions between two posets, when ordered

pointwise (i.e. f ⊑ g if for all x ∈ P , f(x) ⊑ g(x)), gives rise to another partially

ordered set, the monotone function space between P and Q. The category POSET of

posets and monotone maps has pleasing properties, see Exercise 2.3.9(9).

Proposition 2.1.7. If L is a complete lattice then every monotone map from L to L has

a fixpoint. The least of these is given by

l
{x ∈ L | f(x) ⊑ x} ,

the largest by
⊔

{x ∈ L | x ⊑ f(x)} .

Proof. Let A = {x ∈ L | f(x) ⊑ x} and a =
d
A. For each x ∈ A we have a ⊑ x

and f(a) ⊑ f(x) ⊑ x. Taking the infimum we get f(a) ⊑
d
f(A) ⊑

d
A = a and

a ∈ A follows. On the other hand, x ∈ A always implies f(x) ∈ A by monotonicity.

Applying this to a yields f(a) ∈ A and hence a ⊑ f(a).

For lattices, the converse is also true: The existence of fixpoints for monotone maps

implies completeness. But the proof is much harder and relies on the Axiom of Choice,

see [Mar76].

2.1.4 Directed sets

Definition 2.1.8. Let P be a poset. A subset A of P is directed, if it is nonempty and

each pair of elements ofA has an upper bound inA. If a directed setA has a supremum

then this is denoted by
⊔

↑A.

Directed lower sets are called ideals. Ideals of the form ↓x are called principal.

The dual notions are filtered set and (principal) filter.

Simple examples of directed sets are chains. These are non-empty subsets which

are totally ordered, i.e. for each pair x, y either x ⊑ y or y ⊑ x holds. The chain

of natural numbers with their natural order is particularly simple; subsets of a poset

isomorphic to it are usually called ω-chains. Another frequent type of directed set is

given by the set of finite subsets of an arbitrary set. Using this and Proposition 2.1.4(3),

we get the following useful decomposition of general suprema.

Proposition 2.1.9. Let A be a non-empty subset of a ⊔-semilattice for which
⊔

A
exists. Then the join of A can also be written as

⊔

↑{
⊔

M |M ⊆ A finite and non-empty} .

13

General directed sets, on the other hand, may be quite messy and unstructured.

Sometimes one can find a well-behaved cofinal subset, such as a chain, where we say

that A is cofinal in B, if for all b ∈ B there is an a ∈ A above it. Such a cofinal subset

will have the same supremum (if it exists). But cofinal chains do not always exist, as

Exercise 2.3.9(6) shows. Still, every directed set may be thought of as being equipped

externally with a nice structure as we will now work out.

Definition 2.1.10. A monotone net in a poset P is a monotone function α from a

directed set I into P . The set I is called the index set of the net.

Let α : I → P be a monotone net. If we are given a monotone function β : J → I ,

where J is directed and where for all i ∈ I there is j ∈ J with β(j) ≥ i, then we call

α ◦ β : J → P a subnet of α.

A monotone net α : I → P has a supremum in P , if the set {α(i) | i ∈ I} has a

supremum in P .

Every directed set can be viewed as a monotone net: let the set itself be the index

set. On the other hand, the image of a monotone net α : I → P is a directed set in P .

So what are nets good for? The answer is given in the following proposition (which

seems to have been stated first in [Kra39]).

Lemma 2.1.11. Let P be a poset and let α : I → P be a monotone net. Then α has a

subnet α ◦ β : J → P , whose index set J is a lattice in which every principal ideal is

finite.

Proof. Let J be the set of finite subsets of I . Clearly, J is a lattice in which every prin-

cipal ideal is finite. We define the mapping β : J → I by induction on the cardinality

of the elements of J :

β(φ) = any element of I;

β(A) = any upper bound of the set A ∪ {β(B) | B ⊂ A}, A 6= φ.

It is obvious that β is monotone and defines a subnet.

This lemma allows us to base an induction proof on an arbitrary directed set. This
was recently applied to settle a long-standing conjecture in lattice theory, see [TT93].

Comment: Some years later, the authors had to withdraw this paper. The answer they gave was, in fact,

wrong. The original question was finally settled by Fred Wehrung in 2006.

The following is an instance of Proposition 2.1.4(3):

Proposition 2.1.12. Let I be directed and α : I × I → P be a monotone net. Under

the assumption that the indicated directed suprema exist, the following equalities hold:

⊔

↑

i,j∈I

α(i, j) =
⊔

↑

i∈I

(
⊔

↑

j∈J

α(i, j)) =
⊔

↑

j∈J

(
⊔

↑

i∈I

α(i, j)) =
⊔

↑

i∈I

α(i, i).

14

2.1.5 Directed-complete partial orders

Definition 2.1.13. A poset D in which every directed subset has a supremum we call a

directed-complete partial order, or dcpo for short.

Examples 2.1.14. • Every complete lattice is also a dcpo. Instances of this are

powersets, topologies, subgroup lattices, congruence lattices, and, more gener-

ally, closure systems. As Proposition 2.1.9 shows, a lattice which is also a dcpo

is almost complete. Only a least element may be missing.

• Every finite poset is a dcpo.

• The set of natural numbers with the usual order does not form a dcpo; we have

to add a top element as done in Figure 2. In general, it is a difficult problem

how to add points to a poset so that it becomes a dcpo. Using Proposition 2.1.15

below, Markowsky has defined such a completion via chains in [Mar76]. Luckily,

we need not worry about this problem in domain theory because here we are

usually interested in algebraic or continuous dcpo’s where a completion is easily

defined, see Section 2.2.6 below. The correct formulation of what constitutes a

completion, of course, takes also morphisms into account. A general framework

is described in [Poi92], Sections 3.3 to 3.6.

• The points of a locale form a dcpo in the specialization order, see [Vic89, Joh82].

More examples will follow in the next subsection. There we will also discuss the

question of whether directed sets or ω-chains should be used to define dcpo’s. Arbi-

trarily long chains have the full power of directed sets (despite Exercise 2.3.9(6)) as the

following proposition shows.

Proposition 2.1.15. A partially ordered set D is a dcpo if and only if each chain in D
has a supremum.

The proof, which uses the Axiom of Choice, goes back to a lemma of Iwamura

[Iwa44] and can be found in [Mar76].

The following, which may also be found in [Mar76], complements Proposi-

tion 2.1.7 above.

Proposition 2.1.16. A pointed poset P is a dcpo if and only if every monotone map

on P has a least fixpoint.

2.1.6 Continuous functions

Definition 2.1.17. Let D and E be dcpo’s. A function f : D → E is (Scott-) con-

tinuous if it is monotone and if for each directed subset A of D we have f(
⊔

↑A) =
⊔

↑f(A). We denote the set of all continuous functions fromD toE, ordered pointwise,

by [D −→ E].
A function between pointed dcpo’s, which preserves the bottom element, is called

strict. We denote the space of all continuous strict functions by [D
⊥!
−→ E].

The identity function on a set A is denoted by idA, the constant function with im-

age {x} by cx.

15

The preservation of joins of directed sets is actually enough to define continuous

maps. In practice, however, one usually needs to show first that f(A) is directed. This

is equivalent to monotonicity.

Proposition 2.1.18. LetD andE be dcpo’s. Then [D −→ E] is again a dcpo. Directed

suprema in [D −→ E] are calculated pointwise.

Proof. Let F be a directed collection of functions from D to E. Let g : D → E be the

function, which is defined by g(x) =
⊔

↑
f∈F f(x). Let A ⊆ D be directed.

g(
⊔

↑A) =
⊔

↑
f∈F f(

⊔

↑A)

=
⊔

↑
f∈F

⊔

↑
a∈A f(a) (continuity of f)

=
⊔

↑
a∈A

⊔

↑
f∈F f(a) (Proposition 2.1.12)

=
⊔

↑
a∈A g(a).

This shows that g is continuous.

The class of all dcpo’s together with Scott-continuous functions forms a category,

which we denote by DCPO. It has strong closure properties as we shall see shortly. For

the moment we concentrate on that property of continuous maps which is one of the

main reasons for the success of domain theory, namely, that fixpoints can be calculated

easily and uniformly.

Theorem 2.1.19. Let D be a pointed dcpo.

1. Every continuous function f on D has a least fixpoint. It is given by
⊔

↑
n∈N

fn(⊥).

2. The assignment fix : [D −→ D] → D, f 7→
⊔

↑
n∈N

fn(⊥) is continuous.

Proof. (1) The set {fn(⊥) | n ∈ N} is a chain. This follows from ⊥ ⊑ f(⊥) and the

monotonicity of f . Using continuity of f we get f(
⊔

↑
n∈N

fn(⊥)) =
⊔

↑
n∈N

fn+1(⊥)

and the latter is clearly equal to
⊔

↑
n∈N

fn(⊥).
If x is any other fixpoint of f then from ⊥ ⊑ x we get f(⊥) ⊑ f(x) = x and so on

by induction. Hence x is an upper bound of all fn(⊥) and that is why it must be above

fix(f).
(2) Let us first look at the n-fold iteration operator itn : [D −→ D] → D which

maps f to fn(⊥). We show its continuity by induction. The 0th iteration operator

equals c⊥ so nothing has to be shown there. For the induction step let F be a directed

family of continuous functions on D. We calculate:

itn+1(
⊔

↑F) = (
⊔

↑F)(itn(
⊔

↑F)) definition

= (
⊔

↑F)(
⊔

↑
f∈F itn(f)) ind. hypothesis

=
⊔

↑
g∈F g(

⊔

↑
f∈F (itn(f))) Prop. 2.1.18

=
⊔

↑
g∈F

⊔

↑
f∈F g(itn(f)) continuity of g

=
⊔

↑
f∈F f

n+1(⊥) Prop. 2.1.12

The pointwise supremum of all iteration operators (which form a chain as we have

seen in (1)) is precisely fix and so the latter is also continuous.

16

The least fixpoint operator is the mathematical counterpart of recursive and iterative

statements in programming languages. When proving a property of such a statement

semantically, one often employs the following proof principle which is known under

the name fixpoint induction (see [Ten91] or any other book on denotational semantics).

Call a predicate on (i.e. a subset of) a dcpo admissible if it contains ⊥ and is closed

under suprema of ω-chains. The following is then easily established:

Lemma 2.1.20. Let D be a dcpo, P ⊆ D an admissible predicate, and f : D → D
a Scott-continuous function. If it is true that f(x) satisfies P whenever x satisfies P ,

then it must be true that fix(f) satisfies P .

We also note the following invariance property of the least fixpoint operator. In

fact, it characterizes fix uniquely among all fixpoint operators (Exercise 2.3.9(16)).

Lemma 2.1.21. Let D and E be pointed dcpo’s and let

D
h ✲ E

D

f

❄ h ✲ E

g

❄

be a commutative diagram of continuous functions where h is strict. Then fix(g) =
h(fix(f)).

Proof. Using continuity of h, commutativity of the diagram, and strictness of h in turn

we calculate:

h(fix(f)) = h(
⊔

↑

n∈N

fn(⊥))

=
⊔

↑

n∈N

h ◦ fn(⊥)

=
⊔

↑

n∈N

gn ◦ h(⊥)

= fix(g)

2.2 Approximation

In the last subsection we have explained the kind of limits that domain theory deals

with, namely, suprema of directed sets. We could have said much more about these

“convergence spaces” called dcpo’s. But the topic can easily become esoteric and lose

its connection with computing. For example, the cardinality of dcpo’s has not been re-

stricted yet and indeed, we didn’t have the tools to sensibly do so (Exercise 2.3.9(18)).

We will in this subsection introduce the idea that elements are composed of (or ‘ap-

proximated by’) ‘simple’ pieces. This will enrich our theory immensely and will also

give the desired connection to semantics.

17

2.2.1 The order of approximation

Definition 2.2.1. Let x and y be elements of a dcpo D. We say that x approximates y
if for all directed subsets A of D, y ⊑

⊔

↑A implies x ⊑ a for some a ∈ A. We say

that x is compact if it approximates itself.

We introduce the following notation for x, y ∈ D and A ⊆ D:

x≪ y ⇔ x approximates y

↓↓x = {y ∈ D | y ≪ x}

↑↑x = {y ∈ D | x≪ y}

↑↑A =
⋃

a∈A

↑↑a

K(D) = {x ∈ D | x compact}

The relation ≪ is traditionally called ‘way-below relation’. M.B. Smyth introduced

the expression ‘order of definite refinement’ in [Smy86]. Throughout this text we will

refer to it as the order of approximation, even though the relation is not reflexive. Other

common terminology for ‘compact’ is finite or isolated. The analogy to finite sets is

indeed very strong; however one covers a finite set M by a directed collection (Ai)i∈I

of sets, M will always be contained in some Ai already.

In general, approximation is not an absolute property of single points. Rather, we

could phrase x≪ y as “x is a lot simpler than y”, which clearly depends on y as much

as it depends on x.

An element which is compact approximates every element above it. More gener-

ally, we observe the following basic properties of approximation.

Proposition 2.2.2. Let D be a dcpo. Then the following is true for all x, x′, y, y′ ∈ D:

1. x≪ y =⇒ x ⊑ y;

2. x′ ⊑ x≪ y ⊑ y′ =⇒ x′ ≪ y′.

2.2.2 Bases in dcpo’s

Definition 2.2.3. We say that a subset B of a dcpo D is a basis for D, if for every

element x of D the set Bx = ↓↓x ∩ B contains a directed subset with supremum x. We

call elements of Bx approximants to x relative to B.

We may think of the rational numbers as a basis for the reals (with a top element

added, in order to get a dcpo), but other choices are also possible: dyadic numbers,

irrational numbers, etc.

Proposition 2.2.4. Let D be a dcpo with basis B.

1. For every x ∈ D the set Bx is directed and x =
⊔

↑Bx.

2. B contains K(D).

3. Every superset of B is also a basis for D.

18

Proof. (1) It is clear that the join of Bx equals x. The point is directedness. From

the definition we know there is some directed subset A of Bx with
⊔

↑A = x. Let

now y, y′ be elements approximating x. There must be elements a, a′ in A above y, y′,
respectively. These have an upper bound a′′ in A, which by definition belongs to Bx.

(2) We have to show that every element c of K(D) belongs to B. Indeed, since

c =
⊔

↑Bc there must be an element b ∈ Bc above c. All of Bc is below c, so b is

actually equal to c.
(3) is immediate from the definition.

Corollary 2.2.5. Let D be a dcpo with basis B.

1. The largest basis for D is D itself.

2. B is the smallest basis for D if and only if B = K(D).

The ‘only if’ part of (2) is not a direct consequence of the preceding proposition.

We leave its proof as Exercise 2.3.9(26).

2.2.3 Continuous and algebraic domains

Definition 2.2.6. A dcpo is called continuous or a continuous domain if it has a basis.

It is called algebraic or an algebraic domain if it has a basis of compact elements. We

say D is ω-continuous if there exists a countable basis and we call it ω-algebraic if

K(D) is a countable basis.

Here we are using the word “domain” for the first time. Indeed, for us a structure

only qualifies as a domain if it embodies both a notion of convergence and a notion of

approximation.

In the light of Proposition 2.2.4 we can reformulate Definition 2.2.6 as follows,

avoiding existential quantification.

Proposition 2.2.7. 1. A dcpo D is continuous if and only if for all x ∈ D, x =
⊔

↑
↓↓x holds.

2. It is algebraic if and only if for all x ∈ D, x =
⊔

↑K(D)x holds.

The word ‘algebraic’ points to algebra. Let us make this connection precise.

Definition 2.2.8. A closure system L (cf. Section 2.1.2) is called inductive, if it is closed

under directed union.

Proposition 2.2.9. Every inductive closure system L is an algebraic lattice. The com-

pact elements are precisely the finitely generated hulls.

Proof. If A is the hull of a finite set M and if (Bi)i∈I is a directed family of hulls such

that
⊔

↑
i∈I Bi =

⋃

i∈I Bi ⊇ A, then M is already contained in some Bi. Hence hulls

of finite sets are compact elements in the complete lattice L. On the other hand, every

closed set is the directed union of finitely generated hulls, so these form a basis. By

Proposition 2.2.4(2), there cannot be any other compact elements.

19

Given a group, (or, more generally, an algebra in the sense of universal algebra),

then there are two canonical inductive closure systems associated with it, the lattice of

subgroups (subalgebras) and the lattice of normal subgroups (congruence relations).

Other standard examples of algebraic domains are:

• Any set with the discrete order is an algebraic domain. In semantics one usually

adds a bottom element (standing for divergence) resulting in so-called flat do-

mains. (The flat natural numbers are shown in Figure 2.) A basis must in either

case contain all elements.

• The set [X ⇀ Y] of partial functions between sets X and Y ordered by graph

inclusion. Compact elements are those functions which have a finite carrier. It is

naturally isomorphic to [X −→ Y⊥] and to [X⊥
⊥!
−→ Y⊥].

• Every finite poset.

Continuous domains:

• Every algebraic dcpo is also continuous. This follows directly from the defini-

tion. The order of approximation is characterized by x ≪ y if and only if there

exists a compact element c between x and y.

• The unit interval is a continuous lattice. It plays a central role in the theory of

continuous lattices, see [GHK+80], Chapter IV and in particular Theorem 2.19.

Another way of modelling the real numbers in domain theory is to take all closed

intervals of finite length and to order them by reversed inclusion. Single element

intervals are maximal in this domain and provide a faithful representation of

the real line. A countable basis is given by the set of intervals with rational

endpoints.

• The lattice of open subsets of a sober space X forms a continuous lattice if and

only ifX is locally compact. Compact Hausdorff spaces are a special case. Here

O ≪ U holds if and only if there exists a compact set C such that O ⊆ C ⊆
U . This meeting point of topology and domain theory is discussed in detail in

[Smy92, Vic89, Joh82, GHK+80] and will also be addressed in Chapter 7.

At this point it may be helpful to give an example of a non-continuous dcpo. The

easiest to explain is depicted in Figure 4 (labelled D). We show that the order of

approximation on D is empty. Pairs (ai, bj) and (bi, aj) cannot belong to the order

of approximation because they are not related in the order. Two points ai ⊑ aj in the

same ‘leg’ are still not approximating because (bn)n∈N is a directed set with supremum

above aj but containing no element above ai.
A striking example of a non-continuous complete lattice (due to Paul B. Levy) is

presented in Exercise 2.3.9(35).

A non-continuous distributive complete lattice is much harder to visualize by a line

diagram. From what we have said we know that the topology of a sober space which is

not locally compact is such a lattice. Exercise 2.3.9(21) discusses this in detail.

20

D : ❜a0

❜a1

❜a2

❜ ⊤

❜ b2
❜ b1

❜ b0

❵ ❵ ❵ ❵❵❵

✁
✁
✁
✁
✁✁ ❆❆

❆
❆
❆
❆ E : ❜

❜
❜

❜ ❜

❜
❜
❜

❵❵❵ ❵❵❵

Figure 4: A continuous (E) and a non-continuous (D) dcpo.

❝y❝x

❝
b

↓x \ ↓y
↓y

❅
❅

❅
❅

❅
❅

❅
❅❅ �

�
�

�
�

�
�

��

�
�
�
�
� ❅

❅❅
�
�
� ❅❅

Figure 5: Basis element b witnesses that x is not below y.

If D is pointed then the order of approximation is non-empty because a bottom

element approximates every other element.

A basis not only gives approximations for elements, it also approximates the order

relation:

Proposition 2.2.10. Let D be a continuous domain with basis B and let x and y be

elements of D. Then x ⊑ y, Bx ⊆ By and Bx ⊆ ↓y are all equivalent.

The form in which we will usually apply this proposition is: x 6⊑ y implies there

exists b ∈ Bx with b 6⊑ y. A picture of this situation is given in Figure 5.

In the light of Proposition 2.2.10 we can now also give a more intuitive rea-

son why the dcpo D in Figure 4 is not continuous. A natural candidate for a ba-

sis in D is the collection of all ai’s and bi’s (certainly, ⊤ doesn’t approximate any-

thing). Proposition 2.2.10 expresses the idea that in a continuous domain all informa-

tion about how elements are related is contained in the basis already. And the fact that
⊔

↑
n∈N

an =
⊔

↑
n∈N

bn = ⊤ holds in D is precisely what is not visible in the would-be

basis. Thus, the dcpo should look rather like E in the same figure (which indeed is an

algebraic domain).

Bases allow us to express the continuity of functions in a form reminiscent of the

ǫ-δ definition for real-valued functions.

21

Proposition 2.2.11. A map f between continuous domains D and E with bases

B and C, respectively, is continuous if and only if for each x ∈ D and e ∈ Cf(x)

there exists d ∈ Bx with f(↑d) ⊆ ↑e.

Proof. By continuity we have f(x) = f(
⊔

↑Bx) =
⊔

↑
d∈Bx

f(d). Since e approx-

imates f(x), there exists d ∈ Bx with f(d) ⊒ e. Monotonicity of f then implies

f(↑d) ⊆ ↑e.
For the converse we first show monotonicity. Suppose x ⊑ y holds but f(x) is not

below f(y). By Proposition 2.2.10 there is e ∈ Cf(x) \↓f(y) and from our assumption

we get d ∈ Bx such that f(↑d) ⊆ ↑e. Since y belongs to ↑d this is a contradiction. Now

let A be a directed subset of D with x as its join. Monotonicity implies
⊔

↑f(A) ⊑
f(
⊔

↑A) = f(x). If the converse relation does not hold then we can again choose

e ∈ Cf(x) with e 6⊑
⊔

↑f(A) and for some d ∈ Bx we have f(↑d) ⊆ ↑e. Since d

approximates x, some a ∈ A is above d and we get
⊔

↑f(A) ⊒ f(a) ⊒ f(d) ⊒ e
contradicting our choice of e.

Finally, we cite a result which reduces the calculation of least fixpoints to a basis.

The point here is that a continuous function need not preserve compactness nor the

order of approximation and so the sequence ⊥, f(⊥), f(f(⊥)), . . . need not consist of

basis elements.

Proposition 2.2.12. If D is a pointed ω-continuous domain with basis B and if

f : D → D is a continuous map, then there exists an ω-chain b0 ⊑ b1 ⊑ b2 ⊑ . . .
of basis elements such that the following conditions are satisfied:

1. b0 = ⊥,

2. ∀n ∈ N. bn+1 ⊑ f(bn),

3.
⊔

↑
n∈N

bn = fix(f) (=
⊔

↑
n∈N

fn(⊥)).

A proof may be found in [Abr90b].

2.2.4 Comments on possible variations

directed sets vs. ω-chains Let us start with the following observation.

Proposition 2.2.13. If a dcpo D has a countable basis then every directed subset of D
contains an ω-chain with the same supremum.

This raises the question whether one shouldn’t build up the whole theory using ω-

chains. The basic definitions then read: An ω-ccpo is a poset in which every ω-chain

has a supremum. A function is ω-continuous if it preserves joins of ω-chains. An

element x is ω-approximating y if
⊔

↑
n∈N

an ⊒ y implies an ⊒ x for some n ∈ N.

An ω-ccpo is continuous if there is a countable subset B such that every element is the

join of an ω-chain of elements from B ω-approximating it. Similarly for algebraicity.

(This is the approach adopted in [Plo81], for example.) The main point about these

definitions is the countability of the basis. It ensures that they are in complete harmony

with our set-up, because we can show:

22

Proposition 2.2.14. 1. Every continuous ω-ccpo is a continuous dcpo.

2. Every algebraic ω-ccpo is an algebraic dcpo.

3. Every ω-continuous map between continuous ω-ccpo’s is continuous.

Proof. (1) Let (bn)n∈N be an enumeration of a basis B for D. We first show that the

continuous ω-ccpo D is directed-complete, so let A be a directed subset of D. Let B′

be the set of basis elements which are below some element of A and, for simplicity,

assume that B = B′. We construct an ω-chain in A as follows: let a0 be an element

of A which is above b0. Then let bn1
be the first basis element not below a0. It must be

below some a′1 ∈ A and we set a1 to be an upper bound of a0 and a′1 in A. We proceed

by induction. It does not follow that the resulting chain (an)n∈N is cofinal in A but it is

true that its supremum is also the supremum of A, because both subsets of D dominate

the same set of basis elements.

This construction also shows that ω-approximation is the same as approximation in

a continuous ω-ccpo. The same basis B may then be used to show that D is a continu-

ous domain. (The directedness of the sets Bx follows as in Proposition 2.2.4(1).)

(2) follows from the proof of (1), so it remains to show (3). Monotonicity of the

function f is implied in the definition of ω-continuity. Therefore a directed set A ⊆ D
is mapped onto a directed set in E and also f(

⊔

↑A) ⊒
⊔

↑f(A) holds. Let (an)n∈N

be an ω-chain in A with
⊔

↑A =
⊔

↑
n∈N

an, as constructed in the proof of (1). Then

we have f(
⊔

↑A) = f(
⊔

↑
n∈N

an) =
⊔

↑
n∈N

f(an) ⊑
⊔

↑f(A).

If we drop the crucial assumption about the countability of the basis then the two

theories bifurcate and, in our opinion, the theory based on ω-chains becomes rather

bizarre. To give just one illustration, observe that simple objects, such as powersets,

may fail to be algebraic domains. There remains the question, however, whether in the

realm of a mathematical theory of computation one should start with ω-chains. Argu-

ments in favor of this approach point to pedagogy and foundations. The pedagogical

aspect is somewhat weakened by the fact that even in a continuous ω-ccpo the sets ↓↓x
happen to be directed. Glossing over this fact would tend to mislead the student. In

our eyes, the right middle ground for a course on domain theory, then, would be to

start with ω-chains and motivations from semantics and then at some point (probably

where the ideal completion of a poset is discussed) to switch to directed sets as the

more general concept. This suggestion is hardly original. It is in direct analogy with

the way students are introduced to topological concepts.

Turning to foundations, we feel that the necessity to choose chains where directed

subsets are naturally available (such as in function spaces) and thus to rely on the

Axiom of Choice without need, is a serious stain on this approach. To take foundational

questions seriously implies a much deeper re-working of the theory: some pointers to

the literature will be found in Section 8.

We do not feel the need to say much about the use of chains of arbitrary cardi-

nality. This adds nothing in strength (because of Proposition 2.1.15) but has all the

disadvantages pointed out for ω-chains already.

bases vs. intrinsic descriptions. The definition of a continuous domain given here

differs from, and is in fact more complicated than the standard one (which we pre-

23

sented as Proposition 2.2.7(1)). We nevertheless preferred this approach to the concept

of approximation for three reasons. Firstly, the standard definition does not allow the

restriction of the size of continuous domains. In this respect not the cardinality of a do-

main but the minimal cardinality of a basis is of interest. Secondly, we wanted to point

out the strong analogy between algebraic and continuous domains. And, indeed, the

proofs we have given so far for continuous domains specialize directly to the algebraic

case if one replaces ‘B’ by ‘K(D)’ throughout. Thus far at least, proofs for algebraic

domains alone would not be any shorter. And, thirdly, we wanted to stress the idea of

approximation by elements which are (for whatever reason) simpler than others. Such

a notion of simplicity does often exist for continuous domains (such as rational vs. real

numbers), even though its justification is not purely order-theoretical (see 8.1.1).

algebraic vs. continuous. This brings up the question of why one bothers with con-

tinuous domains at all. There are two important reasons but they depend on definitions

introduced later in this text. The first is the simplification of the mathematical theory

of domains stemming from the possibility of freely using retracts (see Theorem 3.1.4

below). The second is the observation that in algebraic domains two fundamental con-

cepts of domain theory essentially coincide, namely, that of a Scott-open set and that of

a compact saturated set. We find it pedagogically advantageous to be able to distinguish

between the two.

continuous dcpo vs. continuous domain. It is presently common practice to start

a paper in semantics or domain theory by defining the subclass of dcpo’s of interest

and then assigning the name ‘domain’ to these structures. We fully agree with this

custom of using ‘domain’ as a generic name. In this article, however, we will study

a full range of possible definitions, the most general of which is that of a dcpo. We

have nevertheless avoided calling these domains. For us, ‘domain’ refers to both ideas

essential to the theory, namely, the idea of convergence and the idea of approximation.

2.2.5 Useful properties

Let us start right away with the single most important feature of the order of approxi-

mation, the interpolation property.

Lemma 2.2.15. Let D be a continuous domain and let M ⊆ D be a finite set each

of whose elements approximates y. Then there exists y′ ∈ D such that M ≪ y′ ≪ y
holds. If B is a basis for D then y′ may be chosen from B. (We say, y′ interpolates

between M and y.)

Proof. Given M ≪ y in D we define the set

A = {a ∈ D | ∃a′ ∈ D : a≪ a′ ≪ y}.

It is clearly non-empty. It is directed because if a ≪ a′ ≪ y and b ≪ b′ ≪ y then by

the directedness of ↓↓y there is c′ ∈ D such that a′ ⊑ c′ ≪ y and b′ ⊑ c′ ≪ y and again

by the directedness of ↓↓c
′ there is c ∈ D with a ⊑ c≪ c′ and b ⊑ c≪ c′. We calculate

the supremum ofA: let y′ be any element approximating y. Since ↓↓y
′ ⊆ Awe have that

⊔

↑A ⊒
⊔

↑
↓↓y

′ = y′. This holds for all y′ ≪ y so by continuity y =
⊔

↑
↓↓y ⊑

⊔

↑A.

All elements of A are less than y, so in fact equality holds:
⊔

↑
↓↓y =

⊔

↑A. Remember

24

that we started out with a set M whose elements approximate y. By definition there is

am ∈ A with m ⊑ am for each m ∈ M . Let a be an upper bound of the am in A. By

definition, for some a′, a ≪ a′ ≪ y, and we can take a′ as an interpolating element

between M and y. The proof remains the same if we allow only basis elements to

enter A.

Corollary 2.2.16. LetD be a continuous domain with a basisB and letA be a directed

subset of D. If c is an element approximating
⊔

↑A then c already approximates some

a ∈ A. As a formula:

↓↓
⊔

↑A =
⋃

a∈A

↓↓a.

Intersecting with the basis on both sides gives

B⊔↑A
=

⋃

a∈A

Ba.

Next we will illustrate how in a domain we can restrict attention to principal ideals.

Proposition 2.2.17. 1. If D is a continuous domain and if x, y are elements in D,

then x approximates y if and only if for all directed sets A with
⊔

↑A = y there

is an a ∈ A such that a ⊒ x.

2. The order of approximation on a continuous domain is the union of the orders of

approximation on all principal ideals.

3. A dcpo is continuous if and only if each principal ideal is continuous.

4. For a continuous domain D we have K(D) =
⋃

x∈D K(↓x).

5. A dcpo is algebraic if and only if each principal ideal is algebraic.

Proposition 2.2.18. 1. In a continuous domain minimal upper bounds of finite sets

of compact elements are again compact.

2. In a complete lattice the sets ↓↓x are ⊔-sub-semilattices.

3. In a complete lattice the join of finitely many compact elements is again compact.

Corollary 2.2.19. A complete lattice is algebraic if and only if each element is the join

of compact elements.

The infimum of compact elements need not be compact again, even in an algebraic

lattice. An example is given in Figure 6.

2.2.6 Bases as objects

In Section 2.2.2 we have seen how we can use bases in order to express properties of

the ambient domain. We will now study the question of how far we can reduce domain

theory to a theory of (abstract) bases. The resulting techniques will prove useful in

25

❜
❜
❜
❜
❵❵❵

❜a ❜ b
❜

❅
❅
�
�❅

❅
�

�

Figure 6: The meet of the compact elements a and b is not compact.

later chapters but we hope that they will also deepen the reader’s understanding of the

nature of domains.

We start with the question of what additional information is necessary in order to

reconstruct a domain from one of its bases. Somewhat surprisingly, it is just the order

of approximation. Thus we define:

Definition 2.2.20. An (abstract) basis is given by a set B together with a transitive

relation ≺ on B, such that

(INT) M ≺ x =⇒ ∃y ∈ B. M ≺ y ≺ x

holds for all elements x and finite subsets M of B.

Abstract bases were introduced in [Smy77] where they are called “R-structures”.

Examples of abstract bases are concrete bases of continuous domains, of course, where

the relation ≺ is the restriction of the order of approximation. Axiom (INT) is satisfied

because of Lemma 2.2.15 and because we have required bases in domains to have

directed sets of approximants for each element.

Other examples are partially ordered sets, where (INT) is satisfied because of re-

flexivity. We will shortly identify posets as being exactly the bases of compact elements

of algebraic domains.

In what follows we will use the terminology developed at the beginning of this

chapter, even though the relation ≺ on an abstract basis need neither be reflexive nor

antisymmetric. This is convenient but in some instances looks more innocent than it

is. An ideal A in a basis, for example, has the property (following from directedness)

that for every x ∈ A there is another element y ∈ A with x ≺ y. In posets this doesn’t

mean anything but here it becomes an important feature. Sometimes this is stressed by

using the expression ‘A is a round ideal’. Note that a set of the form ↓x is always an

ideal because of (INT) but that it need not contain x itself. We will refrain from calling

↓x ‘principal’ in these circumstances.

26

Definition 2.2.21. For a basis 〈B,≺〉 let Idl(B) be the set of all ideals ordered by

inclusion. It is called the ideal completion of B. Furthermore, let i : B → Idl(B)
denote the function which maps x ∈ B to ↓x. If we want to stress the relation with

which B is equipped then we write Idl(B,≺) for the ideal completion.

Proposition 2.2.22. Let 〈B,≺〉 be an abstract basis.

1. The ideal completion of B is a dcpo.

2. A≪ A′ holds in Idl(B) if and only if there are x ≺ y inB such thatA ⊆ i(x) ⊆
i(y) ⊆ A′ if and only if there is x ∈ A′ with A ⊆ i(x).

3. Idl(B) is a continuous domain and a basis of Idl(B) is given by i(B).

4. If ≺ is reflexive then Idl(B) is algebraic.

5. If 〈B,≺〉 is a poset then B, K(Idl(B)), and i(B) are all isomorphic.

Proof. (1) holds because clearly the directed union of ideals is an ideal. Roundness

implies that every A ∈ Idl(B) can be written as
⋃

x∈A ↓x. This union is directed

because A is directed. This proves (2) and also (3). The fourth claim follows from the

characterization of the order of approximation. The last clause holds because there is

only one basis of compact elements for an algebraic domain.

Defining the product of two abstract bases as one does for partially ordered sets,

we have the following:

Proposition 2.2.23. Idl(B ×B′) ∼= Idl(B)× Idl(B′)

Our ‘completion’ has a weak universal property:

Proposition 2.2.24. Let 〈B,≺〉 be an abstract basis and let D be a dcpo. For every

monotone function f : B → D there is a largest continuous function f̂ : Idl(B) → D

such that f̂ ◦ i is below f . It is given by f̂(A) =
⊔

↑f(A).

B

❅
❅
❅
❅

f

❘
Idl(B)

i

❄ f̂ ✲ D

The assignment f 7→ f̂ is a Scott-continuous map from [B
m
−→ D] to [Idl(B) −→ D].

If the relation ≺ is reflexive then f̂ ◦ i equals f .

Proof. Let us first check continuity of f̂ . To this end let (Ai)i∈I be a di-

rected collection of ideals. Using general associativity (Proposition 2.1.4(3))

we can calculate: f̂(
⊔

↑
i∈I Ai) = f̂(

⋃

i∈I Ai) =
⊔

↑{f(x) | x ∈
⋃

i∈I Ai} =
⊔

↑
i∈I

⊔

↑{f(x) | x ∈ Ai} =
⊔

↑
i∈I f̂(Ai).

27

Since f is assumed to be monotone, f(x) is an upper bound for f(↓x). This proves

that f̂ ◦ i is below f . If, on the other hand, g : Idl(B) → D is another continuous

function with this property then we have g(A) = g(
⋃

x∈A ↓x) =
⊔

↑
x∈A g(↓x) =

⊔

↑
x∈A g(i(x)) ⊑

⊔

↑
x∈A f(x) = f̂(A).

The claim about the continuity of the assignment f 7→ f̂ is shown by the usual

switch of directed suprema.

If ≺ is a preorder then we can show that f̂ ◦i = f : f̂(i(x)) = f̂(↓x) =
⊔

↑f(↓x) =
f(x).

A particular instance of this proposition is the case that B and B′ are two abstract

bases and f : B → B′ is monotone. By the extension of f to Idl(B) we mean the map

î′ ◦ f : Idl(B) → Idl(B′). It maps an ideal A ⊆ B to the ideal ↓f(A).

Proposition 2.2.25. Let D be a continuous domain with basis B. Viewing 〈B,≪〉 as

an abstract basis, we have the following:

1. Idl(B) is isomorphic to D. The isomorphism σ : Idl(B) → D is the extension ê
of the embedding of B into D. Its inverse β maps elements x ∈ D to Bx.

2. For every dcpo E and continuous function f : D → E we have f = ĝ ◦ β where

g is the restriction of f to B.

Proof. In a continuous domain we have x =
⊔

↑Bx for all elements, so σ ◦ β = idD.

Composing the maps the other way round we need to see that every c ∈ B which ap-

proximates
⊔

↑A, whereA is an ideal in 〈B,≪〉, actually belongs toA. We interpolate:

c≪ d≪
⊔

↑A and using the defining property of the order of approximation, we find

a ∈ A above d. Therefore c approximates a and belongs to A.

The calculation for (2) is straightforward: f(x) = f(
⊔

↑Bx) =
⊔

↑f(Bx) = ĝ(Bx) = ĝ(β(x)).

Corollary 2.2.26. A continuous function from a continuous domain D to a dcpo E is

completely determined by its behavior on a basis of D.

As we now know how to reconstruct a continuous domain from its basis and how to

recover a continuous function from its restriction to the basis, we may wonder whether

it is possible to work with bases alone. There is one further problem to overcome,

namely, the fact that continuous functions do not preserve the order of approximation.

The only way out is to switch from functions to relations, where we relate a basis

element c to all basis elements approximating f(c). This can be axiomatized as follows.

Definition 2.2.27. A relation R between abstract bases B and C is called approx-

imable if the following conditions are satisfied:

1. ∀x ∈ B ∀y, y′ ∈ C. (xRy ≻ y′ =⇒ xRy′);

2. ∀x ∈ B ∀M ⊆fin C. (∀y ∈M. xRy =⇒ (∃z ∈ C. xRz and z ≻M));

3. ∀x, x′ ∈ B ∀y ∈ C. (x′ ≻ xRy =⇒ x′Ry);

4. ∀x ∈ B ∀y ∈ C. (xRy =⇒ (∃z ∈ B. x ≻ zRy)).

28

The following is then proved without difficulties.

Theorem 2.2.28. The category of abstract bases and approximable relations is equiv-

alent to CONT, the category of continuous dcpo’s and continuous maps.

The formulations we have chosen in this section allow us immediately to read off

the corresponding results in the special case of algebraic domains. In particular:

Theorem 2.2.29. The category of preorders and approximable relations is equivalent

to ALG, the category of algebraic dcpo’s and continuous maps.

2.3 Topology

By a topology on a space X we understand a system of subsets of X (called the open

sets), which is closed under finite intersections and infinite unions. It is an amazing

fact that by a suitable choice of a topology we can encode all information about con-

vergence, approximation, continuity of functions, and even points ofX themselves. To

a student of Mathematics this appears to be an immense abstraction from the intuitive

beginnings of analysis. In domain theory we are in the lucky situation that we can tie

up open sets with the concrete idea of observable properties. This has been done in

detail earlier in this handbook, [Smy92], and we may therefore proceed swiftly to the

mathematical side of the subject.

2.3.1 The Scott-topology on a dcpo

Definition 2.3.1. Let D be a dcpo. A subset A is called (Scott-)closed if it is a lower

set and is closed under suprema of directed subsets. Complements of closed sets are

called (Scott-)open; they are the elements of σD, the Scott-topology on D.

We shall use the notation Cl(A) for the smallest closed set containing A. Similarly,

Int(A) will stand for the open kernel of A.

A Scott-open setO is necessarily an upper set. By contraposition it is characterized

by the property that every directed set whose supremum lies in O has a non-empty

intersection with O.

Basic examples of closed sets are principal ideals. This knowledge is enough to

show the following:

Proposition 2.3.2. Let D be a dcpo.

1. For elements x, y ∈ D the following are equivalent:

(a) x ⊑ y,

(b) Every Scott-open set which contains x also contains y,

(c) x ∈ Cl({y}).

2. The Scott-topology satisfies the T0 separation axiom.

3. 〈D,σD〉 is a Hausdorff (= T2) topological space if and only if the order on D
is trivial.

29

Thus we can reconstruct the order between elements of a dcpo from the Scott-

topology. The same is true for limits of directed sets.

Proposition 2.3.3. Let A be a directed set in a dcpo D. Then x ∈ D is the supremum

of A if and only if it is an upper bound for A and every Scott-neighborhood of x
contains an element of A.

Proof. Indeed, the closed set ↓
⊔

↑A separates the supremum from all other upper

bounds of A.

Proposition 2.3.4. For dcpo’s D and E, a function f from D to E is Scott-continuous

if and only if it is topologically continuous with respect to the Scott-topologies on D
and E.

Proof. Let f be a continuous function from D to E and let O be an open subset of E.

It is clear that f−1(O) is an upper set because continuous functions are monotone. If

f maps the element x =
⊔

↑
i∈I xi ∈ D into O then we have f(x) = f(

⊔

↑
i∈I xi) =

⊔

↑
i∈I f(xi) ∈ O and by definition there must be some xi which is mapped into O.

Hence f−1(O) is open in D.

For the converse assume that f is topologically continuous. We first show that f
must be monotone: Let x ⊑ x′ be elements of D. The inverse image of the Scott-

closed set ↓f(x′) contains x′. Hence it also contains x. Now let A ⊆ D be directed.

Look at the inverse image of the Scott-closed set ↓(
⊔

↑
a∈A f(a)). It contains A and is

Scott-closed, too. So it must also contain
⊔

↑A. Since by monotonicity f(
⊔

↑A) is an

upper bound of f(A), it follows that f(
⊔

↑A) is the supremum of f(A).

So much for the theme of convergence. Let us now proceed to see in how far

approximation is reflected in the Scott-topology.

2.3.2 The Scott-topology on domains

In this subsection we work with the second-most primitive form of open sets, namely

those which can be written as ↑↑x. We start by characterizing the order of approxima-

tion.

Proposition 2.3.5. Let D be a continuous domain. Then the following are equivalent

for all pairs x, y ∈ D:

1. x≪ y,

2. y ∈ Int(↑x),

3. y ∈ ↑↑x.

Comment: Of course, (1) is equivalent to (3) in all dcpos.

Proposition 2.3.6. Let D be a continuous domain with basis B. Then openness of a

subset O of D can be characterized in the following two ways:

1. O =
⋃

x∈O
↑↑x,

30

2. O =
⋃

x∈O∩B
↑↑x.

This can be read as saying that every open set is supported by its members from the

basis. We may therefore ask how the Scott-topology is derived from an abstract basis.

Proposition 2.3.7. Let (B,≺) be an abstract basis and letM be any subset ofB. Then

the set {A ∈ Idl(B) |M ∩A 6= ∅} is Scott-open in Idl(B) and all open sets on Idl(B)
are of this form.

This, finally, nicely connects the theory up with the idea of an observable property.

If we assume that the elements of an abstract basis are finitely describable and finitely

recognisable (and we strongly approve of this intuition) then it is clear how to observe

a property in the completion: we have to wait until we see an element from a given set

of basis elements.

We also have the following sharpening of Proposition 2.3.6:

Lemma 2.3.8. Every Scott-open set in a continuous domain is a union of Scott-open

filters.

Proof. Let x be an element in the open set O. By Proposition 2.3.6 there is an ele-

ment y ∈ O which approximates x. We repeatedly interpolate between y and x. This

gives us a sequence y ≪ . . . ≪ yn ≪ . . . ≪ y1 ≪ x. The union of all ↑yn is a

Scott-open filter containing x and contained in O.

In this subsection we have laid the groundwork for a formulation of Domain The-

ory purely in terms of the lattice of Scott-open sets. Since we construe open sets as

properties we have also brought logic into the picture. This relationship will be looked

at more closely in Chapter 7. There and in Section 4.2.3 we will also exhibit more

properties of the Scott-topology on domains.

Exercises 2.3.9. 1. Formalize the passage from preorders to their quotient posets.

2. Draw line diagrams of the powersets of a one, two, three, and four element set.

3. Show that a poset which has all suprema also has all infima, and vice versa.

4. Refine Proposition 2.1.7 by showing that the fixpoints of a monotone function on

a complete lattice form a complete lattice. Is it a sublattice?

5. Show that finite directed sets have a largest element. Characterize the class of

posets in which this is true for every directed set.

6. Show that the directed set of finite subsets of real numbers does not contain a

cofinal chain.

7. Which of the following are dcpo’s: R, [0, 1] (unit interval), Q, Z− (negative

integers)?

8. Let f be a monotone map between complete lattices L and M and let A be a

subset of L. Prove: f(
⊔

A) ⊒
⊔

f(A).

31

9. Show that the category of posets and monotone functions forms a cartesian

closed category.

10. Draw the line diagram for the function space of the flat booleans (see Figure 1).

11. Show that an ideal in a (binary) product of posets can always be seen as the

product of two ideals from the individual posets.

12. Show that a map f between two dcpo’s D and E is continuous if and only if for

all directed sets A in D, f(
⊔

↑A) =
⊔

f(A) holds (i.e., monotonicity does not

need to be required explicitly).

13. Give an example of a monotone map f on a pointed dcpo D for which
⊔

↑
n∈N

fn(⊥) is not a fixpoint. (Some fixpoint must exist by Proposition 2.1.16.)

14. Use fixpoint induction to prove the following. Let f, g : D → D be continuous

functions on a pointed dcpo D with f(⊥) = g(⊥), and f ◦ g = g ◦ f . Then

fix(f) = fix(g).

15. (Dinaturality of fixpoints) Let D,E be pointed dcpo’s and let f : D →
E, g : E → D be continuous functions. Prove

fix(g ◦ f) = g(fix(f ◦ g)) .

16. Show that Lemma 2.1.21 uniquely characterizes fix among all fixpoint operators.

17. Prove: Given pointed dcpo’s D and E and a continuous function f : D × E →
E there is a continuous function Y (f) : D → E such that Y (f) = f ◦
〈idD, Y (f)〉 holds. (This is the general definition of a category having fixpoints.)

How does Theorem 2.1.19 follow from this?

18. Show that each version of the natural numbers as shown in Figure 2 is an exam-

ple of a countable dcpo whose function space is uncountable.

