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Abstract

This paper reviews the one-to-one correspondence between stably compact spaces (a topolog-
ical concept covering most classes of semantic domains) and compact ordered Hausdorff spaces.
The correspondence is extended to certain classes of real-valued functions on these spaces. This
is the basis for transferring methods and results from functional analysis to the non-Hausdorff
setting.

As an application of this, the Riesz Representation Theorem is used for a straightforward proof
of the (known) fact that every valuation on a stably compact space extends uniquely to a Radon
measure on the Borel algebra of the corresponding compact Hausdorff space.

The view of valuations and measures as certain linear functionals on function spaces sug-
gests considering a weak topology for the space of all valuations. If these are restricted to the
probabilistic or sub-probabilistic case, then another stably compact space is obtained. The cor-
responding compact ordered space can be viewed as the set of (probability or sub-probability)
measures together with their natural weak topology.

1 Introduction
In denotational semantics programs and program fragments are mapped to elements of mathematical
structures, such as “domains” in the sense of Scott, [Sco70, Sco82]. If the system to be modelled has
the ability to make random (or pseudo-random) choices, then it makes sense to model its behaviour by
a measure which records the probability for the system to end up in a measurable subset of the set of
possible states. These ideas were first put forward by Saheb-Djahromi, [SD80], and Kozen, [Koz81].
The former considered (probability) measures on the Borel-algebra generated by Scott-open sets of a
dcpo, while the latter worked with abstract measure spaces.
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From a computational point of view it makes sense to measure only observable subsets of the state
space. These, in turn, can often be identified with the open sets of a natural topology, for example, the
Scott topology on domains. This connection between computability and topology was most clearly
expounded by Smyth, [Smy83, Smy92], and the idea was then carried further by Abramsky, [Abr91],
Vickers, [Vic89], and others.

A function µ : G→ R+ which assigns a “weight” to the open sets of a topological space (X,G) is
called a valuation if it satisfies the axioms

µ(∅) = 0
∀U, V ∈ G. U ⊆ V ⇒ µ(U) ≤ µ(V )

∀U, V ∈ G. µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V )

A probability valuation is obtained when µ(X) = 1 holds. This notion first arose within Mathematics,
[Bir67, HT48, Pet51], and while one could say that within Computer Science it was implicit in the
aforementioned [SD80], it was only explicitly adopted in [JP89] by Jones and Plotkin.

Comparing this work with the earlier approach by Saheb-Djahromi or Kozen it is natural to
ask whether valuations can be extended to Borel measures, or whether the latter are intrinsi-
cally more informative than the former. As has been established by a number of authors, e.g.
[Law82, AMESD00, AM01], and with a number of techniques, continuous valuations do indeed
uniquely extend to measures on large classes of spaces. The present paper adds another proof of this
important fact in the case of stably compact spaces.

Why another proof? We believe that our approach has a number of attractive features, not least
of which are its brevity and simple structure. In essence, we study valuations and measures through
their effect on (continuous) functions via integration, and achieve the actual extension by invoking the
Riesz Representation Theorem. Continuous functions, of course, are central to Analysis but they have
also appeared in denotational semantics literature: [Jon90, Chapters 6 and 7] uses them to establish a
duality as a basis for a program logics; [DGJP99] view them as “tests” on a labelled Markov system.

The route via functions is also useful for the second concern of this paper, namely, the question
of constructing a semantic domain from the set of valuations on a domain. We mentioned already
Saheb-Djahromi’s observation that valuations carry a natural order which turns them into dcpos. Jones
extends this to the (technically difficult) result that continuity (in the sense of “continuous domain”) is
also preserved. Unfortunately, a further strengthening of this has not yet been possible, that is to say,
we do not know whether the valuations on an FS-domain ([Jun90]) or a retract of SFP form another
such structure; [JT98] points out errors in published work and summarises the partial results which
have been obtained to date.

The approach taken here is somewhat different from this work. Instead of working with the order
between valuations, we consider semantic domains as topological spaces and seek a natural topology
on the set of valuations. There are a number of possibilities here, for example, the Scott topology
arising from the dcpo-order. However, we take our cue from the representation of valuations as
certain functionals on continuous real-valued functions and choose a weak topology in the sense of
functional analysis. This is certainly consistent with earlier work as we know that the weak topology
is the same as the Scott topology when one starts with a continuous domain, [Kir93, Satz 8.6], [Tix95,
Satz 4.10]. The point here is to consider the weak topology in a situation where the order-relation is
too sparse to sufficiently restrict the Scott topology. The natural setting for our results, then, is that
of stably compact spaces. These subsume most semantic domains (such as “FS” or “SFP”) and have
been shown to have many other closure properties of interest to semanticists, [Keg99]. Most relevant
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for the current discussion is the fact that they are in one-to-one correspondence to a simple program
logic in the vein of Abramsky’s “Domain Theory in Logical Form”, [Abr91]. Indeed, the space of
valuations in its weak topology can be characterised through a finitistic construction on the logical
side, and the results presented here give further credibility to the axioms chosen in [MJ02].

Although of interest for some time to a core of researchers in semantics and Stone duality, stably
compact spaces are not as widely known in Computer Science as they deserve. We take care, there-
fore, to develop their basic theory in an entirely elementary manner at the beginning of our paper.
For this we choose a slightly different (though equivalent) axiomatisation which illustrates the slogan
that stably compact spaces are T0-spaces in which compact sets behave in the same way as in the
Hausdorff setting.

We acknowledge with pleasure discussions on material in this paper with Martı́n Escardó, Rein-
hold Heckmann, Ralph Kopperman, and Jimmie Lawson.

This paper arose as an amalgamation and extension of [Jun04] and [Kei04].

2 Compact ordered and stably compact spaces

2.1 Compact ordered spaces
A partially ordered topological space (or ordered space, for short) in the sense of Nachbin [Nac65]
is a set X with a topology O and a partial order≤ such that the graph of the order is closed in X×X .
This captures the natural assumption that, for two converging nets xi → x and yi → y, the property
xi ≤ yi for all i ∈ I implies x ≤ y. In terms of open sets, this is equivalent to saying that for any two
points x 6≤ y in X there are open sets U containing x and V containing y such that for every x′ ∈ U
and y′ ∈ V , x′ 6≤ y′ holds. It follows that ordered spaces are Hausdorff.

A subsetU ofX is called an upper (lower) set, if x ∈ U implies y ∈ U for all y ≥ x (resp., y ≤ x).
The smallest upper (lower) set containing a subset A is denoted ↑A (resp., ↓A). In an ordered space
sets of the form ↑x = ↑{x} or ↓x = ↓{x} are always closed, and more generally, this is true for ↑A
and ↓A whereA is compact. This little observation has strong consequences in case the ordered space
is compact, as was first noted by Leopoldo Nachbin [Nac65]:

Lemma 1 ([Nac65]). Let (X,O,≤) be a compact ordered space.

(i) (Order normality) Let A and B be disjoint closed subsets of X , where A is an upper and B is a
lower set. Then there exist disjoint open neighbourhoods U ⊇ A and V ⊇ B where again U is
an upper and V is a lower set.

