A short introduction to the Lambda Calculus

Achim Jund
March 18, 2004

Abstract

The lambda calculus can appear arcane on first encounter. Viewely @ms a
“naming device”, however, it is a straighforward extension of ordimaathematical
notation. This is the point of view taken in these notes.

1. A brief history of mathematical notation. Our notation fornumbers was introduced

in the Western World in the Renaissance (around 1200) byledie Fibonacci. It is
characterised by a small fixed set of digits, whose valueesaniith their position in a
number. This place-value system was adopted from the Ar&lostiemselves credit the
Indians. We don’t know when and where in India it was invented

A notation for expressionsand equations was not available until the 17th century,
when Francois \Ate started to make systematic use of placeholders for pheasnand
abbreviations for the arithmetic operations. Until thersiraple expression such 8s?>
had to be described by spelling out the actual computatidnishnare necessary to obtain
322 from a value forz.

It took another 250 years before Alonzo Church developedtation for arbitrary
functions. His notation is called\-calculus (“lambda calculus”). Church introduced his
formalism to give a functional foundation for Mathematiag b the end mathematicians
preferred (axiomatic) set theory. Thecalculus was re-discovered as a versatile tool in
Computer Science by people like McCarthy, Strachey, Laratid Scott in the 1960s.

o

Alonzo Church, 14.6.1903-11.8.1995

Incidentally, the history of programming languages murthrat of mathematical notation,
albeit in a time-condensed fashion: In the early days (1B3&0), computer engineers

*School of Computer Science, The University of Birmingham, Edgtn, Birmingham, B15 2TA. Jung@
cs. bham ac. uk

struggled with number representation and tried many diffeschemes, before the modern
standard of 2-complement for integers and floating pointéats was generally adopted.
Viete’s notation for expressions was the main innovatioR@RTRAN, the world’s first
high-level programming language (Backus 1953), thus ditheg the programmer from
writing out tedious sequences of assembly instructiong.tdtlong after this, 1960, Mc-
Carthy came out with his list processing languagg. McCarthy knew of the\-calculus,
and his language closely resembles it.

Today, not many languages offer the powerful descriptiedifees of the A\-calculus,
in particular, the mainstream languagkwa and C++ make a strict distinction between
primitive datatypes and objects, on the one hand, and fomei= methods), on the other
hand. Likewise, the line of development started withp, although it led to some truly
remarkable languages suchME andHaskell, has found it difficult to incorporate object
oriented features. TH@Caml dialect of ML is one of the few attempts to combine the two
paradigms.

. Expressions in theA-calculus. The A-calculus is a notation for functions. It is extremely
economical but at first sight perhaps somewhat cryptic, wktems from its origins in
mathematical logic. Expressions in thecalculus are written in strigtrefix form, that is,
there are no infix or postfix operators (suchias-, ()2, etc.). Furthermore, function and
argument are simply written next to each other, without ketearound the argument. So
where the mathematician and the computer programmer woritd ¥&in(z)”, in the A-
calculus we simply writesin z”. If a function takes more than one argument, then these
are simply lined up after the function. Thus % 3” becomes % z 3", and “z?” becomes
“x x z”. Brackets are employed only to enforce a special groupka. example, where
we would normally write 8in(z) + 4”, the A-calculus formulation is4 (sin x) 4".

. Functions in the A-calculus. If an expression contains a variable — say- then one can
form the function which obtains by considering the relagioip between concrete values
for and the resulting value of the expression. In mathematigsstion formation is
sometimes written as an equatiof{xz) = 3z, sometimes as a mapping— 3z. In the
A-calculus a special notation is available which dispengéstive need to give a name to
the function (as inf(x) = 3x) and which easily scales up to more complicated function
definitions. In the given example we would re-write the espren ‘3z” into “* 3 z” and
then turn it into a function by preceding it with\t.”. We get: “Az. x 3 z”. The Greek
letter A (“lambda”) has a role similar to the keyworélinct i on” in some programming
languages. It alerts the reader that the variable whiclvallis not part of an expression
but theformal parameterf the function declaration. The dot after the formal pargane
introduces the function body. Let’s look more closely at sivailarity with programming
languages, sayascal:

function f(x : int) : int begin f := 3

* X end;
\
A T . *3x

You may be interested to see the samkigp:

(lambda (x) (* 3 x))

. And on and on... A function which has been written ik-notation can itself be used in
an expression. For example, the application of the fundtiom above to the value 4
is written as(A\x.x 3 x) 4. Remember, application is simply juxtaposition; but whg th
brackets around the function? They are there to make clearenthe definition of the
function ends. If we wrote\z.x 3 = 4 then 4 would become part of the function body
and we would get the function which assignsttthe value3 x x x 4 (assuming thak is
interpreted as a 3-ary function; otherwise fierm is nonsensical, see below.). So again,

brackets are used for delineating parts of-term, they do not have an intrinsic meaning
of their own.