19. Characterize the order of approximation on the unit interval. What are the com-

pact elements?

20. Show that in finite posets every element is compact.

21. Let L be the lattice of open sets of Q, where Q is equipped with the ordinary

metric topology. Show that no two non-empty open sets approximate each other.

Conclude that L is not continuous.

22. Prove Proposition 2.2.10.

23. Extend Proposition 2.2.10 in the following way: For every finite subset M of

a continuous dcpo D with basis B there exists M ′ ⊆ B, such that x 7→ x′ is

an order-isomorphism between M and M ′ and such that for all x ∈ M , the

element x′ belongs to Bx.

24. Prove Proposition 2.2.17.

32

25. Show that elements of an abstract basis, which approximate no other element,

may be deleted without changing the ideal completion.

26. Show that if x is a non-compact element of a basis B for a continuous domain D
then B \ {x} is still a basis. (Hint: Use the interpolation property.)

27. The preceding exercise shows that different bases can generate the same do-

main. Show that for a fixed basis different orders of approximation may also

yield the same domain. Show that this will definitely be the case if the two orders

≺1 and ≺2 satisfy the equations ≺1◦≺2 =≺1 and ≺2◦≺1 =≺2.

28. Consider Proposition 2.2.22(2). Give an example of an abstract basis B which

shows that i(x) ≪ i(y) in Idl(B) does not entail x ≺ y.

29. What is the ideal completion of 〈Q, <〉?

30. Let ≺ be a relation on a set B such that ≺◦≺ = ≺ holds. Give an example

showing that Axiom (INT) (Definition 2.2.20) need not be satisfied. Nevertheless,

Idl(B,≺) is a continuous domain. What is the advantage of our axiomatization

over this simpler concept?

31. Spell out the proof of Theorem 2.2.28.

32. Prove that in a dcpo every upper set is the intersection of its Scott-

neighborhoods.

33. Show that in order to construct the Scott-closure of a lower setA of a continuous

domain it is sufficient to add all suprema of directed subsets to ↓A. Give an

example of a non-continuous dcpo where this fails.

34. Given a subsetX in a dcpoD let X̄ be the smallest superset ofX which is closed

against the formation of suprema of directed subsets. Show that the cardinality

of X̄ can be no greater than 2|X|. (Hint: Construct a directed suprema closed

superset of X by adding all existing suprema to X .)

35. [Suggested by Paul B. Levy] Consider the set Equop of equivalence relations

on N, ordered by reverse inclusion with smallest element ⊥ = N×N and largest

element the equality on N, denoted by ∆.

(a) Show that Equop is a complete lattice.

(b) Show that R≪ S in Equop, iff R = ⊥.

(c) Conclude that Equop is not a continuous domain.

(d) Prove that the map card : Equop → ω, which assigns to an equivalence

relation its number of equivalence classes, is Scott-continuous.

(e) Show that every countable ordinal can be order-embedded into Equop.

33

3 Domains collectively

3.1 Comparing domains

3.1.1 Retractions

A reader with some background in universal algebra may already have missed a discus-

sion of sub-dcpo’s and quotient-dcpo’s. The reason for this omission is quite simple:

there is no fully satisfactory notion of sub-object or quotient in domain theory based

on general Scott-continuous functions. And this is because the formation of directed

suprema is a partial operation of unbounded arity. We therefore cannot hope to be able

to employ the tools of universal algebra. But if we combine the ideas of sub-object and

quotient then the picture looks quite nice.

Definition 3.1.1. Let P and Q be posets. A pair s : P → Q, r : Q → P of monotone

functions is called a monotone section retraction pair if r ◦ s is the identity on P . In

this situation we will call P a monotone retract of Q.

If P and Q are dcpo’s and if both functions are continuous then we speak of a

continuous section retraction pair.

We will omit the qualifying adjective ‘monotone’, respectively ‘continuous’, if the

properties of the functions are clear from the context. We will also use s-r-pair as a

shorthand.

One sees immediately that in an s-r-pair the retraction is surjective and the section

is injective, so our intuition about P being both a sub-object and a quotient of Q is

justified. In such a situation P inherits many properties from Q:

Proposition 3.1.2. Let P and Q be posets and let s : P → Q, r : Q → P be a mono-

tone section retraction pair.

1. Let A be any subset of P . If s(A) has a supremum in Q then A has a supremum

in P . It is given by r(
⊔

s(A)). Similarly for the infimum.

2. IfQ is a (pointed) dcpo, a semilattice, a lattice or a complete lattice then so is P .

Proof. Because of r ◦ s = idP and the monotonicity of r it is clear that r(
⊔

s(A))
is an upper bound for A. Let x be another such. Then by the monotonicity of s we

have that s(x) is an upper bound of s(A) and hence it is above
⊔

s(A). So we get

x = r(s(x)) ⊒ r(
⊔

s(A)).
The property of being a (pointed) dcpo, semilattice, etc., is defined through the ex-

istence of suprema or infima of certain subsets. The shape of these subsets is preserved

by monotone functions and so (2) follows from (1).

Let us now turn to continuous section retraction pairs.

Lemma 3.1.3. Let (s, r) be a continuous section retraction pair between dcpo’s

D and E and let B be a basis for E. Then r(B) is a basis for D.

34

Proof. Let c ∈ B be an approximant to s(x) for x ∈ D. We show that r(c) approxi-

mates x. To this end let A be a directed subset of D with
⊔

↑A ⊒ x. By the continuity

of s we have
⊔

↑s(A) = s(
⊔

↑A) ⊒ s(x) and so for some a ∈ A, s(a) ⊒ c must hold.

This implies a = r(s(a)) ⊒ r(c). The continuity of r gives us that x is the supremum

of r(Bs(x)).

Theorem 3.1.4. A retract of a continuous domain via a continuous s-r-pair is contin-

uous.

The analogous statement for algebraic domains does not hold in general. Instead

of constructing a particular counterexample, we use our knowledge about the ideal

completion to get a general, positive result which implies this negative one.

Theorem 3.1.5. Every (ω-) continuous domain is the retract of an (ω-) algebraic do-

main via a continuous s-r-pair.

In more detail, we have:

Proposition 3.1.6. Let D be a continuous domain with basis B. Then the maps

s : D → Idl(B,⊑), x 7→ Bx and r : Idl(B,⊑) → D,A 7→
⊔

↑A constitute a con-

tinuous section retraction pair between D and Idl(B,⊑).

Proof. The continuity of r follows from general associativity, Proposition 2.1.4, and

the fact that directed suprema in Idl(B) are directed unions. For the continuity of s we

use the interpolation property in the form of Proposition 2.2.16(2).

3.1.2 Idempotents

Often the section part of an s-r-pair is really a subset inclusion. In this case we can hide

it and work with the map s ◦ r on E alone. It is idempotent, because (s ◦ r) ◦ (s ◦ r) =
s ◦ (r ◦ s) ◦ r = s ◦ r.

Proposition 3.1.7. 1. The image of a continuous idempotent map f on a dcpo D is

a dcpo. The suprema of directed subsets of im(f), calculated in im(f), coincide

with those calculated in D. The inclusion im(f) → D is Scott-continuous.

2. The set of all continuous idempotent functions on a dcpo is again a dcpo.

Proof. (1) The first part follows from Proposition 3.1.2 because the inclusion is surely

monotone. For the second part let A be a directed set contained in im(f). We need to

see that
⊔

↑A belongs to im(f) again. This holds because f is continuous:
⊔

↑A =
⊔

↑f(A) = f(
⊔

↑A).
(2) Let (fi)i∈I be a directed family of continuous idempotents. For any x ∈ D we

35

can calculate

(
⊔

↑

i∈I

fi) ◦ (
⊔

↑

j∈I

fj)(x) =
⊔

↑

i∈I

fi(
⊔

↑

j∈I

fj(x))

=
⊔

↑

i∈I

⊔

↑

j∈I

fi(fj(x))

=
⊔

↑

i∈I

fi(fi(x))

=
⊔

↑

i∈I

fi(x).

Hence the supremum of continuous idempotents is again an idempotent function. We

have proved in Proposition 2.1.18 that it is also continuous.

If f is a continuous idempotent map on a continuous domain D then we know

that its image is again continuous. But it is not true that the order of approximation

on im(f) is the restriction of the order of approximation on D. For example, every

constant map is continuous and idempotent. Its image is an algebraic domain with one

element, which is therefore compact. But surely not every element of a continuous

domain is compact. However, we can say something nice about the Scott-topology on

the image:

Proposition 3.1.8. If f is a continuous idempotent function on a dcpo D then the

Scott-topology on im(f) is the restriction of the Scott-topology on D to im(f).

Proof. This follows immediately because a continuous idempotent function f gives

rise to a continuous s-r-pair between im(f) and D.

Useful examples of idempotent self-maps are retractions retx onto principal ideals.

They are given by

retx(y) =

{

y, if y ⊑ x;
x, otherwise.

Their continuity follows from the fact that ↓x is always Scott-closed. Dually, we can

define a retraction onto a principal filter ↑c. It is Scott-continuous if (but not only if)

its generator c is compact.

3.1.3 Adjunctions

An easy way to avoid writing this subsection would be to refer to category theory and to

translate the general theory of adjoint functors into the poset setting. However, we feel

that the right way to get used to the idea of adjointness is to start out with a relatively

simple situation such as is presented by domain theory. (In fact, we will use adjoint

functors later on, but really in a descriptive fashion only.)

Let us start with the example of a surjective map f from a poset Q onto a poset P .

It is natural to ask whether there is a one-sided inverse e : P → Q for f , i.e. a map

such that f ◦ e = idP holds. Figure 7 illustrates this situation. Such a map must

36

❝a

❝b

❝c
✟✟✟

✟✟✟
f−1(a)

f−1(b)

f−1(c)f

?

✛

✲

✛

✚

✘

✙

✛

✚

✘

✙
Figure 7: The right inverse problem for a surjective function

pick out a representative from f−1(x) for each x ∈ P . Set-theoretically this can be

done, but the point here is that we want e to be monotone. If we succeed then e and f
form a (monotone) section retraction pair. Even nicer would it be if we could pick

out a canonical representative from f−1(x), which in the realm of order theory means

that we want f−1(x) to have a least (or largest) element. If this is the case then how

can we ensure that the assignment e : x 7→ min(f−1(x)) is monotone? The solution

is suggested by the observation that if e is monotone then e(x) is not only the least

element of f−1(x) but also of f−1(↑x). This condition is also sufficient. The switch

from f−1(x) to f−1(↑x) (and this is a trick to remember) may allow us to construct

a partial right inverse even if f is not surjective. Thus we arrive at a first, tentative

definition of an adjunction.

Definition 3.1.9. (preliminary) Let P and Q be posets and let l : P → Q and u : Q→
P be monotone functions. We say that (l, u) is an adjunction between P and Q if for

every x ∈ P we have that l(x) is the least element of u−1(↑x).

This definition is simple and easy to motivate. But it brings out just one aspect of

adjoint pairs, namely, that l is uniquely determined by u. There is much more:

Proposition 3.1.10. Let P and Q be posets and l : P → Q and u : Q → P be mono-

tone functions. Then the following are equivalent:

1. ∀x ∈ P. l(x) = min(u−1(↑x)),

2. ∀y ∈ Q. u(y) = max(l−1(↓y)),

3. l ◦ u ⊑ idQ and u ◦ l ⊒ idP ,

4. ∀x ∈ P ∀y ∈ Q. (x ⊑ u(y) ⇔ l(x) ⊑ y).

(For (4)=⇒(1) the monotonicity of u and l is not needed.)

Proof. (1)=⇒(2) Pick an element y ∈ Q. Then because u(y) ⊑ u(y) we have from (1)

that l(u(y)) ⊑ y holds. So u(y) belongs to l−1(↓y). Now let x′ be any element of

l−1(↓y), or, equivalently, l(x′) ⊑ y. Using (1) again, we see that this can only happen

if u(y) ⊒ x′ holds. So u(y) is indeed the largest element of l−1(↓y). The converse is

proved analogously, of course.

(1) and (2) together immediately give both (3) and (4).

From (3) we get (4) by applying the monotone map l to the inequality x ⊑ u(y)
and using l ◦ u ⊑ idQ.

37

Assuming (4) we see immediately that l(x) is a lower bound for u−1(↑x). But

because l(x) ⊑ l(x) and hence x ⊑ u(l(x)) we have that l(x) also belongs to u−1(↑x).
We get the monotonicity of l as follows: If x ⊑ x′ holds in P then because l(x′) ⊑
l(x′) we have x′ ⊑ u(l(x′)) and by transitivity x ⊑ u(l(x′)). Using (4) again, we get

l(x) ⊑ l(x′).

We conclude that despite the lopsided definition, the situation described by an ad-

junction is completely symmetric. And indeed, adjunctions are usually introduced us-

ing either (3) or (4).

Definition 3.1.11. (official) Let P and Q be posets and let l : P → Q and u : Q → P
be functions. We say that (l, u) is an adjunction between P and Q if for all x ∈ P and

y ∈ Q we have x ⊑ u(y) ⇔ l(x) ⊑ y. We call l the lower and u the upper adjoint and

write l : P ⇌ Q : u.

Proposition 3.1.12. Let l : P ⇌ Q : u be an adjunction between posets.

1. u ◦ l ◦ u = u and l ◦ u ◦ l = l,

2. The image of u and the image of l are order-isomorphic. The isomorphisms are

given by the restrictions of u and l to im(l) and im(u), respectively.

3. u is surjective ⇔ u ◦ l = idP ⇔ l is injective,

4. l is surjective ⇔ l ◦ u = idQ ⇔ u is injective,

5. l preserves existing suprema, u preserves existing infima.

Proof. (1) We use Proposition 3.1.10(3) twice: u = idP ◦u ⊑ (u◦ l)◦u = u◦(l◦u) ⊑
u ◦ idQ = u.

(2) The equations from (1) say precisely that on the images of u and l, u ◦ l and

l ◦ u, respectively, act like identity functions.

(3) If u is surjective then we can cancel u on the right in the equation u ◦ l ◦ u = u
and get u ◦ l = idP . From this it follows that l must be injective.

(5) Let x =
⊔

A for A ⊆ P . By monotonicity, l(x) ⊒ l(a) for each a ∈ A.

Conversely, let y be any upper bound of l(A). Then u(y) is an upper bound for each

u(l(a)) which in turn is above a. So u(y) ⊒
⊔

A = x holds and this is equivalent to

y ⊒ l(x).

The last property in the preceding proposition may be used to define an adjunc-

tion in yet another way, the only prerequisite being that there are enough sets with an

infimum (or supremum). This is the Adjoint Functor Theorem for posets.

Proposition 3.1.13. Let f : L→ P be a monotone function from a complete lattice to

a poset. Then the following are equivalent:

1. f preserves all infima,

2. f has a lower adjoint.

And similarly: f preserves all suprema if and only if f has an upper adjoint.

38

Proof. We already know how to define a candidate for a lower adjoint g; we try g(x) =d
f−1(↑x). All that remains, is to show that g(x) belongs to f−1(↑x). This follows

because f preserves meets: f(g(x)) = f(
d
f−1(↑x)) =

d
f(f−1(↑x)) ⊒

d
↑x =

x.

This proposition gives us a way of recognizing an adjoint situation in cases where

only one function is explicitly given. It is then useful to have a notation for the missing

mapping. We write f∗ for the upper and f∗ for the lower adjoint of f .

Now it is high time to come back to domains and see what all this means in our

setting.

Proposition 3.1.14. Let l : D ⇌ E : u be an adjunction between dcpo’s.

1. l is Scott-continuous.

2. If u is Scott-continuous then l preserves the order of approximation.

3. If D is continuous then the converse of (2) is also true.

Proof. Continuity of the lower adjoint follows from Proposition 3.1.12(5). So let x≪
y be elements in D and let A be a directed subset of E such that l(y) ⊑

⊔

↑A holds.

This implies y ⊑ u(
⊔

↑A) and from the continuity of u we deduce y ⊑
⊔

↑u(A).
Hence some u(a) is above x which, going back to E, means l(x) ⊑ a.

(3) For the converse let A be any directed subset of E. Monotonicity of u yields
⊔

↑u(A) ⊑ u(
⊔

↑A). In order to show that the other inequality also holds, we prove

that
⊔

↑u(A) is above every approximant to u(
⊔

↑A). Indeed, if x≪ u(
⊔

↑A) we have

l(x) ≪ l(u(
⊔

↑A)) ⊑
⊔

↑A by assumption. So some a is above l(x) and for this a we

have x ⊑ u(a) ⊑
⊔

↑u(A).

3.1.4 Projections and sub-domains

Let us now combine the ideas of Section 3.1.1 and 3.1.3.

Definition 3.1.15. Let D and E be dcpo’s and let e : D → E and p : E → D be

continuous functions. We say that (e, p) is a continuous embedding projection pair (or

e-p-pair) if p ◦ e = idD and e ◦ p ⊑ idE .

We note that the section retraction pair between a continuous domain and its ideal

completion as constructed in Section 3.1.1 is really an embedding projection pair.

From the general theory of adjunctions and retractions we already know quite a

bit about e-p-pairs. The embedding is injective, p is surjective, e preserves existing

suprema and the order of approximation, p preserves existing infima, D is continuous

if E is continuous, and, finally, embeddings and projections uniquely determine each

other. Because of this last property the term ‘embedding’ has a well-defined meaning;

it is an injective function which has a Scott-continuous upper adjoint.

An injective lower adjoint also reflects the order of approximation:

Proposition 3.1.16. Let e : D ⇌ E : p be an e-p-pair between dcpo’s and let x and y
be elements of D. Then e(x) ≪ e(y) holds in E if and only if x approximates y in D.

39

Let us also look at the associated idempotent e◦p onE. As it is below the identity, it

makes good sense to call such a function a kernel operator, but often such maps are just

called projections. We denote the set of kernel operators on a dcpo D by [D
↓

−→ D].
It is important to note that while a kernel operator preserves infima as a map from D to

its image, it does not have any preservation properties as a map from D to D besides

Scott-continuity. What we can say is summarized in the following proposition.

Proposition 3.1.17. Let D be a dcpo.

1. [D
↓

−→ D] is a dcpo.

2. If p is a kernel operator on D then for all x ∈ D we have that p(x) = max{y ∈
im(p) | y ⊑ x}.

3. The image of a kernel operator is closed under existing suprema.

4. ≪im(p)= (≪D) ∩ (im(p)× im(p)).

5. For kernel operators p, p′ on D we have p ⊑ p′ if and only if im(p) ⊆ im(p′).

Proof. (1) is proved as Proposition 3.1.7 and (2) follows because p together with the

inclusion of im(p) into D form an adjunction. This also shows (4). Finally, (3) and (5)

are direct consequences of (2).

In the introduction we explained the idea that the order on a semantic domain

models the relation of some elements being better than others, where—at least in

semantics—‘better’ may be replaced more precisely by ‘better termination’. Thus we

view elements at the bottom of a domain as being less desirable than those higher up;

they are ‘proto-elements’ from which fully developed elements evolve as we go up in

the order. Now, the embedding part of an e-p-pair e : D ⇌ E : p places D at the bot-

tom ofE. Following the above line of thought, we may think ofD as being a collection

of proto-elements from which the elements of E evolve. Because there is the projec-

tion part as well, every element of E exists in some primitive form in D already. Also,

D contains some information about the order and the order of approximation on E.

We may therefore think of D as a preliminary version of E, as an approximation to E
on the domain level. This thought is made fruitful in Sections 4.2 and 5. Although the

word does not convey the whole fabric of ideas, we name D a sub-domain of E, just

in case there is an e-p-pair e : D ⇌ E : p.

3.1.5 Closures and quotient domains

The sub-domain relation is preeminent in domain theory but, of course, we can also

combine retractions and adjunctions the other way around. Thus we arrive at contin-

uous insertion closure pairs (i-c-pairs). Because adjunctions are not symmetric as far

as the order of approximation is concerned, Proposition 3.1.14, the situation is not just

the order dual of that of the previous subsection. We know that the insertion preserves

existing infima and so on, but in addition we now have that the surjective part preserves

the order of approximation and therefore, D is algebraic if E is.

40

The associated idempotent is called a closure operator. For closure operators the

same caveat applies as for kernel operators; they need not preserve suprema. Worse,

such functions do no longer automatically have a Scott-continuous (upper) adjoint.

This is the price we have to pay for the algebraicity of the image. Let us formulate this

precisely.

Proposition 3.1.18. Let D be an algebraic domain and let c : D → D be a monotone

idempotent function above idD. Then im(c) is again an algebraic domain if and only if

it is closed under directed suprema.

The reader will no doubt recognize this statement as being a reformulation and

generalization of our example of inductive closure systems from Chapter 2, Proposi-

tion 2.2.9. It is only consequent to call D a quotient domain of the continuous domain

E if there exists an i-c-pair e : D ⇋ E : c.

3.2 Finitary constructions

In this section we will present a few basic ways of putting domains together so as to

build up complicated structures from simple ones. There are three aspects of these

constructions which we are interested in. The first one is simply the order-theoretic

definition and the proof that we stay within dcpo’s and Scott-continuous functions.

The second one is the question how the construction can be described in terms of bases

and whether the principle of approximation can be retained. The third one, finally, is

the question of what universal property the construction has. This is the categorical

viewpoint. Since this Handbook contains a chapter on category theory, [Poi92] (in

particular, Chapter 2), we need not repeat here the arguments for why this is a fruitful

and enlightening way of looking at these type constructors.

There are, however, several categories that we are interested in and a construction

may play different roles in different settings. Let us therefore list the categories that,

at this point, seem suitable as a universe of discourse. There is, first of all, DCPO, the

category of dcpo’s and Scott-continuous functions as introduced in Section 2.1. We

can restrict the objects by taking only continuous or, more special, algebraic domains.

Thus we arrive at the full subcategories CONT and ALG of DCPO. Each of these

may be further restricted by requiring the objects to have a bottom element (and Theo-

rem 2.1.19 tells us why one would be interested in doing so) resulting in the categories

DCPO⊥, CONT⊥, and ALG⊥. The presence of a distinguished point in each object

suggests that morphisms should preserve them. But this is not really appropriate in

semantics; strict functions are tied to a particular evaluation strategy. For us this means

that there is yet another cascade of categories, DCPO⊥!, CONT⊥!, and ALG⊥!, where

objects have bottom elements and morphisms are strict and Scott-continuous. Finally,

we may bound the size of (minimal) bases for continuous and algebraic domains to be

countable. We indicate this by the prefix ‘ω-’.

41

3.2.1 Cartesian product

Definition 3.2.1. The cartesian product of two dcpo’sD andE is given by the following

data:

D × E = {〈x, y〉 | x ∈ D, y ∈ E},

〈x, y〉 ⊑ 〈x′, y′〉 if and only if x ⊑ x′ and y ⊑ y′.

This is just the usual product of sets, augmented by the coordinatewise order.

Through induction, we can define the cartesian product for finite non-empty collec-

tions of dcpo’s. For the product over the empty index set we define the result to be a

fixed one-element dcpo I.

Proposition 3.2.2. The cartesian product of dcpo’s is a dcpo. Suprema and infima are

calculated coordinatewise.

With each product D × E there are associated two projections:

π1 : D × E → D and π2 : D × E → E.

These projections are always surjective but they are upper adjoints only if D and E are

pointed. So there is a slight mismatch with Section 3.1.4 here. Given a dcpo F and

continuous functions f : F → D and g : F → E, we denote the mediating morphism

from F to D × E by 〈f, g〉. It maps x ∈ F to 〈f(x), g(x)〉.

Proposition 3.2.3. Projections and mediating morphisms are continuous.

If f : D → D′ and g : E → E′ are Scott-continuous, then so is the mediating map

〈f ◦ π1, g ◦ π2〉 : D × E → D′ × E′. The common notation for it is f × g. Since

our construction is completely explicit, we have thus defined a functor in two variables

on DCPO.

Proposition 3.2.4. Let D and E be dcpo’s.

1. A tuple 〈x, y〉 approximates a tuple 〈x′, y′〉 inD×E if and only if x approximates

x′ in D and y approximates y′ in E.

2. If B and B′ are bases for D and E, respectively, then B × B′ is a basis for

D × E.

3. D × E is continuous if and only if D and E are.

4. K(D × E) = K(D)× K(E).

The categorical aspect of the cartesian product is quite pleasing; it is a categorical

product in each case. But we can say even more.

Lemma 3.2.5. Let C be a full subcategory of DCPO or DCPO⊥! which has finite

products. Then these are isomorphic to the cartesian product.

42

In a restricted setting this was first observed in [Smy83a]. The general proof may

be found in [Jun89].

A useful property which does not follow from general categorical or topological

considerations, is the following.

Lemma 3.2.6. A function f : D × E → F is continuous if and only if it is continuous

in each variable separately.

Proof. Assume f : D × E → F is separately continuous. Then f is monotone, be-

cause given (x, y) ⊑ (x′, y′) we can fill in (x, y′) and use coordinatewise monotonicity

twice. The same works for continuity: if A ⊆ D × E is directed then

⊔

↑

(x,y)∈A

f(x, y) =
⊔

↑

x∈π1(A)

⊔

↑

y∈π2(A)

f(x, y)

=
⊔

↑

x∈π1(A)

f(x,
⊔

↑

y∈π2(A)

y)

= f(
⊔

↑

x∈π1(A)

x,
⊔

↑

y∈π2(A)

y)

= f(
⊔

↑A).

This proves the interesting direction.

3.2.2 Function space

We have introduced the function space in Section 2.1.6 already. It consists of all

continuous functions between two dcpo’s ordered pointwise. We know that this

is again a dcpo. The first morphism which is connected with this construction is

apply : [D −→ E]×D → E, 〈f, x〉 7→ f(x). It is continuous because it is contin-

uous in each argument separately: in the first because directed suprema of functions

are calculated pointwise, in the second, because [D −→ E] contains only continuous

functions.

The second standard morphism is the operation which rearranges a function of two

arguments into a combination of two unary functions. That is, if f maps D × E to F ,

then Curry(f) : D → [E −→ F] is the mapping which assigns to d ∈ D the function

which assigns to e ∈ E the element f(d, e). Curry(f) is a continuous function because

of Lemma 3.2.6. And for completely general reasons we have that Curry itself is a

continuous operation from [D × E −→ F] to [D −→ [E −→ F]]. Another derived

operation is composition which is a continuous operation from [D −→ E]×[E −→ F]
to [D −→ F].

All this shows that the continuous function space is the exponential in DCPO.

Taking cartesian products and function spaces together we have shown that DCPO is

cartesian closed.

We turn the function space construction into a functor from DCPOop × DCPO to

DCPO by setting [· −→ ·](f, g)(h) = g ◦ h ◦ f , where f : D′ → D, g : E → E′ and

h is an element of [D −→ E].

43

◗
◗

◗
◗

◗
◗

◗
◗◗ ❈

❈
❈
❈
❈
❈✄
✄
✄
✄
✄
✄ ✑

✑
✑

✑
✑

✑
✑

✑✑

Figure 8: The coalesced sum of two pointed dcpo’s.

As for the product we can show that the choice of the exponential object is more

or less forced upon us. This again was first noticed by Smyth in the above mentioned

reference.

Lemma 3.2.7. Let C be a cartesian closed full subcategory of DCPO. The exponential

of two objects D and E of C is isomorphic to [D −→ E].

Let us now turn to the theme of approximation in function spaces. The reader

should brace himself for a profound disappointment: Even for algebraic domains it

may be the case that the order of approximation on the function space is empty! (Exer-

cise 3.3.12(11) discusses an example.) This fact together with Lemmas 3.2.5 and 3.2.7

implies that neither CONT nor ALG are cartesian closed. The only way to remedy

this situation is to move to more restricted classes of domains. This will be the topic of

Chapter 4.

3.2.3 Coalesced sum

In the category of sets the coproduct is given by disjoint union. This works equally

well for dcpo’s and there isn’t really anything interesting to prove about it. We denote

it by D
.
∪ E.

Disjoint union, however, destroys the property of having a least element and this

in turn is indispensable in proving that every function has a fixpoint, Theorem 2.1.19.

One therefore looks for substitutes for disjoint union which retain pointedness, but,

of course, one cannot expect a clean categorical characterization such as for cartesian

product or function space. (See also Exercise 3.3.12(12).) In fact, it has been shown in

[HP90] that we cannot have cartesian closure, the fixpoint property and coproducts in

a non-degenerate category.

So let us now restrict attention to pointed dcpo’s. One way of putting a family of

them together is to identify their bottom elements. This is called the coalesced sum and

denoted D ⊕ E. Figure 8 illustrates this operation. Elements from D ⊕ E different

from ⊥D⊕E carry a label which indicates where they came from. We write them in the

form (x : i), i ∈ {1, 2}.

Proposition 3.2.8. The coalesced sum of pointed dcpo’s is a pointed dcpo.

44

The individual dcpo’s may be injected into the sum in the obvious way:

inl(x) =

{

(x : 1), x 6= ⊥D;
⊥D⊕E , x = ⊥D

;

and

inr(x) =

{

(x : 2), x 6= ⊥E ;
⊥D⊕E , x = ⊥E

.

A universal property for the sum holds only in the realm of strict functions:

Proposition 3.2.9. The coalesced sum of pointed dcpo’s is the coproduct in DCPO⊥!,

CONT⊥!, and ALG⊥!.

Once we accept the restriction to bottom preserving functions it is clear how to turn

the coalesced sum into a functor.

3.2.4 Smash product and strict function space

It is clear that inside DCPO⊥! a candidate for the exponential is not the full function

space but rather the set [D
⊥!
−→ E] of strict continuous functions from D to E. How-

ever, it does not harmonize with the product in DCPO⊥!, which, as we have seen, must

be the cartesian product. We do get a match if we consider the so-called smash product.

It is defined like the cartesian product but all tuples which contain at least one bottom

element are identified. Common notation is D ⊗ E.

We leave it to the reader to check that smash product and strict function space turn

DCPO⊥! into a monoidal closed category.

3.2.5 Lifting

Set-theoretically, lifting is the simple operation of adding a new bottom element to a

dcpo. Applied to D, the resulting structure is denoted by D⊥. Clearly, continuity or

algebraicity don’t suffer any harm from this.

Associated with it is the map up : D → D⊥ which maps each x ∈ D to its name-

sake in D⊥.

The categorical significance of lifting stems from the fact that it is left adjoint to

the inclusion functor from DCPO⊥! into DCPO. (Where a morphism f : D → E is

lifted by mapping the new bottom element of D⊥ to the new bottom element of E⊥.)

3.2.6 Summary

For quick reference let us compile a table of the constructions looked at so far. A ‘X’

indicates that the category is closed under the respective construction, a ‘+’ says that, in

addition, the construction plays the expected categorical role as a product, exponential

or coproduct, respectively. Observe that for the constructions considered in this section

it makes no difference if we restrict the size of a (minimal) basis.

45

DCPO DCPO⊥ DCPO⊥! CONT ALG
CONT⊥
ALG⊥

CONT⊥!
ALG⊥!

D × E + + + + + +
[D −→ E] + + X

D
.
∪ E + +

D ⊗ E X X X X

[D
⊥!
−→ E] X +
D ⊕ E X + X +

D⊥ X X X X X X

3.3 Infinitary constructions

The product and sum constructions from the previous section have infinitary counter-

parts. Generally, these work nicely as long as we are only concerned with questions

of convergence, but they cause problems with respect to the order of approximation.

This is exemplified by the fact that an infinite power of a finite poset may fail to be

algebraic. In any case, there is not much use of these operations in semantics. Much

more interesting is the idea of incrementally building up a domain in a limit process.

This is the topic of this section.

3.3.1 Limits and colimits

Our limit constructions are to be understood categorically and hence we refer once

more to [Poi92] for motivation and general results. Here are the basic defini-

tions. A diagram in a category C is given by a functor from a small category I

to C. We can describe, somewhat sloppily but more concretely, a diagram by a pair

〈(Di)i∈O, (fj : Dd(j) → Dc(j))j∈M 〉 of a family of objects and a family of connect-

ing morphisms. The shape of the diagram is thus encoded in the index sets O (which

correspond to the objects of I) and M (which correspond to the morphisms of I) and

in the maps d, c : M → O which corresponds to the dom and codom map on I. What

is lost is the information about composition in I. In the cases which interest us, this

is not a problem. A cone over such a diagram is given by an object D and a fam-

ily (fi : D → Di)i∈O of morphisms such that for all j ∈M we have fj ◦fd(j) = fc(j).
A cone is limiting if for every other cone 〈E, (gi)i∈O〉 there is exactly one morphism

f : E → D such that for all i ∈ O, gi = fi ◦ f . If 〈D, (fi)i∈O〉 is a limiting cone,

then D is called limit and the fi are called limiting morphisms. The dual notions are

cocone, colimit, and colimiting morphism.

Theorem 3.3.1. DCPO has limits of arbitrary diagrams.

Proof. The proof follows general category theoretic principles. We describe the limit

of the diagram 〈(Di)i∈O, (fj : Dd(j) → Dc(j))j∈M 〉 as a set of particular elements of

the product of all Di’s, the so-called commuting tuples.

D = {〈xi : i ∈ O〉 ∈
∏

i∈O

Di | ∀j ∈M. xc(j) = fj(xd(j))}

46

❜ r
❜ ❜

r
r r
❜ ❜ ❜ ❜

❜ ❜

r
r r
r r r r

r r❜ ❜ ❜❜ ❜ ❜ ❜

❩
❩
❩❩✚

✚
✚✚

❅
❅

❍❍❆
❆PPP ✏✏✏

✁
✁

✏✏✏
✁
✁

❇
❇
❇✄
✄
✄
✄

❅
❅

❍❍❆
❆PPP ✏✏✏

✁
✁

✏✏✏
✁
✁

❇
❇
❇✄
✄
✄
✄

❆
❆✁
✁
❚
❚❉
❉ ☎
☎✔
✔

Figure 9: An expanding sequence of finite domains.

The order on the limit object is inherited from the product, that is, tuples are ordered

coordinatewise. It is again a dcpo because the coordinatewise supremum of commuting

tuples is commuting as all fj are Scott-continuous. This also proves that the projections

πj :
∏

i∈ODi → Dj restricted to D are continuous. They give us the maps needed to

complement D to a cone.

Given any other cone 〈E, (gi : E → Di)i∈O〉, we define the mediating morphism

h : E → D by h(x) = 〈gi(x) : i ∈ O〉. Again, it is obvious that this is well-defined

and continuous, and that it is the only possible choice.

We also have the dual:

Theorem 3.3.2. DCPO has colimits of arbitrary diagrams.

This was first noted in [Mar77] and, for a somewhat different setting, in [Mes77].

The simplest way to prove it is by reducing it to completeness à la Theorem 23.14

of [HS73]. This appears in [LS81]. A more detailed analysis of colimits appears in

[Fie92]. There the problem of retaining algebraicity is also addressed.

Theorem 3.3.3. DCPO is cartesian closed, complete and cocomplete.

Theorem 3.3.4. DCPO⊥! is monoidal closed, complete and cocomplete.

How about DCPO⊥, where objects have least elements but morphisms need not

preserve them? The truth is that both completeness and cocompleteness fail for this

category. On the other hand, it is the right setting for denotational semantics in most

cases. As a result of this mismatch, we quite often must resort to detailed proofs on

the element level and cannot simply apply general category theoretic principles. Let us

nevertheless write down the one good property of DCPO⊥:

Theorem 3.3.5. DCPO⊥ is cartesian closed.

3.3.2 The limit-colimit coincidence

The theorems of the previous subsection fall apart completely if we pass to domains,

that is, to CONT or ALG. To get better results for limits and colimits we must restrict

both the shape of the diagrams and the connecting morphisms used.

47

For motivation let us look at a chain D1, D2, . . . of domains where each Dn is

a sub-domain of Dn+1 in the sense of Section 3.1.4. Taking up again the animated

language from that section we may think of the points of Dn+1 as growing out of

points of Dn, the latter being the buds which contain the leaves and flowers to be seen

at later stages. Figure 9 shows a, hopefully inspiring, example. Intuition suggests that

in such a situation a well-structured limit can be found by adding limit points to the

union of the Dn, and that it will be algebraic if the Dn are.

Definition 3.3.6. A diagram 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 in the category

DCPO is called an expanding sequence, if the following conditions are satisfied:

1. Each emn : Dn → Dm is an embedding. (The associated projection e∗mn we

denote by pnm.)

2. ∀n ∈ N. enn = idDn
.

3. ∀n ≤ m ≤ k ∈ N. ekn = ekm ◦ emn .

Note that because lower adjoints determine upper adjoints and vice versa, we have

pnk = pnm ◦ pmk whenever n ≤ m ≤ k ∈ N.

It turns out that, in contrast to the general situation, the colimit of an expanding

sequence can be calculated easily via the associated projections.

Theorem 3.3.7. Let 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 be an expanding sequence

in DCPO. Define an object D by

D = {〈xn : n ∈ N〉 ∈
∏

n∈N

Dn | ∀n ≤ m ∈ N. xn = pnm(xm)},

projections pm : D → Dm by 〈xn : n ∈ N〉 7→ xm,

and embeddings em : Dm → D by x 7→ 〈
⊔

↑
k≥n,m pnk ◦ ekm(x) : n ∈ N〉.3

Then:

1. The maps (em, pm), m ∈ N, form embedding projection pairs and
⊔

↑
m∈N

em ◦
pm = idD holds.

2. 〈D, (pn)n∈N〉 is a limit of the diagram 〈(Dn)n∈N, (pnm)n≤m∈N〉. If

〈C, (gn)n∈N〉 is another cone, then the mediating map from C to D is given

by g(x) = 〈gn(x) : n ∈ N〉 or g =
⊔

↑
n∈N

en ◦ gn.

3. 〈D, (en)n∈N〉 is a colimit of the diagram 〈(Dn)n∈N, (emn)n≤m∈N〉. If

〈E, (fn)n∈N〉 is another cocone, then the mediating map from D to E is given

by f(〈xn : n ∈ N〉) =
⊔

↑
n∈N

fn(xn) or f =
⊔

↑
n∈N

fn ◦ pn.

3The directed supremum
⊔

↑
k≥n,m pnk ◦ ekm(x) in the definition of em could be replaced by

pnk ◦ ekm(x) for any upper bound k of {n,m} in N. However, this would actually make the proofs

more cumbersome to write down.

48

Proof. We have already shown in Theorem 3.3.1 that a limit of the diagram

〈(Dn), (pnm)〉 is given by 〈D, (pn)〉 and that the mediating morphism has the (first)

postulated form.

For the rest, let us start by showing that the functions em are well-defined, i.e. that

y = em(x) is a commuting tuple. Assume n ≤ n′. Then we have pnn′(yn′) =
pnn′(

⊔

↑
k≥n′,m pn′k ◦ ekm(x)) =

⊔

↑
k≥n′,m pnn′ ◦ pn′k ◦ ekm(x) =

⊔

↑
k≥n′,m pnk ◦

ekm(x) = yn. The assignment x 7→ em(x) is Scott-continuous because of general

associativity and because only Scott-continuous maps are involved in the definition.

Next, let us now check that em and pm form an e-p-pair.

em ◦ pm(〈xn : n ∈ N〉) = em(xm)

= 〈
⊔

↑
k≥n,m pnk ◦ ekm(xm) : n ∈ N〉

= 〈
⊔

↑
k≥n,m pnk ◦ ekm ◦ pmk(xk) : n ∈ N〉

⊑ 〈
⊔

↑
k≥n,m pnk(xk) : n ∈ N〉

= 〈xn : n ∈ N〉

and pm ◦ em(x) = pm(〈
⊔

↑
k≥n,m pnk ◦ ekm(x) : n ∈ N〉) =

⊔

↑
k≥m pmk ◦ ekm(x) =

x.
A closer analysis reveals that em ◦ pm will leave all those elements of the tuple

〈xn : n ∈ N〉 unchanged for which n ≤ m:

pn(em ◦ pm(〈xn : n ∈ N〉)) = . . . =
⊔

↑

k≥n,m

pnk ◦ ekm ◦ pmk(xk)

=
⊔

↑

k≥n,m

pnm ◦ pmk ◦ ekm ◦ pmk(xk)

=
⊔

↑

k≥n,m

pnm ◦ pmk(xk) =
⊔

↑

k≥n,m

xn = xn

This proves that the em◦pm,m ∈ N, add up to the identity, as stated in (1). Putting this

to use, we easily get the second representation for the mediating map into D viewed as

a limit: g = id ◦ g =
⊔

↑
m∈N

em ◦ pm ◦ g =
⊔

↑
m∈N

em ◦ gm.

It remains to prove the universal property of D as a colimit. To this end let

〈E, (fn)n∈N〉 be a cocone over the expanding sequence. We have to check that

f =
⊔

↑
n∈N

fn ◦ pn is well-defined in the sense that the supremum is over a directed

set. So let n ≤ m. We get fn ◦ pn = fm ◦ emn ◦ pnm ◦ pm ⊑ fm ◦ pm. It commutes

with the colimiting maps because

f ◦ em =
⊔

↑

n≥m

fn ◦ pn ◦ em

=
⊔

↑

n≥m

fn ◦ pn ◦ en ◦ enm

=
⊔

↑

n≥m

fn ◦ enm =
⊔

↑

n≥m

fm = fm

We also have to show that there is no other choice for f . Again the equation in (1)

comes in handy: Let f ′ be any mediating morphism. It must satisfy f ′ ◦ em = fm

49

and so f ′ ◦ em ◦ pm = fm ◦ pm. Forming the supremum on both sides gives f ′ =
⊔

↑
m∈N

fm ◦ pm which is the definition of f .

This fact, that the colimit of an expanding sequence is canonically isomorphic to

the limit of the associated dual diagram, is called the limit-colimit coincidence. It is

one of the fundamental tools of domain theory and plays its most prominent role in

the solution of recursive domain equations, Chapter 5. Because of this coincidence we

will henceforth also speak of the bilimit of an expanding sequence and denote it by

bilim〈(Dn), (emn)〉.
We can generalize Theorem 3.3.7 in two ways; we can replace N by an arbitrary

directed set (in which case we will speak of an expanding system) and we can use

general Scott-continuous adjunctions instead of e-p-pairs. The first generalization is

harmless and does not need any serious adjustments in the proofs. We will freely use

it from now on. The second, on the other hand, is quite interesting. By the passage

from embeddings to, no longer injective, lower adjoints, we allow domains not only to

grow but also to shrink as we move on in the index set. Thus points, which at some

stage looked different, may at a later stage be recognised to be the same. The interested

reader will find an outline of the mathematical theory of this in the exercises. For the

main text, we must remind ourselves that this generalization has so far not found any

application in semantics.

Part (1) of the preceding theorem gives a characterization of bilimits:

Lemma 3.3.8. Let 〈E, (fn)n∈N〉 be a cocone for the expanding sequence

〈(Dn)n∈N,(emn : Dn → Dm)n≤m∈N〉. It is colimiting if and only if, firstly, there

are Scott-continuous functions gn : E → Dn such that each (fn, gn) is an e-p-pair

and, secondly,
⊔

↑
n∈N

fn ◦ gn = idE holds.

Proof. Necessity is Part (1) of Theorem 3.3.7. For sufficiency we show that the

bilimit D as constructed there, is isomorphic to E. We already have maps f : D → E
and g : E → D because D is the bilimit. These commute with the limiting and the

colimiting morphisms, respectively. So let us check that they compose to identities:

f ◦ g(x) = f(〈gn(x) : n ∈ N〉)

=
⊔

↑

n∈N

fn ◦ gn(x)

= x

and

g ◦ f = (
⊔

↑

n∈N

en ◦ gn) ◦ (
⊔

↑

m∈N

fm ◦ pm)

=
⊔

↑

n∈N

en ◦ gn ◦ fn ◦ pn

=
⊔

↑

n∈N

en ◦ pn = idD.

50

We note that in the proof we have used the condition
⊔

↑
n∈N

fn ◦ gn = idE only

for the first calculation. Without it, we still get that f and g form an e-p-pair. Thus we

have:

Proposition 3.3.9. Let 〈E, (fn)n∈N〉 be a cocone over the expanding sequence

〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 where the fn are embeddings. Then the bilimit

of the sequence is a sub-domain of E.

In other words:

Corollary 3.3.10. The bilimit of an expanding sequence is also the colimit (limit) in

the restricted category of dcpo’s with embeddings (projections) as morphisms.

3.3.3 Bilimits of domains

Theorem 3.3.11. Let 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 be an expanding se-

quence and 〈D, (en)n∈N〉 its bilimit.

1. If all Dn are (ω-)continuous then so is D. If we are given bases Bn, n ∈ N for

each Dn then a basis for D is given by
⋃

n∈N
en(B

n).

2. If all Dn are (ω-)algebraic then so is D and K(D) =
⋃

n∈N
en(K(Dn)).

Proof. Given an element x ∈ D we first show that
⋃

n∈N
en(B

n
pn(x)

) is directed. To

this end it is sufficient to show that for all n ≤ m ∈ N and for each y ∈ Bn
pn(x)

there is

y′ ∈ Bm
pm(x) with en(y) ⊑ em(y′). Well, because y approximates pn(x) and because

embeddings preserve the order of approximation, we have emn(y) ≪ emn(pn(x)) =
emn(pnm ◦ pm(x)) ⊑ pm(x). Since pm(x) =

⊔

↑Bm
pm(x), some y′ ≪ pm(x) is

above emn(y). This implies en(y) = em(emn(y)) ⊑ em(y′).
The set

⋃

n∈N
en(B

n
pn(x)

) gives back x because x =
⊔

↑
n∈N

en ◦ pn(x) =
⊔

↑
n∈N

en(
⊔

↑Bn
pn(x)

) =
⊔

↑
n∈N

⊔

↑en(B
n
pn(x)

) =
⊔

↑
⋃

en(B
n
pn(x)

). It consists

solely of approximants to x because the en are lower adjoints.

Exercises 3.3.12. 1. Let D be a continuous domain and let f : D → D be an

idempotent Scott-continuous function. Show that f(x) ≪ f(y) holds in the

image of f if and only if there exists z ≪ f(y) in D such that f(x) ⊑ f(z) ⊑
f(y). In the case that D is algebraic conclude that an element x of im(f) is

compact if and only if there is c ∈ K(D)f(x) with f(c) = f(x).

2. Let p be a kernel operator with finite image. Show that im(p) is contained

in K(D) and that p itself is compact in [D −→ D].

3. [Hut92] A chain C is called order dense if it has more than one element and for

each pair x ⊏ y there exists z ∈ C such that x ⊏ z ⊏ y.