(ii) (Order separation) Whenever x 6≤ y there exist an open upper set U containing x and an open
lower set V containing y which are disjoint.

(iii) (Order Urysohn property) For every pair A,B of disjoint closed subsets, where A is an upper
and B is a lower set, there exists a continuous order-preserving function into the unit interval
which has value 1 on A and 0 on B.

Proof. By normality of compact Hausdorff spaces, A and B have disjoint open neighbourhoods U ′

and V ′. Set U = X \ ↓(X \ U ′) and V = X \ ↑(X \ V ′). Order separation is a special case of
order normality, and the order preserving version of Urysohn’s Lemma follows, as usual, by repeated
application of order normality.
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2.2 The upwards topology of a compact ordered space
One way to interpret this lemma is to say that there is an abundance of open upper sets in a compact
ordered space. For any ordered space, the collection

U := {U ∈ O | U = ↑U}

of open upper sets is a topology coarser than the original one; we call it the topology of convergence
from below or upwards topology for short. The resulting topological space (X,U) we denote by X↑.

Sets of the formX\↓x always belong to U and therefore every upper set is equal to the intersection
of its U-open neighbourhoods, that is, it is U-saturated. The converse direction being trivial, we thus
have:

Proposition 2. In an ordered space the upper sets are precisely the U-saturated ones.

For a general topological space (X,G) one sets x ≤G y if every neighbourhood of x also con-
tains y. This is always a preorder and it is anti-symmetric if and only if the space is T0. It is called
the specialisation order associated with G. The preceding proposition tells us that ≤U is precisely the
original order ≤ in any ordered space.

In order to analyse the properties of U further in the case where (X,O,≤) is compact, we also
consider the set of compact saturated sets:

KU := {K ⊂ X | K is U-saturated and U-compact}

Lemma 3. Let (X,O,≤) be a compact ordered space. The elements of KU are precisely those subsets
of X which are upper and closed with respect to O.

Proof. The upper closed sets of X are U-compact because the topology U is weaker than O. For the
converse one uses order separation.

We now have enough information to show that from U alone we can reconstruct the original com-
pact ordered space. In general, one considers the patch topology Gp of a topological space (X,G) by
augmenting G with complements of compact saturated sets. With this terminology we can formulate
the following:

Theorem 4. Let (X,O,≤) be a compact ordered space. Then O = Up and ≤ = ≤U.

Proof. Because of Lemma 3, Up is contained in O. It is Hausdorff because of order separation and
therefore the identity map i : (X,O)→ (X,Up) is a homeomorphism.

The possibility to reconstruct the order out of the upwards topology has been remarked before.

Since with (X,O,≤), the “upside-down” space (X,O,≥) is also compact ordered, the results in
this section hold equally well for the topology D of convergence from above or downwards topology.
By Lemma 3, its open sets are precisely the complements of the compact saturated sets of U.
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2.3 Stably compact spaces
As it turns out, topologies which arise as upwards topologies in compact ordered spaces can be char-
acterised intrinsically. We begin with the following observations:

Proposition 5. For a compact ordered space (X,O,≤) the upwards topology U is

(i) T0;

(ii) compact;

(iii) locally compact;

(iv) coherent, that is, pairs of compact saturated sets have compact intersection;

(v) well-filtered, that is, for any filter base (Ai)i∈I of compact saturated sets, for which
⋂
iAi is

contained in an open upper set U , there is an index i0 such that Ai0 is contained in U already.

Proof. The T0 separation property follows from order separation, (ii) is trivially true because U is
weaker than O, and (iii) is a reformulation of order normality. Coherence and well-filteredness follow
from Lemma 3.

Definition 6. A T0 space which is compact, locally compact, coherent, and well-filtered is called
stably compact.

In recent literature it has been customary to use “sober” instead of “well-filtered” in the definition
of stably compact spaces. However, in the presence of local compactness these two properties are
equivalent, [GHK+03, Theorem II-1.21]. With this note we would like to make a case for the revised
definition, because it makes it apparent that stably compact spaces are the T0-analogue of compact
Hausdorff spaces, in the sense that compact saturated sets in the former have the same properties as
compact subsets in the latter. The following lemma illustrates this:

Lemma 7. Let (X,U) be a stably compact space. Then any collection of compact saturated subsets
has compact intersection.

Proof. Finite intersections leading again to compact saturated subsets, we can assume the collection
to be filtered. By well-filteredness, an open cover of the intersection will contain an element of the
filter base already. This being compact, a finite subcover will suffice.

This result justifies the following definition.

Definition 8. Let (X,U) be a stably compact space. The co-compact topology Uκ on X is given by
the complements of compact saturated sets.

If the stably compact space (X,U) arose as the topology of convergence from below in a compact
ordered space, then Lemma 3 implies that the co-compact topology derived from U is the same as the
topology of convergence from above.

The following proposition is reminiscent of the well-known fact that a compact Hausdorff-
topology cannot be weakened without losing separation.
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Proposition 9. Let (X,U) be a stably compact space. Let further B be a subset of U and C a subset
of the co-compact topology Uκ, such that the following property holds:

∀x, y ∈ X. x 6≤U y =⇒ ∃U ∈ B, L ∈ C. x ∈ U, y ∈ L,L ∩ U = ∅ .

Then B is a subbasis for U.

Proof. Let x be an element of an open set O ∈ U. Then by assumption for every y in X \ O there
exist disjoint sets Uy ∈ B and Ly ∈ C which contain x and y, respectively. The complements of the
Ly are compact saturated by definition and their intersection is contained in O. Well-filteredness tells
us that the same is true for a finite subcollection of Ly’s. The intersection of the corresponding Uy is
a neighbourhood of x contained in O.

Corollary 10. Let U and U′ be stably compact topologies on a set X such that ≤U = ≤U′ , U ⊆ U′,
and Uκ ⊆ U′κ. Then U = U′.

We are now ready to complete the link with compact ordered spaces.

Theorem 11. Let (X,U) be a stably compact space. Consider its patch topology Up and specialisa-
tion order ≤U. Then (X,Up ,≤U) is a compact ordered space. Furthermore, the upwards topology
arising from Up and ≤U is equal to U, and the co-compact topology Uκ is equal to the topology of
convergence from above derived from Up and ≤U.

Proof. The Hausdorff separation property and the closedness of ≤U follow from T0 and local com-
pactness. Compactness of the patch topology requires the Axiom of Choice in the form of Alexander’s
Subbase Lemma: Let B ∪ C be a covering of X where the open sets in B are chosen from U and the
ones in C are complements of compact saturated sets. The points not covered by the elements of
C form a compact saturated set by Lemma 7 and must be covered by elements of B. A finite sub-
collection B′ ⊆fin B will suffice for the purpose. By well-filteredness, then, a finite intersection of
complements of elements of C will be contained in

⋃
B′ already. This completes the selection of a

finite subcover.
The same argument shows that every compact saturated set in (X,U) is also compact in the patch

topology.
The specialisation order that one derives from the topology of convergence from below on the

space (X,Up ,≤U) is the same as ≤U by Theorem 4.
We are therefore in the situation described by Corollary 10 and can conclude that no new open

upper sets arise in the patch construction. Lemma 3, then, tells us that the closed upper sets in
(X,Up ,≤U) are precisely the compact saturated sets of U. Hence the co-compact topology with
respect to U is equal to the topology of convergence from below on (X,Up ,≤U).