Although it is not strictly necessary, it will be convenig¢atntroduce abbreviations for
A-terms. We write them in the same way as we always to in mattiesnamploying the
equality symbol. So if we abbreviate our function ternfto

F dof Ae.x 3 x

then we can writé” 4 instead of(Az.x 3 x) 4.
With this our description of the-calculus as a notational device is almost complete;
there is just one more case to consider. Suppose the bodyiotadn consists of another

function, as here
def

N = M\y.(Qzxyx)

If we apply this function to the value 3 then we get back ourfdlehd Ax.x 3 x, in other
words, N is a function, which when applied to a number, returns andilnection (i.e.,
N 3 behaves like"). However, we could also consider it as a functiorived arguments,
where we get a number back if we sup@ywith two numerical arguments\ 3 4 should
evaluate to 12). Both views are legitimate and perfectlysisiant with each other. If we
want to stress the first interpretation we may write the teith Wrackets as above, if we
want to see it as a function of two arguments then we can leaivéhe brackets:

AY AT * Yy x
or, as we will lazily do sometimes, even elide the second Ganb
Ay Tk y T

but note that this is really just an abbreviation of the offieérm.

Likewise, in the application ofV to arguments 3 and 4 we can use brackets to stress
that 3 is to be used firstt N 3) 4 or we can suggest simultaneous applicatidn:3 4.
Whatever our intuition abouV, the result will be the same (namely, 12).

. The official definition. Function formation and function application are all thadrthis.
They can be mixed freely and used as often as desired or negllieth is another way of
saying that\-terms are constructed according to the grammar

M = claz| MM | XM

Here the placeholderrepresents angonstantwe might wish to use in a-term, such as
numbers 1, 2, 3,... or arithmetic operaters*, etc. A term without constants is called
pure. Similarly, the letterr represents any of infinitely many possible variables.

The grammar is ambiguous; the tepm.x y could be parsed as

AT app
app or as AT Y
T Y T

(where we use “app” to indicate use of the claudé M in the derivation). With aux-
iliary brackets, the two possible interpretations can lukcated by writing\z.(z y) and
(A\z.x) y, respectively. According to our convention from above ydhk first interpreta-
tion should be possible. Using additional non-terminald productions the conventional
interpretation can be enforced:

<term> == <atom> | <app> | <fun>

<aton> = <head-atom> | (<app>)
<head-atorm> = z|c| (<fun>)

<app> = <head-atom> <atom> | <app> <atont>

<fun> == Ilz.<term>

but only a compiler would be interested in so much detail.

. Reduction. A-terms on their own would be a bit boring if we didn’t know hoswdompute
with them as well. There is only one rule of computation,aieduction (or 5-reduction,
as it is known by the aficionados), and it concerns the replace of a formal parameter
by an actual one. It can only occur if a functional term has\aglied to some other term.
Two examples:

(AMx3z)4 —p *x34
M.y b)(Azx3z) —p (Az*x3z)5 —pg %35

We see that reduction is nothing other than the textual ceph&nt of a formal parameter
in the body of a function by the actual parameter supplied.

One would expect a term after a number of reductions to reéahrawhere no further
reductions are possible. Surprisingly, this is not alwdys ¢ase. The following is the

smallest counterexample:
def

The term(2 always reduces to itself. If a sequence of reductions hag¢oran end where
no further reductions are possible, we say that the term éas fteduced taormal form .
As Q illustrates, not every term has a normal form.

. Confluence.It may be that a\-term offers many opportunities for reduction at the same
time. In order for the whole calculus to make sense, it is sy that the result of a
computation is independent from the order of reduction. V@eld like to express this
property for all terms, not just for those which have a norfoah. This is indeed possible:

Theorem 1 (Church-Rosser) If a term M can be reduced (in several steps) to terMs
and P, then there exists a ter@ to which bothV and P can be reduced (in several steps).
As a picture:

M
* *
N P .
(The little « next to the ar-
rows indicates several in-
. stead of just a single reduc-
WA tion. “Several” can also
Q mean “none at all”.)