(a) Let C be an order dense chain of compact elements in an alge-

braic domain D with least element. Consider the function g(x) =
⊔

{c ∈ C | c ⊏ x}. Show that this is continuous and below the identity.

Give an example to demonstrate that g need not be idempotent. Show that

51

h = g ◦ g is idempotent and hence a kernel operator. Finally, show that the

image of h is not algebraic (it must be continuous by Theorem 3.1.4).

(b) Let, conversely, f be a continuous and idempotent function on an algebraic

dcpo D such that its image is not algebraic. Show that K(D) contains an

order dense chain.

(c) An algebraic domain is called projection stable if every projection on D
has an algebraic image. Conclude that an algebraic domain with bottom

is projection stable if and only if K(D) does not contain an order dense

chain.

4. Let e : D ⇌ E : p be an embedding projection pair between ⊓-semilattices.

Show that im(e) is a lower set in E if and only if for all x ⊑ y in E we have

e(p(x)) = e(p(y)) ⊓ x.

5. Formulate and prove a generalization of Proposition 3.1.13 for arbitrary posets.

6. Formulate an analogue of Proposition 3.2.4 for infinite products. Proceed as fol-

lows: First restrict to pointed dcpo’s. Next find an example of a (non-pointed) fi-

nite poset which has a non-algebraic infinite power. This should give you enough

intuition to try the general case.

7. A dcpo may be seen as a topological space with respect to the Scott-topology.

Given two dcpo’s we can form their product in DCPO. Show that the Scott-

topology on the product need not be the product topology but that the two topolo-

gies coincide if one of the factors is a continuous domain.

8. Construct an example which shows that Lemma 3.2.6 does not hold for infinite

products.

9. Derive Curry and composition as maps in an arbitrary cartesian closed category.

10. Let C be a cartesian closed full subcategory of DCPO. Let R-C be the full

subcategory of DCPO whose objects are the retracts of objects of C. Show that

R-C is cartesian closed.

11. Let Z− be the negative integers with the usual ordering. Show that the order

of approximation on [Z− −→ Z−] is empty. Find a pointed algebraic dcpo in

which a similar effect takes place.

12. Show that DCPO⊥ does not have coproducts.

13. Show that CONT does not have equalizers for all pairs of morphisms. (Hint:

First convince yourself that limits in CONT, if they exist, have the same under-

lying dcpo as when they are calculated in DCPO.)

14. Complement the table in Section 3.2.6 with the infinitary counterparts of carte-

sian product, disjoint union, smash product and sum. Observe that for these

the cardinality of the basis does play a role, so you have to add columns for

ω-CONT etc.

52

15. Show that the embeddings into the bilimit of an expanding sequence are given

more concretely by em(x) = 〈xn : n ∈ N〉 with

xn =

{

pnm(x), n < m;
enm(x), n ≥ m.

Find a similar description for expanding systems.

16. Redo Section 3.3.2 for directed index sets and Scott-continuous adjunctions. The

following are the interesting points:

(a) The limit-colimit coincidence, Theorem 3.3.7, holds verbatim.

(b) The characterization of bilimits given in Lemma 3.3.8 does not suffice. It

states that E must not contain superfluous elements. Now we also need to

say that E does not identify too many elements.

(c) Given an expanding system 〈(Di), (lji)〉 with adjunctions, we can pass to

quotient domains D′
i by setting D′

i = im(
⊔

↑
k≥i uik ◦ lki). Show that the

original adjunctions when restricted and corestricted to the D′
i become e-

p-pairs and that these define the same bilimit.

17. Let RD be the space of Scott-continuous idempotents on a dcpo D. Apply the

previous exercise to show that
⊔

↑
i∈I ri = r in RD implies bilim(im(ri)) ∼=

im(r) (where the connecting adjunctions are given by restricting the retractions

to the respective image).

18. Prove that the Scott-topology on a bilimit of continuous domains is the restriction

of the product topology on the product of the individual domains.

53

4 Cartesian closed categories of domains

In the last chapter we have seen that our big ambient categories DCPO and DCPO⊥

are, among other things, cartesian closed and we have already pointed out that for the

natural classes of domains, CONT and ALG, this is no longer true. The problematic

construction is the exponential, which as we know by Lemma 3.2.7, must be the set

of Scott-continuous functions ordered pointwise. If, on the other hand, we find a full

subcategory of CONT which is closed under terminal object, cartesian product and

function space, then it is also cartesian closed, because the necessary universal proper-

ties are inherited from DCPO.

Let us study more closely why function spaces may fail to be domains. The fact

that the order of approximation may be empty tells us that there may be no natural

candidates for basis elements in a function space. This we can better somewhat by

requiring the image domain to contain a bottom element.

Definition 4.0.1. For D and E dcpo’s where E has a least element and d ∈ D, e ∈ E,

we define the step function (dց e) : D → E by

(dց e)(x) =

{

e, if x ∈ Int(↑d);
⊥E , otherwise.

More generally, we will use (O ց e) for the function which maps the Scott-open set O
to e and everything else to ⊥.

Proposition 4.0.2. 1. Step functions are Scott-continuous.

2. Let D and E be dcpo’s where E is pointed and let f : D → E be continuous. If

e approximates f(d) then (dց e) approximates f .

3. If, in addition, D and E are continuous then f is a supremum of step functions.

Proof. (1) Continuity follows from the openness of Int(↑d), respectively O.

(2) Let G be a directed family of functions with
⊔

↑G ⊒ f . Suprema in [D −→ E]
are calculated pointwise so we also have

⊔

↑
g∈G g(d) ⊒ f(d). This implies that for

some g ∈ G, g(d) ⊒ e holds. A simple case distinction then shows that g must be

above (dց e) everywhere.

(3) We show that for each d ∈ D and each e ≪ f(d) in E there is a step

function approximating f which maps d to e. Indeed, from d =
⊔

↑
↓↓d we get

f(d) = f(
⊔

↑
y≪d y) =

⊔

↑
y≪d f(y) and so for some y ≪ d we have f(y) ⊒ e.

The desired step function is therefore given by (y ց e). Continuity of E implies that

we can get arbitrarily close to f(d) this way.

Note that the supremum in (3) need not be directed, so we have not shown that

[D −→ E] is again continuous. Was it a mistake to require directedness for the set of

approximants? The answer is no, because without it we could not have proved (3) in

the first place.

The problem of joining finitely many step functions together, so as to build directed

collections of approximants, comes up already in the case of two step functions (d1 ց

54

D : E :

A B ⊇ f(A)

❝ d1
❝ d2 ❝f(d1) ❝ f(d2)❝e1 ❝ e2

❅
❅
❅
❅
❅

❅❅�
�

�
�
�
�� ❅

❅
❅

❅
❅
❅

❅❅�
�

�
�
�

�
��❅

❅
❅❅ �

�
��❅

❅❅ �
�� ❅

❅❅ �
��❅
❅❅ �

���
�

�
�

Figure 10: Finding an upper bound for two step functions.

e1) and (d2 ց e2) which approximate a given continuous function f . The situation

is illustrated in Figure 10. The problem is where to map the (Scott-open but otherwise

unstructured) set A = ↑↑d1 ∩ ↑↑d2. It has to be done in such a way that the resulting

function still approximates f . As it will turn out, it suffices to make special assumptions

about either the image domain E—the topic of Section 4.1— or about the pre-image

domain D – the topic of Section 4.2. In both cases we restrict our attention to pointed

domains, and we work with step functions and joins of these. From these we can pass to

more general domains in again two ways. This will be outlined briefly in Section 4.3.2.

The question then arises whether we have not missed out on some alternative way of

building a cartesian closed category. This is not the case as we will see in Section 4.3.

The basic tool for this fundamental result, Lemma 4.3.1, will nicely connect up with

the dichotomy distinguishing 4.1 and 4.2.

4.1 Local uniqueness: Lattice-like domains

The idea for adjusting the image domain is simple; we assume that e1 and e2 have a

least upper bound e (if bounded at all). Mapping the intersection A to e (and ↑↑d1 \ A
to e1 and ↑↑d2 \ A to e2) results in a continuous function h which is above (d1 ց e1)
and (d2 ց e2) and still approximates f . This is seen as follows: Suppose G is a

directed collection of functions with supremum above f . Some g1 ∈ G must be above

(d1 ց e1) and some g2 ∈ G must be above (d2 ց e2). Then by construction every

upper bound of {g1, g2} in G is above h.

In fact, we do not need that the join of e1 and e2 exists globally in E. It suffices to

form the join for every a ∈ A inside ↓f(a), because we have seen in Proposition 2.2.17

that all considerations about the order of approximation can be performed inside prin-

cipal ideals. We have the following list of definitions.

Definition 4.1.1. Let E be a pointed continuous domain. We say that E is

1. an L-domain, if each pair e1, e2 ∈ E bounded by e ∈ E has a supremum in ↓e;

2. a bounded-complete domain (or bc-domain), if each bounded pair e1, e2 ∈ E
has a supremum;

55

❝ ⊥
X ∈ ALG \ L

❝a ❝ b

❝c1 ❝ c2
❝ ⊤

❅
❅❅

�
�� ❅

❅❅

�
��

❩
❩

❩
❩
❩❩✚

✚
✚
✚
✚✚

❝
C ∈ L \ BC

❝ ❝

❝ ❝

�
��❅

❅❅

❩
❩

❩
❩
❩❩

✚
✚

✚
✚

✚✚

❝
V ∈ BC \ LAT

❝ ❝
❅
❅❅ �

��

Figure 11: Separating examples for the categories of lattice-like domains.

3. (repeated for comparison) a continuous lattice, if each pair e1, e2 ∈ E has a

supremum.

We denote the full subcategories of CONT⊥ corresponding to these definitions by

L, BC, and LAT. For the algebraic counterparts we use aL, aBC, and aLAT.

All this still makes sense if we forget about approximation but, surely, at this point

the reader does not suffer from a lack of variety as far as categories are concerned.

We would like to point out that continuous lattices are the main objects of study in

[GHK+80], a mathematically oriented text, whereas the objects of ω-aBC are often

the domains of choice in semantics, where they appear under the name Scott-domain.

Typical examples are depicted in Figure 11. They even characterize the corresponding

categories, see Exercise 4.3.11(3).

Since domains have directed joins anyway, we see that in L-domains every subset

of a principal ideal has a supremum in that ideal. We also know that complete lattices

can alternatively be characterized by infima. The same game can be played for the

other two definitions:

Proposition 4.1.2. Let D be a pointed continuous domain. Then D is an L-domain, a

bc-domain, or a continuous lattice if and only if it has infima for bounded non-empty,

non-empty, or arbitrary subsets, respectively.

The consideration of infima may seem a side issue in the light of the problem of

turning function spaces into domains. Its relevance becomes clear when we remember

that upper adjoints preserve infima. The second half of the following is therefore a

simple observation. The first half follows from Proposition 3.1.2 and Theorem 3.1.4.

Proposition 4.1.3. Retracts and bilimits of L-domains (bc-domains, continuous lat-

tices) are again L-domains (bc-domains, continuous lattices).

We can treat continuous and algebraic lattice-like domains nicely in parallel be-

cause the ideal completion respects these definitions:

56

Proposition 4.1.4. Let D be an L-domain (bc-domain, continuous lattice). Then

Idl(D,⊑) is an algebraic L-domain (bc-domain, lattice).

Thus L, BC, and LAT contain precisely the retracts of objects of aL, aBC, and

aLAT, respectively. We conclude this section by stating the desired closure property

of lattice-like domains.

Proposition 4.1.5. Let D be a continuous domain and E an L-domain (bc-domain,

continuous lattice). Then [D −→ E] is again an L-domain (bc-domain, continuous

lattice).

Corollary 4.1.6. The categories L, BC, LAT, and their algebraic counterparts are

cartesian closed.

4.2 Finite choice: Compact domains

Let us now turn our attention to the first argument of the function space construction,

which means by the general considerations from the beginning of this chapter, the study

of open sets and their finite intersections. Step functions are defined using basic open

sets of the form ↑↑d, and the fact that there is a single generator d was crucial in the

proof that (d ց e) approximates f whenever e approximates f(d). Arbitrary open

sets are unions of such basic opens (Proposition 2.3.6) but in general this is an infinite

union and so the proof of Proposition 4.0.2 will no longer work. For the first time

we have now reached a point in our exposition where the theory of algebraic domains

is definitely simpler and better understood than that of continuous domains. Let us

therefore treat this case first.

4.2.1 Bifinite domains

Step functions (d ց e) may in the algebraic case be defined using compact elements

only, where the characteristic pre-image ↑↑d is actually equal to ↑d. Taking up our

line of thought from above, we want for the algebraicity of the function space that

the intersection A = ↑d1 ∩ ↑d2 is itself generated by finitely many compact points:

A = ↑c1 ∪ . . . ∪ ↑cn. Note that the ci must be minimal upper bounds of {d1, d2}. For

each ci we choose a compact element below f(ci) and above e1, e2. New intersections

then come up, this time between the different ↑ci’s. Let us therefore further assume that

after finitely many iterations this process stops. It is an easy exercise to show that the

function constructed in this way is a compact element below f and above (d1 ց e1)
and (d2 ց e2). We hope that this provides sufficient motivation for the following list

of definitions.

Definition 4.2.1. Let P be a poset. (Think of P as the basis of an algebraic domain.)

1. We say that P is mub-complete (or: has property m) if for every upper bound x
of a finite subset M of P there is a minimal upper bound of M below x. Written

as a formula: ∀M ⊆fin P.
⋂

m∈M ↑m = ↑mub(M).

2. For a subset A of P let its mub-closure mc(A) be the smallest superset of A
which for every finite M ⊆ mc(A) also contains mub(M).

57

3. We say that P has the finite mub property if it is mub-complete and if every finite

subset has a finite mub-closure. If, in addition, P has a least element, then we

call it a Plotkin-order.

4. An algebraic domain whose basis of compact elements is a Plotkin-order is

called a bifinite domain. The full subcategory of ALG⊥ of bifinite domains we

denote by B.

With this terminology we can formulate precisely how finitely many step functions

combine to determine a compact element in the function space [Abr91b].

Definition 4.2.2. Let D be a bifinite domain and let E be pointed and algebraic. A

finite subset F of K(D)× K(E) is called joinable if

∀G ⊆ F ∃H ⊆ F. (π1(H) = mub(π1(G)) ∧ ∀c ∈ π2(G), d ∈ π2(H). c ⊑ d).

The function which we associate with a joinable family F is

x 7→
⊔

{e | ∃d ∈ K(D). d ⊑ x ∧ (d, e) ∈ F}.

Lemma 4.2.3. If D is a bifinite domain and E is pointed and algebraic, then every

joinable subset of K(D)× K(E) gives rise to a compact element of [D −→ E].
If F andG are joinable families then the corresponding functions are related if and

only if

∀(d, e) ∈ G ∃(d′, e′) ∈ F. d′ ⊑ d and e ⊑ e′.

The expected result, dual to Proposition 4.1.5 above, then is:

Proposition 4.2.4. If D is a bifinite domain and E is pointed and algebraic, then

[D −→ E] is algebraic. All compact elements of [D −→ E] arise from joinable fami-

lies.

Comment: Proof sketch: Let f be a continuous function from D to E, and M be a finite mub-closed

set of compact elements of D. Let (em)m∈M be a collection of compact elements of E such that

for all m ∈ M , em ≤ f(m). Then there exists a collection (êm)m∈M of compact elements of E

such that the assignment m 7→ êm is order-preserving. The new elements can be found by repeatedly

considering a minimal element m of M for which êm has not yet been chosen, and by picking an upper

bound for {em} ∪ {êm′ | m′ < m}. With this construction one finds a directed collection of compact

elements of [D −→ E] arbitrarily close to f .

Note that this is strictly weaker than Proposition 4.1.5 and we do not immediately

get that B is cartesian closed. For this we have to find alternative descriptions. The

fact that we can get an algebraic function space by making special assumptions about

either the argument domain or the target domain was noted in a very restricted form in

[Mar81].

The concept of finite mub closure is best explained by illustrating what can go

wrong. In Figure 12 we have the three classical examples of algebraic domains which

are not bifinite; in the first one the basis is not mub-complete, in the second one there is

an infinite mub-set for two compact elements, and in the third one, although all mub-

sets are finite, there occurs an infinite mub-closure. On a more positive note, it is clear

58

❝A :

❝a ❝ b

❝ c0❝ c1❝ c2

❵ ❵ ❵❵
❵❵❵

��
❅

❅❅ �
��
❅❅

❝N :

❝ ❝

❝ ❝ ❝ ❝ ❵ ❵ ❵

�
��❅

❅❅
❏

❏
❏❏
❍❍❍❍❍❍❍❩

❩
❩

❩❩

✡
✡
✡✡❏

❏
❏❏

✚
✚

✚
✚✚

❝T :

❝ ❝
❝ ❝
❝ ❝

❝

❵❵❵ ❵❵❵

❅
❅❅ �

��

❍❍❍❍❍
✟✟✟✟✟ ❍❍❍❍❍

✟✟✟✟✟

Figure 12: Typical non-bifinite domains.

that every finite and pointed poset is a Plotkin-order and hence bifinite. This trivial

example contains the key to a true understanding of bifiniteness; we will now prove

that bifinite domains are precisely the bilimits of finite pointed posets.

Proposition 4.2.5. Let D be an algebraic domain with mub-complete basis K(D) and

let A be a set of compact elements. Then there is a least kernel operator pA on D
which keeps A fixed. It is given by pA(x) =

⊔

↑{c ∈ mc(A) | c ⊑ x}.

Proof. First note that pA is well-defined because the supremum is indeed over a di-

rected set. This follows from mub-completeness. Continuity follows from Corol-

lary 2.2.16. On the other hand, it is clear that a kernel operator which fixes A must

also fix each element of the mub-closure mc(A), and so pA is clearly the least mono-

tone function with the desired property.

In a bifinite domain finite sets of compact elements have finite mub-closures. By

the preceding proposition this implies that there are many kernel operators on such a

domain which have a finite image. In fact, we get a directed family of them, because the

order on kernel operators is completely determined by their images, Proposition 3.1.17.

For the sake of brevity, let us call a kernel operator with finite image an idempotent

deflation.

Theorem 4.2.6. Let D be a pointed dcpo D. The following are equivalent

1. D is a bifinite domain.

2. There exists a directed collection (fi)i∈I of idempotent deflations of D whose

supremum equals idD.

3. The set of all idempotent deflations is directed and yields idD as its join.

59

Proof. What we have not yet said is how algebraicity of D follows from the existence

of idempotent deflations. For this observe that the inclusion of the image of a kernel

operator is a lower adjoint and as such preserves compactness. For the implication

‘2 =⇒ 3’ we use the fact that idempotent deflations are in any case compact elements

of the function space.

It is now only a little step to the promised categorical characterization.

Theorem 4.2.7. A dcpo is bifinite if and only if it is a bilimit of an expanding system

of finite pointed posets.

Proof. Let D be bifinite and let (fi)i∈I be a family of idempotent deflations gener-

ating the identity. Construct an expanding system by taking as objects the images of

the deflations and as connecting embeddings the inclusion of images. The associated

upper adjoint is given by fi restricted to im(fj). D is the bilimit of this system by

Lemma 3.3.8.

If, conversely, 〈D, (fi)i∈I〉 is a bilimit of finite posets then clearly the compositions

fi ◦ gi, where gi is the upper adjoint of fi, satisfy the requirements of Theorem 4.2.6.

So we have three characterizations of bifiniteness, the original one, which may

be called an internal description, a functional description by Theorem 4.2.6, and a

categorical one by Theorem 4.2.7. Often, the functional characterization is the most

handy one in proofs. We should also mention that bifinite domains were first defined

by Gordon Plotkin in [Plo76] using expanding sequences. (In our taxonomy these are

precisely the countably based bifinite domains.) The acronym he used for them, SFP,

continues to be quite popular.

Theorem 4.2.8. The category B of bifinite domains is closed under cartesian product,

function space, coalesced sum, and bilimits. In particular, B is cartesian closed.

Proof. Only function space and bilimit are non-trivial. We leave the latter as an exer-

cise. For the function space let D and E be bifinite with families of idempotent defla-

tions (fi)i∈I and (gj)j∈J . A directed family of idempotent deflations on [D −→ E] is

given by the maps Fij : h 7→ gj ◦ h ◦ fi, 〈i, j〉 ∈ I × J .

4.2.2 FS-domains

Let us now look at continuous domains. The reasoning about what the structure of D
should be in order to ensure that [D −→ E] is continuous is pretty much the same as

for algebraic domains. But at the point where we there introduced the mub-closure of

a finite set of compact elements, we must now postulate the existence of some finite

and finitely supported partitioning of D. This is clearly an increase in the logical

complexity of our definition and also of doubtful practical use. It is more satisfactory

to generalise the functional characterization.

Definition 4.2.9. Let D be a dcpo and f : D → D be a Scott-continuous function.

We say that f is finitely separated from the identity on D, if there exists a finite set M

60

such that for any x ∈ D there is m ∈ M with f(x) ⊑ m ⊑ x. We speak of strong

separation if for each x there are elements m,m′ ∈M with f(x) ⊑ m≪ m′ ⊑ x.

A pointed dcpo D is called an FS-domain if there is a directed collection (fi)i∈I of

continuous functions on D, each finitely separated from idD, with the identity map as

their supremum.

It is relatively easy to see that FS-domains are indeed continuous. Thus it makes

sense to speak of FS as the full subcategory of CONT where the objects are the FS-

domains.

We have exact parallels to the properties of bifinite domains, but often the proofs

are trickier.

Proposition 4.2.10. If D is an FS-domain and E is pointed and continuous then

[D −→ E] is continuous.

Comment: Unfortunately, the proof of this is not only “trickier” but as yet unknown. The proposition

is valid if we ask D to be a retract of a bifinite domain and the proof of this is analogous to that of

Proposition 4.2.4. This is interesting because it is unknown whether every FS-domain is a retract of a

bifinite one, or whether the concept of FS is strictly more encompassing than that of retracts of bifinite.

We discuss this further below.

Regarding FS, it is true that when both D and E are FS-domains, then [D −→ E] is also an FS-

domains. This was shown in [Jun90]. The following theorem is therefore still valid.

Theorem 4.2.11. The category FS is closed under the formation of products, function

spaces, coalesced sums, and bilimits. It is cartesian closed.

What we do not have are a categorical characterization or a description of FS-

domains as retracts of bifinite domains. All we can say is the following.

Proposition 4.2.12. 1. Every bifinite domain is an FS-domain.

2. A retract of an FS-domain is an FS-domain.

3. An algebraic FS-domain is bifinite.

To fully expose our ignorance, we conclude this subsection with an example of a

well-structured FS-domain of which we do not know whether it is a retract of a bifinite

domain.

Example. Let Disc be the collection of all closed discs in the plane plus the plane

itself, ordered by reversed inclusion. One checks that the filtered intersection of discs

is again a disc, so Disc is a pointed dcpo. A disc d1 approximates a disc d2 if and only

if d1 is a neighborhood of d2. This proves that Disc is continuous. For every ǫ > 0
we define a map fǫ on Disc as follows. All discs inside the open disc with radius 1

ǫ
are

mapped to their closed ǫ-neighborhood, all other discs are mapped to the plane which

is the bottom element of Disc. Because the closed discs contained in some compact

set form a compact space under the Hausdorff subspace topology, these functions are

finitely separated from the identity map. This proves that Disc is a countably based

FS-domain.

61

4.2.3 Coherence

This is a good opportunity to continue our exposition of the topological side of domain

theory, which we began in Section 2.3. We need a second tool complementing the

lattice σD of Scott-open sets, namely, the compact saturated sets. Here ‘compact’ is to

be understood in the classical topological sense of the word, i.e. a setA of a topological

space is compact if every covering of A by open sets contains a finite subcovering.

Saturated are those sets which are intersections of their neighborhoods. In dcpo’s

equipped with the Scott-topology these are precisely the upper sets, as is easily seen

using opens of the form D \ ↓x.

Theorem 4.2.13. Let D be a continuous domain. The sets of open neighborhoods of

compact saturated sets are precisely the Scott-open filters in σD.

By Proposition 7.2.27 this is a special case of the Hofmann-Mislove Theorem 7.2.9.

Let us denote the set of compact saturated sets of a dcpo D, ordered by reverse

inclusion, by κD. We will refer to families in κD which are directed with respect to

reverse inclusion, more concretely as filtered families. The following, then, is only a

re-formulation of Corollary 7.2.11.

Proposition 4.2.14. Let D be a continuous domain.

1. κD is a dcpo. Directed suprema are given by intersection.

2. If the intersection of a filtered family of compact saturated sets is contained in a

Scott-open set O then some element of it belongs to O already.

3. κD \ {∅} is a dcpo.

Proposition 4.2.15. Let D be a continuous domain.

1. κD is a continuous domain.

2. A≪ B holds in κD if and only if there is a Scott-open set O with B ⊆ O ⊆ A.

3. O ≪ U holds in σD if and only if there is a compact saturated set A with

O ⊆ A ⊆ U .

Proof. All three claims are shown easily using upper sets generated by finitely many

points: If O is an open neighborhood of a compact saturated set A then there exists a

finite set M of points of O with A ⊆ ↑↑M ⊆ ↑M ⊆ O.

The interesting point about FS-domains then is, that their space of compact sat-

urated sets is actually a continuous lattice. We already have directed suprema (in

the form of filtered intersections) and continuity, so this boils down to the property

that the intersection of two compact saturated sets is again compact. Let us call do-

mains for which this is true, coherent domains. Given the intimate connection between

σD and κD, it is no surprise that we can read off coherence from the lattice of open

sets.

Proposition 4.2.16. A continuous domain D is coherent if and only if for all

O,U1, U2 ∈ σD with O ≪ U1 and O ≪ U2 we also have O ≪ U1 ∩ U2.

62

(In Figure 6 we gave an example showing that the condition is not true in arbitrary

continuous lattices.)

This result specializes for algebraic domains as follows:

Proposition 4.2.17. An algebraic domain D is coherent if and only if K(D) is mub-

complete and finite sets of K(D) have finite sets of minimal upper bounds.

This proposition was named ‘2/3-SFP Theorem’ in [Plo81] because coherence

rules out precisely the first two non-examples of Plotkin-orders, Figure 12, but not

the third. The only topological characterization of bifinite domains we have at the

moment, makes use of the continuous function space, see Lemma 4.3.2.

We observe that for algebraic coherent domains, σD and κD have a common sub-

lattice, namely that of compact-open sets. These are precisely the sets of the form

↑c1 ∪ . . . ∪ ↑cn with the ci compact elements. This lattice generates both σD and κD
when we form arbitrary suprema. This pleasant coincidence features prominently in

Chapter 7.

Theorem 4.2.18. FS-domains (bifinite domains) are coherent.

Let us reformulate the idea of coherence in yet another way.

Definition 4.2.19. The Lawson-topology on a dcpo D is the smallest topology con-

taining all Scott-open sets and all sets of the form D \ ↑x. It is denoted by λD.

Proposition 4.2.20. Let D be a continuous domain.

1. The Lawson-topology on D is Hausdorff. Every Lawson-open set has the form

O \A where O is Scott-open and A is Scott-compact saturated.

2. The Lawson-topology on D is compact if and only if D is coherent.

3. A Scott-continuous retract of a Lawson-compact continuous domain is Lawson-

compact and continuous.

So we see that FS-domains and bifinite domains carry a natural compact Hausdorff

topology. We will make use of this in Chapter 6.

4.3 The hierarchy of categories of domains

The purpose of this section is to show that there are no other ways of constructing a

cartesian closed full subcategory of CONT or ALG than those exhibited in the previous

two sections. The idea that such a result could hold originated with Gordon Plotkin,

[Plo81]. For the particular class ω-ALG⊥ it was verified by Mike Smyth in [Smy83a],

for the other classes by Achim Jung in [Jun88, Jun89, Jun90]. All these classification

results depend on the Axiom of Choice.

63

4.3.1 Domains with least element

Let us start right away with the crucial bifurcation lemma on which everything else in

this section is based.

Lemma 4.3.1. Let D and E be continuous domains, where E is pointed, such that

[D −→ E] is continuous. Then D is coherent or E is an L-domain.

Proof. By contradiction. Assume D is not coherent and E is not an L-domain. By

Proposition 4.2.16 there exist open sets O,U1, and U2 in D such that O ≪ U1 and

O ≪ U2 hold but not O ≪ U1 ∩U2. Therefore there is a directed collection (Vi)i∈I of

open sets covering U1 ∩ U2, none of which covers O. We shall also need interpolating

sets U ′
1 and U ′

2, that is, O ≪ U ′
1 ≪ U1 and O ≪ U ′

2 ≪ U2.

The assumption aboutE not being an L-domain can be transformed into two special

cases. EitherE contains the algebraic domainA from Figure 12 (where the descending

chain in A may generally be an ordinal) or X from Figure 11 as a retract. We have left

the proof of this as Exercise 4.3.11(3). Note that if E′ is a retract of E then [D −→ E′]
is a retract of [D −→ E] and hence the former is continuous if the latter is. Let us now

prove for both cases that [D −→ E] is not continuous.

Case 1: E = A. Consider the step functions f1 = (U ′
1 ց a) and f2 = (U ′

2 ց b).
They clearly approximate f , which is defined by

f(x) =















c0, if x ∈ U1 ∩ U2;
a, if x ∈ U1 \ U2;
b, if x ∈ U2 \ U1;
⊥, otherwise.

Since approximating sets are directed we ought to find an upper bound g for f1 and f2
approximating f . But this impossible: Given an upper bound of {f1, f2} below f we

have the directed collection (hi)i∈I defined by

hi(x) =







c0, if x ∈ Vi;
cn+1, if x ∈ (U1 ∩ U2) \ Vi and g(x) = cn;
g(x), otherwise.

No hi is above g because (U1∩U2)\Vi must contain a non-empty piece ofO and there

hi is strictly below g. The supremum of the hi, however, equals f . Contradiction.

Case 2: E = X . We choose open sets in D as in the previous case. The various

functions, giving the contradiction, are now defined by f1 = (U ′
1 ց a), f2 = (U ′

2 ց
b),

f(x) =















c1, if x ∈ U1 ∩ U2;
a, if x ∈ U1 \ U2;
b, if x ∈ U2 \ U1;
⊥, otherwise.

hi(x) =







⊤, if x ∈ Vi;
c2, if x ∈ (U1 ∩ U2) \ Vi;
g(x), otherwise.

64

The remaining problem is that coherence does not imply that D is an FS-domain

(nor, in the algebraic case, that it is bifinite). It is taken care of by passing to higher-

order function spaces:

Lemma 4.3.2. Let D be a continuous domain with bottom element. Then D is an

FS-domain if and only if both D and [D −→ D] are coherent.

(The proof may be found in [Jun90].)

Combining the preceding two lemmas with Lemmas 3.2.5 and 3.2.7 we get the

promised classification result.

Theorem 4.3.3. Every cartesian closed full subcategory of CONT⊥ is contained in

FS or L.

Adding Proposition 4.2.12 we get the analogue for algebraic domains:

Theorem 4.3.4. Every cartesian closed full subcategory of ALG⊥ is contained in B

or aL.

Forming the function space of an L-domain may in general increase the cardinality

of the basis (Exercise 4.3.11(17)). If we restrict the cardinality, this case is ruled out:

Theorem 4.3.5. Every cartesian closed full subcategory of ω-CONT⊥ (ω-ALG⊥) is

contained in ω-FS (ω-B).

4.3.2 Domains without least element

The classification of pointed domains, as we have just seen, is governed by the di-

chotomy between coherent and lattice-like structures. Expressed at the element level,

and at least for algebraic domains we have given the necessary information, it is the

distinction between finite mub-closures and locally unique suprema of finite sets. It

turns out that passing to domains which do not necessarily have bottom elements im-

plies that we also have to study the mub-closure of the empty set. We get again the

same dichotomy. Coherence in this case means that D itself, that is, the largest ele-

ment of σD, is a compact element. This is just the compactness of D as a topological

space. And the property that E is lattice-like boils down to the requirement that each

element of E is above a unique minimal element, so E is really the disjoint union of

pointed components.

Lemma 4.3.6. LetD andE be continuous domains such that [D −→ E] is continuous.

Then D is compact or E is a disjoint union of pointed domains.

The proof is a cut-down version of that of Lemma 4.3.1 above. The surprising

fact is that this choice can be made independently from the choice between coher-

ent domains and L-domains. Before we state the classification, which because of this

independence, will now involve 2× 2 = 4 cases, we have to refine the notion of com-

pactness, because just like coherence it is not the full condition necessary for cartesian

closure.

65

Definition 4.3.7. A dcpoD is a finite amalgam if it is the union of finitely many pointed

dcpo’s D1, . . . , Dn such that every intersection of Di’s is also a union of Di’s. (Com-

pare the definition of mub-complete.)

For categories whose objects are finite amalgams of objects from another cate-

gory C we use the notation F-C. Similarly, we write U-C if the objects are disjoint

unions of objects of C.

Proposition 4.3.8. A mub-complete dcpo is a finite amalgam if and only if the mub-

closure of the empty set is finite.

Lemma 4.3.9. If bothD and [D −→ D] are compact and continuous thenD is a finite

amalgam.

Theorem 4.3.10. 1. The maximal cartesian closed full subcategories of CONT are

F-FS, U-FS, F-L, and U-L.

2. The maximal cartesian closed full subcategories of ALG are F-B, U-B, F-aL,

and U-aL.

At this point we can answer a question that may have occurred to the diligent reader

some time ago, namely, why we have defined bifinite domains in terms of pointed finite

posets, where clearly we never needed the bottom element in the characterizations of

them. The answer is that we wanted to emphasize the uniform way of passing from

pointed to general domains. The fact that the objects of F-B can be represented as

bilimits of finite posets is then just a pleasant coincidence.

Exercises 4.3.11. 1. [Jun89] Show that a dcpo D is continuous if the function

space [D −→ D] is continuous.

2. Let D be a bounded-complete domain. Show that ‘⊓’ is a Scott-continuous func-

tion from D ×D to D.

3. Characterize the lattice-like (pointed) domains by forbidden substructures:

(a) E is ω-continuous but not mub-complete if and only if domain A in Fig-

ure 12 is a retract of E.

(b) E is mub-complete but not an L-domain if and only if domain X in Fig-

ure 11 is a retract of E.

(c) E is an L-domain but not bounded-complete if and only if domain C in

Figure 11 is a retract of E.

(d) E is a bounded-complete domain but not a lattice if and only if domain V
in Figure 11 is a retract of E.

4. Find a poset in which all pairs have finite mub-closures but in which a triple of

points exists with infinite mub-closure.

5. Show that if for an algebraic domain D the basis is mub-complete then D itself

is not necessarily mub-complete.

66

6. Show that in a bifinite domain finite sets of non-compact elements may have

infinitely many minimal upper bounds and, even if these are all finite, may have

infinite mub-closures.

7. Show that if A is a two-element subset of an L-domain then A ∪ mub(A) is

mub-closed.

8. Prove that bilimits of bifinite domains are bifinite.

9. Prove the following statements about retracts of bifinite domains.

(a) A pointed dcpo D is a retract of a bifinite domain if and only if there is a

directed family (fi)i∈I of continuous functions on D such that each fi has

a finite image and such that
⊔

↑
i∈I fi = idD. (You may want to do this for

countably based domains first.)

(b) The ideal completion of a retract of a bifinite domain need not be bifinite.

(c) If D is a countably based retract of a bifinite domain then it is also the

image of a projection from a bifinite domain. (Without countability this is

an open problem.)

(d) The category of retracts of bifinite domains is cartesian closed and closed

under bilimits.

10. Prove that FS-domains have infima for downward directed sets. As a conse-

quence, an FS-domain which has binary infima, is a bc-domain.

11. Show that in a continuous domain the Lawson-closed upper sets are precisely

the Scott-compact saturated sets.

12. Characterize Lawson-continuous maps between bifinite domains.

13. We have seen that every bifinite domain is the bilimit of finite posets. As such,

it can be thought of as a subset of the product of all these finite posets. Prove

that the Lawson-topology on the bifinite domain is the restriction of the product

topology if each finite poset is equipped with the discrete topology.

14. Prove that a coherent L-domain is an FS-domain.

15. Characterize those domains which are both L-domains and FS-domains.

16. Characterize Scott-topology and Lawson-topology on both L-domains and FS-

domains by the ideal of functions approximating the identity.

17. [Jun89] Let E be an L-domain such that [E −→ E] is countably based. Show

that E is an FS-domain.

67

5 Recursive domain equations

The study of recursive domain equations is not easily motivated by reference to other

mathematical structure theories. So we shall allow ourselves to deviate from our gen-

eral philosophy and spend some time on examples. Beyond motivation, our examples

represent three different (and almost disjoint) areas in which recursive domain equa-

tions arise, in which they serve a particular role, and in which particular aspects about

solutions become prominent. It is an astonishing fact that within domain theory all

these aspects are dealt with in a unified and indeed very satisfactory manner. This rich-

ness and interconnectedness of the theory of recursive domain equations, beautiful as it

is, may nevertheless appear quite confusing on a first encounter. As a general guideline

we offer the following: Recursive domain equations and the domain theory for solv-

ing them comprise a technique that is worth learning. But in order to understand the

meaning of a particular recursive domain equation, you have to know the context in

which it came up.

5.1 Examples

5.1.1 Genuine equations

The prime example here is X ∼= [X −→ X]. Solving this equation in a cartesian

closed category gives a model for the untyped λ-calculus [Sco80, Bar84], in which, as

we know, no type distinction is made between functions and arguments. When setting

up an interpretation of λ-terms with values in D, where D solves this equation, we

need the isomorphisms φ : D → [D −→ D] and ψ : [D −→ D] → D explicitly. We

conclude that even in the case of a genuine equation we are looking not only for an

object but an object plus an isomorphism. This is a first hint that we shall need to

treat recursive domain equations in a categorical setting. However, the function space

operator is contravariant in its first and covariant in its second argument and so there

is definitely an obstacle to overcome. A second problem that this example illustrates

is that there may be many solutions to choose from. How do we recognize a canonical

one? This will be the topic of Section 5.3.

Besides this classical example, genuine equations are rare. They come up in se-

mantics when one is confronted with the ability of computers to treat information both

as program text and as data.

5.1.2 Recursive definitions

In semantics we sometimes need to make recursive definitions, for very much the same

reasons that we need recursive function calls, namely, we sometimes do not know how

often the body of a definition (resp. function) needs to be repeated. To give an example,

take the following definition of a space of so-called ‘resumptions’:

R ∼= [S −→ (S ⊕ S ×R)].

We read it as follows: A resumption is a map which assigns to a state either a final state

or an intermediary state together with another resumption representing the remaining

68

computation. Such a recursive definition is therefore nothing but a shorthand for an

infinite (but regular) expression. Likewise, a while loop could be replaced by an infinite

repetition of its body. This analogy suggests that the way to give meaning to a recursive

definition is to seek a limit of the repeated unwinding of the body of the definition

starting from a trivial domain. No doubt this is in accordance with our intuition, and

indeed this is how we shall solve equations in general. But again, before we can do

this, we need to be able to turn the right hand side of the specification into a functor.

5.1.3 Data types

Data types are algebras, i.e. sets together with operations. The study of this notion is

known as ‘Algebraic Specification’ [EM85] or ‘Initial Algebra Semantics’ [GTW78].

We choose a formulation which fits nicely into our general framework.

Definition 5.1.1. Let F be a functor on a category C. An F -algebra is given by an ob-

ject A and a map f : F (A) → A. A homomorphism between algebras f : F (A) → A
and f ′ : F (A′) → A′ is a map g : A→ A′ such that the following diagram commutes:

F (A)
F (g)✲ F (A′)

A

f

❄ g ✲ A′

f ′

❄

For example, if we let F be the functor over Set which assigns I
.
∪ A × A to A

(where I is the one-point dcpo as discussed in Section 3.2.1), then F -algebras are pre-

cisely the algebras with one nullary and one binary operation in the sense of universal

algebra. Lehmann and Smyth [LS81] discuss many examples. Many of the data types

which programming languages deal with are furthermore totally free algebras, or term

algebras on no generators. These are distinguished by the fact that there is precisely

one homomorphism from them into any other algebra of the same signature. In our cat-

egorical language we express this by initiality. Term algebras (alias initial F -algebras)

are connected with the topic of this chapter because of the following observation:

Lemma 5.1.2. If i : F (A) → A is an initial F -algebra then i is an isomorphism.

Proof. Consider the following composition of homomorphisms:

F (A)
F (f)✲ F 2(A)

F (i)✲ F (A)

A

i

❄ f✲ F (A)

F (i)

❄ i ✲ A

i

❄

where f is the unique homomorphism from i : F (A) → A to F (i) : F 2(A) → F (A)
guaranteed by initiality. Again by initiality, i ◦ f must be idA. And from the first

69

quadrangle we get f ◦ i = F (i) ◦ F (f) = F (idA) = idF (A). So f and i are inverses

of each other.

So in order to find an initial F -algebra, we need to solve the equation X ∼= F (X).
But once we get a solution, we still have to check initiality, that is, we must validate

that the isomorphism from F (X) to X is the right structure map.

In category theory we habitually dualize all definitions. In this case we get (final)

co-algebras. Luckily, this concept is equally meaningful. Where the map f : F (A) →
A describes the way how new objects of type A are constructed from old ones, a map

g : A → F (A) stands for the opposite process, the decomposition of an object into its

constituents. Naturally, we want the two operations to be inverses of each other. In

other words, if i : F (A) → A is an initial F -algebra, then we require i−1 : A→ F (A)
to be the final co-algebra.

Peter Freyd [Fre91] makes this reasoning the basis of an axiomatic treatment of

domain theory. Beyond and above axiomatizing known results, he treats contravariant

and mixed variant functors and offers a universal property encompassing both initial-

ity and finality. This will allow us to judge the solution of general recursive domain

equations with respect to canonicity.

5.2 Construction of solutions

Suppose we are given a recursive domain equation X ∼= F (X) where the right hand

side defines a functor on a suitable category of domains. As suggested by the ex-

ample in Section 5.1.2, we want to repeat the trick which gave us fixpoints for Scott-

continuous functions, namely, to take a (bi-)limit of the sequence I, F (I), F (F (I)),
Remember that bilimits are defined in terms of e-p-pairs. This makes it necessary that

we, at least temporarily, switch to a different category. The convention that we adopt

for this chapter is to let D stand for any category of pointed domains, closed under

bilimits. All the cartesian closed categories of pointed domains mentioned in Chapter 4

qualify. We denote the corresponding subcategory where the morphisms are embed-

dings by De. Some results will only hold for strict functions. Recall that our notation

for these were f : D
⊥!
−→ E and D⊥! for categories. Despite this unhappy (but unavoid-

able) proliferation of categories, recall that the central limit-colimit Theorem 3.3.7 and

Corollary 3.3.10 state a close connection: Colimits of expanding sequences in De are

also colimits in D and, furthermore, if the embeddings defining the sequence are re-

placed by their upper adjoints, the colimit coincides with the corresponding limit. This

will bear fruit when we analyze the solutions we get in De from various angles as

suggested by the examples in the last subsection.

Let us now start by just assuming that our functor restricts to De.

5.2.1 Continuous functors

Definition 5.2.1. A functor F : De → De is called continuous, if for every ex-

panding sequence 〈(Dn)n∈N, (emn : Dn → Dm)n≤m∈N〉 with colimit 〈D, (en)n∈N〉
we have that 〈F (D), (F (en))n∈N〉 is a colimit of the sequence 〈(F (Dn))n∈N,

(F (emn) : F (Dn) → F (Dm))n≤m∈N〉.

70

This, obviously, is Scott-continuity expressed for functors. Whether we formulate

it in terms of expanding sequences or expanding systems is immaterial. The question is

not, what is allowed to enter the model, but rather, how much do I have to check before

I can apply the theorems in this chapter. And sequences are all that is needed.

This, then, is the central lemma on which our domain theoretic technique for solv-

ing recursive domain equations is based (recall that f∗ is our notation for the upper

adjoint of f):

Lemma 5.2.2. Let F be a continuous functor on a category De of domains. For each

embedding e : A → F (A) consider the colimit 〈D, (en)n∈N〉 of the expanding se-

quence A
e

−→ F (A)
F (e)
−→ F (F (A))

F (F (e))
−→ · · · . Then D is isomorphic to F (D) via

the maps

fold =
⊔

↑
n∈N

en+1 ◦ F (en)
∗ : F (D) → D, and

unfold =
⊔

↑
n∈N

F (en) ◦ e
∗
n+1 : D → F (D).

For each n ∈ N they satisfy the equations

F (en) = unfold ◦ en+1

F (en)
∗ = e∗n+1 ◦ fold .

Proof. We know that 〈D, (en)n∈N\{0}〉 is a colimit over the diagram

F (A)
F (e)
−→ F (F (A))

F (F (e))
−→ · · ·

(clipping off the first approximation makes no difference), where there is also the co-

cone 〈F (D), (F (en))n∈N〉. The latter is also colimiting by the continuity of F . In

this situation Theorem 3.3.7 provides us with unique mediating morphisms which are

precisely the stated fold and unfold. They are inverses of each other because both co-

cones are colimiting. The equations follow from the explicit description of mediating

morphisms in Theorem 3.3.7.

Note that since we have restricted attention to pointed domains, we always have the

initial embedding e : I → F (I). The solution to X ∼= F (X) based on this embedding

we call canonical and denote it by FIX(F).

5.2.2 Local continuity

Continuity of a functor is a hard condition to verify. Luckily there is a property which

is stronger but nevertheless much easier to check. It will also prove useful in the next

section.

Definition 5.2.3. A functor F from D to E, where D and E are categories of domains,

is called locally continuous, if the maps Hom(D,D′) −→ Hom(F (D), F (D′)), f 7→
F (f), are continuous for all objects D and D′ from D.

Proposition 5.2.4. A locally continuous functor F : D → E restricts to a continuous

functor from De to Ee.

71

We will soon generalize this, so there is no need for a proof at this point.

Typically, recursive domain equations are built from the basic constructions listed

in Section 3.2. The strategy is to check local continuity for each of these individually

and then rely on the fact that composition of continuous functors yields a continuous

functor. However, we must realize that the function space construction is contravariant

in its first and covariant in its second variable, and so the technique from the preceding

paragraph does not immediately apply. Luckily, it can be strengthened to cover this

case as well.

Definition 5.2.5. A functor F : Dop × D’ → E, contravariant in D, covariant in D’,

is called locally continuous, if for directed sets A ⊆ Hom(D2, D1) and A′ ⊆
Hom(D′

1, D
′
2) (where D1, D2 are objects in D and D′

1, D
′
2 are objects in D’) we have

F (
⊔

↑A,
⊔

↑A′) =
⊔

↑

f∈A,f ′∈A′

F (f, f ′)

in Hom(F (D1, D
′
1), F (D2, D

′
2)).