Corollary 12. Let (X,U) be a stably compact space.

(i) The co-compact topology Uκ is also stably compact.

(ii) (Uκ)κ = U
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2.4 Examples
The prime example of an ordered space is given by the real line with the usual topology and the usual
order. The upwards topology in this case consists of sets of the form ]r,∞[ (plus R and ∅, of course),
and non-empty compact saturated sets associated to this, in turn, are the sets of the form [r,∞[. We
denote the real line with the upwards topology by R↑. Also of interest to us is the non-negative part of
this, denoted by R↑+. One obtains a compact ordered space by either restricting to a compact subset,
such as the unit interval, or by extending the real line with elements at infinity in the usual way,
denoted here by R = [−∞,∞] and R+ = [0,∞].

In general, one cannot expect a compact ordered space to be fully determined by its order alone,
after all, every compact Hausdorff space can be equipped with a trivial closed order, namely, the
identity relation. Semantic domains, however, do provide examples where the order structure is rich
enough to determine a non-trivial stably compact topology. We review the definitions: A dcpo (for
directed-complete partial order) is an ordered set in which every directed subset has a supremum.
The closed sets of the Scott topology σD of a dcpo D are those lower sets which are closed against
formation of directed suprema. It follows that a function between dcpos is continuous with respect to
the two Scott topologies if and only if it preserves the order and suprema of directed sets. In order to
emphasise the dcpo context, such functions are usually called Scott-continuous.

The specialisation order associated with the Scott topology, which is always T0, will give back the
original order of the dcpo. An element x of a dcpo D is way-below an element y (written x � y) if
whenever y is below the supremum of a directed set A ⊆ D, then x is below some element of A. A
dcpo D is continuous or a domain if every element equals the directed supremum of its way-below
approximants.

The Scott topology of a domain is always well-filtered, [Jun89, Lemma 4.12], and coherence can
be characterised in an order-theoretic fashion as well, see [Jun89, Lemma 4.18], [GHK+03, Propo-
sition III-5.12]. As a special case, coherence holds in every continuous complete lattice (known as
continuous lattice for short). Two examples are of interest here: The unit interval [0, 1] (or R or R+) is
a continuous lattice and the Scott topology is precisely the topology of convergence from below, dis-
cussed before. An element x of [0, 1] is way-below y if x = 0 or x < y. The other class of examples
is given by open set lattices of locally compact spaces. Here, the way-below relation is characterised
by U � V if and only if there exists a compact saturated set K such that U ⊆ K ⊆ V . Stably
compact spaces qualify, and their open set lattices have the additional property (not true in general)
that U � V1 and U � V2 implies U � V1 ∩ V2.

More general domains with a coherent Scott topology have been considered in Theoretical Com-
puter Science; we refer the interested reader to [AJ94, Section 4.2.3] and [GHK+03, Section III-5].

2.5 Morphisms and constructions
Although theorems 4 and 11 suggest that we can switch freely between compact ordered and stably
compact spaces, a difference between the two standpoints does become apparent when one considers
the corresponding morphisms: neither is a continuous map between stably compact spaces necessar-
ily patch continuous, nor is every patch continuous function continuous with respect to the original
topologies. Indeed, it is the fact that T0-continuous maps arise in applications to denotational seman-
tics which motivates our interest in stably compact spaces.

Nevertheless, a connection between subclasses of continuous maps can be made. A continuous
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map f : X → X ′ between locally compact spaces is called perfect if the preimage f−1(K) of every
compact saturated set K ⊆ X ′ is compact in X .1 The following is true:

Proposition 13. For locally compact spaces (X,U) and (X ′,U′) a map f : X → X ′ is perfect, if and
only if it is continuous with respect to the patch topologies on X and X ′ and monotone (i.e., order
preserving) with respect to the specialisation orders.

In the remainder of this section we study some constructions on spaces and how they interact with
the translations given in Theorems 4 and 11.

Proposition 14. Arbitrary products of stably compact spaces are stably compact, and the product
topology equals the upwards topology of the product of the corresponding compact ordered spaces.

Proof. Let (Xi,Ui)i∈I be any family of stably compact spaces and let (Xi,Oi,≤i) be the correspond-
ing compact ordered spaces. We prove the second claim because it entails the first. By Tychonoff’s
Theorem the product O of the patch topologies Oi is again compact Hausdorff, and the shape of
basic open sets in the product gives immediately that the coordinatewise order ≤ is closed. So
(
∏

i∈I Xi,O,≤) is a compact ordered space.
A basic open set from the product of the Ui is also open in O. For the converse we employ Propo-

sition 9, where the product of the Ui plays the role of B and the product of the respective co-compact
topologies (Ui)κ plays the role of C in the stably compact space derived from (

∏
i∈I Xi,O,≤). The

separation property is obviously satisfied because x 6≤ y means xi 6≤ yi for some index i.

Subspaces are more interesting as they do not, in general, preserve any of the properties under
consideration, except that the order remains closed. However, we have the following:

Proposition 15. Let Y be a patch-closed subset of a stably compact space (X,U). Then Y is stably
compact when equipped with the subspace topology U�Y , and (U�Y )p = Up�Y .

Proof. The subspace (Y,Up�Y ,≤�Y×Y ) is of course again a compact ordered space. If A is a closed
lower set in Y , then its lower closure ↓A in X is again closed as A is compact in X . This shows that
the upper opens of (Y,Up�Y ,≤�Y×Y ) belong to U�Y . The converse inclusion is trivial.

The second case where we know something about the stable compactness of a subspace is related
to continuous retractions. This fact is mentioned in [Law88] already but the proof uses a different
characterisation of stable compactness.

Proposition 16. Let Y be a continuous retract of a stably compact space X . Then Y is stably
compact.

Proof. Let e : Y → X be the section and r : X → Y the retraction map (both continuous). We check
the defining properties for stable compactness. First of all, Y is a T0-space because e is injective. The
compactness of Y follows from the continuity of the (surjective) map r. If x ∈ O ⊆ Y , with O open
in Y , then r−1(O) is an open neighbourhood of e(x). Hence there is an open set U and a compact
saturated set L in X such that e(x) ∈ U ⊆ L ⊆ r−1(O). The image of L under r is compact in Y ,
is contained in O, and contains the open set e−1(U) which contains x. This proves that Y is locally
compact.

1For more general spaces, perfectness requires an additional property, see [Hof84].
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For stability, let K1, K2 be compact saturated sets in Y . We get that e(K1) and e(K2) are compact
in X and hence ↑e(Ki) is compact saturated in X . By the stability of X the intersection (↑e(K1)) ∩
(↑e(K2)) is compact again. Its image under r is preciselyK1∩K2; it is compact in Y by the continuity
of r. Well-filteredness is shown in the same way.