For obvious graphical reasons, the property expresseckiifleorem of Church and
Rosser is also calledonfluence We say that3-reduction isconfluent The following is
now an easy consequence:

Corollary 2 EveryA-term has at most one normal form.

Proof. For the sake of contradiction, assume that there are nogmakfV and P to which
a certain term\/ reduces:

M

* *
N P

By the theorem of Church and Rosser there is a térto which both/N and P can be
reduced. Howevery andP are assumed to be in normal form, so they don't allow for any
further reductions. The only possible interpretation &t thi = P = Q. |

8. Exercises
1. Translate the followingava expressions inta-calculus notation:

(&) si n(x+3)
(b) I engt h(y) +z
(c) public static int quot(double x, double n)
{ return (int)(x/n); }
2. Draw the syntax trees for the followingterms:

() \xy.x
(b) \zyz.zyz
(©) (A\z.zz)(Az.xx)

3. Reduce to normal form:

@ (Az.+ z3)4
(b) (Afz.f(fz)) Ay« y2)5

4. LetT be theA-term \z.zxx. Perform some3-reductions onl™I". What do you
observe?

5. LetS be the term\zyz.(zz)(yz) and K the termAizy.x. ReduceSK K to normal
form. (Hint: This can be messy if you are not careful. KeepdbbreviationsS
and K around as long as you can and replace them with their comelapgp\-terms
only if you need to. It becomes very easy then.)

6. LetZ bethex-termAzz.z(zzx) and letY beZZ. By performing a few3-reductions,
show thatY' M will be a fixpoint of M for any term/, i.e., we haveY M =g
M(YM).

7. Suppose a symbol of thecalculus alphabet is always 5mm wide. Write down a
pure A-term (i.e., without constants) with length less than 20awimg a normal
form with length at least0'?™’ light-years. (A light-year is about0'® kilometers.)

9. Higher-order functions. The A-calculus is a purely syntactic device; it does not make any
distinctions between simple entities, such as numbers amd oomplicated ones, such as
functions of functions. Whatever can be described &dexrm is available for manipulation
by other\-terms.

Let us look at an example. A term for squaring integers isrglwe

Q dt Nexaza

If we want to computex® then this can be achieved by squaringhree times:z® =
((z?)?)2. In A-calculus notation, we would write for the “power-8"-furant:
def
Py = M.Q(Q(Qu))
We see that taking a number to power 8 amounts to applyingotiersg function) three
times. It is now a simple step to write out\aerm which appliegny functiorthree times:

T MOwf (f (f)

(Observe the — unnecessary — brackets around the inneidantivanted to stress that
T takes as argument a functigrand returns another function with argument The term
P; can now be written a& (), and5® comes out ag’ Q 5.

There is nothing to stop us from applying the tripling operdt to itself, 7" 7. What
we get is an operator which will triple any function we pas# three times, so it is in fact
a 27-fold operator, that ig; T f x will compute the result of applying 27 times taz.

Operators such dB are callechigher order because they operate on functions rather
than numbers.

10. Iteration and recursion in the A-calculus. As we have seen with the terrfisandT T,
a short combination oh-terms can express repeated application of a function. How ¢
we generalise this to get the behaviour dfar -loop, where the number of repetitions is
controlled by a counter? This requires a wholly new idea Whie will now develop step
by step.

First of all, we have to use a constant which allows us tortfigtish between 0 and pos-

itive numbers. Let us call this constant “zero?”. Its bebaviis like ani f -t hen- el se
clause depending on the value of a number:

zerozy — =
zerofnzxy — Yy (n#0)

In Java, we would write this as
(n==0) ? x : vy

We also assume constants “pred” and “succ” for predecesgbsaccessor function on
natural numbers.

Let us now construct a terth(for “Iteration”) which takes as arguments a numben
function f, and a value:, and computes the-fold application off to x:

Infa = f(F(f. (f2)...)

If n = 0thenl 0 f z should simply returnz, without applyingf at all. Here is a first
attempt at definingd:

I = Mn fax.zero?nz (I (predn) f (f z))

Here is the rationale: i, = 0 then zeroh = M will evaluate tox, no matter whai\/ is.
If n > 0then we iteratg’ (n — 1)-times on the argumenty z); if successful, this will
return f applied tox n-times.

11.

There is only one snag; our definition busesl itself in the body (which is why | left
out the “def” from the equality symbol). It follows the usudéa of recursion: “I can do it
n-times if you do it(n — 1)-times for me first...”. In other words, the term as writterved
does nothing else but add one further iteration to an assgmedl)-fold iteration.