Proposition 5.2.6. If F : Dop × D’ → E is a mixed variant, locally continuous functor,

then it defines a continuous covariant functor F̂ from De × D’e to Ee as follows:

F̂ (D,D′) = F (D,D′) for objects, and

F̂ (e, e′) = F (e∗, e′) for embeddings.

The upper adjoint to F̂ (e, e′) is given by F (e, e′
∗
).

Proof. Let (e, e∗) and (e′, e′
∗
) be e-p-pairs in D and D’, respectively. We calculate

F (e, e′
∗
) ◦ F̂ (e, e′) = F (e, e′

∗
) ◦ F (e∗, e′) = F (e∗ ◦ e, e′∗ ◦ e′) = F (id, id) = id and

F̂ (e, e′) ◦ F (e, e′∗) = F (e∗, e′) ◦ F (e, e′∗) = F (e ◦ e∗, e′ ◦ e′∗) ⊑ F (id, id) = id, so

F̂ maps indeed pairs of embeddings to embeddings.

For continuity, let 〈(Dn), (emn)〉 and 〈(D′
n), (e

′
mn)〉 be expanding sequences in

D and D’ with colimits 〈D, (en)〉 and 〈D′, (e′n)〉, respectively. By Lemma 3.3.8

this implies
⊔

↑
n∈N

en ◦ e∗n = idD and
⊔

↑
n∈N

e′n ◦ e′
∗
n = idD′ . By lo-

cal continuity we have
⊔

↑
n∈N

F̂ (en, e
′
n) ◦ F̂ (en, e

′
n)

∗ =
⊔

↑
n∈N

F (e∗n, e
′
n) ◦

F (en, e
′∗
n) =

⊔

↑
n∈N

F (en ◦ e∗n, e
′
n ◦ e′∗n) = F (

⊔

↑
n∈N

en ◦ e∗n,
⊔

↑
n∈N

e′n ◦ e′∗n) =

F (idD, idD′) = idF (D,D′) and so 〈F̂ (D,D′), (F̂ (en, e
′
n))n∈N〉 is a colimit of

〈(F̂ (Dn, D
′
n))n∈N, (F̂ (emn, e

′
mn))n≤m∈N〉.

While it may seem harmless to restrict a covariant functor to embeddings in order

to solve a recursive domain equation, it is nevertheless not clear what the philosophical

justification for this step is. For mixed variant functors this question becomes even

more pressing since we explicitly change the functor. As already mentioned, a satis-

factory answer has only recently been found, [Fre91, Pit93b]. We present Peter Freyd’s

solution in the next section.

Let us take stock of what we have achieved so far. Building blocks for recursive

domain equations are the constructors of Section 3.2, ×,⊕,→, etc. , each of which is

readily seen to define a locally continuous functor. Translating them to embeddings

72

via the preceding proposition, we get continuous functors of one or two variables. We

further need the diagonal ∆: De → De × De to deal with multiple occurrences of

X in the body of the equation. Then we note that colimits in a finite power of De

are calculated coordinatewise and hence the diagonal and the tupling of continuous

functors are continuous. Finally, we include constant functors to allow for constants to

occur in an equation. Two more operators will be added below: the bilimit in the next

section and various powerdomain constructions in Chapter 6.

5.2.3 Parameterized equations

Suppose that we are given a locally continuous functor F in two variables. Given

any domain D we can solve the equation X ∼= F (D,X) using the techniques of

the preceding sections. Remember that by default we mean the solution according

to Lemma 5.2.2 based on e : I → F (D, I), so there is no ambiguity. Also, we have

given a concrete representation for bilimits in Theorem 3.3.7, so FIX(F (D, ·)) is also

well-defined in this respect. We want to show that it extends to a functor.

Notation is a bit of a problem. Let F : D⊥! × E⊥! → E⊥! be a functor in two

variables. We set FD for the functor on E⊥! which maps E to F (D,E) for objects and

g : E
⊥!
−→ E′ to F (idD, g) for morphisms. Similarly for FD′ . The embeddings into the

canonical fixpoint of FD, resp. FD′ , we denote by e0, e1, . . . and e′0, e
′
1, . . . , and we

use e and e′ for the unique strict function from I into D and D′, respectively.

Proposition 5.2.7. Let F : D⊥! × E⊥! → E⊥! be a locally continuous functor. Then

the following defines a locally continuous functor from D⊥! to E⊥!:

On objects : D 7→ FIX(FD),

on morphisms : (f : D → D′) 7→
⊔

↑

n∈N

e′n ◦ fn ◦ e∗n

where the sequence (fn)n∈N is defined recursively by f0 = idI, fn+1 = F (f, fn).

Proof. Let D and D′ be objects of D⊥! and let f : D
⊥!
−→ D′ be a strict function. The

solution to X ∼= F (D,X) is given by the bilimit

FIX(FD)

�
�
�

�
e0

✒ ■❅
❅
❅
❅

e2 . . .

I
e✲ FD(I)

e1

✻

FD(e)✲ F 2
D(I) ✲ · · ·

and similarly for D′. Corresponding objects of the two expanding sequences are con-

nected by fn : F
n
D(I) ⊥!

−→ Fn
D′(I). They commute with the embeddings of the expand-

ing sequences: For n = 0 we have F 0
D′(e′) ◦ f0 = e′ ◦ idI = e′ = f1 ◦ e = f1 ◦ F

0
D(e)

because there is only one strict map from I to F 1(D′). Higher indices follow by induc-

73

tion:

Fn+1
D′ (e′) ◦ fn+1 = F (idD′ , Fn

D′(e′)) ◦ F (f, fn)

= F (f, Fn
D′(e′) ◦ fn)

= F (f, fn+1 ◦ F
n
D(e))

= F (f, fn+1) ◦ F (idD, F
n
D(e))

= fn+2 ◦ F
n+1
D (e).

So we have a second cocone over the sequence defining FIX(FD) and using the fact

that colimits in E⊥!
e are also colimits in E⊥!, we get a (unique) mediating morphism

from FIX(FD) to FIX(FD′). By Theorem 3.3.7 it has the postulated representation.

Functoriality comes for free from the uniqueness of mediating morphisms. It re-

mains to check local continuity. So let A be a directed set of maps from D to D′. We

easily get (
⊔

↑A)n =
⊔

↑
f∈A fn by induction and the local continuity of F . The supre-

mum can be brought to the very front by the continuity of composition and general

associativity.

Note that this proof works just as well for mixed variant functors. As an application,

suppose we are given a system of simultaneous equations

X1
∼= F1(X1, . . . , Xn)

...
...

Xn
∼= Fn(X1, . . . , Xn).

We can solve these one after the other, viewing X2, . . . , Xn as parameters for the

first equation, substituting the result for X1 in the second equation and so on. It is

more direct to pass from D to Dn, for which Theorem 3.3.7 and the results of this

chapter remain true, and then solve these equations simultaneously with the tupling of

the Fi. The fact that these two methods yield isomorphic results is known as Bekič’s

rule [Bek69].

5.3 Canonicity

We have seen in the first section of this chapter that recursive domain equations arise

in various contexts. After having demonstrated a technique for solving them, we must

now check whether the solutions match the particular requirements of these applica-

tions.

5.3.1 Invariance and minimality

Let us begin with a technique of internalizing the expanding sequence I → F (I) →
F (F (I)) → · · · into the canonical solution. This will allow us to do proofs about

FIX(F) without (explicit) use of the defining expanding sequence.

Lemma 5.3.1. Let F be a locally continuous functor on a category of domains D and

let i : F (A) → A be an isomorphism. Then there exists a least homomorphism hC,A

74

from A to every other F -algebra f : F (C) → C. It equals the least fixpoint of the

functional φC,A on [A −→ C] which is defined by

φC,A(g) = f ◦ F (g) ◦ i−1 .

Least homomorphisms compose: If j : F (B) → B is also an isomorphism, then

hC,A = hC,B ◦ hB,A.

Proof. The functional φ = φC,A is clearly continuous because F is locally continu-

ous and composition is a continuous operation. Since we have globally assumed least

elements, the function space [A −→ C] contains c⊥ as a least element. So the least

fixpoint hC,A of φC,A calculated as the supremum of the chain c⊥ ⊑ φ(c⊥) ⊑ · · ·
exists. We show by induction that it is below every homomorphism h. For c⊥ this is

obvious. For the induction step assume g ⊑ h. We calculate: φ(g) = f ◦F (g) ◦ i−1 ⊑
f ◦F (h) ◦ i−1 = h. It follows that fix(φ) = hC,A ⊑ h holds. On the other hand, every

fixpoint of φ is a homomorphism: h ◦ i = φ(h) ◦ i = f ◦ F (h) ◦ i−1 ◦ i = f ◦ F (h).
The claim about composition of least homomorphisms can also be shown by in-

duction. But it is somewhat more elegant to use the invariance of least fixpoints,

Lemma 2.1.21. Consider the diagram

[B −→ C]
H✲ [A −→ C]

[B −→ C]

φC,B

❄ H✲ [A −→ C]

φC,A

❄

where H is the strict operation which assigns g ◦hB,A to g ∈ [B −→ C]. The diagram

commutes, because H ◦ φC,B(g) = f ◦ F (g) ◦ j−1 ◦ hB,A = f ◦ F (g ◦ hB,A) ◦ i
−1

(because hB,A is an homomorphism) = φC,A(H(g)). Lemma 2.1.21 then gives us

the desired equality: hC,A = fix(φC,A) = H(fix(φC,B)) = fix(φC,B) ◦ hB,A =
hC,B ◦ hB,A.

Specializing the second algebra in this lemma to be i : F (A) → A itself, we de-

duce that on every fixpoint of a locally continuous functor there exists a least endomor-

phism hA,A. Since the identity is always an endomorphism, the least endomorphism

must be below the identity and idempotent, i.e. a kernel operator and in particular strict.

This we will use frequently below.

Theorem 5.3.2. (Invariance, Part 1) Let F be a locally continuous functor on a cate-

gory of domains D and let i : F (A) → A be an isomorphism. Then the following are

equivalent:

1. A is isomorphic to the canonical fixpoint FIX(F);

2. idA is the least endomorphism of A;

3. idA = fix(φA,A) where φA,A : [A −→ A] → [A −→ A] is defined by φA,A(g) =
i ◦ F (g) ◦ i−1;

75

4. idA is the only strict endomorphism of A.

Proof. (1=⇒ 2) The least endomorphism on D = FIX(F) is calculated as the least

fixpoint of φD,D : g 7→ fold◦F (g)◦unfold. With the usual notation for the embeddings

of Fn(I) into D we get (by induction): c⊥ = e0 ◦ e
∗
0 and φn(c⊥) = φ(φn−1(c⊥)) =

φ(en−1 ◦e
∗
n−1) = fold◦F (en−1)◦F (e

∗
n−1)◦unfold = en ◦e

∗
n, where the last equality

follows because fold and unfold are mediating morphisms. Lemma 3.3.8 entails that

the supremum of the φn(c⊥) is the identity.

The equivalence of (2) and (3) is a reformulation of Lemma 5.3.1.

(3=⇒ 4) Suppose h : A
⊥!
−→ A defines an endomorphism of the algebra

i : F (A) → A. We apply the invariance property of least fixpoints, Lemma 2.1.21,

to the diagram (where φ now stands for φA,A)

[A −→ A]
H✲ [A −→ A]

[A −→ A]

φ

❄ H✲ [A −→ A]

φ

❄

whereH maps g ∈ [A −→ A] to h◦g. This is a strict operation because h is assumed to

be strict. The diagram commutes: H ◦φ(g) = H(i◦F (g)◦ i−1) = h◦ i◦F (g)◦ i−1 =
i ◦ F (h) ◦ F (g) ◦ i−1 = φ(H(g)). By Lemma 2.1.21 we have idA = fix(φ) =
H(fix(φ)) = h ◦ idA = h.

(4=⇒ 1) By the preceding lemma we have homomorphisms between A and

FIX(F). They compose to the least endomorphisms on A, resp. FIX(F), which we

know to be strict. But then they must be equal to the identity as we have just shown for

FIX(F) and assumed for A.

If, in the last third of this proof, we do not assume that idA is the only strict endo-

morphism onA, then we still get an embedding-projection pair between FIX(F) andA.

Thus we have:

Theorem 5.3.3. (Minimality, Part 1) The canonical fixpoint of a locally continuous

functor is a sub-domain of every other fixpoint.

So we have shown that the canonical solution is the least fixpoint in a relevant

sense. This is clearly a good canonicity result with respect to the first class of examples.

For pedagogical reasons we have restricted attention to the covariant case first, but, as

we will see in section 5.3.3, this characterization is also true for functors of mixed

variance.

5.3.2 Initiality and finality

By a little refinement of the proofs of the preceding subsection we get the desired

result that the canonical fixpoint together with fold is an initial F -algebra. One of the

adjustments is that we have to pass completely to strict functions, because Lemma 5.3.1

76

does not guarantee the existence of strict homomorphisms and only of these can we

prove unicity.

Theorem 5.3.4. (Initiality) Let F : D⊥! → D⊥! be a locally continuous functor on

a category of domains with strict functions. Then fold : F (D) → D is an initial F -

algebra where D is the canonical solution to X ∼= F (X).

Proof. Let f : F (A)
⊥!
−→ A be a strict F -algebra. The homomorphism h : D → A we

get from Lemma 5.3.1 is strict as we see by inspecting its definition. That there are no

others is shown as in the proof of Theorem 5.3.2, (3=⇒ 4). The relevant diagram for

the application of Lemma 2.1.21 is now:

[D −→ D]
H✲ [D −→ A]

[D −→ D]

φD,D

❄ H✲ [D −→ A].

φA,D

❄

By dualizing Lemma 5.3.1 and the proof of Theorem 5.3.2, (3=⇒ 4), we get the

final co-algebra theorem. It is slightly stronger than initiality since it holds for all

co-algebras, not only the strict ones.

Theorem 5.3.5. (Finality) Let F : D → D be a locally continuous functor with canon-

ical fixpoint D = FIX(F). Then unfold : D → F (D) is a final co-algebra.

5.3.3 Mixed variance

Let us now tackle the case that we are given an equation in which the variableX occurs

both positively and negatively in the body, as in our first example X ∼= [X −→ X].
We assume that by separating the negative occurrences from the positive ones, we have

a functor in two variables, contravariant in the first and covariant in the second. As

the reader will remember, solving such an equation required the somewhat magical

passage to adjoints in the first coordinate. We will now see in how far we can extend

the results from the previous two subsections to this case. Note that for a mixed variant

functor the concept of F -algebra or co-algebra is no longer meaningful, as there are no

homomorphisms. The idea is to pass to pairs of mappings. Lemma 5.3.1 is replaced by

Lemma 5.3.6. Let F : Dop × D → D be a mixed variant, locally continuous functor

and let i : F (A,A) → A and j : F (B,B) → B be isomorphisms. Then there exists a

least pair of functions h : A→ B and k : B → A such that

F (A,A)
F (k, h)✲ F (B,B) F (B,B)

F (h, k)✲ F (A,A)

and

A

i

❄ h ✲ B

j

❄
B

j

❄ k ✲ A

i

❄

77

commute.

The composition of two such least pairs gives another one.

Proof. Define a Scott-continuous function φ on [A −→ B]× [B −→ A] by φ(f, g) =
(j ◦F (g, f) ◦ i−1, i ◦F (f, g) ◦ j−1) and let (h, k) be its least fixpoint. Commutativity

of the two diagrams is shown as in the proof of Lemma 5.3.1.

Comment: The statement about composition of least pairs of functions is certainly true for constant

bottom maps, and this is lifted to the limits by induction over the fixpoint computation.

By equating A and B in this lemma, we get a least endofunction h which satisfies

h◦f = f ◦F (h, h). Again, it must be below the identity. Let us call such endofunctions

mixed endomorphisms.

Theorem 5.3.7. (Invariance, Part 2) Let F : Dop × D → D be a mixed variant and

locally continuous functor and let i : F (A,A) → A be an isomorphism. Then the

following are equivalent:

1. A is isomorphic to the canonical fixpoint FIX(F);

2. idA is the least mixed endomorphism of A;

3. idA = fix(φA,A) where φA,A : [A −→ A] → [A −→ A] is defined by φA,A(g) =
i ◦ F (g, g) ◦ i−1;

4. idA is the only strict mixed endomorphism of A.

Proof. The proof is of course similar to that of Theorem 5.3.2, but let us

spell out the parts where mixed variance shows up. Recall from Sec-

tion 5.2.2 how the expanding sequence defining D = FIX(F) looks like:

I
e✲ F (I, I)

F (e∗,e)✲ F (F (I, I), F (I, I)) ✲ · · · . If e0, e1, . . . are the col-

imiting maps into D, then F (e∗0, e0), F (e
∗
1, e1), . . . form the cocone into F (D,D),

which, by local continuity, is also colimiting. The equations from Lemma 5.2.2 read:

F (e∗n, en) = unfold ◦ en+1 and F (e∗n, en)
∗ = F (en, e

∗
n) = e∗n+1 ◦ fold. We show that

the n-th approximation to the least mixed endomorphism equals en ◦ e
∗
n. For n = 0 we

get c⊥ = e0 ◦ e
∗
0, and for the induction step:

φn+1(c⊥) = φ(φn(c⊥))

= φ(en ◦ e∗n)

= fold ◦ F (en ◦ e∗n, en ◦ e∗n) ◦ unfold

= fold ◦ F (e∗n, en) ◦ F (en, e
∗
n) ◦ unfold

= en+1 ◦ e
∗
n+1.

(Note how contravariance in the first argument of F shuffles en and e∗n in just the right

way.)

(3=⇒ 4) The diagram to which Lemma 2.1.21 is applied is as before, but

H : [A −→ A] → [A −→ A] now maps g : A→ A to h ◦ g ◦ h.

The rest can safely be left to the reader.

78

Theorem 5.3.8. (Minimality, Part 2) The canonical fixpoint of a mixed variant and

locally continuous functor is a sub-domain of every other fixpoint.

Now that we have some experience with mixed variance, it is pretty clear how

to deal with initiality and finality. The trick is to pass once more to pairs of (strict)

functions.

Theorem 5.3.9. (Free mixed variant algebra) Let F : D⊥!
op × D⊥! → D⊥! be a

mixed variant, locally continuous functor and let D be the canonical solution to

X ∼= F (X,X). Then for every pair of strict continuous functions f : A
⊥!
−→ F (B,A)

and g : F (A,B)
⊥!
−→ B there are unique strict functions h : A

⊥!
−→ D and k : D

⊥!
−→ B

such that

F (B,A)
F (k, h)✲ F (D,D) F (D,D)

F (h, k)✲ F (A,B)

and

A

f

✻

h ✲ D

unfold

✻

D

fold

❄ k ✲ B

g

❄

commute.

We should mention that the passage from covariant to mixed-variant functors,

which we have carried out here concretely, can be done on an abstract, categorical

level as was demonstrated by Peter Freyd in [Fre91]. The feature of domain theory

which Freyd uses as his sole axiom is the existence and coincidence of initial algebras

and final co-algebras for “all” endofunctors (“all” to be interpreted in some suitable

enriched sense, in our case as “all locally continuous endofunctors”). Freyd’s results

are the most striking contribution to date towards Axiomatic Domain Theory, for which

see 8.4 below.

5.4 Analysis of solutions

We have worked hard in the last section in order to show that our domain theoretic

solutions are canonical in various respects. Besides this being reassuring, the advantage

of canonical solutions is that we can establish proof rules for showing properties of

them. This is the topic of this section.

5.4.1 Structural induction on terms

This technique is in analogy with universal algebra. While one has no control over

arbitrary algebras of a certain signature, we feel quite comfortable with the initial or

term algebra. There, every element is described by a term and no identifications are

made. The first property carries over to our setting quite easily. For each of the finitary

constructions of Section 3.2, we have introduced a notation for the basis elements of the

constructed domain, to wit, tuples 〈d, e〉, variants (d : i), one-element constant ⊥ ∈ I,
and step-functions (dց e). Since our canonical solutions are built as bilimits, starting

79

from I, and since every basis element of a bilimit shows up at a finite iteration already,

Theorem 3.3.11, these can be denoted by finite expressions. The proof can then be

based on structural induction on the length of these terms.

Unicity, however, is hard to achieve and this is the fault of the function space. One

has to define normal forms and prove conversion rules. A treatment along these lines,

based on [Abr91b], is given in Chapter 7.3.

5.4.2 Admissible relations

This is a more domain-theoretic formulation of structural induction, based on certain

relations. The subject has recently been expanded and re-organized in an elegant way

by Andrew Pitts [Pit93b, Pit94]. We follow his treatment closely but do not seek the

same generality. We start with admissible relations, which we have met shortly in

Chapter 2 already.

Definition 5.4.1. A relation R ⊆ Dn on a pointed domain D is called admissible if it

contains the constantly-bottom tuple and if it is closed under suprema of ω-chains. We

write R
n(D) for the set of all admissible n-ary relations on D, ordered by inclusion.

Unary relations of this kind are also called admissible predicates.

This is tailored to applications of the Fixpoint Theorem 2.1.19, whence we pre-

ferred the slightly more inclusive concept of ω-chain over directed sets. If we are given

a strict continuous function f : D
⊥!
−→ E, then we can apply it to relations pointwise in

the usual way:

frel(R) = {〈f(x1), . . . , f(xn)〉 | 〈x1, . . . , xn〉 ∈ R}.

Proposition 5.4.2. For dcpo’s D and E and admissible n-ary relations R on D and S

on E the set {f | frel(R) ⊆ S} is an admissible predicate on [D
⊥!
−→ E].

We also need to say how admissible relations may be transformed by our locally

continuous functors. This is a matter of definition because there are several – and

equally useful – possibilities.

Definition 5.4.3. Let F : D⊥!
op × D⊥! → D⊥! be a mixed variant and locally contin-

uous functor on a category of domains and strict functions. An admissible action on

(n-ary) relations for F is given by a function F rel which assigns to each pair 〈D,E〉
a map F rel

〈D,E〉 from R(D)×R(E) to R(F (D,E)). These maps have to be compatible

with strict morphisms in D⊥! as follows: If f : D2
⊥!
−→ D1 and g : E1

⊥!
−→ E2 and if

R1 ∈ R(D1) etc., such that frel(R2) ⊆ R1 and grel(S1) ⊆ S2, then

F (f, g)rel(F rel
〈D1,E1〉

(R1, S1)) ⊆ F rel
〈D2,E2〉

(R2, S2).

(Admittedly, this is a bit heavy in terms of notation. But in our concrete examples

it is simply not the case that the behaviour of F rel
〈D,E〉 on R and S is the same as – or

in a simple way related to – the result of applying the functor to R and S viewed as

dcpo’s.)

Specializing f and g to identity mappings in this definition, we get:

80

Proposition 5.4.4. The maps F rel
〈D,E〉 are antitone in the first and monotone in the

second variable.

Theorem 5.4.5. Let D⊥! be a category of domains and let F be a mixed variant and

locally continuous functor from D⊥!
op×D⊥! to D⊥! together with an admissible action

on relations. Abbreviate FIX(F) by D. Given two admissible relations R,S ∈ R
n(D)

such that

unfoldrel(R) ⊆ F rel(S,R) and foldrel(F rel(R,S)) ⊆ S

then R ⊆ S holds.

Proof. We know from the invariance theorem that the identity onD is the least fixpoint

of φ, where φ(g) = fold◦F (g, g)◦unfold. Let P = {f ∈ [D
⊥!
−→ D] | frel(R) ⊆ S},

which we know is an admissible predicate. We want that the identity on D belongs

to P and for this it suffices to show that φ maps P into itself. So suppose g ∈ P :

φ(g)rel(R) = foldrel ◦ F (g, g)rel ◦ unfoldrel(R) by definition

⊆ foldrel ◦ F (g, g)rel(F rel(S,R)) by assumption

⊆ foldrel(F rel(R,S)) because g ∈ P
⊆ S by assumption

Indeed, φ(g) belongs again to P .

In order to understand the power of this theorem, we will study two particular

actions in the next subsections. They, too, are taken from [Pit93b].

5.4.3 Induction with admissible relations

Definition 5.4.6. Let F be a mixed variant functor as before. We call an admissible

action on (n-ary) relations logical, if for all objects D and E and R ∈ R
n(D) we have

F rel
〈D,E〉(R,E

n) = F (D,E)n.

Specializing R to be the whole D in Theorem 5.4.5 and removing the assumption

unfoldrel(R) ⊆ F rel(S,R), which for this choice of R is always satisfied for a logical

action, we get:

Theorem 5.4.7. (Induction) Let D⊥! be a category of domains and let F : D⊥!
op ×

D⊥! → D⊥! be a mixed variant and locally continuous functor together with a logical

action on admissible predicates. Let D be the canonical fixpoint of F . If S ∈ R
1(D) is

an admissible predicate, for which x ∈ F rel(D,S) implies fold(x) ∈ S, then S must

be equal to D.

The reader should take the time to recognize in this the principle of structural in-

duction on term algebras.

We exhibit a particular logical action on admissible predicates for functors which

are built from the constructors of Section 3.2. If R,S are admissible predicates on the

81

pointed domains D and E, then we set

R⊥ = up(R) ∪ {⊥} ⊆ D⊥,

R× S = {〈x, y〉 ∈ D × E | x ∈ R, y ∈ S},

[R −→ S] = {f ∈ [D −→ E] | f(R) ⊆ S},

R⊕ S = inl(R) ∪ inr(S) ⊆ D ⊕ E,

and analogously for ⊗ and [·
⊥!
−→ ·]. (This is not quite in accordance with our notational

convention. For example, the correct expression for [R −→ S] is [· −→ ·]rel〈D,E〉(R,S).)
The definition of the action for the function space operator should make it clear why

we chose the adjective ‘logical’ for it.

We get more complicated functors by composing the basic constructors. The

actions also compose in a straightforward way: If F , G1, and G2 are mixed vari-

ant functors on a category of domains then we can define a mixed variant composi-

tion H = F ◦ 〈G1, G2〉 by setting H(X,Y) = F (G1(Y,X), G2(X,Y)) for objects

and similarly for morphisms. Given admissible actions for each of F , G1, and G2, we

can define an action for H by setting Hrel(R,S) = F rel(Grel
1 (S,R), Grel

2 (R,S)). It

is an easy exercise to show that this action is logical if all its constituents are.

5.4.4 Co-induction with admissible relations

In this subsection we work with another canonical relation on domains, namely the

order relation. We again require that it is dominant if put in the covariant position.

Definition 5.4.8. Let F be a mixed variant functor. We call an admissible action on

binary relations extensional, if for all objects D and E and R ∈ R
n(D) we have

F rel
〈D,E〉(R,⊑E) = ⊑F (D,E).

Theorem 5.4.9. (Co-induction) Let D⊥! be a category of domains and let

F : D⊥!
op × D⊥! → D⊥! be a mixed variant and locally continuous functor together

with an extensional action on binary relations. Let D be the canonical fixpoint of F .

If R ∈ R
2(D) is an admissible relation such that for all 〈x, y〉 ∈ R we have

〈unfold(x), unfold(y)〉 ∈ F rel(⊑D, R), then R is contained in ⊑D.

If we call an admissible binary relation R on D a simulation, if it satisfies the

hypothesis of this theorem, then we can formulate quite concisely:

Corollary 5.4.10. Two elements of the canonical fixpoint of a mixed variant and lo-

cally continuous functor are in the order relation if and only if they are related by a

simulation.

We still have to show that extensional actions exist. We proceed as in the last

subsection and first give extensional actions for the primitive constructors and then

rely on the fact that these compose. So let R,S be admissible binary relations on D,

82

resp. E. We set:

R⊥ = {〈x, y〉 ∈ D2 | x = ⊥ or 〈x, y〉 ∈ R}

R× S = {〈〈x, y〉, 〈x′, y′〉〉 ∈ (D × E)2 |

〈x, x′〉 ∈ R and 〈y, y′〉 ∈ S}

[R −→ S] = {〈f, g〉 ∈ [D −→ E]
2 | ∀x ∈ D. 〈f(x), g(x)〉 ∈ S}

R⊕ S = {〈x, y〉 ∈ (D ⊕ E)2 | x = ⊥ or

(x = inl(x′), y = inl(y′) and 〈x′, y′〉 ∈ R) or

(x = inr(x′), y = inr(y′) and 〈x′, y′〉 ∈ S)}

and similarly for ⊗ and [·
⊥!
−→ ·]. We call this family of actions ‘extensional’ because

the definition in the case of the function space is the same as for the extensional order

on functions.

Exercises 5.4.11. 1. Find recursive domain equations which characterize the three

versions of the natural numbers from Figure 2.

2. [Ern85] Find an example which demonstrates that the ideal completion functor

is not locally continuous. Characterize the solutions to X ∼= Idl(X,⊑).

3. [DHR71] Prove that only the one-point poset satisfies P ∼= [P
m
−→ P].

4. Verify Bekič’s rule in the dcpo case. That is, let D,E be pointed dcpo’s and let

f : D ×E → D and g : D ×E → E be continuous functions. We can solve the

equations

x = f(x, y) y = g(x, y)

directly by taking the simultaneous fixpoint (a, b) = fix(〈f, g〉). Or we can solve

for one variable at a time by defining

h(y) = fix(λx.f(x, y)) k(y) = g(h(y), y)

and setting

d = fix(k) c = h(d) .

Verify that (a, b) = (c, d) holds by using fixpoint induction.

5. Find an example which shows that the Initiality Theorem 5.3.4 may fail for non-

strict algebras.

6. Why does Theorem 5.3.5 hold for arbitrary (non-strict) co-algebras?

7. What are initial algebra and final co-algebra for the functor X 7→ I
.
∪ X on the

category of sets? Show that they are not isomorphic as algebras.

8. (G. Plotkin) Let F be the functor which maps X to [X −→ X]⊥ and let D be its

canonical fixpoint. This gives rise to a model of the (lazy) lambda calculus (see

[Bar84, Abr90c, AO93]). Prove that the denotation of the Y combinator in this

model is the least fixpoint function fix. Proceed as follows:

83

(a) Define a multiplication on D by x · y = unfold(x)(y).

(b) The interpretation yf of Yf is ωf · ωf where ωf = fold(x 7→ f(x · x)).
Check that this is a fixpoint of f . It follows that fix(f) ⊑ yf holds.

(c) Define a subset E of [D −→ D]⊥ by

E = {e | e ⊑ idD and e(ωf) · ωf ⊑ fix(f)} .

(d) Use Theorem 5.3.7 to show that idD ∈ E. Then yf ⊑ fix(f) is also valid.

9. Given an action on relations for a functor in four variables, contravariant in the

first two, covariant in the last two, define an action for the functor (D,E) 7→
FIX(F (D, ·, E, ·)). Prove that the resulting action is logical (extensional) if the

original action was logical (extensional).

84

6 Equational theories

In the last chapter we saw how we can build initial algebras over domains. It is a nat-

ural question to ask whether we can also accommodate equations, i.e. construct free

algebras with respect to equational theories. In universal algebra this is done by factor-

ing the initial or term algebra with respect to the congruence generated by the defining

equations, and we will see that we can proceed in a similar fashion for domains. Bases

will play a prominent role in this approach.

The technique of the previous chapter, namely, to generate the desired algebra in

an iterative process, is no longer applicable. A formal proof for this statement may

be found in [AT89], Section III.3, but the result is quite intuitive: Recall that an F -

algebra α : F (A) → A encodes the algebraic structure on A by giving information

about the basic operations on A, where F (A) is the sum of the input domains for each

basic operation. Call an equation flat if each of the equated terms contains precisely

one operation symbol. For example, commutativity of a binary operation is expressed

by a flat equation while associativity is not. Flat equations can be incorporated into

the concept of F -algebras by including the input, on which the two operations agree,

only once in F (A). For non-flat equations such a trick is not available. What we need

instead of just the basic operations is a description of all term operations overA. In this

case, F (A) will have to be the free algebra over A, the object we wanted to construct!

Thus F -algebras are not the appropriate categorical concept to model equational

theories. The correct formalization, rather, is that of monads and Eilenberg-Moore

algebras.

We will show the existence of free algebras for dcpo’s and continuous domains in

the first section of this chapter. For the former, we use the Adjoint Functor Theorem

(see [Poi92], for example), for the latter, we construct the basis of the free algebra as a

quotient of the term algebra.

Equational theories come up in semantics when non-deterministic languages are

studied. They typically contain a commutative, associative, and idempotent binary

operation, standing for the union of two possible branches a program may take. The

associated algebras are known under the name ‘powerdomains’ and they have been the

subject of detailed studies. We shall present some of their theory in the second section.

6.1 General techniques

6.1.1 Free dcpo-algebras

Let us recall the basic concepts of universal algebra so as to fix the notation for this

chapter. A signature Σ = 〈Ω, α〉 consists of a set Ω of operation symbols and a map

α : Ω → N, assigning to each operation symbol a (finite) arity. A Σ-algebraA = 〈A, I〉
is given by a carrier set A and an interpretation I of the operation symbols, in the sense

that for f ∈ Ω, I(f) is a map from Aα(f) to A. We also write fA or even f for the

interpreted operation symbol and speak of the operation f on A. A homomorphism

between two Σ-algebras A and B is a map h : A → B which commutes with the

operations:

∀f ∈ Ω. h(fA(a1, . . . , aα(f))) = fB(h(a1), . . . , h(aα(f)))

85

We denote the term algebra over a set X with respect to a signature Σ by TΣ(X). It

has the universal property that each map from X to A, where A = 〈A, I〉 is a Σ-

algebra, can be extended uniquely to a homomorphism h̄ : TΣ(X) → A. Let V be

a fixed countable set whose elements we refer to as ‘variables’. Pairs of elements of

TΣ(V) are used to encode equations. An equation τ1 = τ2 is said to hold in an algebra

A = 〈A, I〉 if for each map h : V → Awe have h̄(τ1) = h̄(τ2). The pair 〈h̄(τ1), h̄(τ2)〉
is also called an instance of the equation τ1 = τ2. The class of Σ-algebras in which

each equation from a set E ⊆ TΣ(V)× TΣ(V) holds, is denoted by Set(Σ,E).
Here we are interested in dcpo-algebras, characterized by the property that the

carrier set is equipped with an order relation such that it becomes a dcpo, and such that

each operation is Scott-continuous. Naturally, we also require the homomorphisms to

be Scott-continuous. Because of the order we also can incorporate inequalities. So

from now on we let a pair 〈τ1, τ2〉 ∈ E ⊆ TΣ(V) × TΣ(V) stand for the inequality

τ1 ⊑ τ2. We use the notation DCPO(Σ,E) for the class of all dcpo-algebras over the

signature Σ which satisfy the inequalities in E. For these we have:

Proposition 6.1.1. For every signature Σ and set E of inequalities, the class

DCPO(Σ,E) with Scott-continuous homomorphisms forms a complete category.

Proof. It is checked without difficulties that DCPO(Σ,E) is closed under products and

equalizers, which both are defined as in the ordinary case.

This proves that we have one ingredient for the Adjoint Functor Theorem, namely, a

complete category DCPO(Σ,E) and a (forgetful) functor U : DCPO(Σ,E) → DCPO

which preserves all limits. The other ingredient is the so-called solution set condition.

For this setup it says that each dcpo can generate only set-many non-isomorphic dcpo-

algebras. This is indeed the case: Given a dcpo D and a continuous map i : D → A,

where A is the carrier set of a dcpo-algebra A, we construct the dcpo-subalgebra of A
generated by i(D) in two stages. In the first we let S be the (ordinary) subalgebra of

A which is generated by i(D). Its cardinality is bounded by an expression depending

on the cardinality of D and Ω. Then we add to S all suprema of directed subsets

until we get a sub-dcpo S̄ of the dcpo A. Because we have required the operations

on A to be Scott-continuous, S̄ remains to be a subalgebra. The crucial step in this

argument now is that the cardinality of S̄ is bounded by 2|S| as we asked you to show

in Exercise 2.3.9(34). All in all, given Σ, the cardinality of S̄ has a bound depending

on |D| and so there is only room for a set of different dcpo-algebras. Thus we have

shown:

Theorem 6.1.2. For every signature Σ and set E of inequalities, the forgetful functor

U : DCPO(Σ,E) → DCPO has a left adjoint.

Equivalently: For each dcpo D the free dcpo-algebra over D with respect to Σ
and E exists.

The technique of this subsection is quite robust and has been used in [Nel81] for

proving the existence of free algebras under more general notions of convergence than

that of directed-completeness. This, however, is not the direction we are interested in,

and instead we shall now turn to continuous domains.

86

6.1.2 Free continuous domain-algebras

None of the categories of approximated dcpo’s, or domains, we have met so far is

complete. Both infinite products and equalizers may fail to exist. Hence we cannot rely

on the Adjoint Functor Theorem. While this will result in a more technical proof, there

will also be a clear advantage: we will gain explicit information about the basis of the

constructed free algebra, which may help us to find alternative descriptions. In the case

of dcpo’s, such concrete representations are quite complicated, see [Nel81, ANR82].

We denote the category of dcpo-algebras, whose carriers form a continuous do-

main, by CONT(Σ,E) and speak of (continuous) domain-algebras. Again there is the

obvious forgetful functor U : CONT(Σ,E) → CONT. To keep the notation manage-

able we shall try to suppress mention of U , in particular, we will write A for U(A) on

objects and make no distinction between h and U(h) on morphisms. Let us write down

the condition for adjointness on which we will base our proof:

D
η ✲ F (D) F (D)

CONT

❩
❩

❩
❩
❩

❩
g

⑦
A

ext(g)

❄
A

∃!ext(g) CONT(Σ,E)

❄

In words: Suppose a signature Σ and a set E of inequalities has been fixed. Then
given a continuous domain D we must construct a dcpo-algebra F (D), whose carrier

set F (D) is a continuous domain, and a Scott-continuous function η : D → F (D)
such that F (D) satisfies the inequalities in E and such that given any such domain-

algebra A and Scott-continuous map g : D → A there is a unique Scott-continuous
homomorphism ext(g) : F (D) → A for which ext(g) ◦ η = g. (It may be instructive

to compare this with Definition 3.1.9.)

Comment: In fact, what is shown below is that the free domain-algebra is also free for all dcpo-algebras,

in other words, the adjunction between CONT and CONT(Σ,E) is (up to isomorphism) the restriction

of the adjunction between DCPO and DCPO(Σ,E) established in Theorem 6.1.2.

The idea for solving this problem is to work explicitly with bases (cf. Section 2.2.6).

So assume that we have fixed a basis 〈B,≪〉 for the continuous domain D. We will

construct an abstract basis 〈FB,≺〉 for the desired free domain-algebra F (D). The

underlying set FB is given by the set TΣ(B) of all terms over B. On FB we have two

natural order relations. The first, which we denote by ⊏
∼, is induced by the defining set E

of inequalities. We can give a precise definition in the form of a deduction scheme:

Axioms:

(A1) t ⊏∼ t for all t ∈ FB.

(A2) s ⊏∼ t if this is an instance of an inequality from E.

Rules:

(R1) If f ∈ Ω is an n-ary function symbol and if s1 ⊏
∼ t1, . . . , sn ⊏

∼ tn then

f(s1, . . . , sn) ⊏∼ f(t1, . . . , tn).

87

(R2) If s ⊏∼ t and t ⊏∼ u then s ⊏∼ u.

The relation ⊏
∼ is the ‘least substitutive preorder’ in the terminology of [Sto88]. It

is the obvious generalization of the concept of a congruence relation to the preordered

case, and indeed, 〈FB,⊏∼〉 is the free preordered algebra overB. The associated equiv-

alence relation we denote by ≈. The factor set FB/≈ is ordered by ⊏
∼ and this is the

free ordered algebra over B.

Let us now turn to the second relation on FB, namely, the one which arises from

the order of approximation on B. We set t ≺s t′ if t and t′ have the same structure and

corresponding constants are related by ≪. Formally, ≺s is given through the deduction

scheme:

Axioms:

(A) a ≺s b if a≪ b in B.

Rules:

(R) If f ∈ Ω is an n-ary function symbol and if s1 ≺s t1, . . . , sn ≺s tn then

f(s1, . . . , sn) ≺
s f(t1, . . . , tn).

Our first observation is that ≺s satisfies the interpolation axiom:

Proposition 6.1.3. 〈FB,≺s〉 is an abstract basis.

Proof. Since ≺s relates only terms of the same structure, it is quite obvious that it

is a transitive relation. For the interpolation axiom assume that s ≺s t holds for all

elements s of a finite set M ⊆ FB. For each occurrence of a constant a in t let Ma be

the set of constants which occur in the same location in one of the terms s ∈M . Since

Ma is finite and since Ma ≪ a holds by the definition of ≺s, we find interpolating

elements a′ between Ma and a. Let t′ be the term in which all constants are replaced

by the corresponding interpolating element. This is a term which interpolates between

M and t in the relation ≺s.

The question now is how to combine ⊏
∼ and ≺s. As a guideline we take Propo-

sition 2.2.2(2). If the inequalities tell us that t1 should be below s1 and s2 should be

below t2 and if s1 approximates s2 then it should be the case that t1 approximates t2.

Hence we define ≺, the order of approximation on FB, to be the transitive closure of
⊏
∼ ◦ ≺s ◦ ⊏

∼. The following, somewhat technical properties will be instrumental for

the free algebra theorem:

Proposition 6.1.4. 1. ≺s ◦ ⊏∼ is contained in ≺s ◦ ⊏∼ ◦ ≺s.

2. For every n ≤ m ∈ N we have (⊏∼ ◦ ≺s ◦ ⊏∼)n ⊆ (⊏∼ ◦ ≺s ◦ ⊏∼)m.

Proof. (1) Assume s ≺s t ⊏∼ u. Let C ⊆ B be the set of all constants which appear in

the derivation of t ⊏∼ u. For each c ∈ C let Mc be the set of constants which appear

in s at the same place as c appears in t. Of course, c may not occur in t at all; in this

case Mc will be empty. If it occurs several times then Mc can contain more than one

element. In any case,Mc is finite andMc ≪ c holds. Let c′ be an interpolating element

between Mc and c. We now replace each constant c in the derivation of t ⊏∼ u by the

88

corresponding constant c′ and we get a valid derivation of a formula t′ ⊏
∼ u′. (The

catch is that an instance of an inequality is transformed into an instance of the same

inequality.) It is immediate from the construction that s ≺s t′ ⊏∼ u′ ≺s u holds.

(2) Using (1) and the reflexivity of ⊏∼ we get

⊏
∼ ◦ ≺s ◦ ⊏

∼ ⊆ ⊏
∼ ◦(≺s ◦ ⊏

∼ ◦ ≺s) ⊆ ⊏
∼ ◦ ≺s ◦ ⊏

∼ ◦ ⊏
∼ ◦ ≺s ◦ ⊏

∼ .

The general case follows by induction.

Lemma 6.1.5. 〈FB,≺〉 is an abstract basis.

Proof. Transitivity has been built in, so it remains to look at the interpolation axiom.

Let M ≺ t for a finite set M . From the definition of ≺ we get for each s ∈ M a

sequence of terms s ⊏
∼ s1 ≺s s2 ⊏

∼ . . . ⊏∼ sn(s)−1 ≺s sn(s) ⊏
∼ t. The last two steps

may be replaced by sn(s)−1 ≺s s′ ⊏
∼ s′′ ≺s t as we have shown in the preceding

proposition. The collection of all s′′ is finite and we find an interpolating term t′

between it and t according to Proposition 6.1.3. Because of the reflexivity of ⊏∼ we

have M ≺ t′ ≺ t.

So we can take as the carrier set of our free algebra over D the ideal completion of

〈FB,≺〉 and from Proposition 2.2.22 we know that this is a continuous domain. The

techniques of Section 2.2.6 also help us to fill in the remaining pieces. The operations

on F (D) are defined pointwise: If A1, . . . , An are ideals and if f ∈ Ω is an n-ary

function symbol then we let fF (D)(A1, . . . , An) be the ideal which is generated by

{f(t1, . . . , tn) | t1 ∈ A1, . . . , tn ∈ An}. We need to know that this set is directed. It

will follow if the operations on FB are monotone with respect to ≺. So assume we

are given an operation symbol f ∈ Ω and pairs s1 ≺ t1, . . . , sn ≺ tn. By definition,

each pair translates into a sequence si ⊏∼ s1i ≺s s2i ⊏
∼ . . . ≺s s

m(i)
i

⊏
∼ ti. Now we use

Proposition 6.1.4(2) to extend all these sequences to the same length m. Then we can

apply f step by step, using Rules (R1) and (R) alternately:

f(s1, . . . , sn) ⊏∼ f(s11, . . . , s
1
n) ≺s f(s21, . . . , s

2
n) ⊏∼ . . .

. . . ≺s f(sm1 , . . . , s
m
n) ⊏∼ f(t1, . . . , tn).

Using the remark following Proposition 2.2.24 we infer that the operations fF (D) de-

fined this way are Scott-continuous functions. Thus F (D) is a continuous domain-

algebra. The generating domainD embeds into F (D) via the extension η of the mono-

tone inclusion of B into FB.

Theorem 6.1.6. F (D) is a continuous domain algebra and is the free continuous dcpo-

algebra over D with respect to Σ and E.

Proof. We already know the first part. For the second we must show that F (D) satisfies

the inequalities in E and that it has the universal property with respect to all objects in

DCPO(Σ,E).
For the inequalities let 〈τ1, τ2〉 ∈ E and let h : V → F (D) be a map. It assigns to

each variable an ideal in FB. We must show that h̄(τ1) is a subset of h̄(τ2). As we

have just seen, the ideal h̄(τ1) is generated by terms of the form k̄(τ1) where k is a map

89

from V to FB, such that for each variable x ∈ V , k(x) ∈ h(x). So suppose s ≺ k̄(τ1)
for such a k. Then k̄(τ1) ⊏∼ k̄(τ2) is an instance of the inequality in the term algebra

FB = TΣ(B) and so we know that s ≺ k̄(τ2) also holds. The term k̄(τ2) belongs to

h̄(τ2), again because the operations on F (D) are defined pointwise. So s ∈ h̄(τ2) as

desired.