Note that e does not need to be a perfect map in general, so the result is not subsumed by Propo-
sition 15 already.2

2.6 Real-valued functions
For an ordered space (X,G,≤) there are a number of possible function spaces into the reals that
one might be interested in. Depending on which structure of the reals is taken into account, one can
distinguish at least the following:

• the set C(X) of all continuous functions into the real line;

• the set CM(X) of all continuous order-preserving (i.e., monotone increasing) functions into
the reals;

• the set LSC(X) of all real-valued functions onX which are continuous with respect to G and the
topology of convergence from below on R. We call these the lower semicontinuous functions;
they are characterized by the property that {x ∈ X | g(x) > r} is an open upper set in X for
every r ∈ R.

If in the above definitions R is replaced by the set of non-negative reals, then one obtains the function
spaces C+(X), CM+(X), and LSC+(X). In order to express the condition that all functions be
bounded in R we use the notation Cb(X), CMb(X), and LSCb(X).

Our primary object of interest is the class of compact ordered spaces and in what follows the most
prominent function spaces will be C(X), CM+(X), and LSC+,b(X

↑). Note that because of compact-
ness, the functions in C(X) and CM+(X) are automatically bounded, whereas for LSC+(X↑) this
need not be the case; our preference for LSC+,b(X

↑) is primarily to avoid unnecessary complication
stemming from arithmetic with∞.

From Proposition 13 it is clear that for a compact ordered space X , CM+(X) is a subset of
LSC+,b(X

↑), consisting of all perfect maps from X↑ to R↑+. The sets CM+(X), LSC+,b(X
↑), and

LSC+(X↑) are positive cones, that is, they are closed under addition and scalar multiplication with
non-negative real numbers. Furthermore, these cones are ordered in the obvious (i.e., pointwise)
way. The set C(X), on the other hand, is an ordered vector space. The smallest subvector space
generated by CM+(X) inside C(X) consists of differences f − g with f, g ∈ CM+(X); we denote it
by (CM+−CM+)(X). The following picture may help to visualise the containment relations between
these function spaces:

C(X)
↖

(CM+ − CM+)(X) LSC+,b(X
↑)

↖ ↗
CM+(X)

2Perfectness of e is guaranteed if e is an upper adjoint. This situation is called an insertion-closure pair in [AJ94,
Section 3.1.5].
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For any r ∈ R we adopt the following notation for a function g : X → R:

[g > r] := {x ∈ X | g(x) > r} = g−1(]r,+∞[) .

We have the following approximation results:

Lemma 17 ([Edw78]). Every element of f ∈ LSC+(X↑) is the (pointwise) supremum of elements
of CM+(X).

Proof. Note that CM+(X) is closed under taking pointwise maximum, so the collection of approx-
imants to f ∈ LSC+(X↑) is certainly directed. For x ∈ X and r < f(x), consider [f > r] which
is an upper open set in X containing x. By the order Urysohn property (Lemma 1(iii)) we obtain a
continuous monotone increasing function g which takes value 1 on ↑x and 0 on X \ [f > r], so r · g
is an element of CM+(X) below f which approximates f at point x up to “precision” r.

Lemma 18. Every element g of LSC+(X) can be represented as a directed supremum of simple
functions belonging to LSC+,b(X) in the following way

g = sup
n∈N

n2n∑
i=1

1

2n
χ[g> i

2n
]

The proof is immediate from the definition of lower semicontinuity.
To approximate continuous functions, we consider C(X) as a Banach space with the sup-

norm ‖f‖. As we remarked before, the set CM+(X) of all non-negative monotone increasing contin-
uous real-valued functions is a cone in C(X). Furthermore, it is closed under products and contains
the constant function 1.

Lemma 19. ([Edw78]) For a compact ordered space X , the vector space (CM+−CM+)(X) gener-
ated by the cone CM+(X) is dense in C(X) with respect to the sup norm.

Proof. From the remark preceding this lemma it follows that (CM+ − CM+)(X) is a subalgebra of
C(X) which contains the constant function 1. By the order Urysohn property it follows that for any
elements x 6≤ y in X , there is a function f ∈ CM+(X) such that f(x) = 1 and f(y) = 0. Hence,
CM+(X) and, a fortiori, (CM+−CM+)(X) separate the points of X . The lemma now follows from
the Stone-Weierstraß Theorem.

3 Measures and valuations

3.1 Measures and positive linear functionals on C(X)

Let X be any Hausdorff space and B the σ−algebra of Borel sets, that is, the σ−algebra generated
by the open subsets of X . Recall that a Borel measure on X is a function m : B→ R such that

m is strict: m(∅) = 0 ,
m is additive: m(A) +m(B) = m(A ∪B) , whenever A,B ∈ B(X) are disjoint ,
m is σ-continuous: m(

⋃
n∈NAn) = supn∈Nm(An) for every increasing sequence (An)n∈N ∈ B .
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It follows from strictness and σ-continuity that measures can only take non-negative values. A mea-
sure is called inner regular, if

m(A) = sup {m(K) | K ⊆ A and K compact} for all Borel sets A .

We say that m is a Radon measure3, if it is inner regular and if m(K) < +∞ for every compact
subset K. For a bounded Radon measure, that is, a Radon measure such that m(X) < +∞, inner
regularity implies outer regularity by passing to complements:

m(A) = inf {m(U) | A ⊆ U and U open} for all Borel sets A .

We denote by

M(X) the set of all bounded Radon measures on X , by
M≤1(X) the subset of all Radon measures with m(X) ≤ 1, and by
M1(X) the set of Radon probability measures, i.e., m(X) = 1.

On compact Hausdorff spaces all Borel measures are automatically regular, so in this case the qualifier
“Radon” only expresses boundedness.

M(X) is a cone in the vector space of all functions from B to R, that is, the sum m1 +m2 of two
bounded Radon measures, and also the scalar multiple rm for any non-negative real number r, are
again bounded Radon measures. The subsets M≤1(X) and M1(X) are convex. On M(X) there is a
natural order relation

m1 ≤ m2 :⇐⇒ m1(A) ≤ m2(A) for all Borel sets A .

This order is trivial for probability measures. More interesting for us is the so-called stochastic
preorder, which we can define when X is an ordered space. It is given by the following formula:

m1 4 m2 :⇐⇒ m1(U) ≤ m2(U) for all open upper sets U .