How can we overcome the circularity? Have a look at the déimigain:

I = An fax.zero?nz (I (predn) f (f x))

Another way of reading this is to say th&fif it ever can be found) would be a fixpoint of
the term on the right. Let's make this view more explicit. Wiange the term on the right
into a function which turnsysi — 1-iterators” into “n-iterators”:

S 2L AM.(An f 2.zero?n x (M (predn) f (f z)))

This definition is no longer circular, s8 is a proper term. What we now seek is a tefm
which satisfies
I = SI

that is, a term which is fixpoint for S.
Amazingly, such a fixpoint can always be found, in fact, tremeetermsy” which con-
struct a fixpoint foanyterm M, that is, they satisfy

YM = MY M)

Once we have such¥, we have solved our iterator problem because we can sef
Y S.

We call such & afixpoint combinator. Here is Turing’s fixpoint combinator:

def
Y = (Myy@@zy)Azyy (zzy)

To check that” M reduces ta// (Y M) takes just two reduction steps. It was an exercise
on the last exercise sheet.

Fixpoints are also used to creathi | e-loop like behaviour. Consider, for example,
the problem of finding the smallest number for which a givenmcfion returns zero. We
implement this as a fixpoint equation as follows:

Z = MAfn.zero?(fn)n (Z f (succn))

(“If f(n) yields O returnn, else continue the searchat+ 1.") Transform this into a
function in the unknown/:

L 2L \M.(\f n.zero?(f n) n (M f (succn)))

and the desired root-finder comes out as

z oy

The smallest root of a functiofi (if there is one at all) is calculated By L f 0.

The A-calculus as a model of computation.There are a number of variants of the
calculus which one can consider for a comparison with Tunaghines. For this purpose,
we call a calculuguring-complete if it allows one to define akomputabldunctions from
NtoN. In order to avoid pathological calculi, we have to requisadhat calculations in the
calculus can be performed effectively (for example, by atmres). This latter requirement
is no problem for the\-calculus; the operation gi-reduction is well-defined and can be
performed by a computer program. For the other directionhawe several choices for the
precise version of thg-calculus we want to consider. As | have developed the aascul
this handout, the first one should be the following:

12.

Theorem 3 The \-calculus enriched witlzero? pred succand constants for all numbers
is Turing-complete.

Surprisingly, we can say the same aboutpluee A-calculus, without any constants at all.
In order for this to make sense, one has to agree on a repaisaerdf natural numbers as
certainA-terms. There are several possibilities for this, for exientipe following will do:

= AN zx
n = MNaf(f...(fz)...) (n-fold application off to)
With this representation in mind, the following is true:

Theorem 4 The pureX-calculus is Turing-complete.

Banning bad terms with types.As the previous section showed, there is good use in the
A-calculus for slightly strange terms without normal forntlsas

y 4t M yy (zzy)(Az yy (zzy))

However, there is nothing in the grammar which stops us fromming truly awful terms,
such as 8in log”, where the sine function is applied not to a number but toldigarithm
function. Such terms do not make any sense at all, and anipfepsogramming language
compiler would reject them as ill-formed. What is missinglie alculus is a notion of
type. The type of a term should tell us what kind of arguments thm teould accept and
what kind of result it will produce. For example, the type bétsine function should be
“accepts real numbers and produces real numbers”.

A language for expressing these properties (i.e., typesasgy defined. We start with
some base types such as “int” for integers and “real” for reahbers, and then form
function types on top of them. The grammar for this idea is extremely simplei¢h is
why it is called thesystem of simple typek

T u=c¢| ToT

The placeholdet represents all the base types we might wish to include. Apart this,
all one can do is form a function type from given types.

With such a system, the type of the sine function can be ddrmtéreal — real” and
it is obvious that it cannot accept the logarithm functioraasargument because the latter
also has typereal — real” and not “real” as required.

On the basis of a type system such as the simple one exhil@ted\we can formulate
restrictions on what kind of terms are valid (@ell-typed). We do so by employing an
inductive definition:

Definition 5 (Well-typed A-terms)

Base caseFor every typer and every variable:, the termz:o is well-typed and has type
ag.

Function formation. For every termM of typer, every variabler, and every type, the
termAz:0.M is well-typed and has type — .

Application. If M is well-typed of type — 7 and N is well-typed of type thenM N is
well-typed and has type

(Convention: Within a single term we will not use the saméaide name with two different
type annotations.)