To establish the universal property assume that we are given a continuous map

g : D → A for a dcpo-algebraAwhich satisfies the inequalities from E. The restriction

of g to the set B ⊆ D has a unique monotone extension ḡ to the preordered algebra

〈FB,⊏∼〉. We want to show that ḡ also preserves ≺s. For an axiom a ≺s b this is clear

because g is monotone on 〈B,≪〉. For the rules (R) we use that ḡ is a homomorphism

and that the operations on A are monotone:

ḡ(f(s1, . . . , sn)) = fA(ḡ(s1), . . . , ḡ(sn))

⊑ fA(ḡ(t1), . . . , ḡ(tn))

= ḡ(f(t1, . . . , tn)) .

Together this says that ḡ translates the order of approximation ≺ on FB to ⊑ onA, and

therefore it can be extended to a homomorphism ext(g) on the ideal completion F (D).
Uniqueness of ext(g) is obvious. What we have to show is that ext(g), when restricted

to B, equals g, because Proposition 2.2.24 does not give an extension but only a best

approximation. We can nevertheless prove it here because g arose as the restriction of

a continuous map on D. An element d of D is represented in F (D) as the ideal η(d)
containing at least all of Bd = B ∩ ↓↓d because of the axioms of our second deductive

system. So we have: ext(g)(η(d)) =
⊔

↑ḡ(η(d)) ⊒
⊔

↑ḡ(Bd) =
⊔

↑g(Bd) = g(d).

Theorem 6.1.7. For any signature Σ and set E of inequalities the forgetful functor

U : CONT(Σ,E) → CONT has a left adjoint F . It is equivalent to the restriction

and corestriction of the left adjoint from Theorem 6.1.2 to CONT and CONT(Σ,E),
respectively.

In other words: Free continuous domain-algebras exist and they are also free with

respect to dcpo-algebras.

The action of the left adjoint functor on morphisms is obtained by assigning to a

continuous function g : D → E the homomorphism which extends ηE ◦ g.

D
ηD✲ F (D)

E

g

❄ ηE✲ F (E)

F (g)

❄

We want to show that F is locally continuous (Definition 5.2.3). To this end let us

first look at the passage from maps to their extension.

90

Proposition 6.1.8. The assignment g 7→ ext(g), as a map from [D −→ A] to

[F (D) −→ A] is Scott-continuous.

Proof. By Proposition 2.2.25 it is sufficient to show this for the restriction of g to the

basis B of D. Let G be a directed collection of monotone maps from B to A and let

t ∈ FB be a term in which the constants a1, . . . , an ∈ B occur. We calculate:

⊔

↑G(t) = t[
⊔

↑G(a1)/a1, . . . ,
⊔

↑G(an)/an]

=
⊔

↑

g∈G

t[g(a1)/a1, . . . , g(an)/an]

=
⊔

↑

g∈G

ḡ(t),

where we have written t[b1/a1, . . . , bn/an] for the term in which each occurrence of

ai is replaced by bi. Restriction followed by homomorphic extension followed by ex-

tension to the ideal completion gives a sequence of continuous functions [D −→ A] →

[B
m
−→ A] → [FB

m
−→ A] → [F (D) −→ A] which equals ext.

Cartesian closed categories can be viewed as categories in which the Hom-functor

can be internalized. The preceding proposition formulates a similar closure property

of the free construction: if the free construction can be cut down to a cartesian closed

category then there the associated monad and the natural transformations that come

with it can be internalized. This concept was introduced by Anders Kock [Koc70,

Koc72]. It has recently found much interest under the name ‘computational monads’

through the work of Eugenio Moggi [Mog91].

Theorem 6.1.9. For any signature Σ and set E of inequalities the composition U ◦ F
is a locally continuous functor on CONT.

Proof. The action of U ◦ F on morphisms is the combination of composition with ηE
and ext.

If e : D → E is an embedding then we can describe the action of F , respec-

tively U ◦ F , quite concretely. A basis element of F (D) is the equivalence class of

some term s. Its image under F (e) is the equivalence class of the term s′, which we

get from s by replacing all constants in s by their image under e.
If we start out with an algebraic domain D then we can choose as its basis K(D),

the set of compact elements. The order of approximation on K(D) is the order relation

inherited from D, in particular, it is reflexive. From this it follows that the constructed

order of approximation ≺ on FB is also reflexive, whence the ideal completion of

〈FB,≺〉 is an algebraic domain. This gives us:

Theorem 6.1.10. For any signature Σ and set E of inequalities the forgetful functor

from ALG(Σ,E) to ALG has a left adjoint.

Finally, let us look at η, which maps the generating domain D into the free algebra,

and let us study the question of when it is injective. What we can say is that if injectivity

fails then it fails completely:

91

Proposition 6.1.11. For any in-equational theory the canonical map η from a dcpo D
into the free algebra F (D) over D is order-reflecting if and only if there exists a dcpo-

algebra A for this theory for which the carrier dcpo A is non-trivially ordered.

Proof. Assume that there exists a dcpo-algebra A which contains two elements a ⊏ b.
LetD be any dcpo and x 6⊑ y two distinct elements. We can define a continuous map g
from D to A, separating x from y by setting

g(d) =

{

a, if d ⊑ y;
b, otherwise.

Since g equals ext(g)◦η, where ext(g) is the unique homomorphism from F (D) to A,

it cannot be that η(x) ⊑ η(y) holds.

The converse is trivial, because η must be monotone.

6.1.3 Least elements and strict algebras

We have come across strict functions several times already. It therefore seems worth-

while to study the problem of free algebras also in this context. But what should a strict

algebra be? There are several possibilities as to what to require of the operations on

such an algebra:

1. An operation which is applied to arguments, one of which is bottom, returns

bottom.

2. An operation applied to the constantly bottom vector returns bottom.

3. An operation of arity greater than 0 applied to the constantly bottom vector re-

turns bottom.

Luckily, we can leave this open as we shall see shortly. All we need is:

Definition 6.1.12. A strict dcpo-algebra is a dcpo-algebra for which the carrier set

contains a least element. A strict homomorphism between strict algebras is a Scott-

continuous homomorphism which preserves the least element.

For pointed dcpo’s the existence of free strict dcpo-algebras can be established as

before through the Adjoint Functor Theorem. For pointed domains the construction of

the previous subsection can be adapted by adding a further axiom to the first deduction

scheme:

(A3) ⊥ ⊏
∼ t for all t ∈ FB.

Thus we have:

Theorem 6.1.13. Free strict dcpo- and domain-algebras exist, that is, the forgetful

functors

DCPO⊥!(Σ,E) −→ DCPO⊥!,

CONT⊥!(Σ,E) −→ CONT⊥!,

and ALG⊥!(Σ,E) −→ ALG⊥!

have left adjoints.

92

Let us return to the problem of strict operations. The solution is that we can add

a nullary operation 0 to the signature and the inequality 0 ⊑ x to E without changing

the free algebras. Because of axiom (A3) we have ⊥ ⊏
∼ 0 and because of the new

inequality we have 0 ⊏
∼ ⊥. Therefore the new operation must be interpreted by the

bottom element. The advantage of having bottom explicitly in the signature is that

we can now formulate equations about strictness of operations. For example, the first

possibility mentioned at the beginning can be enforced by adding to E the inequality

f(x1, . . . , xi−1, 0, xi+1, . . . , xα(f)) ⊑ 0

for all operation symbols f of positive arity and all 1 ≤ i ≤ α(f). The corresponding

free algebras then exist by the general theorem.

More problematic is the situation with DCPO⊥ (respectively CONT⊥ and

ALG⊥). The existence of a least element in the generating dcpo does not imply the

existence of a least element in the free algebra (Exercise 6.2.23(2)). Without it, we

cannot make use of local continuity in domain equations. Furthermore, even if the free

algebra has a least element, it need not be the case that η is strict (Exercise 6.2.23(3)).

The same phenomena appears if we restrict attention to any of the cartesian closed cat-

egories exhibited in Chapter 4. The reason is that we require a special structure of the

objects of our category but allow morphisms which do not preserve this structure. It is

therefore always an interesting fact if the general construction for a particular algebraic

theory can be restricted and corestricted to one of these sub-categories. In the case

that the general construction does not yield the right objects it may be that a different

construction is needed. This has been tried for the Plotkin powerdomain in several

attempts by Karel Hrbacek but a satisfactory solution was obtained only at the cost of

changing the morphisms between continuous algebras, see [Hrb87, Hrb89, Hrb88].

On a more positive note, we can say:

Proposition 6.1.14. If the free functor maps finite pointed posets to finite pointed posets

then it restricts and corestricts to bifinite domains.

6.2 Powerdomains

6.2.1 The convex or Plotkin powerdomain

Definition 6.2.1. The convex or Plotkin powertheory is defined by a signature with one

binary operation ∪ and the equations

1. x ∪ y = y ∪ x (Commutativity)

2. (x ∪ y) ∪ z = x ∪ (y ∪ z) (Associativity)

3. x ∪ x = x (Idempotence)

The operation ∪ is called formal union.

A dcpo-algebra with respect to this theory is called a dcpo-semilattice. The free

dcpo-semilattice over a dcpo D is called the Plotkin powerdomain of D and it is de-

noted by PP(D).

93

Every semilattice can be equipped with an order by setting

x ≤ y if x ∪ y = y.

Formal union then becomes the join in the resulting ordered set. On a dcpo-semilattice

this order has little to do with the domain ordering and it is not in the focus of our

interest.

The free semilattice over a set X is given by the set of all non-empty finite subsets

of X , where formal union is interpreted as actual union of sets. This gives us the

first half of an alternative description of the Plotkin powerdomain over a continuous

domain D with basis B. Its basis FB, which we constructed as the term algebra

over B, is partitioned into equivalence classes by ≈, the equivalence relation derived

from ⊏
∼, that is, from the defining equations. These equivalence classes are in one-to-

one correspondence with finite subsets of B. Indeed, given a term from FB, we can

re-arrange it because of associativity and commutativity, and because of idempotence

we can make sure that each constant occurs just once.

Remember that we have set up the order of approximation ≺ onFB as the transitive

closure of ⊏∼ ◦ ≺s ◦ ⊏
∼. This way we have ensured that an ideal in FB contains only

full equivalence classes with respect to ≈. We may therefore replace FB by Pf (B),
the set of finite subsets of B, where we associate with a term t ∈ FB the set [t] of

constants appearing in t.
Let us now also transfer the order of approximation to the new basis.

Definition 6.2.2. Two subsets M and N of a set equipped with a relation R are in

the Egli-Milner relation, written as M REM N , if the following two conditions are

satisfied:

∀a ∈M ∃b ∈ N. a R b

∀b ∈ N ∃a ∈M. a R b.

Here we are talking about finite subsets of 〈B,≪〉, so we write ≪EM for the Egli-

Milner relation between finite subsets of B. Let us establish the connection between

≪EM on Pf (B) and ≺ on FB. Firstly, if s ≺s t then by definition each constant

in t is matched by a constant in s which approximates it and vice versa. These are just

the conditions for [s] ≪EM [t]. Since ≪EM is transitive, we find that s ≺ t implies

[s] ≪EM [t] in general. Conversely, if two finite subsets M = {a1, . . . , am} and

N = {b1, . . . , bn} of B are related by ≪EM then we can build terms s and t, such that

[s] =M , [t] = N , and s ≺s t hold. This is done as follows. For each ai ∈M let bj(i)
be an element of N such that ai ≪ bj(i) and for each bj ∈ N let ai(j) be an element

of M such that ai(j) ≪ bj . Then we can set

s = (a1 ∪ . . . ∪ am) ∪ (ai(1) ∪ . . . ∪ ai(n))

and t = (bj(1) ∪ . . . ∪ bj(m)) ∪ (b1 ∪ . . . ∪ bn).

We have proved:

Theorem 6.2.3. The Plotkin powerdomain of a continuous domain D with basis

〈B,≪〉 is given by the ideal completion of 〈Pf (B),≪EM 〉.

94

An immediate consequence of this characterization is that the Plotkin powerdomain

of a finite pointed poset is again finite and pointed. By Proposition 6.1.14, the Plotkin

powerdomain of a bifinite domain is again bifinite. This is almost the best result we

can obtain. The Plotkin power construction certainly destroys all properties of being

lattice-like, see Exercise 6.2.23(8). It is, on the other hand, not completely haphazard,

in the sense that not every finite poset is a sub-domain of a powerdomain of some other

poset. This was shown in [Nüß92].

The passage from terms to finite sets has reduced the size of the basis for the pow-

erdomain drastically. Yet, it is still possible to get an even leaner representation. We

present this for algebraic domains only. For continuous domains a similar treatment is

possible but it is less intuitive. Remember that abstract bases for algebraic domains are

preordered sets.

Definition 6.2.4. For a subsetM of a preordered set 〈B,⊑〉 let the convex hull Cx(M)
be defined by

{a ∈ B | ∃m,n ∈M. m ⊑ a ⊑ n}.

A set which coincides with its convex hull is called convex.

The following properties are easily checked:

Proposition 6.2.5. Let 〈B,⊑〉 be a preordered set and M,N be subsets of B.

1. Cx(M) = ↑M ∩ ↓M .

2. M ⊆ Cx(M).

3. Cx(Cx(M)) = Cx(M).

4. M ⊆ N =⇒ Cx(M) ⊆ Cx(N).

5. M =EM Cx(M).

6. M =EM N if and only if Cx(M) = Cx(N).

Comment: In (5) and (6) we have used the notation “=EM ” as an abbreviation for “⊑EM ∩ ⊒EM ”;

it is not the EM -version of equality as defined in 6.2.2 (which would be nothing more than equality on

the powerset).

While 〈Pf (K(D)),⊑EM 〉 is only a preordered set, parts (5) and (6) of the preced-

ing proposition suggests how to replace it with an ordered set. Writing PCx,f (K(D))
for the set of finitely generated convex subsets of K(D), we have:

Proposition 6.2.6. The Plotkin powerdomain of an algebraic domain D is isomorphic

to the ideal completion of 〈PCx,f (K(D)),⊑EM 〉.

This explains the alternative terminology ‘convex powerdomain’. We will sharpen

this description in 6.2.3 below.

For examples of how the Plotkin powerdomain can be used in semantics, we refer

to [HP79, Abr91a].

95

6.2.2 One-sided powerdomains

Definition 6.2.7. If the Plotkin powertheory is augmented by the inequality

x ⊑ x ∪ y

then we obtain the Hoare or lower powertheory. Algebras for this theory are called

inflationary semilattices. The free inflationary semilattice over a dcpo D is called the

lower or Hoare powerdomain of D, and it is denoted by PH(D).
Similarly, the terminology concerning the inequality

x ⊒ x ∪ y

is upper or Smyth powerdomain, deflationary semilattice, and PS(D).

It is a consequence of the new inequality that the semilattice ordering and the do-

main ordering coincide in the case of the Hoare powertheory. For the Smyth powerthe-

ory the semilattice ordering is the reverse of the domain ordering. This forces these

powerdomains to have additional structure.

Proposition 6.2.8. 1. The Hoare powerdomain of any dcpo is a lattice which has

all non-empty suprema and bounded infima. The sup operation is given by formal

union.

2. The Smyth powerdomain of any dcpo has binary infima. They are given by formal

union.

Unfortunately, the existence of binary infima does not force a domain into one of

the cartesian closed categories of Chapter 4. We take up this question again in the next

subsection.

Let us also study the bases of these powerdomains as derived from a given basis

〈B,≪〉 of a continuous domain D. The development proceeds along the same lines

as for the Plotkin powertheory. The equivalence relation induced by the equations and

the new inequality has not changed, so we may again replace FB by the set Pf (B) of

finite subsets of B. The difference is wholly in the associated preorder on Pf (B).

Proposition 6.2.9. For M and N finite subsets of a basis 〈B,≪〉 we have

M ⊏∼ N if and only if M ⊆ ↓N

in the case of the Hoare powertheory and

M ⊏∼ N if and only if N ⊆ ↑M

for the Smyth powertheory.

The restricted order of approximation ≺s is as before given by the Egli-Milner

relation ≪EM . As prescribed by the general theory we must combine it with inclusion

(for the lower theory) and with reversed inclusion (for the upper theory), respectively.

Without difficulties one obtains the following connection

s ≺H t if and only if ∀a ∈ [s] ∃b ∈ [t]. a≪ b

96

and

s ≺S t if and only if ∀b ∈ [t] ∃a ∈ [s]. a≪ b.

So each of the one-sided theories is characterized by one half of the Egli-Milner order-

ing. Writing ≪H and ≪S for these we can formulate:

Theorem 6.2.10. Let D be a continuous domain with basis 〈B,≪〉.

1. The Hoare powerdomain of D is isomorphic to the ideal completion of

〈Pf (B),≪H〉.

2. The Smyth powerdomain of D is isomorphic to the ideal completion of

〈Pf (B),≪S〉.

For algebraic domains we can replace the preorders on Pf (B) by an ordered set in

both cases.

Proposition 6.2.11. For subsets M and N of a preordered set 〈B,≤〉 we have

1. M =H ↓M ,

2. M ≤H N if and only if ↓M ⊆ ↓N ,

and

3. M =S ↑M ,

4. M ≤S N if and only if ↑M ⊇ ↑N .

Writing PL,f (B) for the set of finitely generated lower subsets of B and PU,f (B)
for the set of finitely generated upper subsets of B, we have:

Proposition 6.2.12. Let D be an algebraic domain.

1. The Hoare powerdomain PH(D) of D is isomorphic to the ideal completion of

〈PL,f (K(D)),⊆〉.

2. The Smyth powerdomain PS(D) of D is isomorphic to the ideal completion of

〈PU,f (K(D)),⊇〉.

From this description we can infer through Proposition 6.1.14 that the Smyth pow-

erdomain of a bifinite domain is again bifinite. Since a deflationary semilattice has

binary infima anyway, we conclude that the Smyth powerdomain of a bifinite domain

is actually a bc-domain. For a more general statement see Corollary 6.2.15.

6.2.3 Topological representation theorems

The objective of this subsection is to describe the powerdomains we have seen so far

directly as spaces of certain subsets of the given domain, without recourse to bases

and the ideal completion. It will turn out that the characterizations of Proposition 6.2.6

and Proposition 6.2.12 can be extended nicely once we allow ourselves topological

methods.

97

Theorem 6.2.13. The Hoare powerdomain of a continuous domain D is isomorphic to

the lattice of all non-empty Scott-closed subsets of D. Formal union is interpreted by

actual union.

Proof. Let 〈B,≪〉 be a basis for D. We establish an isomorphism with the repre-

sentation of Theorem 6.2.10. Given an ideal I of finite sets in PH(D) we map it to

φH(I) = Cl(
⋃

I), the Scott-closure of the union of all these sets. Conversely, for a

non-empty Scott-closed set A we let ψH(A) = Pf (↓↓A ∩ B), the set of finite sets of

basis elements approximating some element in A. We first check that ψH(A) is in-

deed an ideal with respect to ≪H . It is surely non-empty as A was assumed to contain

elements. Given two finite subsets M and N of ↓↓A ∩ B then we can apply the inter-

polation axiom to get finite subsets M ′ and N ′ with M ≪EM M ′ and N ≪EM N ′.

An upper bound for M and N with respect to ≪H is then given by M ′ ∪N ′. It is also

clear that the Scott closure of ↓↓A ∩B gives A back again because every element of D

is the directed supremum of basis elements. Hence φH ◦ψH = id. Starting out with an

ideal I , we must show that we get it back from φH(I). So letM ∈ I . By the roundness

of I (see the discussion before Definition 2.2.21) there is another finite setM ′ ∈ I with

M ≪H M ′. So for each a ∈ M there is b ∈ M ′ with a ≪ b. Since all elements of I
are contained in φH(I), we have that a belongs to ↓↓φ(I) ∩ B. Conversely, if a is an

element of ↓↓φ(I) ∩ B then ↑↑a ∩ φ(I) is not empty and therefore must meet
⋃

I as

D \↑↑a is closed. The set {a} is then below some element of I under the ≪H -ordering.

Monotonicity of the isomorphisms is trivial and the representation is proved.

Formal union applied to two ideals returns the ideal of unions of the constituting

sets. Under the isomorphism this operation is transformed into union of closed subsets.

This theorem holds not just for continuous domains but also for all dcpo’s and even

all T0-spaces. See [Sch93] for this. We can also get the full complete lattice of all

closed sets if we add to the Hoare powertheory a nullary operation e and the equations

e ∪ x = x ∪ e = x.

Alternatively, we can take the strict free algebra with respect to the Hoare powertheory.

If the domain has a least element then these adjustments are not necessary, a least

element for the Hoare powerdomain is {⊥}. Homomorphisms, however, will only

preserve non-empty suprema.

The characterization of the Smyth powerdomain builds on the material laid out in

Section 4.2.3. In particular, recall that a Scott-compact saturated set in a continuous

domain has a Scott-open filter of open neighborhoods and that each Scott-open filter

in σD arises in this way.

Theorem 6.2.14. The Smyth powerdomain of a continuous domain D is isomorphic

to the set κD \ {∅} of non-empty Scott-compact saturated subsets ordered by reversed

inclusion. Formal union is interpreted as union.

Proof. Let 〈B,≪〉 be a basis for D. We show that κD \ {∅} is isomorphic to PS(D) =
Idl(Pf (B),≪S). Given an ideal I we let φS(I) be

⋂

M∈I ↑M . This constitutes a

98

monotone map from PS(D) to κD \ {∅} by Proposition 4.2.14. In the other direction,

we assign to a compact saturated setA the set ψS(A) of all finite setsM ⊆ B such that

A ⊆ ↑↑M . Why is this an ideal? For every open neighborhood O of A we find a finite

set M of basis elements contained in O such that A ⊆ ↑↑M because A is compact and

O =
⋃

b∈O∩B
↑↑b (Proposition 2.3.6). Then given two finite sets M and N in ψS(A)

an upper bound for them is any such finite set P with A ⊆ ↑↑P ⊆ ↑↑M ∩ ↑↑N . Clearly,

ψS is monotone as κD \ {∅} is equipped with reversed inclusion.

Let us show that ψS ◦φS is the identity on PS(D). For M ∈ I let M ′ ∈ I be above

M in the ≪S-ordering. Then φS(I) ⊆ ↑M ′ ⊆ ↑↑M and so M belongs to ψS ◦ φS(I).
Conversely, every neighborhood of φS(I) contains some ↑M with M ∈ I already as

we saw in Proposition 4.2.14. So if φS(I) is contained in ↑↑N for some finite setN ⊆ B
then there are M and M ′ in I with M ⊆ ↑↑N and M ≪S M

′. Hence N ≪S M
′ and

N belongs to I .

The composition φS ◦ψS is clearly the identity as we just saw that every neighbor-

hood of a compact set contains a finitely generated one and as every saturated set is the

intersection of its neighborhoods.

The claim about formal union follows because on powersets union and intersection

completely distribute: φS(I ∪ J) =
⋂

M∈I,N∈J ↑(M ∪ N) =
⋂

M∈I,N∈J(↑M ∪

↑N) =
⋂

M∈I ↑M ∪
⋂

N∈J ↑N = φS(I) ∪ φS(J).

For this theorem continuity is indispensable. A characterization of the free defla-

tionary semilattice over an arbitrary dcpo is not known. The interested reader may

consult [Hec90, Hec93a] and [Sch93] for a discussion of this open problem.

Corollary 6.2.15. The Smyth powerdomain of a coherent domain with bottom is a

bc-domain.

Proof. That two compact saturated sets A and B are bounded by another one, C, sim-

ply means C ⊆ A ∩B. In this case A ∩B is not empty. It is compact saturated by the

very definition of coherence.

Let us now turn to the Plotkin powerdomain. An ideal I of finite sets ordered

by ≪EM will generate ideals with respect to both coarser orders ≪H and ≪S . We

can therefore associate with I a Scott-closed set φH(I) = Cl(
⋃

I) and a compact

saturated set φS(I) =
⋂

M∈I ↑M . However, not every such pair arises in this way; the

Plotkin powerdomain is not simply the product of the two one-sided powerdomains.

We will be able to characterize them in two special cases: for countably based domains

and for coherent domains. The general situation is quite hopeless, as is illustrated

by Exercise 6.2.23(11). In both special cases we do want to show that I is faithfully

represented by the intersection φ(I) = φH(I) ∩ φS(I). In the first case we will need

the following weakening of the Egli-Milner ordering:

Definition 6.2.16. For a dcpo D we let Lens(D) be the set of all non-empty subsets

of D which arise as the intersection of a Scott-closed and a compact saturated subset.

The elements of Lens(D) we call lenses. On Lens(D) we define the topological Egli-

Milner ordering, ⊑TEM , by

K ⊑TEM L if L ⊆ ↑K and K ⊆ Cl(L).

99

Proposition 6.2.17. Let D be a dcpo.

1. Every lens is convex and Scott-compact.

2. A canonical representation for a lens L is given by ↑L ∩ Cl(L).

3. The topological Egli-Milner ordering is anti-symmetric on Lens(D).

Proof. Convexity is clear as every lens is the intersection of a lower and an upper set.

An open covering of a lens L = C ∩ U , where C is closed and U compact saturated,

may be extended to a covering of U by adding the complement of C to the cover.

This proves compactness. Since all Scott-open sets are upwards closed, compactness

of a set A implies the compactness of ↑A. Using convexity, we get L = ↑L ∩ ↓L ⊆
↑L ∩ Cl(L) and using boolean algebra we calculate ↑L = ↑(C ∩ U) ⊆ ↑U = U and

Cl(L) = Cl(C ∩U) ⊆ Cl(C) = C, so ↑L∩Cl(L) ⊆ U ∩C = L. Then if K =TEM L
we have ↑K = ↑L and Cl(K) = Cl(L). Equality of K and L follows.

Before we can prove the representation theorem we need yet another description of

the lens φ(I).

Lemma 6.2.18. Let D be a continuous domain with basis B and let I be an ideal in

〈Pf (B),≪EM 〉. Then φ(I) = {
⊔

↑A | A ⊆
⋃

I directed and A ∩M 6= ∅ for all

M ∈ I}.

Proof. The elements of the set on the right clearly belong to the Scott-closure of
⋃

I .

They are also contained in φS(I) because
⊔

↑A is above some element in A ∩M for

each M ∈ I .

Conversely, let x ∈ φ(I) and let a ∈ A = ↓↓x ∩ B. The set ↑↑a is Scott-open and

must therefore meet some M ∈ I . From the roundness of I we get M ′ ∈ I with

M ≪EM M ′. The set M ∪ {a} also approximates M ′ and so it is contained in I .

Hence a ∈
⋃

I . Furthermore, given any M ∈ I , let again M ′ ∈ I be such that

M ≪EM M ′. Then x is above some element of M ′ as φ(I) ⊆ ↑M ′ and therefore

m≪ x holds for some m ∈M .

Theorem 6.2.19. LetD be an ω-continuous domain. The Plotkin powerdomain PP(D)
is isomorphic to 〈Lens(D),⊑TEM 〉. Formal union is interpreted as union followed by

topological convex closure.

Proof. Let 〈B,≪〉 be a countable basis of D. We have already defined the map

φ : PP(D) → Lens(D). In the other direction we take the function ψ which assigns to a

lens K the set ψH(Cl(K))∩ ψS(↑K). Before we can prove that these maps constitute

a pair of isomorphisms, we need the following information about reconstructing φH(I)
and φS(I) from φ(I).

1. φS(I) = ↑φ(I): Since φS(I) is an upper set which contains φ(I), only one

inclusion can be in doubt. Let x ∈ φS(I) and I ′ = {M ∩ ↓x |M ∈ I}. Firstly,

each set in I ′ is non-empty and, secondly, we have M ∩ ↓x ≪S N ∩ ↓x whenever

M ≪EM N . Calculating φS(I ′) in the continuous domain φH(I) gives us a non-

empty set which is below x and contained in the lens φ(I).

100

2. φH(I) = Cl(φ(I)): Again, only one inclusion needs an argument. We show that

every element of ↓↓φ
H(I)∩B belongs to ↓φ(I). Given a basis element a approximating

some element of φH(I) then we already know that it belongs to
⋃

I . Let M ∈ I be

some set which contains a. Using countability of the basis we may assume that M
extends to a cofinal chain in I (Proposition 2.2.13): M = M0 ≪EM M1 ≪EM

M2 ≪EM König’s Lemma then tells us that we can find a chain of elements

a = a0 ≪ a1 ≪ a2 ≪ . . . where an ∈ An. The supremum x =
⊔

↑
n∈N

an belongs to

φ(I) and is above a.

3. φ is monotone: Let I ⊆ I ′ be two ideals in 〈Pf (B),≪EM 〉. The larger ideal

results in a bigger lower set φH(I ′) and a smaller upper set φS(I ′). Using 1 and 2 we

can calculate for the corresponding lenses:

φ(I) ⊆ φH(I) ⊆ φH(I ′) = Cl(φ(I ′)),

φ(I ′) ⊆ φS(I ′) ⊆ φS(I) = ↑φ(I).

So φ(I) ⊑TEM φ(I ′) as desired.

4. The monotonicity of ψ follows by construction and one half of the topological

Egli-Milner ordering: K ⊆ ↑M implies L ⊆ ↑M if we assume K ⊑TEM L.

5. φ ◦ ψ = id: Given a lens L = C ∩ U we clearly have φS(ψ(L)) ⊇ L. Using

the continuity of D and the compactness of L we infer that φS(ψ(L)) must equal ↑L.

Every basis element approximating some element of L occurs in some set of ψ(L), so

φH(ψ(L)) = Cl(L) is clear. Proposition 6.2.17 above then implies that φ ◦ψ(L) gives

back L.

6. ψ ◦ φ = id: Given an ideal I we know that each M ∈ I covers the lens φ(I)
in the sense of ↑↑M ⊇ φ(I). So M is contained in ψS(φ(I)). By (2), we also have

that M is contained in ψH(Cl(φ(I))). Conversely, if ↑↑M ⊇ φ(I) for a finite set M
of basis elements contained in ↓↓φ(I), then for some N ∈ I we have ↑↑M ⊇ N by the

Hofmann-Mislove Theorem 4.2.14. For this N we have M ≪S N . On the other hand,

each element a ofM approximates some x ∈ φ(I) and hence belongs to someNa ∈ I .

An upper bound for N and all Na in I , therefore, is above M in ≪EM which shows

that M must belong to I .

7. In the representation theorems for the one-sided powerdomains we have shown

that formal union translates to actual union. We combine this for the convex setting:

φ(I ∪ J) = φH(I ∪ J) ∩ φS(I ∪ J) = (φH(I) ∪ φH(J)) ∩ (φS(I) ∪ φS(J)) =
(Cl(φ(I)) ∪ Cl(φ(J))) ∩ (↑φ(I) ∪ ↑φ(J)) = Cl(φ(I) ∪ φ(J)) ∩ ↑(φ(I) ∪ φ(J)).

Note that we used countability of the basis only for showing that φH(I) can be

recovered from φ(I). In general, this is wrong. Exercise 6.2.23(11) discusses an ex-

ample.

The substitution of topological closure for downward closure was also necessary,

as the example in Figure 13 shows. There, the set A = ↑a is a lens but its downward

closure is not Scott-closed, c is missing. The set A ∪ {c} is also a lens. It is below A
in the topological Egli-Milner order but not in the plain Egli-Milner order. The convex

closure of the union of the two lenses {⊥} and A is not a lens, c must be added.

A better representation theorem is obtained if we pass to coherent domains (Sec-

tion 4.2.3). (Note that the example in Figure 13 is not coherent, because the set

101

❝ ⊥

❝ a

❝a1❝a2❝a3

❝c1

❝c2

❝c3

❝c ❵❵❵
❵❵❵

�
��

�
�

�
�

��
❅
❅❅

❆
❆
❆

❆
❆❆�

�
�

�
❅❅ ❅

❅
❅

❅
❅❅�

��
❅❅

Figure 13: An algebraic domain in which topological Egli-Milner ordering and ordi-

nary Egli-Milner ordering do not coincide.

{c1, a} has infinitely many minimal upper bounds, violating the condition in Proposi-

tion 4.2.17.) We first observe that lenses are always Lawson closed sets. If the domain

is coherent then this implies that they are also Lawson-compact. Compactness will

allow us to use downward closure instead of topological closure.

Lemma 6.2.20. Let L be a Lawson-compact subset of a continuous domain D. Then

↓L is Scott-closed.

Proof. Let x be an element of D which does not belong to ↓L. For each y ∈ L there

exists by ≪ x such that by 6⊑ y. The set D \ ↑by is Lawson-open and contains y.

By compactness, finitely many such sets cover L. Let b be an upper bound for the

associated basis elements approximating x. Then ↑↑b is an open neighborhood of x
which does not intersect L. Hence ↓L is closed.

Corollary 6.2.21. The lenses of a coherent domain are precisely the convex Lawson-

compact subsets. For these, topological Egli-Milner ordering and Egli-Milner ordering

coincide.

Theorem 6.2.22. Let D be a coherent domain. The Plotkin powerdomain of D is

isomorphic to 〈Lens(D),⊑EM 〉. Formal union is interpreted as union followed by

convex closure.

Proof. The differences to the proof of Theorem 6.2.19, which are not taken care of

by the preceding corollary, concern part 2. We must show that Cl(φ(I)) = ↓φ(I)
contains all of ↓↓φ

H(I) ∩ B. In the presence of coherence this can be done through

the Hofmann-Mislove Theorem 4.2.14. The lower set φH(I) is a continuous domain

in itself. For an element a of ↓↓φ
H(I) ∩ B we look at the filtered collection of upper

sets J = {↑a ∩ ↑M |M ∈ I}. Each of these is non-empty, because a belongs to some

M ∈ I , and compact saturated because of coherence. Hence
⋂

J is non-empty. It is

also contained in φ(I) and above a.

102

6.2.4 Hyperspaces and probabilistic powerdomains

In our presentation of powerdomains we have emphasized the feature that they are free

algebras with respect to certain (in-)equational theories. From the general existence

theorem for such algebras we derived concrete representations as sets of subsets. This

is the approach which in the realm of domain theory was suggested first by Matthew

Hennessy and Gordon Plotkin in [HP79] but it has a rather long tradition in algebraic

semantics (see e.g. [NR85]). However, it is not the only viewpoint one can take. One

may also study certain sets of subsets of domains in their own right. In topology,

this study of ‘hyperspaces’, as they are called, is a long-standing tradition, starting

with Felix Hausdorff [Hau14] and Leopold Vietoris [Vie21, Vie22]. It is also how the

subject started in semantics and, indeed, continues to be developed. A hyperspace can

be interesting even if an equational characterization cannot be found or can be found

only in restricted settings. Recent examples of this are the set-domains introduced by

Peter Buneman [BDW88, Gun92a, Hec90, Puh93, Hec91, Hec93b] in connection with

a general theory of relational databases. While these are quite natural from a domain-

theoretic point of view, their equational characterizations (which do exist for some of

them) are rather bizarre and do not give us much insight. The hyperspace approach is

developed in logical form in Section 7.3.

We should also mention the various attempts to define a probabilistic version of

the powerdomain construction, see [SD80, Mai85, Gra88, JP89, Jon90]. (As an aside,

these cannot be restricted to algebraic domains; the wider concept of continuous do-

main is forced upon us through the necessary use of the unit interval [0, 1].) They do

have an equational description in some sense but this goes beyond the techniques of

this chapter.

One can then ask abstractly what constitutes a powerdomain construction and build

a theory upon such a definition. This approach was taken in [Hec90, Hec91]. The

most notable feature of this work is that under this perspective, too, many of the known

powerdomains turn out to be canonical in a precise sense. How this (very natural)

formulation of canonicity is connected with concerns in semantics, however, is as yet

unclear.

Exercises 6.2.23. 1. For the proof of Theorem 6.1.6 we can equip FB also with

the transitive closure of ≺s ◦ ⊏∼. Show:

(a) This relation ≺′ satisfies the interpolation axiom.

(b) In general, ≺′ is different from ≺.

(c) The ideal completions of 〈FB,≺〉 and 〈FB,≺′〉 are isomorphic. (Use

Exercise 2.3.9(27).)

(d) What is the advantage of ≺ over ≺′?

2. Describe the free domain algebra for an arbitrary domain D and an arbitrary

signature Σ in the case that E is empty.

3. Set up an algebraic theory such that all its dcpo-algebras have least elements

but the embeddings η are not strict.

103

❝
❝ ❝

❝

s a
s s

s s
✑

✑
✑

✑
◗
◗

◗
◗ ✑

✑
✑
✑
❅

❅❅

◗
◗

◗
◗❛❛❛❛❛❛❛ ✁

✁✁✑
✑

✑
✑

✁
✁✁�
��

❍❍❍❍❍❍❛❛❛❛❛❛❛

✑
✑

✑
✑ ◗

◗
◗
◗

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

✎
✍

☞
✌

Figure 14: Part of an algebraic domain where Theorem 6.2.19 fails.

4. Let 〈Σ,E〉 be the usual equational theory of groups (or boolean algebras). Show

that any dcpo-algebra with respect to this theory is trivially ordered. Conclude

that the free construction collapses each connected component of the generating

dcpo into a single point.

5. Given signatures Σ and Σ′ and sets of inequalities E and E′ we call the pair

〈Σ,E〉 a reduct of 〈Σ′,E′〉 if Σ ⊆ Σ′ and E ⊆ E′. In this case there is an obvious

forgetful functor from C(Σ′,E′) to C(Σ,E), where C is any of the categories

considered in this chapter. Show that the general techniques of Theorem 6.1.2

and 6.1.7 suffice to prove that this functor has a left adjoint.

6. Likewise, show that partial domain algebras can be completed freely.

7. Let A be a free domain-algebra over an algebraic domain. Is it true that every

operation, if applied to compact elements of A, returns a compact element?

8. Let D = {⊥ ⊑ a, b ⊑ ⊤} be the four-element lattice (Figure 1) and let E =
D×D. The sets {〈⊥, a〉, 〈⊥, b〉} and {〈a,⊥〉, 〈b,⊥〉} are elements of the Plotkin

powerdomain of E. Show that they have two minimal upper bounds. Since

{〈⊤,⊤〉} is a top element, PP(E) is not an L-domain.

9. Is the Plotkin powerdomain closed on F-B, the category whose objects are bilim-

its of finite (but not necessarily pointed) posets?

10. Define a natural isomorphism between PH(D)⊥−◦E and [D −→ E] where D is

any continuous domain, E is a complete lattice, and ·−◦· stands for the set of

functions which preserve all suprema (ordered pointwise).

11. We want to construct an algebraic domain D to which Theorem 6.2.19 cannot

be extended. The compact elements of D are arranged in finite sets already such

that they form a directed collection in the Egli-Milner ordering, generating the

ideal I . We take one finite set for each element of Pf (R), the finite powerset

of the reals (or any other uncountable set), and we will have Mα ≪EM Mβ if

α ⊆ β ⊆ R. So we can arrange the Mα in layers according to the cardinality

of α. Each Mα contains one ‘white’ and |α|! many ‘black’ elements. If α $ β
then the white element of Mα is below every element of Mβ . For the order

between black elements look at adjacent layers. There are |β| many subsets of β

104

with cardinality |β| − 1. The |β|! many black elements of Mβ we partition into

|β| many classes of cardinality (|β| − 1)!. So we can let the black elements of a

lower neighbor of Mβ be just below the equally many black elements of one of

these classes. (The idea being that no two black elements have an upper bound.)

Figure 14 shows a tiny fraction of the resulting ordered set K(D). Establish the

following facts about this domain:

(a) Above a black element there are only black, below a white element there

are only white elements.

(b) i. An ideal in K(D) can contain at most one black element from each set.

ii. An ideal can contain at most one black element in each layer.

iii. An ideal can contain at most countably many black elements.

(c) i. An ideal meeting all sets must contain all white elements.

ii. If an ideal contains a black element, then it contains the least black

element a.

iii. If an ideal meeting all sets contains a then it must contain upper

bounds for a and the uncountably many white elements of the first

layer. These upper bounds must form an uncountable set and consist

solely of black elements.

(d) From the contradiction between b-iii and c-iii conclude that only one ideal

in KD meets all sets, the ideal W of white elements. Therefore, φ(I) con-

tains precisely one element, say b. Show that ↓b equals W ∪{b} and that it

is Scott-closed. Hence it is far from containing all elements of
⋃

I = KD.

(e) Go a step farther and prove that the lenses of D are not even directed-

complete by showing that the ideal I we started out with does not have an

upper bound.

12. (R. Heckmann) Remove idempotence from the Hoare powertheory and study free

domain algebras with respect to this theory. These are no longer finite if the

generating domain is finite. Show that the free algebra over the four-element

lattice (Figure 1) is neither bifinite nor an L-domain.

105

7 Domains and logic

There are at least three ways in which the idea of a function can be formalized. The first

is via algorithms, which is the Computer Science viewpoint. The second is via value

tables or, in more learned words, via graphs. This is the – rather recent – invention of

Mathematics. The third, finally, is via propositions: We can either take propositions

about the function itself or view a function as something which maps arguments which

satisfy φ to values which satisfy ψ. The encoding in the latter case is by the set of all

such pairs (φ, ψ). The beauty of the subject, then, lies in the interplay between these

notions.

The passage from algorithms (programs) to the extensional description via graphs

is called denotational semantics. It requires sophisticated structures, precisely domains

in the sense of this text, because of, for example, recursive definitions in programs. The

passage from algorithms to propositions about functions is called program logics. If

we take the computer scientist’s point of view as primary then denotational semantics

and program logics are two different ways of describing the behaviour of programs.

It is the purpose of this chapter to lay out the connection between these two forms of

semantics. As propositions we allow all those formulae whose extensions in the domain

under consideration are (compact) Scott-open sets. This choice is well justified because

it can be argued that such propositions correspond to properties which can be detected

in a finite amount of time [Abr87]. The reader will find lucid explications of this point

in [Smy92] and [Vic89].

Mathematically, then, we have to study the relation between domains and their

complete lattices of Scott-open sets. Stated for general topological spaces, this is the

famous Stone duality. We treat it in Section 7.1. The restriction to domains introduces

several extra features which we discuss in a one by one fashion in Section 7.2. The

actual domain logic, as a syntactical theory, is laid out in Section 7.3.

The whole open-set lattice, however, is too big to be syntactically represented.

We must, on this higher level, once more employ ideas of approximation and bases.

There is a wide range of possibilities here, which can be grouped under the heading

of information systems. We concentrate on one of these, namely, the logic of compact

open subsets. This is well motivated by the general framework of Stone duality and

also gives the richest logic.

7.1 Stone duality

7.1.1 Approximation and distributivity

We start out with a few observations concerning distributivity. So far, this didn’t play a

role due to the poor order theoretic properties of domains. Now, in the context of open

set lattices, it becomes a central theme, because, as we shall see, it is closely related

with the concept of approximation. The earliest account of this connection is probably

[Ran53].

A word on notation: We shall try to keep a clear distinction between spaces, which

in the end will be our domains, and their open-set lattices. We shall emphasize this

by using ≤ for the less-than-or-equal-to relation whenever we speak of lattices, even

106

though these do form a special class of domains, too, as you may remember from

Section 4.1.

Recall that a lattice L is said to be distributive if for all x, y, z ∈ L the equality

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

holds. The dual of this axiom is then satisfied as well. For the infinitary version of

distributivity, we introduce the following notation for choice functions: If (Ai)i∈I is a

family of sets then we write f : I
⊙
−→

⋃

Ai if f(i) takes its value inAi for every i ∈ I .

Complete distributivity can then be expressed by the equation

∧

i∈I

∨

Ai =
∨

f : I
⊙

−→∪Ai

∧

i∈I

f(i).

It, too, implies its order dual, see Exercise 7.3.19(1). There is a lot of room for varia-

tions of this and we shall meet a few of them in this section. Here comes the first:

Theorem 7.1.1. A complete lattice L is continuous if and only if

∧

i∈I

∨

↑Ai =
∨

↑

f : I
⊙

−→∪Ai

∧

i∈I

f(i)

holds for all families (Ai)i∈I of directed subsets of L.

Proof. The reader should check for himself that the supremum on the right hand side

is indeed over a directed set. Let now x be an element approximating the left hand

side of the equation. Then for each i ∈ I we have x ≪
∨

↑Ai and so there is ai ∈
Ai with x ≤ ai. Let f be the choice function which selects these ai. Then x ≤
∧

i∈I f(i) and x is below the right hand side as well. Assuming L to be continuous,

this proves
∧

i∈I

∨

↑Ai ≤
∨

↑

f : I
⊙

−→∪Ai

∧

i∈I f(i). The reverse inequality holds in

every complete lattice.

For the converse fix an element x ∈ L and let (Ai)i∈I be the family of all directed

sets A for which x ≤
∨

↑A. From the equality, which we now assume to hold, we get

that x =
∨

↑

f : I
⊙

−→∪Ai

∧

f(i). We claim that for each choice function f : I
⊙
−→

⋃

Ai,

the corresponding element y =
∧

i∈I f(i) is approximating x. Indeed, ifA is a directed

set with x ≤
∨

↑A then A = Ai0 for some i ∈ I and so y ≤ f(i0) ∈ A.

Let us now look at completely distributive lattices which, by the preceding the-

orem, are guaranteed to be continuous. We can go further and express this stronger

distributivity by an approximation axiom, too.

Definition 7.1.2. For a complete lattice L define a relation ≪ on L by

x≪ y if ∀A ⊆ L. (y ≤
∨

A =⇒ ∃a ∈ A. x ≤ a).

Call L prime-continuous if for every x ∈ L, x =
∨

{y | y ≪ x} holds.

107

Note that the relation ≪ is defined in just the same way as the order of approxi-

mation, except that directed sets are replaced by arbitrary subsets. All our fundamental

results about the order of approximation hold, mutatis mutandis, for ≪ as well. In

particular, we shall make use of Proposition 2.2.10 and Lemma 2.2.15. Adapting the

previous theorem we get George N. Raney’s characterization of complete distributivity

[Ran53].

Theorem 7.1.3. A complete lattice is prime-continuous if and only if it is completely

distributive.

Let us now turn our attention to ‘approximation’ from above. The right concept for

this is:

Definition 7.1.4. A complete lattice L is said to be ∧-generated by a subset A if for

every x ∈ L, x =
∧

(↑x ∩A) holds. (Dually, we can speak of ∨-generation.)

We will study ∧-generation by certain elements only, which we now introduce in

somewhat greater generality than actually needed for our purposes.

Definition 7.1.5. An element x of a lattice L is called ∧-irreducible if whenever x =
∧

M for a finite set M ⊆ L then it must be the case that x = m for some m ∈ M .

We say x is ∧-prime if x ≥
∧

M implies x ≥ m for some m ∈ M , where M is

again finite. Stating these conditions for arbitrary M ⊆ L gives rise to the notions

of completely ∧-irreducible and completely ∧-prime element. The dual notions are

obtained by exchanging supremum for infimum.