Here the word “preorder” highlights the fact that there is no guarantee that 4 is antisymmetric in
general.4

Integration of functions can be a subtle affair when one allows measurable sets of measure ∞,
unbounded functions, functions whose support is not compact, or non-continuous functions. Since
we are interested in compact ordered spaces, bounded Radon measures and functions with conti-
nuity properties, none of these complications arise; one can define the the integral of a continuous
function f : X → R+ in any of the available frameworks. The following definition is particularly
convenient for our purposes. We set∫

f dm :=

∫ +∞

0

m([f > r]) dr ,

where the integral on the right is obtained by ordinary Riemann integration. This is a Choquet-type
definition of the integral (see [Cho53, p. 265], [Kön97, Section 11]). Let us explain why this definition
makes sense: For every r, the set [f > r] is open and has a measure m

(
[f > r]

)
∈ R+. The function

3For compact Hausdorff spaces, the term regular Borel measure is more commonly used than that of a Radon measure.
4The notion of a stochastic order has been introduced much earlier for probability measures (see e.g. [Edw78]).
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r 7→ m
(
[f > r]

)
: R+ → R+ is monotone decreasing and m

(
[f > r]

)
= 0 for r ≥ ‖f‖. Thus

this function is Riemann integrable and the Riemann integral
∫ +∞
0

m([f > r]) dr, which is in fact an
integral extended over the finite interval [0, ‖f‖], is a real number. One extends the definition to all
continuous functions in the usual way.

The fundamental properties of integration can now be derived from the properties of the Riemann
integral:

(i) (Linearity) For r, s ∈ R and f, g ∈ C(X),
∫

(rf + sg) dm = r
∫
f dm+ s

∫
g dm.

(ii) (Positivity) For f ∈ C+(X),
∫
f dm ≥ 0 holds.

This says that for every Radon measure m on a compact Hausdorff space X , the map f 7→
∫
f dm is

a positive linear functional on C(X).
The famous Riesz Representation Theorem states that linearity and positivity completely charac-

terise integration:

Theorem 20. Let X be a compact Hausdorff space. Then for every positive linear functional ϕ on
C(X) there is a unique Radon measure m such that

ϕ(f) =

∫
f dm for every f ∈ C(X) .

We denote with C †(X) the set of all positive linear functionals on the ordered vector space C(X).
It is standard knowledge that this is a subcone of the vector space C ∗(X) of all bounded linear
functionals. It can be ordered by setting

ϕ ≤ ψ :⇐⇒ ∀f ∈ C+(X). ϕ(f) ≤ ψ(f) .

As with measures, for compact ordered spaces X , a preorder will be of interest to us:

ϕ 4 ψ :⇐⇒ ∀f ∈ CM+(X). ϕ(f) ≤ ψ(f) .

From the Riesz Representation Theorem it follows that the cones M(X) and C †(X) are isomorphic,
as integration is indeed linear in its measure argument. We can strengthen this by also taking the
preorders into account:

Theorem 21. For a compact ordered space (X,O,≤) the preordered cones (M(X),4) and
(C †(X),4) are isomorphic.

Proof. If m 64 m′ there exists an open upper set U for which m(U) > m′(U). By regularity, we find
a compact saturated set K inside U for which m(K) > m′(U). The order Urysohn property provides
us with a continuous monotone increasing function f which takes value 1 on K and 0 on X \ U . We
then have ∫

f dm ≥ m(K) > m′(U) ≥
∫
f dm′

and we see that the integration functionals are not comparable with respect to 4 either.
For the converse let m(U) ≤ m′(U) for all U ∈ U, and let f ∈ CM+(X). Since [f > r] is an

upper open set for all r ∈ R, we get
∫
f dm ≤

∫
f dm′ directly from our definition of integration.

We will show below that for a compact ordered space the stochastic preorder is in fact antisym-
metric.
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3.2 Valuations and Scott-continuous linear functionals on LSC+,b(X)

Let (X,G) be a topological space, not necessarily Hausdorff. A valuation on G is a function µ : G→ R
with the following properties:

µ is strict: µ(∅) = 0 ,
µ is modular: µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ) ,
µ is monotone increasing: U ⊆ V ⇒ µ(U) ⊆ µ(V ) .

A valuation is called (Scott-) continuous, if

µ(
⋃
i∈I

Ui) = sup
i∈I

µ(Ui) for every directed family of open sets Ui ∈ G .

We denote by V(X) the set of all continuous valuations on G. A natural order between valuations
is given by

µ 4 ν :⇐⇒ µ(U) ≤ ν(U) for all open U ∈ G ,

which we again call the stochastic order in anticipation of a theorem which we will prove in the next
section. With respect to this order, V(X) is directed complete, more precisely:

Lemma 22. For every family (µi)i∈I of continuous valuations on G, which is directed for the stochas-
tic order, the pointwise supremum µ(U) = supi µi(U) is again a continuous valuation on G.

For continuous valuations we also define an addition and a multiplication by non-negative scalars r
by (µ+ ν)(U) = µ(U) + ν(U) and (rµ)(U) = rµ(U), where we adopt the convention 0 · (+∞) = 0
as usual in Measure Theory.

We denote by

V(X) the set of all bounded continuous valuations, that is, µ(X) < +∞, by
V≤1(X) the subset of all sub-probability valuations, that is, µ(X) ≤ 1, and by
V1(X) the subset of all probability valuations, that is, µ(X) = 1.

We note that V(X) is a cone in the vector space of all functions from G to R and that V≤1(X) and
V1(X) are convex subsets which are directed complete for the order 4.

In the same way that one can define the integral with respect to a Radon measure m, we may
define the integral of a bounded lower semicontinuous function g : X → R+ with respect to a
continuous valuation µ. Indeed, for every r, the preimage [g > r] = g−1(]r,+∞]) is an open
upper set. Thus µ

(
[g > r]

)
is a well defined non-negative real number. Moreover, the function

r 7→ µ
(
[g > r]

)
: R+ → R+ is monotone decreasing and upper semicontinuous. Hence its (Rie-

mann) integral
∫ +∞
0

µ
(
[g > r]

)
dr is a well defined real number. Note that in fact the integral is only

extended over the finite interval [0, ‖g‖], as µ
(
[g > r]

)
= 0 for r ≥ ‖g‖. So we set∫

g dµ :=

∫ +∞

0

µ
(
[g > r]

)
dr .

From this one deduces the following properties:

Lemma 23. The map (µ, f) 7→
∫
fdµ : V(X)×LSC+,b(X)→ R+ is linear and Scott-continuous in

each of its two arguments. In detail:
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(i) Let f ≤ g ∈ LSC+,b(X). Then
∫
f dµ ≤

∫
g dµ holds for all µ ∈ V(X).

(ii) Let µ ∈ V(X) and assume (fi)i∈I ⊆ LSC+,b(X) is directed such that the pointwise supre-
mum f remains bounded. Then

∫
f dµ = supi∈I

∫
fi dµ holds.

(iii) Let r, s ∈ R+ and f, g ∈ LSC+,b(X). Then
∫

(rf + sg) dµ = r
∫
f dµ + s

∫
g dµ holds for

all µ ∈ V(X).

(iv) Let µ 4 µ′ ∈ V(X). Then
∫
f dµ ≤

∫
f dµ′ holds for all f ∈ LSC+,b(X).

(v) Let f ∈ LSC+,b(X) and assume (µi)i∈I ⊆ V(X) is directed such that the pointwise supre-
mum µ remains bounded. Then

∫
f dµ = supi∈I

∫
f dµi.