Some exampleshz:o.x:o is well-typed of types — o no matter what stands for. The
term Az:o. \y:7.2:0 is well-typed of types — (7 — o). On the other hand, the term
sin log is not well-typed. Furthermore, any term of the shagel cannot be annotated
with simple types (Exercise 4).

13.

14.

15.

Calculating simple types. It is quite easy to find out whether a term can be typed or
not by following the steps in which the term was constructéthat we do is to annotate
subterms with type expressions which still contgipe variables A, B, C, ... and which
we refine as we go along. Consider, for example, the tefime.f z: We give z the
type A (a type variable) and givé the typeB. Because the subterfa needs to be well
typed according to the application rule in Definition 3, wéne B to the shaped — C,
with C' another type variable. The applicatignz is then possible and gets typé The
abstractiom\z. f x is always possible, and because of our assumption ahowill have
type A — C. Likewise, for the abstractionf.\z.f = we remember thaf should have
type A — C. According to the function formation rule, then, the comgleerm should
have type(A — C) — (A — C). At this stage the type variables can be instantiated
with something more concrete (such as “int” or “real”) but arely wanted to establish
typability and so we can stop here.

Further refinement is required if we extend the ternX¢ z.f x) (Ay.y) 3. Taken on
its own, the subterm\y.y will have type D — D, with D a fresh type variable. On the
other hand, we have tyfel — C) — (A — C) for Af z.f z. In order for the application
(Af z.f x) (Ay.y) to make sense, we must refideto D and alsoC' to D. The resulting
type isD — D. Finally, 3 should have type “int” and in order for the lasphigation to
become well typed we refin to “int”. The complete term then gets type “int” as well. If
we spell out the types in the term we get:

(Afint — int Az:int. f) (Ay:int.y) 3

Regaining Turing completeness Well-typed A-terms are always well-behaved with re-
spect to reduction:

Theorem 6 Every well-typed\-term has a normal form.

Perhaps we have gone a bit too far now because it follows hiedfixpoint combinatol”
is not typable and hence does not belong todineply typed A-calculus Because of its
absence you can probably believe that the simply typedlculus isnot Turing-complete.
In order to restore completeness, one has to explicitlychrttie calculus with fixpoint
combinatorconstants One such system is known under the ndat (“programming
computable functions”), introduced by Scott and Plotktrtonsists of\-terms for a simple
type system with base type “int”, and the following conssant

Numerals. A constanta of type int for every natural number.

Conditional. Constants zerg?of typeint — (0 — (0 — o)) for every typeo.
Successor function.Constants succ and pred of tyjpe — int.

Fixpoint combinators. Constant&’, of type (¢ — o) — o for every typeo.
We have:

Theorem 7 PCF is Turing-complete.

With PCF, then, we have a language which is expressive arleypeld at the same time.
In fact, conceptually (and, would you believe it, histotigh there is only a small step
from PCF to the functional programming languadk.

Exercises

1. Leavingf as an unspecified variable, try to evaluate the térffi f x from Section 9
to normal form.

2. Find type annotations which show thais well-typed.

3. Show that/ 3 (Section 10) evaluates 6 (as one would hope).

4. Argue that no term of shapd M (application of a term to itself) can be typed with
simple types.

16. Learn more...

1. G. Michaelson.An Introduction to Functional Programming through Lambdal-C
culus Addison-Wesley, 1989.

This is a nice gentle introduction to thecalculus, leading towards func-
tional programming. The early chapters are very accessible

2. N. D. JonesComputability and Complexity: From a Programming PerspectMIT
Press, 1997.

This is one of the very few books which subscribe to the vieat tinde-
cidability can be explained without Turing machines. Hoarethe un-
derlying formalism is that of functional programming withieh you'd
better be familiar.

3. J. R. Hindley and J. P. Seldimntroduction to Combinators and-Calculus Cam-
bridge University Press, 1986.

A formal introduction to the Lambda Calculus. Fairly matteital.

4. H. P. BarendregtThe Lambda Calculus: Its Syntax and Semantitsrth-Holland,
revised edition, 1984.

The standard reference on the subject.

5. D. S. Scott. A type-theoretical alternative to ISWIM, CUCPMWHY. Theoretical
Computer Scien¢d21:411-440, 1993. Reprint of a manuscript written in 1969

The typed lambda calculus with the constants of LCF/PCFdpgsed as
a standard description language for computable functions.

10