Note that neither ∧-irreducible nor ∧-prime elements are ever equal to the top ele-

ment of the lattice, because that is the infimum of the empty set.

Proposition 7.1.6. A ∧-prime element is also ∧-irreducible. The converse holds if the

lattice is distributive.

Theorem 7.1.7. A continuous (algebraic) lattice L is ∧-generated by its set of (com-

pletely) ∧-irreducible elements.

Proof. If x and y are elements of L such that x is not below y then there is a Scott-

open filter F which contains x but not y, because ↓y is closed and the Scott-topology is

generated by open filters, Lemma 2.3.8. Employing the Axiom of Choice in the form

of Zorn’s Lemma, we find a maximal element above y in the inductive set L \ F . It

is clearly ∧-irreducible. In an algebraic lattice we can choose F to be a principal filter

generated by a compact element. The maximal elements in the complement are then

completely ∧-irreducible.

Theorem 7.1.8. If L is a complete lattice which is ∧-generated by ∧-prime elements,

then L satisfies the equations

∧

m∈M

∨

Am =
∨

f : M
⊙

−→∪Am

∧

m∈M

f(m)

108

and
∨

i∈I

∧

Mi =
∧

f : I
⊙

−→∪Mi

∨

i∈I

f(i)

where the sets M and Mi are finite.

A dual statement holds for lattices which are ∨-generated by ∨-prime elements.

Proof. The right hand side is certainly below the left hand side, so assume that p is a ∧-

prime element above
∨

f : M
⊙

−→∪Am

∧

m∈M f(m). Surely, p is above
∧

m∈M f(m) for

every f : M
⊙
−→ ∪Am and because it is ∧-prime it is above f(mf) for someMf ∈M .

We claim that the set B of all f(mf) covers at least one Am. Assume the contrary.

Then for each m ∈ M there exists am ∈ Am \B and we can define a choice function

f0 : m 7→ am. Then f0(mf0) ∈ B contradicts our construction of f0. So we know

that for some m ∈ M all elements of Am are below p and hence p is also above
∧

m∈M

∨

Am. The proof for the second equation is similar and simpler.

Note that the two equations are not derivable from each other because of the side

condition on finiteness. The first equation is equivalent to

x ∧
∨

i∈I

yi =
∨

i∈I

(x ∧ yi)

which can be stated without choice functions. In this latter form it is known as the

frame distributivity law and complete lattices, which satisfy it, are called frames. The

basic operations on a frame are those which appear in this equation, namely, arbitrary

join and finite meet.

7.1.2 From spaces to lattices

Given a topology τ on a set X then τ consists of certain subsets of X . We may think

of τ as an ordered set where the order relation is set inclusion. This ordered set is a

complete lattice because arbitrary joins exist. Let us also look at continuous functions.

In connection with open-set lattices it seems right to take the inverse image operation

which, for a continuous function, is required to map opens to opens. Set-theoretically,

it preserves all unions and intersections of subsets, and hence all joins and finite meets

of opens. This motivates the following definition.

Definition 7.1.9. A frame-homomorphism between complete latticesK andL is a map

which preserves arbitrary suprema and finite infima.

We let CLat stand for the category of complete lattices and frame-homomorphisms.

We want to relate it to Top, the category of topological spaces and continuous func-

tions. The first half of this relation is given by the contravariant functor Ω, which

assigns to a topological space its lattice of open subsets and to a continuous map the

inverse image function.

For an alternative description let 2 be the two-element chain ⊥ ≤ ⊤ equipped with

the Scott-topology. The open sets of a space X are in one-to-one correspondence with

continuous functions fromX to 2, if for each open setO ⊆ X we set χO to be the map

which assigns ⊤ to an element x if and only if x ∈ O. The action of Ω on morphisms

can then be expressed by Ω(f)(χO) = χO ◦ f .

109

L

F

2

❝ x

❝ ⊥

❝ ⊤

�
�
�
�
�
�
❅

❅❅
❅

❅
❅�

�
�

�
�

�
❅

❅
❅�

�
�
�

�
�

❅
❅
❅

✲χF

Figure 15: A ‘point’ in a complete lattice.

7.1.3 From lattices to topological spaces

For motivation, let us look at topological spaces first. An element of a topological

space X is naturally equipped with the following three pieces of information. We can

associate with it its filter Fx of open neighborhoods, the complement of its closure, or

a map from 1, the one-element topological space, to X . Taking the filter, for example,

we observe that it has the additional property that if a union of open sets belongs to it

then so does one of the opens. Also, the closure of a point has the property that it cannot

be contained in a union of closed sets without being contained in one of them already.

The map 1 → X, which singles out the point, translates to a frame-homomorphism

from Ω(X) to Ω(1) = 2. Let us fix this new piece of notation:

Definition 7.1.10. A filter F ⊆ L is called prime if
∨

M ∈ F implies F ∩M 6= ∅
for all finite M ⊆ L. Allowing M to be an arbitrary subset we arrive at the notion of

completely prime filter. Dually, we speak of (completely) prime ideals.

Proposition 7.1.11. Let L be a complete lattice and let F be a subset of L. The

following are equivalent:

1. F is a completely prime filter.

2. F is a filter and L \ F = ↓x for some x ∈ L.

3. L \ F = ↓x for a ∧-prime element x ∈ L.

4. χF is a frame-homomorphism from L to 2.

This proposition shows that all three ways of characterizing points through opens

coincide (see also Figure 15). Each of them has its own virtues and we will take

advantage of the coincidence. As our official definition we choose the variant which is

closest to our treatment of topological spaces.

110

Definition 7.1.12. Let L be a complete lattice. The points of L are the completely

prime filters of L. The collection pt(L) of all points is turned into a topological space

by requiring all those subsets of pt(L) to be open which are of the form

Ox = {F ∈ pt(L) | x ∈ F}, x ∈ L .

Proposition 7.1.13. The sets Ox, x ∈ L, form a topology on pt(L).

Proof. We have
⋂

m∈M Oxm
= O∧m∈Mxm

, M finite, because points are filters and
⋃

i∈I Oxi
= O∨i∈Ixi

because they are completely prime.

Observe the perfect symmetry of our setup. In a topological space an element x
belongs to an open set O if x ∈ O; in a complete lattice a point F belongs to an open

set Ox if x ∈ F .

By assigning to a complete lattice L the topological space of all points, and to a

frame-homomorphism h : K → L the map pt(h) which assigns to a point F the point

h−1(F) (which is readily seen to be a completely prime filter), we get a contravariant

functor, also denoted by pt, from CLat to Top.

Again, we give the alternative description based on characteristic functions. The

fact is that we can use the same object 2 for this purpose, because it is a complete

lattice as well. One speaks of a schizophrenic object in such a situation. As we saw in

Proposition 7.1.11, a completely prime filter F gives rise to a frame-homomorphism

χF : L → 2. The action of the functor pt on morphisms can then be expressed, as

before, by pt(h)(χF) = χF ◦ h.

7.1.4 The basic adjunction

A topological space X can be mapped into the space of points of its open set lattice,

simply map x ∈ X to the completely prime filter Fx of its open neighborhoods. This

assignment, which we denote by ηX : X → pt(Ω(X)), is continuous and open onto its

image: Let U be an open set in X . Then we get by simply unwinding the definitions:

Fx ∈ OU ⇐⇒ U ∈ Fx ⇐⇒ x ∈ U . It also commutes with continuous functions

f : X → Y : pt(Ω(f))(ηX(x)) = Ω(f)−1(Fx) = Ff(x) = ηY ◦ f(x). So the family

of all ηX constitutes a natural transformation from the identity functor to pt ◦ Ω.

The same holds for complete lattices. We let εL : L → Ω(pt(L)) be the map

which assigns Ox to x ∈ L. It is a frame-homomorphism as we have seen in the

proof of Proposition 7.1.13. To see that this, too, is a natural transformation, we

check that it commutes with frame-homomorphisms h : K → L: Ω(pt(h))(εK(x)) =
pt(h)−1(Ox) = Oh(x) = εL ◦ h(x), which is essentially the same calculation as for η.

We have all the ingredients to formulate the Stone Duality Theorem:

Theorem 7.1.14. The functors Ω: Top → CLat and pt : CLat → Top are dual ad-

joints of each other. The units are η and ε.

111

Proof. It remains to check the triangle equalities

Ω(X)
εΩ(X)✲ Ω(pt(Ω(X))) and pt(L)

ηpt(L)✲ pt(Ω(pt(L)))
❍❍❍❍❍❍❍❍❍❍

id

❥

❍❍❍❍❍❍❍❍❍❍
id

❥
Ω(X)

Ω(ηX)

❄
pt(L)

pt(εL)

❄

For the left diagram let O be an open set in X .

Ω(ηX)(εΩ(X)(O)) = η−1
X (OO) = {x ∈ X | ηX(x) ∈ OO}

= {x ∈ X | Fx ∈ OO}

= {x ∈ X | O ∈ Fx}

= {x ∈ X | x ∈ O} = O.

The calculation for the right diagram is verbatim the same if we exchange η and ε, Ω
and pt, X and L, and O and F.

While our concrete representation through open sets and completely prime filters,

respectively, allowed us a very concise proof of this theorem, it is nevertheless instruc-

tive to see how the units behave in terms of characteristic functions. Their type is from

X to (X → 2) → 2 and from L to (L → 2) → 2, whereby the right hand sides are

revealed to be second duals. The canonical mapping into a second dual is, of course,

point evaluation: x 7→ evx, where evx(χ) = χ(x). This is indeed what both η and ε
do.

7.2 Some equivalences

7.2.1 Sober spaces and spatial lattices

In this subsection we look more closely at the units η and ǫ. We will need the following

concept:

Definition 7.2.1. A closed subset of a topological space is called irreducible if it is

non-empty and cannot be written as the union of two closed proper subsets.

Clearly, an irreducible closed set corresponds via complementation to a ∧-

irreducible (and hence ∧-prime) element in the lattice of all open sets.

Proposition 7.2.2. Let X be a topological space. Then ηX : X → pt(Ω(X)) is in-

jective if and only if X satisfies the T0-separation axiom. It is surjective if and only if

every irreducible closed set is the closure of an element of X .

Proof. The first half is just one of the various equivalent definitions of T0-separation:

different elements have different sets of open neighborhoods.

For the second statement observe that the ∧-prime elements of Ω(X) are in one-

to-one correspondence with completely prime filters of open sets. The condition then

simply says that every such filter arises as the neighborhood filter of an element of X .

112

Definition 7.2.3. A topological space X is called sober if ηX is bijective.

Note that if ηX is bijective then it must be a homeomorphism because we know

from Section 7.1.4 that it is always continuous and open onto the image. By the

preceding proposition, a space is sober if and only if it is T0 and every irreducible

closed set is the closure of a point. The intuitive meaning is, of course, that a space is

sober if it can be recovered from its lattice of open sets.

Proposition 7.2.4. For any complete lattice L the unit εL : L→ Ω(pt(L)) is surjective

and monotone. Furthermore, the following are equivalent:

1. εL is injective.

2. The elements of L are separated by completely prime filters.

3. L is ∧-generated by ∧-prime elements.

4. If x 6≤ y then there exists a completely prime filter F such that x ∈ F and y 6∈ F .

5. εL is order-reflecting.

Proof. We have seen in Proposition 7.1.13 that all open sets on pt(L) are of the form

Ox for some x ∈ L. This proves surjectivity. Monotonicity is clear because filters are

upper sets.

Turning to the equivalent conditions for injectivity, we note that Ox = Oy is equiv-

alent to x ∈ F ⇐⇒ y ∈ F for all completely prime filters F . In other words, εL
is injective if and only if the elements of L are separated by completely prime filters.

Given x ∈ L let x′ be the infimum of all ∧-primes above x. We want to show that

x = x′. If x′ is strictly above x then there exists a completely prime filter contain-

ing x′ but not x. Using the equivalence of Proposition 7.1.11, we see that this is the

same as the existence of a ∧-prime element in ↑x \ ↑x′, a contradiction. From (3) the

last two statements follow easily. They, in turn, imply injectivity (which, in a general

order-theoretic setting, is strictly weaker than order-reflection).

Definition 7.2.5. A complete lattice L is called spatial if εL is bijective.

The intuitive meaning in this case is that a spatial lattice can be thought of as a

lattice of open sets for some topological space. A direct consequence of Theorem 7.1.8

is the following:

Theorem 7.2.6. A spatial lattice is a frame. In particular, it is distributive.

Theorem 7.2.7. For any complete lattice L the topological space pt(L) is sober. For

any topological space X the lattice Ω(X) is spatial.

Proof. The space of points of a lattice L is certainly T0, because if we are given dif-

ferent completely prime filters then there is x ∈ L which belongs to one of them but

not the other. Hence, Ox contains one but not the other. For surjectivity of ηpt(L) let

A be an irreducible closed set of filters. First of all, the union A of all filters in A is a

non-empty upper set in L which is unreachable by joins. Hence the complement of A

113

is a principal ideal ↓x. Also, the complement of A in pt(L) certainly contains Ox. We

claim that x must be ∧-prime. Indeed, if y ∧ z ≤ x then A is covered by the comple-

ments of Oy and Oz , whence it is covered by one of them, say the complement of Oy ,

which means nothing else than y ≤ x. It follows that A is contained in the closure of

the point L \ ↓x. On the other hand, L \ ↓x belongs to the closed set A as each of its

open neighborhoods contains an element of A.

The second statement is rather easier to argue for. If O and O′ are different open

sets then there is an element x of X contained in one but not the other. Hence the

neighborhood filter of x, which is always completely prime, separates O and O′.

Corollary 7.2.8. The functors Ω and pt form a dual equivalence between the category

of sober spaces and the category of spatial lattices.

This result may suggest that a reasonable universe of topological spaces ought to

consist of sober spaces, or, if one prefers the lattice-theoretic side, of spatial lattices.

This is indeed true as far as spaces are concerned. For the lattice side, however, it

has been argued forcefully that the right choice is the larger category of frames (which

are defined to be those complete lattices which satisfy the frame distributivity law,

Section 7.1.1). The basis of these arguments is the fact that free frames exist, see

[Joh82], Theorem II.1.2, a property which holds neither for complete lattices nor for

spatial lattices. (More information on this is in [Isb72, Joh82, Joh83].) The choice

of using frames for doing topology has more recently found support from theoretical

computer science, because it is precisely the frame distributivity law which can be

expected to hold for observable properties of processes. Even though this connection

is to a large extent the raison d’être for this chapter, we must refer to [Abr87, Abr91b,

Vic89, Smy92] for an in-depth discussion.

7.2.2 Properties of sober spaces

Because application of pt ◦ Ω to a space X is an essentially idempotent operation, it

is best to think of pt(Ω(X)) as a completion of X . It is commonly called the soberifi-

cation of X . Completeness of this particular kind is also at the heart of the Hofmann-

Mislove Theorem, which we have met in Section 4.2.3 already and which we are now

able to state in its full generality.

Theorem 7.2.9. Let X be a sober space. The sets of open neighborhoods of compact

saturated sets are precisely the Scott-open filters in Ω(X).

Proof. It is pretty obvious that the neighborhoods of compact subsets are Scott-open

filters in Ω(X). We are interested in the other direction. Given a Scott-open fil-

ter F ⊆ Ω(X) then the candidate for the corresponding compact set is K =
⋂

F.

We must show that each open neighborhood of K belongs to F already. For the sake

of contradiction assume that there exists an open neighborhood O 6∈ F. By Zorn’s

Lemma we may further assume that O is maximal with this property. Because F is

a filter, O is ∧-prime as an element of Ω(X) and this is tantamount to saying that its

complement A is irreducible as a closed set. By sobriety it must be the closure of a

single point x ∈ X . The open sets which do not contain x are precisely those which

114

are contained in O. Hence every open set from the filter F contains x and so x belongs

to K. This, finally, contradicts our assumption that O is a neighborhood of K.

This appeared first in [HM81]. Our proof is taken from [KP94]. Note that it relies,

like almost everything else in this chapter, on the Axiom of Choice.

Saturated sets are uniquely determined by their open neighborhoods, so we can

reformulate the preceding theorem as follows:

Corollary 7.2.10. Let X be a sober space. The poset of compact saturated sets or-

dered by inclusion is dually isomorphic to the poset of Scott-open filters in Ω(X) (also

ordered by inclusion).

Corollary 7.2.11. Let X be a sober space. The filtered intersection of a family of

(non-empty) compact saturated subsets is compact (and non-empty). If such a filtered

intersection is contained in an open set O then some element of the family belongs to

O already.

Proof. By the Hofmann-Mislove Theorem we can switch freely between compact satu-

rated sets and open filters in Ω(X). Clearly, the directed union of open filters is another

such. This proves the first statement. For the intersection of a filtered family to be con-

tained in O means that O belongs to the directed union of the corresponding filters.

Then O must be contained in one of these already. The claim about the intersection of

non-empty sets follows from this directly because we can take O = ∅.

Every T0-space can be equipped with an order relation, called the specialization

order, by setting x ⊑ y if for all open sets O, x ∈ O implies y ∈ O. We may then

compare the given topology with topologies defined on ordered sets. One of these

which plays a role in this context, is the weak upper topology. It is defined as the

coarsest topology for which all sets of the form ↓x are closed.

Proposition 7.2.12. For a T0-space X the topology on X is finer than the weak upper

topology derived from the specialization order.

Proposition 7.2.13. A sober space is a dcpo in its specialization order and its topology

is coarser than the Scott-topology derived from this order.

Proof. By the equivalence between sober spaces and spatial lattices we may think of

X as the points of a complete lattice L. It is seen without difficulties that the special-

ization order on X then translates to the inclusion order of completely prime filters.

That a directed union of completely prime filters is again a completely prime filter is

immediate.

Let
⋃

↑
i∈I Fi be such a directed union. It belongs to an open set Ox if and only if

x ∈ Fi for some i ∈ I . This shows that each Ox is Scott-open.

A dcpo equipped with the Scott-topology, on the other hand, is not necessarily

sober, see Exercise 7.3.19(7). We also record the following fact although we shall not

make use of it.

Theorem 7.2.14. The category of sober spaces is complete and cocomplete. It is also

closed under retracts formed in the ambient category Top.

115

For the reader’s convenience we sum up our considerations in a table comparing

concepts in topological spaces to concepts in pt(L) for L a complete lattice.

space pt(L)

point completely prime filter (c. p. filter)

specialization order inclusion order

open set c. p. filters containing some x ∈ L
saturated set c. p. filters containing some upper set

compact saturated set c. p. filters containing a Scott-open filter

7.2.3 Locally compact spaces and continuous lattices

We already know that sober spaces may be seen as dcpo’s with an order-consistent

topology. We move on to more special kinds of spaces with the aim to characterize our

various kinds of domains through their open-set lattices. Our first step in this direction

is to introduce local compactness. We have:

Lemma 7.2.15. Distributive continuous lattices are spatial.

Proof. We have shown in Theorem 7.1.7 that continuous lattices are ∧-generated by

∧-irreducible elements. In a distributive lattice these are also ∧-prime.

Now recall that a topological space is called locally compact if every element has

a fundamental system of compact neighborhoods. This alone does not imply sobriety,

as the ascending chain of natural numbers, equipped with the weak upper topology,

shows. But in combination with sobriety we get the following beautiful result:

Theorem 7.2.16. The functors Ω and pt restrict to a dual equivalence between the

category of sober locally compact spaces and the category of distributive continuous

lattices.

Proof. We have seen in Section 4.2.3 already that O ≪ O′ holds in Ω(X) if there

is a compact set between O and O′. This proves that the open-set lattice of a locally

compact space is continuous.

For the converse, let F be a point in an open set Ox, that is, x ∈ F . A completely

prime filter is Scott-open, therefore there is a further element y ∈ F with y ≪ x.

Lemma 2.3.8 tells us that there is a Scott-open filter G contained in ↑↑y which con-

tains x. We know by the previous lemma that a distributive continuous lattice can be

thought of as the open-set lattice of its space of points, which, furthermore, is guaran-

teed to be sober. So we can apply the Hofmann-Mislove Theorem 7.2.9 and get that

the set A of points of L, which are supersets of G, is compact saturated. In summary,

F is contained in Oy which is a subset of A and this is a subset of Ox.

From now on, all our spaces are locally compact and sober. The three properties

introduced in the next three subsections, however, are independent of each other.

116

7.2.4 Coherence

We have introduced coherence in Section 4.2.3 for the special case of continuous do-

mains. The general definition reads as follows:

Definition 7.2.17. A topological space is called coherent, if it is sober, locally compact,

and the intersection of two compact saturated subsets is compact.

Definition 7.2.18. The order of approximation on a complete lattice is called multi-

plicative if x ≪ y and x ≪ z imply x ≪ y ∧ z. A distributive continuous lattice for

which the order of approximation is multiplicative is called arithmetic.

As a generalization of Proposition 4.2.16 we have:

Theorem 7.2.19. The functors Ω and pt restrict to a dual equivalence between the

category of coherent spaces and the category of arithmetic lattices.

Proof. The same arguments as in Proposition 4.2.15 apply, so it is clear that the open-

set lattice of a coherent space is arithmetic. For the converse we may, just as in the

proof of Theorem 7.2.16, invoke the Hofmann-Mislove Theorem. It tells us that com-

pact saturated sets of pt(L) are in one-to-one correspondence with Scott-open filters.

Multiplicativity of the order of approximation is just what we need to prove that the

pointwise infimum of two Scott-open filters is again Scott-open.

7.2.5 Compact-open sets and spectral spaces

By passing from continuous lattices to algebraic ones we get:

Theorem 7.2.20. The functors Ω and pt restrict to a dual equivalence between the

category of sober spaces, in which every element has a fundamental system of compact-

open neighborhoods, and the category of distributive algebraic lattices.

The proof is the same as for distributive continuous lattices, Theorem 7.2.16. We

now combine this with coherence.

Definition 7.2.21. A topological space, which is coherent and in which every element

has a fundamental system of compact-open neighborhoods, is called a spectral space.

Theorem 7.2.22. The functors Ω and pt restrict to a dual equivalence between the

category of spectral spaces and the category of algebraic arithmetic lattices.

Having arrived at this level, we can replace the open-set lattice with the sublattice

of compact-open subsets. Our next task then is to reformulate Stone-duality with bases

of open-set lattices. For objects we have:

Proposition 7.2.23. Let L be an algebraic arithmetic lattice. The completely prime fil-

ters of L are in one-to-one correspondence with the prime filters of K(L). The topology

on pt(L) is generated by the set of all Ox, where x is compact in L.

117

Proof. Given a completely prime filter F in L, we let F ∩ K(L) be the set of compact

elements contained in it. This is clearly an upwards closed set in K(L). It is a filter,

because L is arithmetic. Primeness, finally, follows from the fact that F is Scott-open

and hence equal to ↑(F ∩ K(L)). Conversely, a filter G in K(L) generates a filter ↑G
in L. For complete primeness let A be a subset of L with join in ↑G. L is algebraic.

So we may replace A by B = ↓A ∩ K(L) and
∨

B ∈ ↑G will still hold. Because ↑G
is Scott-open, there is a finite subset M of B with

∨

M ∈ ↑G. Some element of G
must be below

∨

M and primeness then gives us that some element ofM belongs toG
already.

The statement about the topology on pt(L) follows from the fact that every element

of L is a join of compact elements.

A frame-homomorphism between algebraic arithmetic lattices need not preserve

compact elements, so in order to represent it through bases we need to resort to re-

lations, as in Section 2.2.6, Definition 2.2.27. Two additional axioms are needed,

however, because frame-homomorphisms are more special than Scott-continuous func-

tions.

Definition 7.2.24. A relation R between lattices V and W is called join-approximable

if the following conditions are satisfied:

1. ∀x, x′ ∈ V ∀y, y′ ∈W. (x′ ≥ x R y ≥ y′ =⇒ x′ R y′);

2. ∀x ∈ V ∀N ⊆fin W. (∀y ∈ N. x R y =⇒ x R (
∨

N));

3. ∀M ⊆fin V ∀y ∈W. (∀x ∈M. x R y =⇒ (
∧

M) R y);

4. ∀M ⊆fin V ∀x ∈W. ((
∨

M) R x =⇒ ∃N ⊆fin W.
(x =

∨

N ∧ ∀n ∈ N∃m ∈M. m R n)).

The following is then easily established:

Proposition 7.2.25. The category of algebraic arithmetic lattices and frame-

homomorphisms is equivalent to the category of distributive lattices and join-

approximable relations.

By Proposition 7.2.23 we can replace the compound functor pt ◦ Idl by a direct

construction of a topological space out of a distributive lattice. We denote this functor

by spec, standing for the spectrum of a distributive lattice. We also contract K ◦ Ω to

KΩ. Then we can say:

Theorem 7.2.26. The category of spectral spaces and continuous functions is dually

equivalent to the category of distributive lattices and join-approximable relations via

the contravariant functors KΩ and spec.

We supplement the table in Section 7.2.2 with the following comparison of con-

cepts in a topological space and concepts in the spectrum of a distributive lattice.

118

space spec(L)

point prime filter

specialization order inclusion order

compact-open set prime filters containing some x ∈ L
open set union of compact open sets

saturated set prime filters containing some upper set

compact saturated set prime filters containing a filter

It has been argued that the category of spectral spaces is the right setting for deno-

tational semantics, precisely because these have a finitary ‘logical’ description through

their distributive lattices of compact-open subsets, see [Smy92], for example. However,

this category is neither cartesian closed, nor does it have fixpoints for endofunctions,

and hence does not provide an adequate universe for the semantics of computation. An

intriguing question arises, of how the kinds of spaces traditionally studied in topology

and analysis can best be reconciled with the computational intuitions reflected in the

very different kinds of spaces which arise in Domain Theory. An interesting recent

development is Abbas Edalat’s use of Domain Theory as the basis for a novel approach

to the theory of integration [Eda93a].

7.2.6 Domains

Let us now see how continuous domains come into the picture. First we note that

sobriety no longer needs to be assumed:

Proposition 7.2.27. Continuous domains eqipped with the Scott-topology are sober

spaces.

Proof. Let A be an irreducible closed set in a continuous domain D and let B = ↓↓A.

We show that B is directed. Indeed, given x and y in B, then neither D \ ↑↑x nor

D \ ↑↑y contain all of A. By irreducibility, then, they can’t cover A. Hence there is

a ∈ A∩ ↑↑x∩ ↑↑y. But since ↑↑x∩ ↑↑y is Scott-open, there is also some b≪ a in this set.

This gives us the desired upper bound for x and y. It is plain from Proposition 2.2.10

that A is the closure of
⊔

↑B.

The following result of Jimmie Lawson and Rudolf-Eberhard Hoffmann, [Law79,

Hof81], demonstrates once again the central role played by continuous domains.

Theorem 7.2.28. The functors Ω and pt restrict to a dual equivalence between CONT

and the category of completely distributive lattices.

Proof. A Scott-open set O in a continuous domain D is a union of sets of the form
↑↑x where x ∈ O. For each of these we have ↑↑x ≪ O in σD. This proves complete

distributivity, as we have seen in Theorem 7.1.3.

For the converse, let L be completely distributive. We already know that the points

of L form a dcpo (where the order is given by inclusion of filters) and that the topol-

ogy on pt(L) is contained in the Scott-topology of this dcpo. Now we show that ev-

ery completely prime filter F has enough approximants. Observe that F ′ ≪ F cer-

tainly holds in all those cases where
∧

F ′ is an element of F as directed suprema

119

of points are unions of filters. Now given x ∈ F we get from prime-continuity

that x =
∨

{y | y ≪ x} and so there must be some y ∈ F with y ≪ x. Suc-

cessively interpolating between y and x gives us a sequence of elements such that

y ≪ . . . ≪ yn ≪ . . . ≪ y1 ≪ x, just as in the proof of Lemma 2.3.8. The

set
⋃

n∈N
↑yn then is a completely prime filter containing x with infimum in F . The

directedness of these approximants is clear because F is filtered. As a consequence,

we have that F ′ ≪ F holds if and only if
∧

F ′ belongs to F .

We are not quite finished, though, because we also need to show that we get the

Scott-topology back. To this end let O be a Scott-open set of points, that is, F ⊇ F ′ ∈
O implies F ∈ O and

⋃

↑
i∈I Fi ∈ O implies Fi ∈ O for some i ∈ I . Let x be the

supremum of all elements of the form
∧

F , F ∈ O. We claim that O = Ox. First of

all, for each F ∈ O there is F ′ ∈ O with F ′ ≪ F , which, as we have just seen, is

tantamount to
∧

F ′ ∈ F , hence x belongs to all F and O ⊆ Ox is proved.

Conversely, if a pointG contains x then it must contain some
∧

F , F ∈ O, because

it is completely prime. Hence G belongs to O, too, and we have shown Ox ⊆ O.

To this we can add coherence and we get a dual equivalence between coherent

domains and completely distributive arithmetic lattices. Or we can add algebraicity and

get a dual equivalence between algebraic domains and algebraic completely distributive

lattices. Adding both properties characterizes what can be called 2/3-bifinite domains

in the light of Proposition 4.2.17. We prefer to speak of coherent algebraic domains.

As these are spectral spaces, we may also ask how they can be characterized through

the lattice of compact open subsets. The answer is rather simple: A compact open set

in an algebraic domain D is a finite union of sets of the form ↑c for c ∈ K(D). These,

in turn, are characterized by being ∨-irreducible and also ∨-prime.

Theorem 7.2.29. The dual equivalence of Theorem 7.2.26 cuts down to a dual equiv-

alence of coherent algebraic domains and lattices in which every element is the join of

finitely many ∨-primes.

Proof. We only need to show that if a lattice satisfies the condition stated in the theo-

rem, then its ideal completion is completely distributive. But this is trivial because a

principal ideal generated by a ∨-prime is completely ∨-prime in the ideal completion

and so the result follows from Theorem 7.1.3.

All the combined strength of complete distributivity, algebraicity and multiplica-

tivity of the order of approximation, however, does still not restrict the corresponding

spaces far enough so as to bring us into one of our cartesian closed categories of do-

mains. Let us therefore see what we have to add in order to characterize bifinite do-

mains. The only solution in this setting appears to be a translation of mub-closures

into the lattice of compact-open subsets, that is to say, the subset of ∨-primes has the

upside-down finite mub property (Definition 4.2.1). Let us sum up these considerations

in a theorem:

Theorem 7.2.30. A lattice V is isomorphic to the lattice of compact-open subsets of

an F-B-domain (Definition 4.3.7) if and only if, firstly, V has a least element, secondly,

120

each element of V is the supremum of finitely many ∨-primes and, thirdly, for every

finite set M of ∨-primes there is a finite superset N of ∨-primes such that

∀A ⊆M ∃B ⊆ N.
∧

A =
∨

B.

The additional requirement that there be a largest element which is also ∨-prime, char-

acterizes the lattices of compact-open subsets of bifinite domains.

The extra condition about finite mub-closures is not a first-order axiom and cannot

be replaced by one as was shown by Carl Gunter in [Gun86]. The smaller class of

algebraic bc-domains has a rather nicer description:

Theorem 7.2.31. A lattice V is isomorphic to the lattice of compact-open subsets of

an algebraic bc-domain if and only if it has a least element, each element of V is the

supremum of finitely many ∨-primes and the set of ∨-primes plus least element is closed

under finite infima.

7.2.7 Summary

We have summarized the results of this section in Figure 16 and Table 1. As labels

we have invented a few mnemonic names for categories. We won’t use them outside

this subsection. The filled dots correspond to categories for which there is also a char-

acterization in terms of compact-open subsets (spectral spaces). A similar diagram

appears in [GHK+80] but there not everything, which appears to be an intersection of

categories, really is one.

7.3 The logical viewpoint

This material is based on [Abr91b].

7.3.1 Working with lattices of compact-open subsets

Having established the duality between algebraic domains and their lattices of

compact-open subsets we can now ask to what extent we can do domain theory through

these lattices. We have already indicated that such an approach offers many new in-

sights but for the moment our motivation could simply be that working with lattices is

a lot easier than working with dcpo’s. ‘Doing domain theory’ refers to performing the

domain constructions of Sections 3.2, 3.3, 5 and 6, at least in a first approximation.

Let us try this out. Suppose you know KΩ(D) for some bifinite domain D, how do

you construct KΩ(D⊥), the lattice of compact-open subsets of the lifted domain? The

answer is simple, just add a new top element: KΩ(D⊥) = KΩ(D)⊤. Coalesced sum

also works fine:

KΩ(D ⊕ E) = (KΩ(D) \ {D})× (KΩ(E) \ {E}) ∪ {D ⊕ E}.

We encounter the first problems when we look at the cartesian product. While it is clear

that every compact-open subset ofD×E is a finite union of products of compact-open

121

TOP Topological spaces. No Stone-dual.

SOB Sober spaces vs. spatial lattices.

L-C Locally-compact sober spaces vs. continuous distributive

lattices.

COH Coherent spaces (= locally compact, sober, and intersection of

compact saturated is compact) vs. arithmetic lattices (= distribu-

tive, continuous, and order of approximation is multiplicative).

C-O Sober spaces with a base of compact-open sets vs. distributive

algebraic lattices.

CONT Continuous domains with Scott-topology vs. completely dis-

tributive lattices.

SPEC Spectral spaces vs. algebraic arithmetic lattices vs. distributive

lattices.

C-CONT Coherent domains vs. arithmetic completely distributive lattices.

ALG Algebraic domains vs. algebraic completely distributive lattices.

C-ALG Coherent algebraic domains vs. algebraic arithmetic completely

distributive lattices vs. distributive lattices in which every ele-

ment is the finite join of ∨-primes.

F-B F-B-domains (Definition 4.3.7) (= bilimits of finite posets).

Stone-dual only described through the basis (or base) of

compact-open subsets, which is a distributive lattice with extra

properties as stated in Theorem 7.2.30.

B Bifinite domains. Stone-dual only described through the basis of

compact-open subsets, which is a distributive lattice with extra

properties as stated in Theorem 7.2.30.

aBC Algebraic bounded-complete domains. Stone-dual only de-

scribed through the basis of compact-open subsets, which is

a distributive lattice with extra properties as stated in Theo-

rem 7.2.31.

Table 1: The categories and their Stone-duals.

122

s aBC

s B

s F-B

s C-ALG

sSPEC ❝ C-CONT ❝ ALG

❝COH ❝ C-O ❝ CONT

❝ L-C

❝ SOB

❝ TOP

❵❵❵
❵

◗
◗

◗
◗

◗
◗

◗
◗◗
✑

✑
✑
✑
✑

✑
✑
✑✑ ◗

◗
◗
◗
◗

◗
◗
◗◗
✑

✑
✑

✑
✑

✑
✑

✑✑

◗
◗

◗
◗

◗
◗

◗
◗◗
✑

✑
✑
✑
✑

✑
✑
✑✑ ◗

◗
◗
◗
◗

◗
◗
◗◗
✑

✑
✑

✑
✑

✑
✑

✑✑

Figure 16: An overview of Stone-dualities in domain theory.

subsets in the factors, there seems to be no simple criterion on such unions which would

guarantee unique representation.

The moral then is that we must allow for multiple representations of compact-open

subsets. Instead of lattices we shall study certain preordered structures. At first glance

this may seem as an unwanted complication but we will soon see that it really makes

the whole programme work much more smoothly.

Lattices are determined by either their order structure or their algebraic structure

but this equivalence no longer holds in the preordered case. Instead we must mention

both preorder and lattice operations. We also make ∨-primeness explicit in our axiom-

atization. The reason for this is that we want to keep all our definitions inductive. This

point will become clearer when we discuss the function space construction below.

Definition 7.3.1. A coherent algebraic prelocale A is a preordered algebra with two

123

binary operations ∨ and ∧, two nullary operations 0 and 1, and a unary predicate C

on A, such that a ∨ b is a supremum for {a, b}, a ∧ b is an infimum for {a, b}, 0 is a

least, and 1 is a largest element. The preorder onA is denoted by ., the corresponding

equivalence relation by ≈. The predicate C(a) is required to hold if and only if a is

∨-prime. Finally, every element of A must be equivalent to a finite join of ∨-primes.

We will not distinguish between a prelocale and its underlying set. The set

{a ∈ A | C(a)} is abbreviated as C(A).

This is essentially the definition which appears in [Abr91b]. There another pred-

icate is included. We can omit this because we will not look at the coalesced sum

construction. The expressions ‘a supremum’, ‘an infimum’, etc., may seem contra-

dictory but they are exactly appropriate in the preordered universe. It is seen without

difficulties that every coherent algebraic prelocale A gives rise to a lattice A/≈ which

is ∨-generated by ∨-primes and hence distributive.

A domain prelocale is gotten by incorporating the two extra conditions from The-

orem 7.2.30:

• ∀u ⊆fin C(A) ∃v ⊆fin C(A). u ⊆ v and (∀w ⊆ v ∃z ⊆ v.
∧

w =
∨

z);

• C(1).

Definition 7.3.2. Let A and B be domain prelocales. A function φ : A → B is called

a pre-isomorphism if it is surjective, order-preserving and order-reflecting. If A is a

domain prelocale and D is a bifinite domain and if further there is a pre-isomorphism

J·K : A→ KΩ(D) then we say that A is a localic description of D via J·K.

A pre-isomorphism φ : A → B must preserve suprema, infima, and least and

largest element (up to equivalence). Furthermore, it restricts and corestricts to a surjec-

tive map φ0 : C(A) → C(B). Let us look more closely at the case of a pre-isomorphism

J·K : A→ KΩ(D). A diagram may be quite helpful:

C(A) ⊂ ✲ A

K(D) ∼=dual C(KΩ(D))

J·K0

❄
⊂ ✲ KΩ(D)

J·K
❄

Remember that C(KΩ(D)) are just those compact-open subsets which are of the

form ↑c for c ∈ K(D). The inclusion order between such principal filters is dual to the

usual order on K(D).
Let us now lift the pre-isomorphism to the domain level. In the previous chapters,

the natural approach would have been to apply the ideal completion functor to the pre-

isomorphism between C(A)op and K(D). Here we use Stone-duality and apply spec

to J·K. This yields an isomorphism between spec(A) and spec(KΩ(D)). Composed

124

with the inverse of the unit η it gives us the isomorphism τ : spec(A) → D.

spec(A)
❍❍❍❍❍❍❍❍❍❍

τ

❥
spec(KΩ(D))

spec(J·K)−1

❄ η−1
✲ D

It will be good to have a concrete idea of the behaviour of τ , at least for compact

elements of spec(A). These are filters in A which are generated by ∨-prime elements.

So let F = ↑a with a ∈ C(A). It is easily checked that τ(F) equals that compact

element c of D which is least in the compact-open subset JaK0.

Proposition 7.3.3. There exists a map J·K : A → KΩ(D) such that the domain prelo-

cale A is a localic description of the bifinite domain D if and only if spec(A) and D
are isomorphic.

Proof. We have just described how to derive an isomorphism from a pre-isomorphism.

For the converse observe that the unit ε : A → KΩ(spec(A)) is surjective, order-

preserving and order-reflecting (Proposition 7.2.4).

For more general functions between domains, we can translate join-approximable

relations into the language of domain prelocales. The following is then just a slight

extension of Theorem 7.2.30.

Theorem 7.3.4. The category of domain prelocales and join-approximable relations

is dually equivalent to the category of bifinite domains and Scott-continuous functions.

Our attempt to mimic the cartesian product construction forced us to pass to pre-

ordered structures but once we have accepted this we can go one step farther and make

the prelocales syntactic objects in which no identifications are made at all. More pre-

cisely, it is no loss of generality to assume that the underlying algebra is a term algebra

with respect to the operations ∨,∧, 0, and 1. As an example, let us describe the one-

point domain I in this fashion. We take the term algebra on no generators, that is, every

term is a combination of 0’s and 1’s. The preorder is the smallest relation compatible

with the requirements in Definition 7.3.1. The effect of this is that there are exactly two

equivalence classes with respect to ≈, the terms equivalent to 1 and the terms equiva-

lent to 0. The former are precisely the ∨-prime terms. We denote the resulting domain

prelocale by 1.

The syntactic approach also suggests that we look at the following relation between

domain prelocales:

Definition 7.3.5. Let A and B be domain prelocales. We say that A is a sub-prelocale

of B if the following conditions are satisfied:

1. A is a subalgebra of B with respect to ∨,∧, 0 and 1.

2. The preorder on A is the restriction of the preorder on B to A.

125

3. C(A) equals A ∩ C(B).

We write A P B if A is a sub-prelocale of B.

Proposition 7.3.6. If A is a sub-prelocale of B then the following defines an embed-

ding projection pair between spec(A) and spec(B):

e : spec(A) → spec(B), e(F) = ↑B(F);

p : spec(B) → spec(A), p(F) = F ∩A.

Proof. It is clear that both e and p are continuous because directed joins of elements in

spec(A), resp. spec(B), are just directed unions of prime filters. We have p ◦ e = id

because the preorder on A is the restriction of that on B. For e ◦ p ⊑ id we don’t need

any special assumptions.

The crucial point is that the two functions are well-defined in the sense that they

indeed produce prime filters. The filter part follows again from the fact that both oper-

ations and preorder on A are the restrictions of those on B. For primeness assume that
∨

M ∈ ↑B(F) for some finite M ⊆ B. This means x .
∨

M for some x ∈ F . This

element itself is a supremum of ∨-primes of A and because F is a prime filter in A we

have some ∨-prime element x′ below
∨

M in F . But we have also required that the

∨-prime elements of A are precisely those ∨-prime elements of B which lie in A and

therefore some m ∈M must be above x′.
Primeness of F ∩ A, on the other hand, follows easily because suprema in A are

also suprema in B.

Corollary 7.3.7. Assume thatA is a localic description ofD via J·KA, thatB describes

E via J·KB , and that A P B. Then the following defines an embedding e of D into E:

If c ∈ K(D), a ∈ C(A), JaK0A = ↑c, JaK0B = ↑d, then e(c) = d.

Proof. If we denote by e′ the embedding from spec(A) into spec(B) as defined in the

preceding proposition, then the embedding e : D → E is nothing else but τB ◦ e′ ◦
τ−1
A .

Of course, it happens more often that spec(A) is a sub-domain of spec(B) than

that A is a sub-prelocale of B but the fact is that it will be fully sufficient and even

advantageous to work with the stronger relation when it comes to solving recursive

domain equations.

7.3.2 Constructions: The general technique

Before we demonstrate how function space and Plotkin powerdomain can be con-

structed through prelocales, let us outline the general technique. The overall picture

is in the following diagram. We explain how to get its ingredients step by step below.

C(T (A,A′)) ⊂ ✲ T (A,A′)

K(FT (D,D
′)) ∼=dual C(KΩ(FT (D,D

′)))

J·K0

❄
⊂✲ KΩ(FT (D,D

′))

J·K
❄

126

1. The set-up. We want to study a construction T on (bifinite) domains. This

could be any one from the table in Section 3.2.6 or a bilimit or one of the powerdomain

constructions from Section 6.2. The diagram illustrates a binary construction. We can

assume that we understand the action of the associated functor FT on bifinite domains.

In particular, we know what the compact elements ofFT (D,D
′) are, how they compare

and how FT acts on embeddings (Proposition 5.2.6). Thus we should have a clear

understanding of the bottom row of the diagram, in detail:

• FT (D,D
′) is the effect of the functor FT on objects D and D′.

• K(FT (D,D
′)) are the compact elements of FT (D,D

′).

• KΩ(FT (D,D
′)) are the compact-open subsets of FT (D,D

′) and these are pre-

cisely those upper sets which are of the form ↑u for a finite set u of compact

elements.

• C(KΩ(FT (D,D
′))) are the ∨-prime elements of KΩ(FT (D,D

′)) and these are

precisely those subsets of FT (D,D
′) which are of the form ↑c for c a compact

element. The order is inclusion which is dual to the usual order on compact

elements.

Furthermore, we assume that we are given domain prelocales A and A′ which describe

the bifinite domains D and D′, respectively. These descriptions are encoded in pre-

isomorphisms J·KA : A→ KΩ(D) and J·KA′ : A′ → KΩ(D′).
2.The goal. We want to define a domain prelocale T (A,A′) which is a localic

description of FT (D,D
′). This is achieved in the following series of steps.

3. Definition of T (A,A′). This is the creative part of the enterprise. We search

for a description of compact-open subsets of FT (D,D
′) based on our knowledge of

the compact-open subsets of D and D′. The point is to do this directly, not via the

compact elements ofD, D′, and FT (D,D
′). There will be an immediate payoff, as we

will gain an understanding of the construction in terms of properties rather than points.

Our treatment of the Plotkin powerdomain below illustrates this most convincingly.

The definition of T (A,A′) will proceed uniformly in all concrete instances. First

a set GT of generators is defined and then T (A,A′) is taken to be the term alge-

bra over GT with respect to ∨,∧, 0, and 1. An interpretation function J·K : GT →
KΩ(FT (D,D

′)) is defined based on the interpretations J·KA and J·KA′ . It is extended

to all of T (A,A′) as a lattice homomorphism: Ja ∨ bK = JaK∪JbK, etc. Finally, axioms

and rules are given which govern the preorder and ∨-primeness predicate.

Next we have to check that our definitions work. This task is also broken into a

series of steps as follows.

4. Soundness. We check that axioms and rules translate via J·K into valid state-

ments about compact-open subsets of FT (D,D
′). This is usually quite easy. From

soundness we infer that J·K is monotone and can be restricted and corestricted to a map

J·K0 : C(T (A,A′)) → C(KΩ(FT (D,D
′))).

5. Prime generation. Using the axioms and rules, we prove that every element

of T (A,A′) can be transformed (effectively) into an equivalent term which is a finite

supremum of expressions which are asserted to be ∨-prime. This is the crucial step

and usually contains the main technical work. It allows us to prove the remaining

127

properties of J·K through J·K0 and for the latter we can use our knowledge of the basis

of FT (D,D
′).

6. Completeness for ∨-primes. We show that J·K0 is order reflecting.

7. Definability for ∨-primes. We show that J·K0 is surjective.

At this point we can fill in the remaining pieces without reference to the concrete

construction under consideration.

8. Completeness. The interpretation function J·K itself is order-reflecting.

Proof. Let a, b ∈ T (A,A′) be such that JaK ⊆ JbK. By 5 we can replace these ex-

pressions by formal joins of ∨-primes: a ≈ a1 ∨ . . . ∨ an and b ≈ b1 ∨ . . . ∨ bm.