(vi) Let r, s ∈ R+ and µ, µ′ ∈ V(X). Then
∫
f d(rµ + sµ′) = r

∫
f dµ + s

∫
f dµ′ holds for

all f ∈ LSC+,b(X).

The proof is straightforward except for (iii), for which one employs the approximation of lower
semicontinuous functions by simple ones, as stated in Lemma 18. The complete argument can be
found in [Tix95] and [Law, Section 3]. We note that the lemma can be shown in more generality,
loosening the requirement of boundedness of valuations and functions, see [Kir93]. Also, it is an
easy exercise to show that preservation of directed suprema implies monotonicity, so (i) and (iv)
are not strictly necessary. However, we wanted to stress that linear Scott-continuous functionals on
LSC+,b(X) are positive in the same sense as the elements of C †(X) discussed before.

As with measures, we intend to replace valuations by linear functionals on LSC+,b(X). To begin
with, the analogue to the Riesz Representation Theorem is a triviality:

Proposition 24. Let (X,G) be a topological space. Then for every positive linear Scott-continuous
functional on LSC+,b(X) there is a unique continuous valuation µ such that

ϕ(f) =

∫
f dµ for every f ∈ LSC+,b(X) .

Proof. The characteristic function of an open set belongs to LSC+,b(X), so the definition of µ is
forced on us: µ(U) := ϕ(χU). It is immediate that we get a bounded continuous valuation this way.
In order to see that integration of a lower semicontinuous function g with respect to µ yields ϕ, we
approximate g by a sum of scaled characteristic functions as exhibited in Lemma 18. The statement
then follows readily from Scott-continuity of ϕ.

We denote the set of all positive linear Scott-continuous functionals on LSC+,b(X)

with LSC †+,b(X). It is obviously a cone and can be ordered by setting

ϕ 4 ϕ′ :⇐⇒ ∀g ∈ LSC+,b(X). ϕ(g) ≤ ϕ′(g) .

We thus get the analogue to Theorem 21, the proof of which is trivial because of the presence of
characteristic functions in LSC+,b(X):

Theorem 25. For a topological space (X,G) the ordered cones (V(X),4) and (LSC †+,b(X),4) are
isomorphic.
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3.3 The bijection between measures and valuations
We will now apply the results from the previous two sections to a compact ordered space (X,O,≤).
Specifically, we will show that the cones M(X) of Radon measures and C †+(X) of positive linear
functionals on C(X), on the one hand, and the cones V(X↑) of bounded continuous valuations and
LSC †+,b(X

↑) of linear Scott-continuous functionals on LSC+,b(X
↑), on the other hand, are isomor-

phic. We will also show that the isomorphisms preserve the stochastic orders 4 that we defined in
each case. This will establish a bijection between Radon measures, which are defined for all Borel-
sets of O, and valuations, which assign a weight to upper open sets alone. The road map for the proof
is given by the following diagram

C †(X) ←→ LSC †+,b(X
↑)

Theorem 21
↑
|
↓

↑
|
↓
Theorem 25

M(X) V(X↑)

Theorem 26. For a compact ordered space (X,O,≤) the ordered cones (C †(X),4) and
(LSC †+,b(X

↑),4) are isomorphic.

Proof. We remind the reader of the function spaces introduced in 2.6 and the inclusions CM+(X) ⊆
(CM+ −CM+)(X) ⊆ C(X) and CM+(X) ⊆ LSC+,b(X

↑). The idea of the proof is to show that, on
the one hand, monotone linear functionals on CM+(X) are in one-to-one correspondence to positive
linear functionals on (CM+ − CM+)(X) are in one-to-one correspondence to positive linear func-
tionals on C(X), and on the other hand, monotone linear functionals on CM+(X) are in one-to-one
correspondence to Scott-continuous linear functionals on LSC+,b(X

↑).
Now, working towards the latter equivalence, a Scott-continuous linear functional on LSC+,b(X

↑)
can obviously be restricted to a monotone linear functional on CM+(X). Vice versa, we can extend a
monotone linear functional ϕ on CM+(X) by the formula

ϕ(f) := sup{ϕ(g) | g ∈ CM+(X) and g(x) ≤ f(x) for all x ∈ X} ,

and the only question is whether the extension is Scott-continuous. To show this, assume that (fi)i∈I is
a directed family of semicontinuous functions, and let g ∈ CM+(X) be such that g(x) ≤ supi∈I fi(x)
for all x ∈ X . Fix ε > 0. For every xwe may choose an index i(x) such that g(x)−ε < fi(x)(x). As g
is continuous and as fi(x) is lower semicontinuous, there is an open neighbourhood Ux of x such that
g(y)− ε < fi(x)(y) for all y ∈ Ux. By compactness, finitely many of the open sets Ux are covering X .
Thus, as the fi form a directed family, we may choose an index i0 such that g(x) − ε < fi0(x) for
all x ∈ X . Define the function gε ∈ CM+(X) by gε(x) = max{g(x) − ε, 0} and note that gε ≤ fi0
holds. From the monotonicity of ϕ we get that ϕ(g)− ϕ(gε) = ϕ(g − gε) ≤ ϕ(ε · 1) = ε · ϕ(1) and
hence ϕ(fi0) ≥ ϕ(gε) ≥ ϕ(g)− ε · ϕ(1). We get supi∈I ϕ(fi) ≥ ϕ(g) by letting ε→ 0.

Restriction and extension are inverses of each other because, on the one hand, CM+(X) ⊆
LSC+,b(X

↑) and, on the other hand, the elements of LSC+,b(X
↑) are pointwise suprema of elements

of g ∈ CM+(X) such that g(x) ≤ f(x) for all x ∈ X by Lemma 17. This latter fact also shows that
the stochastic order is translated to the pointwise order of functionals on CM+(X).

At the other side, we can likewise restrict a positive linear functional on C(X) to the
cone CM+(X) of non-negative order preserving continuous functions. For the extension we first
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set ϕ(g− g′) := ϕ(g)−ϕ(g′) in order to get a positive linear functional on (CM+−CM+)(X). This
is well-defined because g − g′ = h − h′ is equivalent to g + h′ = h + g′ and ϕ preserves addition.
Positivity and linearity mean that ϕ is uniformly continuous with respect to the supremum norm, and
therefore we can extend it to a functional on C(X) by Lemma 19. The extension remains positive and
linear.

In this case, too, restriction and extension are inverses of each other because of the density of
(CM+ − CM+)(X) in C(X). The stochastic order on C †(X) is directly defined with reference to
CM+(X), so the order-theoretic side of the isomorphism needs no further argument.

Note that en passant we have shown that the stochastic preorder on C †(X) is antisymmetric.
It remains to interpret what these somewhat involved transformations amount to for measures and

valuations. To this end let U ∈ U be an upper open set, and m ∈M(X) a bounded Radon measure.
Because of inner regularity and the order Urysohn property, we find a continuous order preserving
function g : X → [0, 1], for which ϕ(g) =

∫
g dm is as close to m(U) as we desire. The value

of the corresponding functional on LSC+,b(X
↑) at χU is given as the supremum of the value of ϕ at

these functions and must therefore equalm(U). In other words, the combined translation from M(X)
to V(X↑) is nothing other than the restriction to open upper sets. Concentrating on its inverse we can
thus state:

Theorem 27. For a compact ordered space (X,O,≤), every bounded continuous valuation on X↑

extends uniquely to a Radon measure on X .

This result is not new; it was first established by Jimmie Lawson, [Law82]. It is also not the most
general; see [AM01] and the references given there. However, our proof lends itself particularly well
to a discussion of topologies for spaces of valuations and measures, the topic of the next section.

4 Topologies on spaces of measures and valuations

4.1 The vague topology on the space of measures
There are a number of topologies that one could choose for the set of measures. A reasonable minimal
requirement is to ask that if a net (mi)i∈I converges to m then we should also have

∫
f dmi −→∫

f dm in R. The main free parameter in this condition is the choice of the set of functions from
which f may be drawn, and several possibilities are indeed discussed in the literature, e.g. [Top70].
With an eye towards the Riesz Representation Theorem 20, we define:

Definition 28. LetX be a topological space. The vague topology V on M(X) is the weakest topology
such that m 7→

∫
f dm : M(X)→ R is continuous for all f ∈ C(X).

For a compact Hausdorff space we have M(X) ∼= C †(X), and one sees that the vague topology
is simply the restriction of what is usually called weak∗-topology on the dual space C ∗(X) to the
cone C †(X). We have the following equivalent characterisations in case the underlying space is
compact ordered:

Proposition 29. Let (X,O,≤) be a compact ordered space. For a net (mi)i∈I of bounded Radon
measures and a bounded Radon measure m, the following are equivalent:
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(i) (mi)i∈I converges to m in the vague topology, that is∫
f dm = limi∈I

∫
f dmi

for all f ∈ C(X).

(ii)
∫
g dmi converges to

∫
g dm in R, that is∫

g dm = limi∈I
∫
g dmi

for all g ∈ CM+(X).

(iii) mi(O) converges to m(O) for all O ∈ O in the topology of convergence from below on R, and
mi(X) converges to m(X) in the usual topology on R, that is,

m(O) ≤ lim infi∈I mi(O) for all O ∈ O , and
m(X) = limi∈I mi(X) .

Proof. The direction (i) =⇒ (ii) being trivial, assume that
∫
g dmi converges to

∫
g dm for el-

ements of CM+(X). Then the integrals will also converge for functions from (CM+ − CM+)(X)
because subtraction is continuous. To extend the statement to all continuous functions f , we employ
Lemma 19:∫

f dm = lim
g→f

∫
g dm = lim

g→f
lim
i∈I

∫
g dmi = lim

i∈I
lim
g→f

∫
g dmi = lim

i∈I

∫
f dmi ,

where we have written g → f to indicate a net of functions from (CM+−CM+)(X) converging to f
in the supremum norm.

The equivalence with (iii) is part of Topsøe’s Portmanteau Theorem 8.1, [Top70].

Note that CM+(X) is a much smaller set of functions than C(X), and so the fact that it induces
the same topology on M(X) is remarkable.

Lemma 30. For a compact ordered space the stochastic order 4 on C †(X) is closed in the vague
topology.

Proof. Let ϕj and ψj be nets of positive linear functionals that converge to ϕ and ψ, respectively,
such that ϕj 4 ψj for every j ∈ J . Then, for every f ∈ CM+(X), we have ϕj(f) ≤ ψj(f) and, as
ϕj(f) and ψj(f) converge to ϕ(f) and ψ(f), respectively, we conclude that ϕ(f) ≤ ψ(f), whence
ϕ 4 ψ.

In [Edw78] it has been shown that, for a compact ordered space, the set of probability measures
with the vague topology and the stochastic order is a compact ordered space again. We have a slight
generalisation:

Theorem 31. Let (X,O,≤) be a compact ordered space.

(i) (M(X),V,4) is an ordered space.

(ii) The subsets M1(X) and M≤1 are compact and convex.
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Proof. The first claim follows immediately from the preceding lemma. For the second we offer two
arguments: Identify (sub)probability measures with positive linear functionals on C(X), and these
in turn with elements in the product

∏
f∈C(X),‖f‖≤1[−1, 1]. The restriction of the vague topology

coincides with the product topology and hence is compact Hausdorff on the full product. Those
tuples which correspond to positive linear functionals are characterised by equations and inequalities
involving a finite number of coordinates in each instance, hence they define a closed subset.

Alternatively, we can invoke the Banach-Alaoglu Theorem which states that the unit ball in C ∗(X)
is compact in the weak∗ topology. Again, the positive functionals are excised by inequalities and
hence form a closed subset. Probability measures are characterised by the single additional require-
ment ϕ(1) = 1.

For every x ∈ X , the Dirac functional δx, defined by f 7→ f(x), is a positive linear functional
on C(X). For any completely regular space, x 7→ δx is a topological embedding of the space X into
C ∗(X) endowed with the weak∗-topology. In fact, for compact Hausdorff spaces, the functionals δx
are exactly the extreme points of C ∗1 (X) (see [Cho69, page 108]). We have more:

Proposition 32. Let X be a compact ordered space. Associating to every element x ∈ X its Dirac
functional δx yields a topological and an order embedding of (X,O,≤) into (M(X),V,4).

Proof. It only remains to show that we have an order embedding. If x ≤ y, then δx(f) = f(x) ≤
f(y) = δy(f) for every f ∈ CM+(X), whence δx 4 δy. If, on the other hand, x 6≤ y, then there is an
f ∈ CM+(X) such that f(x) = 1 but f(y) = 0, that is, δx(f) = 1 6≤ 0 = δy(f) and, consequently,
δx 64 δy.

4.2 The weak upwards topology on the space of valuations
As with measures, we base our definition of a topology for the set of valuations on integration:

Definition 33. Let (X,G) be a topological space. The weak upwards topology S on V(X) is the
weakest topology such that µ 7→

∫
g dµ : V(X)→ R↑ is continuous for all g ∈ LSC+,b(X).

Note the use of the topology of convergence from below on R in this definition.

Proposition 34. Let (X,U) be a stably compact space. For a net (µi)i∈I of bounded continuous
valuations and a bounded continuous valuation µ, the following are equivalent:

(i) (µi)i∈I converges to µ in the weak upwards topology S, that is∫
g dµ ≤ lim infi∈I

∫
g dµi

for all g ∈ LSC+,b(X).

(ii) (
∫
g dµi)i∈I converges to

∫
g dµ in R↑, that is∫

g dµ ≤ lim infi∈I
∫
g dµi ,

for all g ∈ CM+(Xp).
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(iii) (µi(U))i∈I converges to µ(U) in R↑, that is

µ(U) ≤ lim infi∈I µi(U) ,

for all open sets U ∈ U.

Proof. Clearly, (i) =⇒ (ii). Further, (i) =⇒ (iii), as the characteristic function χU of every open
upper set U is lower semicontinuous and

∫
χU dµ = µ(U).