Soundness ensures that the value under the interpretation function remains unchanged

and that each JaiK (resp. JbjK) is of the form ↑ci (resp. ↑dj) for ci, dj compact elements

in FT (D,D
′). The inclusion order on KΩ(FT (D,D

′)) translates into the formula

∀i ∃j. ↑ci ⊆ ↑dj which by the completeness for ∨-primes can be pulled back into

T (A,A′): ∀i ∃j. ai . bj . In every preordered lattice it must follow that a . b
holds.

9. Definability. The surjectivity of J·K is an easy consequence of the surjectivity

of J·K0 because we know that compact-open subsets in an algebraic domain are finite

unions of compactly generated principal filters.

10. Well-definedness. Of course, KΩ(FT (D,D
′)) is a domain prelocale and we

have just shown that preorder and primeness predicate on T (A,A′) are preserved and

reflected by J·K. This constitutes a semantic proof that T (A,A′) satisfies the two extra

conditions for domain prelocales. In other words, T is a well-defined operation on

domain prelocales.

11. Stone-duality. At this point we have shown that J·K is a pre-isomorphism. As

in the previous subsection we lift it to an isomorphism τ between spec(T (A,A′)) and

FT (D,D
′) via Stone duality:

spec(T (A,A′))
❍❍❍❍❍❍❍❍❍❍

τ

❥
spec(KΩ(FT (D,D

′)))

spec(J·K)−1

❄ η−1
✲ FT (D,D

′)

So much for the correspondence on the object level. We also want to see how

the construction T harmonizes with the sub-prelocale relation, one the one hand,

and the isomorphism τ , on the other hand. Thus we assume that we are given

two more prelocales, B and B′, which are localic descriptions of bifinite domains

E and E′, such that A P B and A′ P B′ hold. In Corollary 7.3.7 we have seen

how to define from this embeddings e : D → E and e′ : D′ → E′. In Proposi-

tion 5.2.6 we have shown how the functors associated with different constructions

act on embeddings, hence we may unambiguously write FT (e, e
′) for the result of

this action, which is an embedding from FT (D,D
′) to FT (E,E

′). Embeddings pre-

serve compact elements so FT (e, e
′) restricts and corestricts to a monotone function

FT (e, e
′)0 : K(FT (D,D

′)) → K(FT (E,E
′)). Now for both T (A,A′) and T (B,B′)

128

we have a diagram such as depicted at the beginning of this subsection. We connect

the lower left corners of these by FT (e, e
′)0. This gives rise also to a map i from

C(KΩ(FT (D,D
′))) to C(KΩ(FT (E,E

′))). Our way of defining T (A,A′) will be

such that it is immediate that C(T (A,A′)) is a subset of C(T (B,B′)) and hence there

is an inclusion map connecting the upper left corners. Our next technical step then is

the following.

12. Naturality. We show that the diagram

C(T (A,A′)) ⊂ ✲ C(T (B,B′))

C(KΩ(FT (D,D
′)))

J·K0T (A,A′)

❄ i✲ C(KΩ(FT (E,E
′)))

J·K0T (B,B′)

❄

commutes. On the element level this reads: If a ∈ C(T (A,A′)) and JaK0T (A,A′) = ↑c

and JaK0T (B,B′) = ↑d then FT (e, e
′)0(c) = d. Now we can again get the remaining

missing information in a general manner.

13. Monotonicity. We show that T (A,A′) P T (B,B′). From the form of our

construction it will be clear that T (A,A′) is a subset of T (B,B′) and the axioms and

rules will be such that whatever can be derived in T (A,A′) can also be derived in

T (B,B′). We must show that in the larger prelocale nothing extra can be proved for

elements of T (A,A′). The argument is a semantic one.

Proof. Let a, a′ ∈ C(T (A,A′)) such that a . a′ holds in T (B,B′). Let JaK0T (A,A′) =

↑c, JaK0T (B,B′) = ↑d and similarly for a′. Correctness says that ↑d ⊆ ↑d′ and hence

d ⊒ d′. By naturality we have FT (e, e
′)0(c) = d ⊒ d′ = FT (e, e

′)0(c′). Embeddings

are order reflecting so c ⊒ c′ follows. Completeness then allows us to conclude that

a . a′ holds in T (A,A′) as well.

In the same way it is seen that the predicate C on T (A,A′) is the restriction of that

on T (B,B′).

14. Least prelocale. It follows from the correctness of the construction that 1 P
T (A,A′) holds.

15. Naturality of τ . Having established the relation T (A,A′) P T (B,B′) we

can look at the embedding I : spec(T (A,A′)) → spec(T (B,B′)) which we defined in

Proposition 7.3.6. We claim that the following diagram commutes:

spec(T (A,A′))
I ✲ spec(T (B,B′))

FT (D,D
′)

τA

❄ FT (e, e
′)✲ FT (E,E

′)

τB

❄

In other words, FT (e, e
′) equals the embedding which can be derived from T (A,A′) P

T (B,B′) in the general manner of Corollary 7.3.7.

129

Proof. This is a diagram of bifinite domains and Scott-continuous functions. It there-

fore suffices to check commutativity for compact elements. A compact element in

spec(T (A,A′)) is a filter F generated by a term a ∈ C(T (A,A′)). Its image under τA
is the compact element c which generates the compact-open subset JaK0T (A,A′). The

filter I(F) is generated by the same term a. Applying τB to it gives us a compact

element d which is least in JaK0T (A,A′). Step 12 ensures that FT (e, e
′) maps c to d.

7.3.3 The function space construction

We start out with two preparatory lemmas. The following notation will be helpful. We

write (A⇒ B) for the set of functions which map all of A into B.

Lemma 7.3.8. The Scott-topology on the function space [D −→ D′] for bifinite do-

mains D and D′ equals the compact-open topology.

Proof. Let A ⊆ D be compact and O ⊆ D′ be open and let F ⊆ [D −→ D′] be a

directed set of continuous functions for which
⊔

↑F maps A into O. For every x ∈ A
we have (

⊔

↑F)(x) ∈ O and because O is open, there is fx ∈ F with fx(x) ∈ O. The

collection of open sets of the form f−1
x (O), x ∈ A, covers A. By compactness, this

is true for finitely many f−1
x (O) already. If we let f be an upper bound in F for these

fx, then A ⊆ f−1(O) holds which is equivalent to f(A) ⊆ O. Hence (A ⇒ O) is a

Scott-open set in [D −→ D′].
If, on the other hand, f belongs to a Scott-open open set O ⊆ [D −→ D′] then

this is true also for some approximation g′m ◦ f ◦ gn with gn an idempotent deflation

on D, g′m an idempotent deflation on D′. For each element x in the image of gn we

have the set (↑x ⇒ (↑↑g′m ◦ f ◦ gn(x))). The intersection of all these belongs to the

compact-open topology, contains f , and is contained in O.

Lemma 7.3.9. LetD andD′ be bifinite and letA ⊆ D andA′ ⊆ D′ be compact-open.

Then (A⇒ A′) is compact-open in [D −→ D′].

Proof. We know that (A ⇒ A′) defines an open set by the previous lemma. From

bifiniteness we get idempotent deflations gn onD and g′m onD′ such thatA = ↑gn(A)
and A′ = ↑g′m(A′). It follows that (A ⇒ A′) = ↑Gnm(A ⇒ A′) for the idempotent

deflation Gnm on [D −→ D′] which maps f to g′m ◦ f ◦ gn.

Now let A and A′ be domain prelocales describing bifinite domains D and D′, as

outlined in the general scheme in the previous subsection. The two lemmas justify

the following choice of generators and interpretation function for our localic function

space construction:

G→ = {(a→ a′) | a ∈ A, a′ ∈ A′};

J(a→ a′)K = (JaKA ⇒ Ja′KA′)

Note that the elements (a → a′) are just syntactic expressions. Here are axioms

and rules for the preorder and C-predicate.

130

Axioms.

(→ − ∧) (a→
∧

i∈I a
′
i) ≈

∧

i∈I(a→ a′i).

(→ − ∨ − l) (
∨

i∈I ai → a′) ≈
∧

i∈I(ai → a′).

(dist) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c).

Rules.

(→ − ∨ − r) If C(a) then (a→
∨

i∈I a
′
i) ≈

∨

i∈I(a→ a′i).

(→ − .) If b . a and a′ . b′ then (a→ a′) . (b→ b′).

(→ − C) If ∀i ∈ I. (C(ai) and C(a′i)) and if ∀K ⊆ I ∃L ⊆ I.
(
∧

k∈K ak ≈
∨

l∈L al and (∀k ∈ K, l ∈ L. a′k . a′l)) then

C(
∧

i∈I(ai → a′i)).

A few comments about these formulae are in place. First a convention: we assume

that all index sets are finite, so that the expressions
∧

i∈I ai, etc., do indeed belong to

the term algebra overG→. Observe the use of the C-predicate in the rule (→ − ∨ − r).
Without it, it would be very difficult to express this property. Also note that we enforce

distributivity. This will be a prerequisite to prove prime generation below.

It is clear that the rules are sound for the given interpretation, in particular, (→ − C)
is the exact mirror image of our definition of joinable families of step functions, Def-

inition 4.2.2. Let us therefore immediately turn to the crucial step 5. We cannot use

Lemma 7.3.9 directly because we have not encoded the idempotent deflations. We

must find the minimal elements of a compact-open subset explicitly. We illustrate the

general technique in an example.

Suppose JaKA is of the form ↑c ∪ ↑d and Ja′KA′ is of the form ↑c′ ∪ ↑d′. We get

a minimal element of ((↑c ∪ ↑d) ⇒ (↑c′ ∪ ↑d′)) by choosing a value f(c) and a value

f(d) from {c′, d′}. Then we must look at the intersection ↑c ∩ ↑d which again is of

the form ↑e1 ∪ . . . ∪ ↑en by coherence. For each ei we must choose a value from

mub{f(c), f(d)} = {e′1, . . . , e
′
m}. And so on. Bifiniteness of the argument domain

ensures that this process stops after a finite number of iterations and that the result is

a joinable family of pairs 〈x, f(x)〉. Coherence of the result domain guarantees that

all in all only finitely many choices are possible. (Note that it can happen that a set of

minimal upper bounds in the image domain is empty. In this case we have just been

unlucky with our choices. If Ja′KA′ is not empty then some minimal function exists.)

We can mimic this procedure in the prelocale as follows. For simplicity and to make

the analogy apparent, we let c, d stand for terms such that C(c),C(d) and a ≈ c ∨ d.

Similarly for a′. We get:

(a→ a′) ≈
≈ ((c ∨ d) → (c′ ∨ d′)) (→ − .)
≈ (c→ (c′ ∨ d′)) ∧ (d→ (c′ ∨ d′)) (→ − ∨ − l)
≈ ((c→ c′) ∨ (c→ d′)) ∧ ((d→ c′) ∨ (d→ d′)) (→ − ∨ − r)
≈ ((c→ c′) ∧ (d→ d′)) ∨ . . . (3 more terms) (dist)

We follow up only the first of these four terms. The trick is to smuggle in the ∨-prime

131

terms e1, . . . , en whose join equals c ∧ d.

(c→ c′) ∧ (d→ d′) ≈
≈ ((c ∨ e1 ∨ . . . ∨ en) → c′) ∧ ((d ∨ e1 ∨ . . . ∨ en) → d′) (→ − .)
≈ (c→ c′) ∧ (d→ d′) ∧ ((e1 ∨ . . . ∨ en) → (c′ ∧ d′)) (→ − ∨ − l)
≈ (c→ c′) ∧ (d→ d′) ∧ ((e1 ∨ . . . ∨ en) → (e′1 ∨ . . . ∨ e

′
m))

and now induction may do its job. Eventually we will have transformed (a → a′)
into a disjunction of joinable families. For these, ∨-primeness may be inferred through

rule (→ − C). Note that distributivity allows us to replace every term by an equivalent

term of the form
∨

(
∧

(ai → a′i)) and for each term of the form
∧

(ai → a′i) the

transformation works as illustrated.

Next we show completeness for ∨-primes. So assume a and b are terms for which

the C-predicate holds and for which JaK ⊆ JbK. It must be the case that a and b are

equivalent to joinable families
∧

i∈I(ai → a′i) and
∧

j∈J(bj → b′j) as there is no

other way of deriving ∨-primeness in [A −→ A′]. The order relation between joinable

families has been characterized in Lemma 4.2.3. Here it says: ∀i ∈ I ∃j ∈ J. (JbjK ⊆
JaiK and Ja′iK ⊆ Jb′jK). Since we assume completeness for the constituting prelocales

A and A′, we may infer ∀i ∈ I ∃j ∈ J. (bj . ai and a′i . b′j). The relation a . b is

now easily derived from (→ − .).
Definability for ∨-primes is immediate because we know that all compact functions

arise from joinable families (Lemma 4.2.3 and Proposition 4.2.4).

Properties 8 through 11 follow for all constructions uniformly. We are left with

proving Naturality, Property 12. To this end, let us first see how the embedding

[e −→ e′] transforms a step function (a ց a′). We have: [e −→ e′]((a ց a′)) =
(aց e′(a′))◦e∗ and (aց e′(a′))◦e∗(x) = e′(a′) ⇐⇒ a ⊑ e∗(x) ⇐⇒ e(a) ⊑ x.

We get the step function (e(a) ց e′(a′)).
Now let a ≈

∧

i∈I(ai → a′i) be an element of [A −→ A′] for which C(a) holds.

The interpretation JaK0
[A −→ A′]

of a is the upper set generated by the joinable family

of step functions (ci ց c′i), where JaiK0A = ↑ci and Ja′iK0A′ = ↑c′i for all i ∈ I . Ap-

plying the embedding [e −→ e′] to these gives us the step functions (e(ci) ց e′(c′i))
as we have just seen. By Corollary 7.3.7 we can rewrite these as (di ց d′i), where

JaiK0B = ↑di and Ja′iK0B′ = ↑d′i. The supremum of the joinable family ((di ց d′i))i∈I

is least in JaK0
[B −→ B′]

. This was to be proved.

Taking D to be spec(A) and E to be spec(B) we can express the faithfulness of

our localic construction quite concisely as follows:

Theorem 7.3.10. Let A and B be domain prelocales. Then

[spec(A) −→ spec(B)] ∼= spec([A −→ B])

and this isomorphism is natural with respect to the sub-prelocale relation.

7.3.4 The Plotkin powerlocale

Next we want to describe the lattice of compact-open subsets of the Plotkin powerdo-

main of a bifinite domain D. By Theorem 6.2.22 we know that PP(D) is concretely

132

represented as the set of lenses in D, ordered by the Egli-Milner ordering (Defini-

tion 6.2.2). The compact elements in PP(D) are those lenses which are convex clo-

sures of finite non-empty subsets of K(D) (Proposition 6.2.6). Idempotent deflations d
on D can be lifted to PP(D) because PP is a functor. They map a lens L to the convex

closure of d(L).
The compact-open subsets of PP(D), however, are not so readily described. The

problem is that one half of the Egli-Milner ordering refers to closed lower sets rather

than upper sets. We do not follow this up as there is no logical pathway from the order

theory to the axiomatization we are aiming for. It is much more efficient to either

consult the mathematical literature on hyperspaces (see [Vie21, Vie22, Smy83b]) or

to remind ourselves that powerdomains were introduced to model non-deterministic

behaviour. If we think of the compact-open subsets in D as observations that can be

made about outcomes of a computation, then it is pretty clear that there are two ways

of using these to make statements about non-deterministic programs: It could be the

case that all runs of the program satisfy the property or it could be that at least one run

satisfies it. Let us check the mathematics:

Lemma 7.3.11. If D is a bifinite domain and O is compact-open in D, then the fol-

lowing are compact-open subsets in PP(D):

A(O) = {L ∈ Lens(D) | L ⊆ O},

E(O) = {L ∈ Lens(D) | L ∩O 6= ∅},

Furthermore, if we let O range over all compact-open subsets in D then the collection

of all A(O) and E(O) forms a base for the Scott-topology on PP(D).

Proof. Let O be compact-open. Then O is the upper set of finitely many compact

elements and we find an idempotent deflation d such that O = ↑d(O). It is clear that

for d̂ = PP(d) we have both A(O) = ↑d̂(A(O)) and E(O) = ↑d̂(E(O)). Hence these

sets are compact-open, too.

Let K be a compact lens, that is, of the form Cx(u) for u ⊆fin K(D). The upper set

of K in PP(D) can be written as A(↑u) ∩
⋂

c∈u E(↑c).

The following definition then comes as no surprise:

Definition 7.3.12. Let A be a domain prelocale which is a localic description of the

bifinite domainD. We define the Plotkin powerlocale PP(A) overA as the term algebra

over the generators

GP = {✷a | a ∈ A} ∪ {✸a | a ∈ A}

with the interpretation function J·K : PP(A) → KΩ(PP(D)) defined by

J✷aK = A(JaK), J✸aK = E(JaK)

on the generators and extended to PP(A) as a lattice homomorphism.

Preorder and C-predicate are defined as follows

133

Axioms.

(✷ − ∧) ✷(
∧

i∈I ai) =
∧

i∈I ✷ai,

(✷ − 0) ✷0 = 0,

(✸ − ∨) ✸(
∨

i∈I ai) =
∨

i∈I ✸ai,

(✸ − 1) ✸1 = 1,

(✷ − ∨) ✷(a ∨ b) . ✷a ∨✸b,

(✸ − ∧) ✷a ∧✸b . ✸(a ∧ b),

(dist) a ∧ (b ∨ c) ≈ (a ∧ b) ∨ (a ∧ c).

Rules.

(P − .) If a . b then ✷a . ✷b and ✸a . ✸b,

(P − C) If C(ai) holds for all i ∈ I and I is non-empty, then

C(✷(
∨

i∈I ai) ∧
∧

i∈I ✸ai).

Note that we again require distributivity explicitly. The derivation scheme is almost

minimal (in combination with the rest, (✷ − 0) and (✸ − 1) are equivalent). The

following derived axioms are more useful than (✷ − ∨) and (✸ − ∧):

(D1) ✷(a ∨ b) ≈ ✷a ∨ (✷(a ∨ b) ∧✸b),
(D2) ✷a ∧✸b ≈ ✷a ∧✸(a ∧ b).

We leave it to the interested reader to check soundness and pass straight on to the

central Step 5, which is generation by ∨-prime elements.

Proof. Given an expression in PP(A) we first transform it into a disjunction of con-

junctions by using the distributivity axiom. Thus it suffices to represent a term of the

form
∧

i∈I

✷ai ∧
∧

j∈J

✸bj

as a disjunction of ∨-primes. But we can simplify further. Using (✷ − ∧) we can pack

all ✷-generators into a single term ✷a and by (D2) we can assume that for each j ∈ J
we have bj . a. We represent each bj as a disjunction of ∨-primes of A and applying

(✸ − ∨) and distributivity again we arrive at a disjunction of terms of the form

✷a ∧
m
∧

j=1

✸dj

where each dj ∈ C(A). Now we write a as a disjunction of ∨-primes ci. Since each dj
is below a, it doesn’t hurt to add these, too. We get:

✷(c1 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧
m
∧

j=1

✸dj .

As yet we can not apply the ∨-primeness rule (P − C) because the two sets

{c1, . . . , cn, d1, . . . , dm} and {d1, . . . , dm} may fail to coincide. Looking at the se-

mantics for a moment, we see that in the compact-open subset thus described the min-

imal lenses are (the convex closures of) the least elements from each JdjK0A plus some

134

of the generators of the JciK0A. We therefore take our term further apart so as to have

a ∨-prime expression for each subset of {c1, . . . , cn}. For this we use (D1). One

application (plus some distributivity) yields

(

✷(c2 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧
m
∧

j=1

✸dj
)

∨

(

✷(c1 ∨ . . . ∨ cn ∨ d1 ∨ . . . ∨ dm) ∧✸c1 ∧
m
∧

j=1

✸dj
)

and the picture becomes obvious.

Next we check that J·K0 is order-reflecting.

Proof. Assume J✷(∨i∈I ai) ∧
∧

i∈I ✸aiK0 ⊆ J✷(∨i∈I bj) ∧
∧

j∈J ✸bjK0 and let

ci and dj be the least compact elements in JaiK0A, respectively JbjK0A. Then we have

{dj | j ∈ J} ⊑EM {ci | i ∈ I}, that is,

∀i ∈ I ∃j ∈ J. ↑ci ⊆ ↑dj ,
∀j ∈ J ∃i ∈ I. ↑ci ⊆ ↑dj .

Since we assume that J·K0A is order-reflecting, we get from the first equation
∨

i∈I ai .
∨

j∈J bj and from the second
∧

i∈I ✸ai .
∧

j∈J ✸bj .

The definability for ∨-primes was shown in Lemma 7.3.11 already. Hence we are

left with checking Naturality, which is Step 12.

Proof. Let t = ✷(
∨

i∈I ai) ∧
∧

i∈I ✸ai be a ∨-prime element in PP(A) and let A
be a sub-prelocale of B. Let e be the associated embedding from D to E. The least

element in JtK0
PP

(A)
is the convex closure of the set of minimal elements ci in JaiK0A.

Applying PP(e) to it gives the convex closure of {e(ci) | i ∈ I}, as we have argued

in the remark following Theorem 6.1.9. Corollary 7.3.7 tells us that this is the least

element in JtK0
PP

(B)
.

As in the case of the function space construction we summarize:

Theorem 7.3.13. Let A be a domain prelocale. Then

PP(spec(A)) ∼= spec(PP(A))

and this isomorphism is natural with respect to the sub-prelocale relation.

The prelocales for Hoare and Smyth powerdomain are much easier to describe. All

we have to do is to elide all generators and rules which refer to ✷, respectively ✸.

135

7.3.5 Recursive domain equations

In this subsection we will treat bilimits in the same fashion as we have studied finitary

constructions. We assume that we are given domain prelocales A0 P A1 P A2 P . . .
such that each An describes some bifinite domain Dn. Corollary 7.3.7 states how the

sub-prelocale relation between An and Am, for n ≤ m, translates into an embedding

emn : Dn → Dm. It is seen easily that 〈(Dn)n∈N, (emn)n≤m〉 is an expanding system,

that is, for n ≤ m ≤ k, ekn = ekm ◦ emn holds. We claim that the directed union

A =
⋃

n∈N
An is a domain prelocale which describes D = bilimDn. The first claim

is fairly obvious as all requirements about prelocales refer to finitely many elements

only and hence a property of A can be inferred from its validity in some An. For the

second claim we need to specify the interpretation function. To this end let lm be the

embedding of Dm into the bilimit (as defined in Theorem 3.3.7). Then we can set

JaK = lm(JaKAm
) where m ∈ N is such that a is contained in Am. The exact choice

ofm does not matter; ifm ≤ k then by Corollary 7.3.7 we have: JaKAk
= ekm(JaKAm

)
and applying lk to this yields lk(JaKAk

) = lk ◦ ekm(JaKAm
) = lm(JaKAm

). The in-

terpretation function is well-defined because embeddings preserve the order of approx-

imation (Proposition 3.1.14), hence compact elements and compact-open subsets are

also preserved.

In order to see that J·K is a pre-isomorphism we proceed as before, checking Steps

4, 5, 6, 7, and 12. It is, actually, rather simple. Soundness holds because the lm are

monotone and map compact elements to compact elements. Prime generation holds

because it holds in eachAm. Since the lm are also order-reflecting we get completeness

from the completeness of the J·KAm
. Definability follows from Theorem 3.3.11; the

only compact elements in D are the images (under ln) of compact elements in the

approximating Dn. If we are given a second sequence B0 P B1 P B2 P . . . of

prelocales (describing E0, E1, . . .) such that for each n ∈ N we have An P Bn then it

is clear that A P B =
⋃

n∈N
Bn holds, too. For Naturality (Step 12) we must relate

this to the embedding e from D to E = bilimEn. The exact form of the latter can be

extracted from Theorem 3.3.7: e =
⊔

n∈N
kn ◦ en ◦ l∗n, where kn is the embedding of

En into E and en : Dn → En is the embedding derived from An P Bn. Now let a be

∨-prime in A. We have

e(JaK0A) = (
⊔

n∈N

kn ◦ en ◦ l∗n)(lm(JaK0Am
))

=
⊔

n≥m

kn ◦ en(JaK0Am
)

=
⊔

n≥m

kn(JaK0Bm
)

= JaK0B ,

and our proof is complete.

Theorem 7.3.14. If A0 P A1 P A2 P . . . is a chain of domain prelocales, then

spec(
⋃

n∈N

An) ∼= bilim(spec(An))n∈N .

136

Observe how simple the limit operation for prelocales is if compared with a bilimit.

This comes to full flower if we look at recursive domain equations. If T is a construc-

tion built from those which can be treated localically (we have seen function space,

Plotkin powerdomain, and bilimit, but all the others from Section 3.2 can also be in-

cluded) then we can find the initial fixpoint of the functor FT on the localic side by

simply taking the union of 1 P T (1) P T (T (1)) P Why does this work and why

does the result describe the canonical fixpoint of FT ? First of all, we have 1 P T (1) by

Step 14. Successively applying T to this relation gives us Tn(1) P Tn+1(1) by Mono-

tonicity (Step 13). Hence we do have a chain 1 P T (1) P T (T (1)) P . . . as stated and

we can form its union A. It obviously is a fixpoint of the construction T and therefore

the domain D described by it is a fixpoint of the functor FT . But notice that we have

T (A) = A rather than merely T (A) ∼= A. This is not so surprising as it may seem at

first sight. Domain prelocales are only representations of domains and what we are ex-

ploiting here is the simple idea that we can let A represent both D and FT (D) via two

different interpretation functions. Let us now address the question about canonicity. It

suffices to check that the embedding corresponding to T (1) P T 2(1) is equal to FT (e)
where e : I → FT (I) corresponds to 1 P T (1). This is precisely the naturality of τ
which we listed as Step 15. It follows that the bilimit is the same as the one constructed

in Chapter 5.

7.3.6 Languages for types, properties, and points

We define a formal language of type expressions by the following grammar:

σ : : = 1 | X | (σ→σ) | (σ×σ) | (σ⊕σ) | (σ)⊥ | PP(σ) | recX.σ

where X ranges over a set TV of type variables. More constructions can be added to

this list, of course, such as strict function space, smash product, Hoare powerdomain,

and Smyth powerdomain. On the other hand, we do not include expressions for basic

types, such as integers and booleans, as these can be encoded in our language by simple

formulae.

We have seen two ways to interpret type expressions. The first interpretation takes

values directly in B, the category of bifinite domains, and is based on the constructions

in Sections 3.2, 3.3, 5.1, and 6.2. Since a type expression may contain free variables,

the interpretation can be defined only relative to an environment ρD : TV → B, which

assigns to each type variable a bifinite domain. The semantic clauses corresponding to

the individual rules of the grammar are as follows:

ID(1; ρD) = I;
ID(X; ρD) = ρD(X);

ID((σ → τ); ρD) = [ID(σ; ρD) −→ ID(τ ; ρD)];

etc.

ID(recX.σ; ρD) = FIX(FT),

where FT (D) = ID(σ; ρD[X 7→ D]).

The expression ρD[X 7→ D] denotes the environment which maps X to D and coin-

cides with ρD at all other variables .

137

Our work in the preceding subsections suggests that we can also interpret type

expressions in the category DomPreloc of domain prelocales. Call the corresponding

mappings IL and ρL. The semantic clauses for this localic interpretation are:

IL(1; ρL) = 1;

IL(X; ρL) = ρL(X);

IL((σ → τ); ρL) = [IL(σ; ρL) → IL(τ ; ρL)];

etc.

IL(recX.σ; ρL) =
⋃

Tn(1),

where T (A) = IL(σ; ρL[X 7→ A]).

The preceding subsections were meant to convince the reader of the following:

Theorem 7.3.15. If ρL and ρD are environments such that for each X ∈ TV the

domain prelocale ρL(X) is a localic description of ρD(X), then for every type expres-

sion σ it holds that IL(σ; ρL) is a localic description of ID(σ; ρD). As a formula:

spec(IL(σ; ρL)) ∼= ID(σ; ρD) .

The next step is to define for each type expression σ a formal language L(σ) of

(computational or observational) properties. This is done through the following induc-

tive definition:

=⇒ true, false ∈ L(σ);

φ, ψ ∈ L(σ) =⇒ φ ∧ ψ, φ ∨ ψ ∈ L(σ);

φ ∈ L(σ), ψ ∈ L(τ) =⇒ (φ→ψ) ∈ L(σ→τ),

φ ∈ L(σ), ψ ∈ L(τ) =⇒ (φ×ψ) ∈ L(σ×τ);

φ ∈ L(σ) =⇒ (φ⊕false) ∈ L(σ⊕τ);

ψ ∈ L(τ) =⇒ (false⊕ψ) ∈ L(σ⊕τ);

φ ∈ L(σ) =⇒ (φ)⊥ ∈ L((σ)⊥);

φ ∈ L(σ) =⇒ ✷φ,✸φ ∈ L(PP(σ));

φ ∈ L(σ[recX.σ/X]) =⇒ φ ∈ L(σ).

Here we have used the expression σ[τ/X] to denote the substitution of τ for X
in σ. The usual caveat about capture of free variables applies but let us not dwell on

this. The rules exhibited above will generate for each σ the carrier set of a (syntactical)

domain prelocale in the style of the previous subsections. Note that we don’t need

special properties for a recursively defined type as these are just the properties of the

approximating domains bundled together (Theorem 7.3.14).

On each L(σ) we define a preorder . and predicates C and T (the latter is needed

for the coalesced sum construction) through yet another inductive definition. For exam-

ple, the following axioms and rules enforce that each L(σ) is a preordered distributive

138

lattice.

=⇒ φ . φ;

φ . ψ,ψ . χ =⇒ φ . χ;

=⇒ φ . true;

φ . ψ1, φ . ψ2 =⇒ φ . ψ1 ∧ ψ2;

=⇒ φ ∧ ψ . φ;

=⇒ φ ∧ ψ . ψ;

=⇒ false . φ;

φ1 . ψ, φ2 . ψ =⇒ φ1 ∨ φ2 . ψ;

=⇒ φ . φ ∨ ψ;

=⇒ ψ . φ ∨ ψ;

=⇒ φ ∧ (ψ ∨ χ) . (φ ∧ ψ) ∨ (φ ∧ χ);

We have seen some type specific axioms and rules in the definition of the function

space prelocale and the Plotkin powerlocale. For the full list we refer to [Abr91b],

p. 49ff. If σ is a closed type expression then the domain prelocale L(σ) describes the

intended bifinite domain:

Theorem 7.3.16. If σ is a closed type expression then

spec(L(σ)) ∼= ID(σ) .

(Note that this is a special case of Theorem 7.3.15.)

The whole scheme for deriving ., C, and T is designed carefully so as to have

finite positive information in the premise of each rule only. Hence the whole system

can be seen as a monotone inductive definition (in the technical sense of e.g. [Acz77]).

Furthermore, we have already established close connections between the syntactical

rules and properties of the described domains. This is the basis of the following result.

Theorem 7.3.17. The language of properties is decidable.

Proof. The statement is trivial for the domain prelocale 1 because only combinations

of true and false occur in L(1). For composite types we rely on the general develop-

ment in Section 7.3.2, which at least for three concrete instances we have verified in

Sections 7.3.3–5. First of all, every expression in L(σ) can be effectively transformed

into a finite disjunction of ∨-primes (i.e. expressions satisfying the C-predicate); this

is Step 5, ‘prime generation’. Soundness and completeness ensure that the expressions

satisfying the C-predicate are precisely the ∨-primes in the preordered lattice L(σ).
Hence we can decide the preorder between arbitrary expressions if we can decide the

preorder between ∨-primes. For the latter we note that our constructions accomplish

more than we have stated so far. All ∨-primes, which are produced by the transfor-

mation algorithms, are of the explicit form occuring in the rules for deriving the C-

predicate; rather than merely expressions which happen to be equivalent to ∨-primes.

The preorder between these explicit ∨-primes is (for each construction) easily charac-

terized through the semantic interpretation function J·K0. The task of establishing the

139

preorder between these primes is then reduced to establishing some formula defined by

structural induction on the type σ. Since every expression in L(σ) is derived from true

and false in finitely many steps, we will eventually have reduced our task to checking

the preorder between certain expressions in L(1).

Finally, we introduce a formal language to speak about points of domains. So far,

we have done this in a rather roundabout way, trusting in the reader’s experience with

sets and functions. Doing it formally will allow us to establish a precise relationship

between (expressions for) points and (expressions for) properties.

We assume that for each (closed) type expression σ we have a denumerable set

V (σ) = {xσ, yσ, zσ, . . .} of typed variables. The terms are defined as follows (where

M : σ stands for ‘M is a term of type σ’):

=⇒ ∗σ : σ;

=⇒ xσ : σ;

M : τ =⇒ λxσ.M : (σ→τ);

M : (σ→τ), N : σ =⇒ (MN) : τ ;

M : σ,N : τ =⇒ 〈M,N〉 : (σ×τ);

M : (σ×τ), N : ν =⇒ let M be 〈xσ, yτ 〉.N : ν;

M : σ =⇒ inl(M) : (σ⊕τ) and inr(M) : (τ⊕σ);

M : (σ⊕τ), N1 : ν,N2 : ν =⇒ cases M of inl(xσ).N1 else inr(yτ).N2 : ν;

M : σ =⇒ up(M) : (σ)⊥;

M : (σ)⊥, N : τ =⇒ lift M to up(xσ).N : τ ;

M : σ =⇒ {|M |} : PP(σ);

M : PP(σ), N : PP(τ) =⇒ over M extend {|xσ|}.N : PP(τ);

M : PP(σ), N : PP(σ) =⇒ M ∪ N : PP(σ);

M : PP(σ), N : PP(τ) =⇒ M ⊗N : PP(σ × τ);

M : σ[recX.σ/X] =⇒ fold(M) : recX.σ;

M : recX.σ =⇒ unfold(M) : σ[recX.σ/X];

M : σ =⇒ µxσ.M : σ.

In the same fashion as for type expressions we have two alternatives for interpreting

a term M of type σ. We can either give a direct denotational semantics in the bifinite

domain ID(σ) or we can specify a prime filter in the corresponding domain prelo-

cale L(σ). The denotational semantics suffers from the fact that in order to single out

a particular element in a domain we use a mathematical language which looks embar-

rassingly similar to the formal language we intend to interpret. Some of the semantic

clauses to follow will therefore appear to be circular.

Again we need environments to deal with free variables. They are maps

ρ :
⋃

σ V (σ) →
.
⋃

σ ID(σ) which we assume to respect the typing. In the following

140

clauses we will also suppress the type information.

J∗σKρ = ⊥, the least element in ID(σ);

JxKρ = ρ(x);

Jλx.MKρ = (d 7→ JMKρ[x 7→d]);

J(MN)Kρ = JMKρ(JNKρ);
J〈M,N〉Kρ = 〈JMKρ, JNKρ〉;

Jlet M be 〈x, y〉.NKρ = JNKρ[x 7→d, y 7→e],

where d = π1(JMKρ),
e = π2(JMKρ);

Jinl(M)Kρ = inl(JMKρ);
Jinr(M)Kρ = inr(JMKρ);

Jcases M of inl(x).N1 else inr(y).N2Kρ =







JN1Kρ[x 7→d], JMKρ = (d : 1);
JN2Kρ[y 7→e], JMKρ = (e : 2);
⊥, JMKρ = ⊥;

Jup(M)Kρ = up(JMKρ);

Jlift M to up(xσ).NKρ =

{

JNKρ[x 7→d], JMKρ = up(d);
⊥, JMKρ = ⊥;

J{|M |}Kρ = {JMKρ};
Jover M extend {|xσ|}.NKρ = ↑X ∩ Cl(X),

where X =
⋃

{JNKρ[x 7→d] | d ∈ JMKρ};
JM ∪ NKρ = JMKρ ∪ JNKρ;
JM ⊗NKρ = {〈d, e〉 | d ∈ JMKρ, e ∈ JNKρ};
Jfold(M)Kρ = fold(JMKρ);

Junfold(M)Kρ = unfold(JMKρ);
Jµx.MKρ = fix(f),

where f(d) = JMKρ[x 7→d].

Now let us give the localic, or, as we are now justified in saying, logical interpre-

tation. We use a sequent calculus style of presenting this domain logic. The problem

of free variables is dealt with this time by including a finite list Γ of assumptions on

variables. We write them in the form x 7→φ and assume that Γ contains at most one of

these for each variable x. A sequent then takes the form Γ ⊢M : φ and should be read

141

as ‘M satisfies φ under the assumptions in Γ’.

{Γ ⊢M : φi}i∈I =⇒ Γ ⊢M :
∧

i∈I

φ;

φ′ . φ, ψ . ψ′,

(Γ, x 7→φ ⊢M : ψ) =⇒ Γ, x 7→φ′ ⊢M : ψ′;

{Γ, x 7→φi ⊢M : ψ}i∈I =⇒ Γ, x 7→
∨

i∈I

φi ⊢M : ψ;

Γ ⊢M : ψ =⇒ Γ, x 7→φ ⊢M : ψ;

=⇒ x 7→φ ⊢ x : φ;

Γ, x 7→φ ⊢M : ψ =⇒ Γ ⊢ λx.M : (φ→ψ);

Γ ⊢M : (φ→ψ); Γ ⊢ N : φ =⇒ Γ ⊢ (MN) : ψ;

Γ ⊢M : φ; Γ ⊢ N : ψ =⇒ Γ ⊢ 〈M,N〉 : (φ× ψ);

Γ ⊢M : (φ×ψ),

Γ, x 7→φ, y 7→ψ ⊢ N : χ =⇒ Γ ⊢ let M be 〈x, y〉.N : χ;

Γ ⊢M : φ =⇒ Γ ⊢ inl(M) : (φ⊕false);

Γ ⊢M : φ =⇒ Γ ⊢ inr(M) : (false⊕φ);

Γ ⊢M : (φ⊕false),T(φ),

Γ, x 7→φ ⊢ N1 : ψ =⇒ Γ ⊢ cases M of inl(x).N1

else inr(y).N2 : ψ;

Γ ⊢M : (false⊕φ),T(φ),

Γ, y 7→φ ⊢ N2 : ψ =⇒ Γ ⊢ cases M of inl(x).N1

else inr(y).N2 : ψ;

Γ ⊢M : φ =⇒ Γ ⊢ up(M) : (φ)⊥;

Γ ⊢M : (φ)⊥; Γ, x 7→φ ⊢ N : ψ =⇒ Γ ⊢ lift M to up(xσ).N : ψ;

Γ ⊢M : φ =⇒ Γ ⊢ {|M |} : ✷φ;

Γ ⊢M : φ =⇒ Γ ⊢ {|M |} : ✸φ;

Γ ⊢M : ✷φ; Γ, x 7→φ ⊢ N : ✷ψ =⇒ Γ ⊢ over M extend {|xσ|}.N : ✷ψ;

Γ ⊢M : ✸φ; Γ, x 7→φ ⊢ N : ✸ψ =⇒ Γ ⊢ over M extend {|xσ|}.N : ✸ψ;

Γ ⊢M : ✷φ; Γ ⊢ N : ✷φ =⇒ Γ ⊢M ∪ N : ✷φ;

Γ ⊢M : ✸φ =⇒ Γ ⊢M ∪ N : ✸φ;

Γ ⊢ N : ✸φ =⇒ Γ ⊢M ∪ N : ✸φ;

Γ ⊢M : ✸φ; Γ ⊢ N : ✸ψ =⇒ Γ ⊢M⊗N : ✸(φ×ψ);

Γ ⊢M : ✷φ; Γ ⊢ N : ✷ψ =⇒ Γ ⊢M⊗N : ✷(φ×ψ);

Γ ⊢M : φ =⇒ Γ ⊢ fold(M) : φ;

Γ ⊢M : φ =⇒ Γ ⊢ unfold(M) : φ;

Γ ⊢ µx.M : φ; Γ, x 7→φ ⊢M : ψ =⇒ Γ ⊢ µx.M : ψ.

A few comments may help in reading these clauses. The first two rules guarantee

142

that the set of properties which can be deduced for a term M forms a filter in the

domain prelocale. The third rule expresses the fact that every particular x will satisfy

properties from a prime filter. In particular, it entails that Γ, x 7→false ⊢M : φ is always

true. The fourth rule (which is the last of the structural rules) is ordinary weakening.

We need it to get started in a derivation. In the two rules for the cases-construct the

predicate T shows up. Instead of T(φ) we could have written φ 6≈ false but as we

said before, we want to keep the whole logic positive, that is to say, we want to use

inductive definitions only. The two rules for fold and unfold may seem a bit boring,

but it is precisely at this point where we take advantage of the fact that in the world

of domain prelocales we solve domain equation up to equality. The last rule, finally,

has to be applied finitely many times, starting from Γ ⊢ µx.M : true, in order to yield

something interesting. Here we may note with regret that our whole system is based on

the logic of observable properties. A standard proof principle such as fixpoint induction

for admissible predicates, Lemma 2.1.20, does not fit into the framework. On the other

hand, it is hopefully apparent how canonical the whole approach is. For applications,

see [Abr90c, Abr91a, Bou91, Hen93, Ong93, Jen91, Jen92].

Let us now compare denotational and logical semantics. We need to say how en-

vironments ρ and assumptions Γ fit together. First of all, we assume that ρ maps each

variable xσ into spec(L(σ)). Secondly, we want that ρ(x) belongs to the compact-

open subset described by the corresponding entry in Γ. But since environments are

functions defined on the whole set of variables while assumptions are finite lists, the

following definition is a bit delicate. We write ρ � Γ if for all entries x 7→φ in Γ we

have ρ(x) ∈ JφK. Using this convention, we can formulate validity for assertions about

terms:

Γ �M : φ if and only if ∀ρ.(ρ � Γ =⇒ JMKρ ∈ JφK) .
The final tie-up between the two interpretations of type expressions and terms then is

the following:

Theorem 7.3.18. The domain logic is sound and complete. As a formula:

∀M,Γ, φ. Γ ⊢M : φ if and only if Γ �M : φ .

Exercises 7.3.19. 1. Prove that a completely distributive lattice also satisfies the

dual distributivity axiom:
∨

i∈I

∧

Ai =
∧

f : I
⊙

−→∪Ai

∨

i∈I f(i).

2. [Ran60] Prove that a complete lattice L is completely distributive if and only if

the following holds for all x ∈ L:

x =
∨

a 6≥x

∧

b 6≤a

b .

(Hint: Use Theorem 7.1.3.)

3. Show that a topological space is sober if and only if every irreducible closed set

is the closure of a unique point.

4. Find a complete lattice L for which pt(L) is empty.

143

5. Show that every Hausdorff space is sober. Find a T1-space which is not sober.

The converse, a sober space, which is not T1, ought to be easy to find.

6. Find a dcpo which is not sober in the Scott-topology. (Reference: [Joh81]. For

an example which is a complete lattice, see [Isb82]. There is no known example

which is a distributive lattice.)

7. Describe the topological space pt(L) in terms of ∧-prime elements of the com-

plete lattice L.

8. Let D be a continuous domain. Identify D with the set of ∧-prime elements in

Ω(D). Prove that the Lawson-topology on D is the restriction of the Lawson-

topology on Ω(D) to D.

9. Suppose f : V →W is a lattice homomorphism. Show that R defined by xRy if

y ≤ f(x) is a join-approximable relation. Characterize the continuous functions

between spectral spaces which arise from these particular join-approximable

relations.

10. Extend Lemma 7.3.8 to other classes of domains.

11. Try to give a localic description of the coalesced sum construction.

144

8 Further directions

Our coverage of Domain Theory is by no means comprehensive. Twenty-five years

after its inception, the field remains extremely active and vital. We shall try in this

Section to give a map of the parts of the subject we have not covered.

8.1 Further topics in “Classical Domain Theory”

We mention four topics which the reader is likely to encounter elsewhere in the litera-

ture.

8.1.1 Effectively given domains

As we mentioned in the Introduction, domain-theoretic continuity provides a qualita-

tive substitute for explicit computability considerations. In order to evaluate this claim

rigorously, one should give an effective version of Domain Theory, and check that the

key constructions on domains such as product, function space, least fixpoints, and solu-

tions of recursive domain equations, all “lift” to this effective setting. For this purpose,

the use of abstract bases becomes quite crucial; we say (simplifying a little for this

thumbnail sketch) that an ω-continuous domain is effectively given if it has an abstract

basis (B,≺) which is numbered as B = {bn}n∈ω in such a way that ≺ is recursive

in the indices. Similarly, a continuous function f : D → E between effectively given

domains is effective if the corresponding approximable mapping is recursively enumer-

able. We refer to [Smy77, Kan79, WD80] and the chapter on Effective Structures in

this Handbook for developments of effective domain theory on these lines.

There have also been some more sophisticated approaches which aim at making

effectivity “intrinsic” by working inside a constructive universe for set theory based

on recursive realizability [McC84, Ros86, Pho91]. We shall return to this idea in sub-

section 8.5.

8.1.2 Universal Domains

Let C be a cartesian closed category of domains, and U a domain in C. We say that U is

universal for C if, for everyD in C, there is an embedding e : D → U . Thus universal-

ity means that we can, in effect, replace the category C by the single domain U . More

precisely, we can regard the domain D as represented by the idempotent eD = e ◦ p,

where p is the projection corresponding to e. Since eD : U → U , and [U −→ U] is

again in C and hence embeddable in U , we can ultimately identify D with an element

uD ∈ U , which we can think of as a “code” for D. Moreover, constructions such as

product and function space induce continuous functions

fun, prod : U2 −→ U

which act on these codes, so that e.g.

fun(uD, uE) = u[D −→ E] .

145

In this way, the whole functorial level of Domain Theory which we developed as a

basis for the solution of recursive domain equations in Section 5 can be eliminated,

and we can solve domain equations up to equality on the codes by finding fixpoints of

continuous functions over U .

This approach was introduced by Scott in [Sco76], and followed in the first text-

book on denotational semantics [Sto77]. However, it must be said that, as regards appli-

cations, universal domains have almost fallen into disuse. The main reason is probably

that the coding involved in the transition from D to uD is confusing and unappealing;

while more attractive ways of simplifying the treatment of domain equations, based on

information systems, have been found (see 8.1.4). However, there have been two recent

developments of interest. Firstly, a general approach to the construction of universal

domains, using tools from Model Theory, has been developed by Gunter and Jung and

Droste and Göbel, and used to construct universal domains for many categories, and to

prove their non-existence in some cases [GJ88, DG90, DG91, DG93].