(ii) =⇒ (i): By Lemma 17 every g ∈ LSC+,b(X) is the supremum of a directed family
of monotone increasing continuous functions fj : Xp → R+. For the latter we have

∫
fj dµ ≤

lim infi∈I
∫
fj dµi by assumption. As fj ≤ g, we have lim infi∈I

∫
fj dµi ≤ lim infi∈I

∫
g dµi

for all j, whence
∫
g dµ =

∫
supj∈J fj dµ = supj∈J

∫
fj dµ ≤ supj∈J lim infi∈I

∫
fj dµi ≤

lim infi∈I
∫
g dµi as desired. Note that we have used the fact that f 7→

∫
f dµ preserves directed

sups as stated in Lemma 23(ii).
(iii) =⇒ (i) is proved in a similar way using the fact that every g ∈ LSC+,b(X) is the supremum

of an increasing sequence gn of finite linear combinations of characteristic functions of open sets as
stated in Lemma 18.

As with Proposition 29, note that both CM+(Xp) and the characteristic functions associated with
the elements of U are much smaller sets than LSC+,b(X) in general, yet they define the same topology.

Choosing a constant net µi = ν in the preceding proposition yields an alternative proof of the
order-isomorphism established in Theorem 26:

Corollary 35. Let (X,O,≤) be a compact ordered space. For continuous valuations µ and ν on U,
the following are equivalent:

(i) µ 4 ν, that is, µ(U) ≤ ν(U) for every open upper set U ;

(ii)
∫
fdµ ≤

∫
fdν for every f ∈ CM+(X);

(iii)
∫
gdµ ≤

∫
gdν for every g ∈ LSC+,b(X

↑).

We observe that the equivalence (i)⇔ (iii) remains valid for any ordered topological space.

4.3 Relating the two topologies
In Theorem 26 we established an isomorphism between the cone M(X) of bounded Radon measures
on a compact ordered space (X,O,≤) and the cone V(X↑) of bounded valuations on the associated
stably compact space X↑ = (X,U). We can now compare these two cones as topological spaces.
Unfortunately, we do not have a general result here, but must restrict ourselves to (sub)probability
measures and valuations. On these subsets, the relationship mirrors that between X and X↑:

Theorem 36. Under the isomorphism exhibited in Theorem 26, the upper open sets in (M≤1(X),V,4
) are precisely the open sets of (V≤1(X), S). The same is true if one restricts further to probability
measures and valuations.
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Proof. We know that (M≤1(X),V,4) is a compact ordered space by Theorem 31, and so we can
employ Proposition 9. Assume m1 64 m2; then there exists g ∈ CM+(X) with

∫
g dm1 >

∫
g dm2.

Let K ∈ R be a number strictly between these two quantities. The sets

U := {m ∈M(X) |
∫
g dm > K} and

V := {m ∈M(X) |
∫
g dm < K}

are open in the vague topology and disjoint. The first is clearly upwards closed while the second is
downwards closed. Furthermore, under the bijection between measures and valuations, U is mapped
to the set {µ ∈ V(X) |

∫
g dµ > K} which is weak upwards open by Proposition 34(ii). This shows

that upper open sets of V correspond to weak upwards open sets of valuations. The converse follows
directly from Propositions 29(ii) and 34(ii).

Corollary 37. Let (X,U) be a stably compact space. Then both (V≤1(X), S) and (V1(X), S) are
again stably compact.

This result can also be shown directly, without employing any functional analytic methods, as we
will now explain. We show more generally that, for a stably compact space X , the set V(X) of all
continuous valuations is again stably compact for the weak upwards topology. We start with the stably
compact space P =

∏
O∈UR

↑
+, where each copy of R+ is equipped with the topology of continuity

from below. The corresponding patch topology is just the product topology of the usual compact
Hausdorff topology. The set mV(X) of all (not necessarily continuous) valuations µ : U → R+ is
patch closed in P , as one easily verifies. By invoking Proposition 15 we have thus shown that the
set mV(X) of valuations on a stably compact space X is stably compact when equipped with the
restriction of the product topology.

In order to restrict further to continuous valuations, we remember that (U,⊆) is a continuous
lattice. We use the following standard technique from domain theory in order to be able to apply
Proposition 16:

Proposition 38. Let (X,U) be a stably compact space and µ : U→ R+ be a valuation. The following
defines the largest continuous valuation below µ in the pointwise order:

Φ(µ)(O) := sup{µ(V ) | V � O}

where V � O means that there is a compact saturated setK such that V ⊆ K ⊆ O. Furthermore, the
operation Φ: mV(X)→ mV(X) is idempotent and continuous with respect to the product topology,
and maps (sub-)probability valuations to (sub-)probability valuations.

Proof. It is clear that Φ(µ)(∅) = 0 holds, and that Φ(µ) is monotone. For the modular law, we exploit
stable compactness which gives us that O ∩ O′ is approximated by sets of the form V ∩ V ′ where
V � O and V ′ � O′. The continuity of Φ(µ) follows from its definition.

A continuous valuation is kept fixed by Φ because every open set equals the directed union of
those open sets way-below it.

In order to see that the operation of making a valuation continuous is itself continuous with respect
to the product topology on mV(X), observe that Φ(µ)(O) is greater than a real number r, if and only
if µ(V ) > r for some V ⊆ K ⊆ O. Hence the preimage of the subbasic open set {µ ∈ mVX |
µ(O) > r} equals

⋃
V⊆K⊆O{µ ∈ mV(X) | µ(V ) > r}.

The last statement follows immediately from the fact that the whole space X is compact and open
at the same time.
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We thus have by Proposition 16 that the restriction of the product topology to those tuples which
correspond to continuous valuations is stably compact. Finally, by Proposition 34(iii) the product
topology restricted to the set of (sub-)probability valuations is the same as the weak upwards topology.

Theorem 39. The set V≤1(X) of continuous probability valuations on a stably compact space X is
stably compact when equipped with the weak upwards topology S. The same holds for V1(X).

5 Open problems
As we remarked briefly before stating Theorem 36, we do not have a general result relating the vague
topology on M(X) to the weak upwards topology on V(X↑), even for very well-behaved topological
spaces X . The criterion of success would be if one could derive Theorem 36 as a simple corollary.

As we explained in Section 2.4, domains are characterised by the property that the topology
can be derived from the order relation alone. It was shown in [Jon90] that for a domain the set
of subprobability valuations together with the stochastic order is again a domain, and it was shown
in [Tix95] that the weak upwards topology is the Scott topology in this situation. Now even if the
specialisation order of a given stably compact space (X,U) is too sparse to determine the topology,
the stochastic order on V≤1(X) is always quite rich, and there is a possibility that it might suffice
to define the weak upwards topology order-theoretically. We leave this question, too, as an open
problem.5

Finally, we have restricted ourselves to bounded measures and valuations throughout. There is a
certain price to pay for this because as a result the sets (M(X),4) and (V(X),4) are not directed
complete. While we know that some of our lemmas hold for the more general setting where ∞ is
allowed as a value, for example 17 and 18, we do not know how to prove the main results in the
general setting.
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