Secondly, there is one application where universal domains do play an important

rôle: to provide models for type theories with a type of all types. Again, the original

idea goes back to [Sco76]. We say that a univeral domain U admits a universal type

if the subdomain V of all uD for D in C is itself a domain in C—and hence admits

a representation uV ∈ U . We can think of uV as a code for the type of all types. In

[Sco76], Scott studied the powerset P(ω) as a univeral domain for two categories: the

category of ω-continuous lattices (for which domains are taken to be represented by

idempotents on P(ω)), and the category of ω-algebraic lattices (for which domains are

represented by closures). Ershov [Ers75] and Hosono and Sato [HS77] independently

proved that P(ω) does not admit a universe for the former category; Hancock and

Martin-Löf proved that it does for the latter (reported in [Sco76]). For recent examples

of the use of universal domains to model a type of all types see [Tay87, Coq89, Ber91].

8.1.3 Domain-theoretic semantics of polymorphism

We have seen the use of continuity in Domain Theory to circumvent cardinality prob-

lems in finding solutions to domain equations such as

D ∼= [D −→ D] .

A much more recent development makes equally impressive use of continuity to give

a finitary semantics for impredicative polymorphism, as in the second-order lambda-

calculus (Girard’s “System F”) [Gir86, CGW87, Coq89]. This semantics makes essen-

tial use of the functorial aspects of Domain Theory. There have also been semantics

for implicit polymorphism based on ideals [MPS86] and partial equivalence relations

[AP90] over domains. We refer to the chapter in this volume of the Handbook on

Semantics of Types for comprehensive coverage and references.

8.1.4 Information Systems

Scott introduced information systems for bounded-complete ω-algebraic dcpo’s (“Scott

domains”) in [Sco82]. The idea is, roughly, to represent a category of domains by

a category of abstract bases and approximable mappings as in Theorems 2.2.28 and

146

2.2.29. One can then define constructions on domains in terms of the bases, as in

Propositions 3.2.4 and 4.2.4. This gives a natural setting for effective domain theory

as in 8.1.1 above. Moreover, bilimits are given by unions of information systems, and

domain equations solved up to equality, much as in 7.3.5. More generally, information

systems correspond to presenting just the coprime elements from the domain prelocales

of 7.3. Information system representations of various categories of domains can be

found in [Win88, Zha91, Cur93]. A general theory of information systems applicable

to a wide class of topological and metric structures can be found in [ES93].

8.2 Stability and Sequentiality

Recall the ǫ-δ style definition of continuity given in Proposition 2.2.11: given e ∈
Cf(x) it provides d ∈ Bx with f(d) ⊑ e. However, there is no canonical choice of d
from e. In an order-theoretic setting, it is natural to ask for there to be a least such d.

This leads to the idea of the modulus of stability: M(f, x, e), where f(x) ⊒ e, is the

least such d, if it exists. We say that a continuous function is stable if the modulus

always exists, and define the stable ordering on such functions by

f ⊑s g ⇐⇒ f ⊑ g ∧ ∀x, e. e ∈ Cf(x). M(f, x, e) =M(g, x, e).

We can think of the modulus as specifying the minimum information actually required

of a given input x in order that the function f yields a given information y on the

output; the stable ordering refines the usual pointwise order by taking this intensional

information into account.

It turns out that these definitions are equivalent to elegant algebraic notions in the

setting of the lattice-like domains introduced (for completely different purposes!) in

Section 4.1. Let D, E be domains in L. Then a continuous function f : D → E is

stable iff it preserves bounded non-empty infima (which always exist in L; cf. Propo-

sition 4.1.2), and f ⊑s g iff for all x ⊑ y, f(x) = f(y) ⊓ g(x). This is the first step in

an extensive development of “Stable Domain Theory” in which stable functions under

the stable ordering take the place which continuous functions play in standard Domain

Theory. Stable Domain theory was introduced by Berry [Ber78, Ber79]. Some more

recent references are [Gir86, CGW87, Tay90, Ehr93].

Berry’s motivation in introducing stable functions was actually to try to capture the

notion of sequentially computable function at higher types. For the theory of sequential

functions on concrete domains, we refer to [KP93, Cur93].

8.3 Reformulations of Domain Theory

At various points in our development of Domain Theory (see e.g. Section 3.2), we

have referred to the need to switch between different versions C, C⊥, C⊥! of some

category of domains, depending on whether bottom elements are required, and if so

whether functions are required to preserve them. In some sense C and C⊥! are the

mathematically natural categories, since what the morphisms must preserve matches

the structure that the objects are required to have; while C⊥ is the preferred category

for semantics, since endomorphisms f : D → D need not have fixpoints at all in C,

while least fixpoints in C⊥! are necessarily trivial.

147

All this suggests that something is lacking from the mathematical framework in or-

der to get a really satisfactory tie-up with the applications. We shall describe a number

of attempts to make good this deficiency. While no definitive solution has yet emerged,

these proposals have contributed important insights to Domain Theory and its applica-

tions.

8.3.1 Predomains and partial functions

The first proposal is due to Gordon Plotkin [Plo85]. The idea is to use the objects of

C (“predomains”, i.e. domains without any requirement of bottom elements), but to

change the notion of morphism to partial continuous function: where we say that a

partial function f : D ⇀ E is continuous if its domain of definition is a Scott-open

subset of D, and its restriction to this subset is a (total) continuous function. The

resulting category is denoted by C∂ . This switch to partial continuous functions carries

with it a change in the type structure we can expect to have in our categories of domains:

they should be partial cartesian closed categories, as defined e.g. in [RR88, Ros86].

One advantage of this approach is that it brings the usage of Domain Theory closer

to that of recursion theory. For example, the hierarchy of (strict) partial continuous

functionals over the natural numbers will be given by

N, [N⇀ N], [[N⇀ N]⇀ N], . . .

rather than

N⊥, [N⊥
⊥!
−→ N⊥], [[N⊥

⊥!
−→ N⊥]

⊥!
−→ N⊥],

This avoidance of bottom elements also leads to a simpler presentation of product and

sum types. For example, there is just one notion of sum, the disjoint union D
.
∪ E,

which is indeed the coproduct in C∂ .

An important point is that there is a good correspondence between the operational

behaviour of functions with a call-by-value parameter-passing mechanism and the par-

tial function type [⇀]. For example, there is a good fit between [⇀] and the

function type constructor in Standard ML [MT91, MTH90].

To balance these advantages, we have the complication of dealing with partially de-

fined expressions and partial cartesian closure; and also a less straightforward treatment

of fixpoints. It is not the case that an arbitrary partial continuous function f : D ⇀ D
has a well-defined least fixpoint. However, if D itself is a partial function type, e.g.

D = [E ⇀ E], then f does have a well-defined least fixpoint. This is in accord with

computational intuition for call-by-value programming languages, but not so pleasant

mathematically.

As a final remark, note that in fact C∂ is equivalent to C⊥!! Thus, in a sense,

this approach brings nothing new. However, there is a distinct conceptual difference,

and also C∂ is more amenable to constructive proof and categorical axiomatization

[Ros86].

8.3.2 Computational Monads

Computational monads have been proposed by Eugenio Moggi as a general structuring

mechanism for denotational semantics [Mog91]. A computational monad on a carte-

148

sian category C is a monad (T, η, µ) together with a “tensorial strength”, i.e. a natural

transformation

tA,B : A× TB → T (A×B)

satisfying some equational axioms. The import of the strength is that the monad can be

internalised along the lines mentioned after Proposition 6.1.8. Now let C be a category

of (pre)domains and total continuous functions. Moggi’s proposal is to make a distinc-

tion between values and (denotations of) computations. An element of A is a value, an

element of TA is a computation. A (call-by-value) procedure will denote a morphism

A→ TB which accepts an input value of type A and produces a computation over B.

Composition of such morphisms is by Kleisli extension: if f : A→ TB, g : B → TC,

then composition is defined by

A
f

−→ TB
Tg
−→ TTC

µC

−→ TC,

with identities given by the unit ηA : A→ TA.

In particular, partiality can be captured in this way using the lifting monad, for

which see 3.2.5. Note that this particular example is really just another way of present-

ing the category C∂ of the previous subsection; there is a natural isomorphism

[D −→ E⊥] ∼= [D ⇀ E] .

The value of the monadic approach lies in its generality and in the type distinction it

introduces between values and computations. To illustrate the first point, note that the

various powerdomain constructions presented in Section 7.2 all have a natural structure

as strong monads, with the monad unit and multiplication given by suitable versions of

the singleton and big union operations. For the second point, we refer to the elegant

axiomatization of general recursion in terms of fixpoint objects given by Crole and Pitts

[CP92], which makes strong use of the monadic approach. This work really belongs to

Axiomatic Domain Theory, to which we will return in subsection 4 below.

8.3.3 Linear Types

Another proposal by Gordon Plotkin is to use Linear Types (in the sense of Linear

Logic [Gir87]) as a metalanguage for Domain Theory [Plo93]. This is based on the

following observation. Consider a category C⊥! of domains with bottom elements

and strict continuous functions. This category has products and coproducts, given by

cartesian products and coalesced sums. It also has a monoidal closed structure given

by smash product and strict function space, as mentioned in 3.2.4. Now lifting, which

is a monad on C by virtue of the adjunction mentioned in 3.2.5, is dually a comonad

on C⊥!; and the co-Kelisli category for this comonad is C⊥.

Indeed, Linear Logic has broader connections with Domain Theory. A key idea of

Linear Logic is the linear decomposition of the function space:

[A −→ B] ∼= [!A⊸ B] .

One of the cardinal principles of Domain Theory, as we have seen, is to look for carte-

sian closed categories of domains as convenient universes for the semantics of com-

putation. Linear Logic leads us to look for linear decompositions of these cartesian

149

closed structures. For example, the cartesian closed category of complete lattices and

continuous maps has a linear decomposition via the category of complete lattices and

sup-lattice homomorphisms—i.e. maps preserving all joins, with !L = PH(L), the

Hoare powerdomain of L. There are many other examples [Hoo92, Ehr93, Hut94].

8.4 Axiomatic Domain Theory

We began our account of Domain Theory with requirements to interpret certain forms

of recursive definitions, and to abstract some key structural features of computable par-

tial functions. We then introduced some quite specific structures for convergence and

approximation. The elaboration of the resulting theory showed that these structures do

indeed work; they meet the requirements with which we began. The question remains

whether another class of structures might have served as well or better. To address

this question, we should try to axiomatize the key features of a category of domains

which make it suitable to serve as a universe for the semantics of computation. Such

an exercise may be expected to yield the following benefits:

• By making it clearer what the essential structure is, it should lead to an improved

meta-language and logic, a refinement of Scott’s Logic of Computable Functions

[Sco93].

• Having a clear axiomatization might lead to the discovery of different models,

which might perhaps be more convenient for certain purposes, or suggest new

applications. On the other hand, it might lead to a representation theorem, to the

effect that every model of our axioms for a “category of domains” can in fact

be embedded in one of the concrete categories we have been studying in this

Chapter.

Thus far, only a limited amount of progress has been made on this programme. One

step that can be made relatively cheaply is to generalize from concrete categories of do-

mains to categories enriched over some suitable subcategory of DCPO. Much of the

force of Domain Theory carries over directly to this more general setting [SP82, Fre92].

Moreover, this additional generality is not spurious. A recent development in the se-

mantics of computation has been towards a refinement of the traditional denotational

paradigm, to reflect more intensional aspects of computational behaviour. This has

led to considering as semantic universes certain categories in which the morphisms

are not functions but sequential algorithms [Cur93], information flows [AJ94b], game-

theoretic strategies [AJ94a], or concurrent processes [Abr94]. These are quite different

from the “concrete” categories of domains we have been considering, in which the mor-

phisms are always functions. Nevertheless, they have many of the relevant properties

of categories of domains, notably the existence of fixpoints and of canonical solutions

of recursive domain equations. The promise of axiomatic domain theory is to allow the

rich theory we have developed in this Chapter to be transposed to such settings with a

minimum of effort.

The most impressive step towards Axiomatic Domain Theory to date has been Peter

Freyd’s work on algebraically compact categories [Fre91, Fre92]. This goes consider-

150

ably beyond what we covered in Section 5. The work by Crole and Pitts on FIX-

categories should also be mentioned [CP92].

In another direction, there are limitative results which show that certain kinds of

structures cannot serve as categories of domains. One such result appeared as Exercise

5.4.11(3). For another, see [HM93].

8.5 Synthetic Domain Theory

A more radical conceptual step is to try to absorb all the structure of convergence and

approximation, indeed of computability itself, into the ambient universe of sets, by

working inside a suitable constructive set theory or topos. The slogan is: “Domains

are Sets”. This leads to a programme of “Synthetic Domain Theory”, by analogy with

Synthetic Differential Geometry [Koc81], in which smoothness rather than effectivity

is the structure absorbed into the ambient topos.

The programme of Synthetic Domain Theory was first adumbrated by Dana Scott

around 1980. First substantial steps on this programme were taken by Rosolini

[Ros86], and subsequently by Phoa [Pho91], and Freyd, Mulry, Rosolini and Scott

[FMRS90]. Axioms for Synthetic Domain Theory have been investigated by Hyland

[Hyl91] and Taylor [Tay91], and the subject is currently under active development.

151

9 Guide to the literature

As mentioned in the Introduction, there is no book on Domain Theory. For systematic

accounts by the two leading contributors to the subject, we refer to the lecture notes of

Scott [Sco81] and Plotkin [Plo81]. There is also an introductory exposition by Gunter

and Scott in [GS90]. An exhaustive account of the theory of continuous lattices can

be found in [GHK+80]; a superb account of Stone duality, with a good chapter on

continuous lattices, is given in [Joh82]; while [DP90] is an excellent and quite gentle

introduction to the theory of partial orders.

Some further reading on the material covered in this Chapter:

Section 2: [DP90, Joh82];

Section 3: [Plo81, Gun92b, Win93];

Section 4: [Jun89, Jun90];

Section 5: [SP82, Fre91, Fre92, Pit93b, Pit93a];

Section 6: [Plo76, Smy78, Win83, Hec91, Sch93];

Section 7: [Abr90c, Abr91a, AO93, Ong93, Hen93, Bou94, Jen92, Jen91, Smy83b].

Applications of Domain Theory

There is by now an enormous literature on the semantics of programming languages,

much of it using substantial amounts of Domain Theory. We will simply list a number

of useful textbooks: [Sch86, Ten91, Gun92b, Win93].

In addition, a number of other applications of Domain Theory have arisen: in Ab-

stract Interpretation and static program analysis [Abr90a, BHA86, AJ91] (see also the

article on Abstract Interpretation in this Handbook); databases [BDW88, BJO91]; com-

putational linguistics [PS84, PM90]; artificial intelligence [RZ94]; fractal image gen-

eration [Eda93b]; and foundations of analysis [Eda93a].

Finally, the central importance of Domain Theory is well indicated by the num-

ber of other chapters of this Handbook which make substantial reference to Domain-

theoretic ideas: Topology, Algebraic Semantics, Semantics of Types, Correspondence

between Operational and Denotational Semantics, Abstract Interpretation, Effective

Structures.

152

References

[Abr87] S. Abramsky. Domain Theory and the Logic of Observable Properties.

PhD thesis, University of London, 1987.

[Abr90a] S. Abramsky. Abstract interpretation, logical relations and Kan extensions.

Journal of Logic and Computation, 1(1):5–40, 1990.

[Abr90b] S. Abramsky. A generalized Kahn principle for abstract asynchronous

networks. In M. Main, A. Melton, M. Mislove, and D. Schmidt, edi-

tors, Mathematical Foundations of Programming Semantics, volume 442

of Lecture Notes in Computer Science, pages 1–21. Springer Verlag, 1990.

[Abr90c] S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research

Topics in Functional Programming, pages 65–117. Addison Wesley, 1990.

[Abr91a] S. Abramsky. A domain equation for bisimulation. Information and Com-

putation, 92:161–218, 1991.

[Abr91b] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied

Logic, 51:1–77, 1991.

[Abr94] S. Abramsky. Interaction categories and communicating sequential pro-

cesses. In A. W. Roscoe, editor, A Classical Mind: essays in honour of C.

A. R. Hoare, chapter 1, pages 1–16. Prentice Hall International, 1994.

[Acz77] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor,

The Handbook of Mathematical Logic, volume 90 of Studies in Logic and

Foundations of Mathematics, pages 739–782. North Holland, 1977.

[AJ91] S. Abramsky and T. Jensen. A relational approach to strictness analysis

for polymorphic functions. In Conference Record of the 18th Annual ACM

Symposium on Principles of Programming Languages, pages 49–54. ACM

Press, 1991.

[AJ94a] S. Abramsky and R. Jagadeesan. Games and full completeness for multi-

plicative linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994.

[AJ94b] S. Abramsky and R. Jagadeesan. New foundations for the geometry of

interaction. Information and Computation, 1994. To appear.

[ANR82] J. Adámek, E. Nelson, and J. Reiterman. Tree constructions of free con-

tinuous algebras. Journal of Computer and System Sciences, 24:114–146,

1982.

[AO93] S. Abramsky and L. Ong. Full abstraction in the lazy lambda calculus.

Information and Computation, 105:159–267, 1993.

[AP90] M. Abadi and G. D. Plotkin. A Per model of polymorphism and recursive

types. In 5th Annual IEEE Symposium on Logic in Computer Science,

pages 355–365. IEEE Computer Society Press, 1990.

153

[Ard60] D. N. Arden. Theory of Computing Machine Design, chapter Delayed

logic and finite state machines. Univ. of Michigan Press, 1960.

[AT89] J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer

Academic Publishers, 1989.

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, revised edition, 1984.

[BDW88] P. Buneman, S. Davidson, and A. Watters. A semantics for complex ob-

jects and approximate queries. In Principles of Database Systems. ACM,

1988.

[Bek69] H. Bekič. Definable operations in general algebras, and the theory of au-

tomata and flowcharts. Technical report, IBM Laboratory, Vienna, 1969.

Reprinted in H. Bekič, Programming Languages and Their Definition, vol-

ume 177 of Lecture Notes in Computer Science, pages 30–55. Springer

Verlag, 1984.

[Bek71] H. Bekič. Towards a mathematical theory of programs. Technical Report

TR 25.125, IBM Laboratory, Vienna, 1971.

[Ber78] G. Berry. Stable models of typed λ-calculi. In Proceedings of the 5th In-

ternational Colloquium on Automata, Languages and Programming, vol-

ume 62 of Lecture Notes in Computer Science, pages 72–89. Springer Ver-

lag, 1978.

[Ber79] G. Berry. Modèles Complèment Adéquats et Stables des Lambda-calculs

typés, 1979. Thèse de Doctorat d’Etat, Université Paris VII.

[Ber91] S. Berardi. Retractions on dI-domains as a model for type:type. Informa-

tion and Computation, 94:204–231, 1991.

[BHA86] G. Burn, C. Hankin, and S. Abramsky. Strictness analysis for higher order

functions. Science of Computer Programming, 7:249–278, 1986.

[BJO91] P. Buneman, A. Jung, and A. Ohori. Using powerdomains to generalize

relational databases. Theoretical Computer Science, 91:23–55, 1991.

[Bou91] G. Boudol. Lambda calculi for (strict) parallel functions. Technical Report

1387, INRIA - Sophia Antipolis, 1991. To appear in Information and

Computation.

[Bou94] G. Boudol. Lambda calculi for (strict) parallel functions. Information and

Computation, 108:51–127, 1994.

[CGW87] T. Coquand, C. Gunter, and G. Winskel. dI-domains as a model of poly-

morphism. In Third Workshop on the Mathematical Foundations of Pro-

gramming Language Semantics, pages 344–363. Springer Verlag, 1987.

154

[Coq89] T. Coquand. Categories of embeddings. Theoretical Computer Science,

68:221–238, 1989.

[CP92] R. Crole and A. M. Pitts. New foundations for fixpoint computations: FIX-

hyperdoctrines and FIX-logic. Information and Computation, 98:171–

210, 1992.

[Cur93] P.-L. Curien. Categorical Combinators, Sequential Algorithms and

Functional Programming. Progress in Theoretical Computer Science.

Birkhäuser, second edition, 1993.

[dBS69] J. W. de Bakker and D. S. Scott. A theory of programs. Notes, IBM

Seminar, Vienna, 1969.

[DG90] M. Droste and R. Göbel. Universal domains in the theory of denotational

semantics of programming languages. In IEEE Symposium on Logic in

Computer Science, pages 19–34. IEEE Computer Society Press, 1990.

[DG91] M. Droste and R. Göbel. Universal information systems. International

Journal of Foundations of Computer Science, 1:413–424, 1991.

[DG93] M. Droste and R. Göbel. Universal domains and the amalgamation prop-

erty. Mathematical Structures in Computer Science, 3:137–159, 1993.

[DHR71] R. O. Davies, A. Hayes, and G. Rousseau. Complete lattices and the gen-

eralized Cantor theorem. Proceedings of the AMS, 27:253–258, 1971.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cam-

bridge University Press, Cambridge, 1990.

[Eda93a] A. Edalat. Domain theory and integration. draft paper, 1993.

[Eda93b] A. Edalat. Dynamical systems, measures and fractals via domain theory:

extended abstract. In G. Burn, S. Gay, and M. Ryan, editors, Theory and

Formal Methods 1993, Workshops in Computing, pages 82–99. Springer

Verlag, 1993.

[Ehr93] T. Ehrhard. Hypercoherences: A strongly stable model of linear logic.

Mathematical Structures in Computer Science, 3:365–386, 1993.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, vol-

ume 6 of EATCS Monographs on Theoretical Computer Science. Springer

Verlag, 1985.

[Ern85] M. Erné. Posets isomorphic to their extensions. Order, 2:199–210, 1985.

[Ers75] Y. L. Ershov. The theory of A-spaces (English translation). Algebra and

Logic, 12:209–232, 1975.

[ES93] A. Edalat and M. B. Smyth. I-categories as a framework for solving do-

main equations. Theoretical Computer Science, 115(1):77–106, 1993.

155

[Fie92] A. Fiech. Colimits in the category CPO. Technical report, Kansas State

University, 1992.

[FMRS90] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. In Logic

in Computer Science, pages 346–354. IEEE Computer Society Press,

1990.

[Fre91] P. J. Freyd. Algebraically complete categories. In A. Carboni, M. C.

Pedicchio, and G. Rosolini, editors, Como Category Theory Conference,

volume 1488 of Lecture Notes in Mathematics, pages 95–104. Springer

Verlag, 1991.

[Fre92] P. J. Freyd. Remarks on algebraically compact categories. In M. P. Four-

man, P. T. Johnstone, and A. M. Pitts, editors, Applications of Categories

in Computer Science, volume 177 of L.M.S. Lecture Notes, pages 95–106.

Cambridge University Press, 1992.

[GHK+80] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.

Scott. A Compendium of Continuous Lattices. Springer Verlag, 1980.

[Gir86] J.-Y. Girard. The system F of variable types: Fifteen years later. Theoret-

ical Computer Science, 45:159–192, 1986.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[GJ88] C. Gunter and A. Jung. Coherence and consistency in domains. In Third

Annual Symposium on Logic in Computer Science, pages 309–317. IEEE

Computer Society Press, 1988.

[GR62] S. Ginsburg and H. G. Rice. Two families of languages related to ALGOL.

Journal of the ACM, 9:350–371, 1962.

[Gra88] S. Graham. Closure properties of a probabilistic powerdomain construc-

tion. In M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Math-

ematical Foundations of Programming Language Semantics, volume 298

of Lecture Notes in Computer Science, pages 213–233. Springer Verlag,

1988.

[GS90] C. Gunter and D. S. Scott. 12: Semantic Domains. In Jan van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science, volume B: Formal Mod-

els and Semantics, pages 633–674. Elsevier Science Publishers, Amster-

dam, 1990.

[GTW78] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra ap-

proach to the specification, correctness and implementation of abstract

data types. In R. T. Yeh, editor, Current Trends in Programming Method-

ology IV: Data Structuring, pages 80–144. Prentice Hall, 1978.

[Gun86] C. Gunter. The largest first-order axiomatizable cartesian closed category

of domains. In Symposium on Logic in Computer Science, pages 142–148.

IEEE Computer Society Press, 1986.

156

[Gun92a] C. Gunter. The mixed power domain. Theoretical Computer Science,

103:311–334, 1992.

[Gun92b] C. Gunter. Semantics of Programming Languages. Structures and Tech-

niques. Foundations of Computing. MIT Press, 1992.

[Hau14] F. Hausdorff. Grundzüge der Mengenlehre. Veit, 1914.

[Hec90] R. Heckmann. Power Domain Constructions. PhD thesis, Universität des

Saarlandes, 1990.

[Hec91] R. Heckmann. Power domain constructions. Science of Computer Pro-

gramming, 17:77–117, 1991.

[Hec93a] R. Heckmann. Observable modules and power domain constructions. In

M. Droste and Y. Gurevich, editors, Semantics of Programming Languages

and Model Theory, volume 5 of Algebra, Logic, and Applications, pages

159–187. Gordon and Breach Science Publishers, 1993.

[Hec93b] R. Heckmann. Power domains and second order predicates. Theoretical

Computer Science, 111:59–88, 1993.

[Hen93] M. Hennessy. A fully abstract denotational model for higher order pro-

cesses. In Eighth Annual IEEE Symposium on Logic in Computer Science,

pages 397–408. IEEE Computer Society Press, 1993.

[HM81] K. H. Hofmann and M. Mislove. Local compactness and continuous lat-

tices. In B. Banaschewski and R.-E. Hoffmann, editors, Continuous Lat-

tices, Proceedings Bremen 1979, volume 871 of Lecture Notes in Mathe-

matics, pages 209–248. Springer Verlag, 1981.

[HM93] K. H. Hofmann and M. W. Mislove. All compact Hausdorff lambda mod-

els are degenerate. Technical Report 93–1, Tulane University, 1993.

[Hof81] R.-E. Hoffmann. Continuous posets, prime spectra of completely dis-

tributive complete lattices, and Hausdorff compactification. In B. Ba-

naschewski and R.-E. Hoffmann, editors, Continuous Lattices, Proceed-

ings Bremen 1979, volume 871 of Lecture Notes in Mathematics, pages

159–208. Springer Verlag, 1981.

[Hoo92] R. Hoofman. Non-stable models of linear logic. PhD thesis, University of

Utrecht, 1992.

[HP79] M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel

programming language. In J. Beçvar, editor, Mathematical Foundations

of Computer Science, volume 74 of Lecture Notes in Computer Science,

pages 108–120. Springer Verlag, 1979.

[HP90] H. Huwig and A. Poigné. A note on inconsistencies caused by fixpoints in

a cartesian closed category. Theoretical Computer Science, 73:101–112,

1990.

157

[Hrb87] K. Hrbacek. Convex powerdomains I. Information and Computation,

74:198–225, 1987.

[Hrb88] K. Hrbacek. A powerdomain construction. In M. Main, A. Melton,

M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Pro-

gramming Semantics, volume 298 of Lecture Notes in Computer Science,

pages 200–212. Springer Verlag, 1988.

[Hrb89] K. Hrbacek. Convex powerdomains II. Information and Computation,

81:290–317, 1989.

[HS73] H. Herrlich and G. E. Strecker. Category Theory. Allyn and Bacon, 1973.

[HS77] C. Hosono and M. Sato. The retracts in pω do not form a continuous lattice

– a solution to Scott’s problem. Theoretical Computer Science, 4:137–142,

1977.

[Hut92] M. Huth. Cartesian closed categories of domains and the space Proj(D).

In S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, edi-

tors, Mathematical Foundations of Programming Semantics, volume 598

of Lecture Notes in Computer Science, pages 259–271. Springer Verlag,

1992.

[Hut94] M. Huth. Linear Domains and Linear Maps. In S. Brookes, M. Main,

A. Melton, M. Mislove, and D. Schmidt, editors, Mathematical Founda-

tions of Programming Semantics, volume 802 of Lecture Notes in Com-

puter Science, pages 438–453. Springer Verlag, 1994.

[Hyl91] J. M. E. Hyland. First steps in synthetic domain theory. In A. Carboni,

C. Pedicchio, and G. Rosolini, editors, Conference on Category Theory

1990, volume 1488 of Lecture Notes in Mathematics, pages 131–156.

Springer Verlag, 1991.

[Isb72] J. Isbell. Atomless parts of spaces. Mathematica Scandinavica, 31:5–32,

1972.

[Isb82] J. Isbell. Completion of a construction of Johnstone. Proceedings of the

American Mathematical Society, 85:333–334, 1982.

[Iwa44] T. Iwamura. A lemma on directed sets. Zenkoku Shijo Sugaku Danwakai,

262:107–111, 1944. (In Japanese).

[Jen91] T. Jensen. Strictness analysis in logical form. In J. Hughes, editor, Fifth

ACM Conference on Functional Programming Languages and Computer

Architecture, volume 523 of LNCS. Springer Verlag, 1991.

[Jen92] T. Jensen. Disjunctive strictness analysis. In Seventh Annual IEEE Sym-

posium on Logic in Computer Science, pages 174–185. IEEE Computer

Society Press, 1992.

158

[Joh81] P. T. Johnstone. Scott is not always sober. In B. Banaschewski and R.-E.

Hoffmann, editors, Continuous Lattices, Proceedings Bremen 1979, vol-

ume 871 of Lecture Notes in Mathematics, pages 282–283. Springer Ver-

lag, 1981.

[Joh82] P. T. Johnstone. Stone Spaces, volume 3 of Cambridge Studies in Ad-

vanced Mathematics. Cambridge University Press, 1982.

[Joh83] P. T. Johnstone. The point of pointless topology. Bulletin of the American

Mathematical Society, 8:41–53, 1983.

[Jon90] C. Jones. Probabilistic Non-Determinism. PhD thesis, University of Ed-

inburgh, Edinburgh, 1990. Also published as Technical Report No. CST-

63-90.

[JP89] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In

Proceedings of the 4th Annual Symposium on Logic in Computer Science,

pages 186–195. IEEE Computer Society Press, 1989.

[Jun88] A. Jung. New results on hierarchies of domains. In M. Main, A. Melton,

M. Mislove, and D. Schmidt, editors, Mathematical Foundations of Pro-

gramming Language Semantics, volume 298 of Lecture Notes in Computer

Science, pages 303–310. Springer Verlag, 1988.

[Jun89] A. Jung. Cartesian Closed Categories of Domains, volume 66 of CWI

Tracts. Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

107 pp.

[Jun90] A. Jung. The classification of continuous domains. In Proceedings, Fifth

Annual IEEE Symposium on Logic in Computer Science, pages 35–40.

IEEE Computer Society Press, 1990.

[Kan79] A. Kanda. Fully effective solutions of recursive domain equations. In

J. Beçvar, editor, Mathematical Foundations of Computer Science, vol-

ume 74. Springer Verlag, 1979. Lecture Notes in Computer Science.

[Kle52] S. C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

[Koc70] A. Kock. Monads on symmetric monoidal closed categories. Archiv der

Mathematik, 21:1–10, 1970.

[Koc72] A. Kock. Strong functors and monoidal monads. Archiv der Mathematik,

23:113–120, 1972.

[Koc81] A. Kock. Synthetic Differential Geometry, volume 51 of LMS Lecture

Notes. Cambridge University Press, 1981.

[KP93] G. Kahn and G. Plotkin. Concrete domains. Theoretical Computer Sci-

ence, 121:187–277, 1993. Translation of a technical report from 1978.

159

[KP94] K. Keimel and J. Paseka. A direct proof of the Hofmann-Mislove theorem.

Proceedings of the AMS, 120:301–303, 1994.

[Kra39] M. Krasner. Un type d’ensembles semi-ordonés et ses rapports avec une

hypothése de M. A. Weil. Bulletin de la Societé Mathematique de France,

67:162–176, 1939.

[Law79] J. D. Lawson. The duality of continuous posets. Houston Journal of Math-

ematics, 5:357–394, 1979.

[LNS82] J.-L. Lassez, V. L. Nguyen, and E. A. Sonenberg. Fixed point theorems

and semantics: A folk tale. Information Processing Letters, 14:112–116,

1982.

[LS81] D. J. Lehmann and M. B. Smyth. Algebraic specification of data types: A

synthetic approach. Mathematical Systems Theory, 14:97–139, 1981.

[Mai85] M. Main. Free constructions of powerdomains. In A. Melton, editor, Math-

ematical Foundations of Programming Semantics, volume 239 of Lecture

Notes in Computer Science, pages 162–183. Springer Verlag, 1985.

[Mar76] G. Markowsky. Chain-complete p.o. sets and directed sets with applica-

tions. Algebra Universalis, 6:53–68, 1976.

[Mar77] G. Markowsky. Categories of chain-complete posets. Theoretical Com-

puter Science, 4:125–135, 1977.

[Mar81] G. Markowsky. A motivation and generalization of Scott’s notion of a

continuous lattice. In B. Banaschewski and R.-E. Hoffmann, editors, Con-

tinuous Lattices, volume 871 of Lecture Notes in Mathematics, pages 298–

307. Springer Verlag, 1981.

[McC84] D. C. McCarty. Realizability and Recursive Mathematics. PhD thesis,

Oxford University, 1984.

[Mes77] J. Meseguer. On order-complete universal algebra and enriched functorial

semantics. In M. Karpiński, editor, Fundamentals of Computation The-

ory, volume 56 of Lecture Notes in Computer Science, pages 294–301.

Springer Verlag, 1977.

[Mog91] E. Moggi. Notions of computations and monads. Information and Com-

putation, 93(1):55–92, 1991.

[MPS86] D. MacQueen, G. D. Plotkin, and R. Sethi. An ideal model for recursive

polymorphic types. Information and Control, 71:95–130, 1986.

[MS76] R. E. Milne and C. Strachey. A Theory of Programming Language Seman-

tics. Chapman and Hall, London, 1976.

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, 1991.

160

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT

Press, 1990.

[Nel81] E. Nelson. Free Z-continuous algebras. In B. Banaschewski and R. E.

Hoffmann, editors, Continuous Lattices, volume 871 of Lecture Notes in

Mathematics, pages 315–334. Springer Verlag, 1981.

[NR85] M. Nivat and J. C. Reynolds, editors. Algebraic Methods in Computer

Science. Cambridge University Press, 1985.

[Nüß92] K.-J. Nüßler. Ordnungstheoretische Modelle für nicht-deterministische

Programmiersprachen. PhD thesis, Universität GH Essen, 1992.

[Ong93] C.-H. L. Ong. Nondeterminism in a functional setting. In Eighth Annual

IEEE Symposium on Logic in Computer Science, pages 275–286. IEEE

Computer Society Press, 1993.

[Par69] D. M. Park. Fixpoint induction and proofs of program properties. In

B. Meltzer and D. Michie, editors, Machine Intelligence, volume 5, pages

59–78. Edinburgh University Press, 1969.

[Pho91] W. Phoa. Domain Theory in Realizability Toposes. PhD thesis, University

of Cambridge, 1991.

[Pit93a] A. M. Pitts. Relational properties of domains. Technical Report 321,

Cambridge Univ. Computer Laboratory, December 1993. 37 pages.

[Pit93b] A. M. Pitts. Relational properties of recursively defined domains. In 8th

Annual Symposium on Logic in Computer Science, pages 86–97. IEEE

Computer Society Press, Washington, 1993.

[Pit94] A. M. Pitts. A co-induction principle for recursively defined domains.

Theoretical Computer Science, 124:195–219, 1994.

[Pla64] R. Platek. New foundations for recursion theory. PhD thesis, Stanford

University, 1964.

[Plo76] G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing,

5:452–487, 1976.

[Plo81] G. D. Plotkin. Post-graduate lecture notes in advanced domain theory (in-

corporating the “Pisa Notes”). Dept. of Computer Science, Univ. of Ed-

inburgh. Available from http://www.dcs.ed.ac.uk/home/gdp/

publications/, 1981.

[Plo85] G. D. Plotkin. Lectures on predomains and partial functions. Notes for

a course given at the Center for the Study of Language and Information,

Stanford 1985, 1985.

161

[Plo93] G. D. Plotkin. Type theory and recursion. In Eighth Annual IEEE Sym-

posium on Logic in Computer Science, page 374. IEEE Computer Society

Press, 1993.

[PM90] C. Pollard and D. Moshier. Unifying partial descriptions of sets. In P. Han-

son, editor, Information, Language and Cognition, volume 1 of Vancouver

Studies in Cognitive Science. University of British Columbia Press, 1990.

[Poi92] A. Poigné. Basic category theory. In S. Abramsky, D. M. Gabbay, and

T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, vol. 1,

pages 413–640. Clarendon Press, 1992.

[PS84] F. Pereira and S. Shieber. The semantics of grammar formalisms seen as

computer languages. In Proceedings of the 10th International Conference

on Computational Linguistics, pages 123–129. Association for Computa-

tional Linguistics, 1984.

[Puh93] H. Puhlmann. The snack powerdomain for database semantics. In A. M.

Borzyszkowski and S. Sokołowski, editors, Mathematical Foundations of

Computer Science, volume 711 of Lecture Notes in Computer Science,

pages 650–659, 1993.

[Ran53] G. N. Raney. A subdirect-union representation for completely distributive

complete lattices. Proceedings of the AMS, 4:518–522, 1953.

[Ran60] G. N. Raney. Tight Galois connections and complete distributivity. Trans.

AMS, 97:418–426, 1960.

[Ros86] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, Oxford

University, 1986.

[RR88] E. Robinson and G. Rosolini. Categories of partial maps. Information and

Computation, 79:95–130, 1988.

[RZ94] W. Rounds and G. Q. Zhang. Domain theory meets default logic. Journal

of Logic and Computation, 4:1–24, 1994.

[Sch86] D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

[Sch93] A. Schalk. Algebras for Generalized Power Constructions. Doctoral the-

sis, Technische Hochschule Darmstadt, 1993. 166 pp.

[Sco69] D. S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY.

Manuscript, University of Oxford, 1969.

[Sco70] D. S. Scott. Outline of a mathematical theory of computation. In 4th

Annual Princeton Conference on Information Sciences and Systems, pages

169–176, 1970.

162

[Sco71] D. S. Scott. The lattice of flow diagrams. In E. Engeler, editor, Symposium

on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in

Mathematics, pages 311–366. Springer Verlag, 1971.

[Sco72] D. S. Scott. Continuous lattices. In E. Lawvere, editor, Toposes, Algebraic

Geometry and Logic, volume 274 of Lecture Notes in Mathematics, pages

97–136. Springer Verlag, 1972.

[Sco76] D. S. Scott. Data types as lattices. SIAM J. Computing, 5:522–587, 1976.

[Sco80] D. S. Scott. Relating theories of lambda calculus. In J. R. Hindley and J. P.

Seldin, editors, To H. B. Curry: Essays in Combinatory Logic, Lambda

Calculus and Formalism, pages 403–450. Academic Press, 1980.

[Sco81] D. S. Scott. Lectures on a mathematical theory of computation. Mono-

graph PRG-19, Oxford University Computing Laboratory, Oxford, 1981.

[Sco82] D. S. Scott. Domains for denotational semantics. In M. Nielson and E. M.

Schmidt, editors, International Colloquium on Automata, Languages and

Programs, volume 140 of Lecture Notes in Computer Science, pages 577–

613. Springer Verlag, 1982.

[Sco93] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY.

Theoretical Computer Science, 121:411–440, 1993. Reprint of a

manuscript written in 1969.

[SD80] N. Saheb-Djahromi. CPO’s of measures for nondeterminism. Theoretical

Computer Science, 12:19–37, 1980.

[Smy77] M. B. Smyth. Effectively given domains. Theoretical Computer Science,

5:257–274, 1977.

[Smy78] M. B. Smyth. Powerdomains. Journal of Computer and Systems Sciences,

16:23–36, 1978.

[Smy83a] M. B. Smyth. The largest cartesian closed category of domains. Theoreti-

cal Computer Science, 27:109–119, 1983.

[Smy83b] M. B. Smyth. Powerdomains and predicate transformers: a topological

view. In J. Diaz, editor, Automata, Languages and Programming, vol-

ume 154 of Lecture Notes in Computer Science, pages 662–675. Springer

Verlag, 1983.

[Smy86] M. B. Smyth. Finite approximation of spaces. In D. Pitt, S. Abramsky,

A. Poigné, and D. Rydeheard, editors, Category Theory and Computer

Programming, volume 240 of Lecture Notes in Computer Science, pages

225–241. Springer Verlag, 1986.

[Smy92] M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, vol. 1, pages

641–761. Clarendon Press, 1992.

163

[SP82] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recur-

sive domain equations. SIAM J. Computing, 11:761–783, 1982.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-

gramming Language Theory. The MIT Press, 1977.

[Sto88] A. Stoughton. Fully Abstract Models of Programming Languages. Re-

search Notes in Theoretical Computer Science. Pitman/Wiley, 1988.

[Tay87] P. Taylor. Recursive Domains, Indexed category Theory and Polymor-

phism. PhD thesis, Cambridge University, 1987.

[Tay90] P. Taylor. An algebraic approach to stable domains. Pure and Applied

Algebra, 64:171–203, 1990.

[Tay91] P. Taylor. The fixed point property in synthetic domain theory. In 6th LICS

conference, pages 152–160. IEEE Computer Society Press, 1991.

[Ten91] R. D. Tennent. Semantics of Programming Languages. Prentice Hall,

1991.

[TT93] M. Tischendorf and J. Tůma. The characterization of congruence lattices

of lattices. Technical Report 1559, Technische Hochschule Darmstadt,

1993.

[Vic89] S. J. Vickers. Topology Via Logic, volume 5 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press, 1989.

[Vie21] L. Vietoris. Stetige Mengen. Monatshefte für Mathematik und Physik,

31:173–204, 1921.

[Vie22] L. Vietoris. Bereiche zweiter Ordnung. Monatshefte für Mathematik und

Physik, 32:258–280, 1922.

[WD80] K. Weihrauch and T. Deil. Berechenbarkeit auf cpo’s. Technical Report 63,

Rheinisch-Westfälische Technische Hochschule Aachen, 1980.

[Win83] G. Winskel. Powerdomains and modality. In M. Karpinski, editor, Foun-

dations of Computation Theory, volume 158 of Lecture Notes in Computer

Science, pages 505–514. Springer Verlag, 1983.

[Win88] G. Winskel. An introduction to event structures. In J. W. de Bakker, editor,

Linear Time, Branching Time, and Partial Order in Logics and Models for

Concurrency, volume 354 of Lecture Notes in Computer Science, pages

364–399. Springer Verlag, 1988.

[Win93] G. Winskel. The Formal Semantics of Programming Languages. An Intro-

duction. MIT Press, 1993.

[Zha91] G.-Q. Zhang. Logic of Domains. Progress in Theoretical Computer Sci-

ence. Birkhäuser, 1991.

164

Index

Idl(B), 27

⊥, 12

mub(A), 11

∧-generated lattice, 108

∧-irreducible, 108

∧-prime, 108

F-algebra, 69

abstract basis, 26

adjunction, 38

admissible action on relations, 80

admissible predicate, 17

admissible predicates, 80

admissible relation, 80

algebraic dcpo, 19

algebraic domain, 19

approximable relation, 28

approximants to x relative to B, 18

arithmetic lattice, 117

basis, 18, 26

bc-domain, 55

bifinite domain, 58

bilimit, 50

bottom, 12

bounded-complete domain, 55

cartesian product, 42

chain, 13

closure operator, 41

closure system, 12

coalesced sum, 44

cofinal subset, 14

coherent algebraic prelocale, 123

coherent domains, 62

coherent space, 117

compact element, 18

complete lattice, 12

completely ∧-irreducible, 108

completely ∧-prime, 108

completely distributive lattice, 107

completely prime filter, 110

continuous dcpo, 19

continuous domain, 19

continuous embedding projection pair, 39

continuous function, 15

continuous functor, 70

continuous insertion closure pairs, 40

continuous section retraction pair, 34

convex hull, 95

convex powertheory, 93

convex set, 95

dcpo, 15

dcpo-algebras, 86

dcpo-semilattice, 93

deflationary semilattice, 96

directed set, 13

directed-complete partial order, 15

distributive lattice, 107

domain logic, 141

domain prelocale, 124

domain-algebras, 87

e-p-pair, 39

effectively given, 145

Egli-Milner relation, 94

expanding sequence, 48

expanding system, 50

extensional action on relations, 82

filter, 13

filtered set, 13

finite amalgam, 66

finite element, 18

finite mub property, 58

finitely separated function, 60

flat domains, 20

formal union, 93

frame, 109, 114

frame distributivity law, 109

frame-homomorphism, 109

FS-domain, 61

Hasse diagrams, 10

Hoare powerdomain, 96

165

Hoare powertheory, 96

i-c-pairs, 40

ideal, 13

ideal completion, 27

idempotent deflation, 59

index set of a net, 14

inductive closure system, 19

infimum, 12

inflationary semilattices, 96

interpolation property, 24

irreducible closed set, 112

isolated element, 18

join, 12

join-approximable relation, 118

joinable family, 58

kernel operator, 40

L-domain, 55

largest element, 12

lattice, 12

Lawson-topology, 63

least element, 12

lenses, 99

lifting, 45

limit-colimit coincidence, 50

line diagrams, 10

localic description, 124

locally continuous functor, 71

logical action on relations, 81

lower adjoint, 38

lower powerdomain, 96

lower powertheory, 96

lower set, 11

maximal element, 11

meet, 12

minimal upper bound, 11

monotone function, 13

monotone function space, 13

monotone net, 14

monotone retract, 34

monotone section retraction pair, 34

mub-closure, 57

mub-complete poset, 57

multiplicative, 117

order of approximation, 18

partially ordered set, 10

Plotkin powerdomain, 93

Plotkin powerlocale, 133

Plotkin powertheory, 93

Plotkin-order, 58

point of a complete lattice, 111

pointed poset, 12

pointwise order, 13

poset, 10

pre-isomorphism, 124

preorders, 10

prime filter, 110

prime-continuous lattice, 107

principal filter, 13

principal ideal, 13

projection, 40

property m, 57

quotient domain, 41

reduct, 104

round ideal, 26

s-r-pair, 34

saturated set, 62

schizophrenic object, 111

Scott-closed set, 29

Scott-domain, 56

Scott-open set, 29

Scott-topology, 29

semilattice, 12

smash product, 45

Smyth powerdomain, 96

sober, 113

soberification, 114

spatial, 113

specialization order, 115

spectral space, 117

spectrum, 118

step function, 54

strict dcpo-algebra, 92

strict function, 15

strict homomorphism, 92

166

strongly separated function, 61

sub-domain, 40

sub-prelocale, 125

subnet, 14

supremum, 12

supremum of a net, 14

topological Egli-Milner ordering, 99

upper adjoint, 38

upper bound, 11

upper powerdomain, 96

upper set, 11

weak upper topology, 115

167

