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Abstract

In 1937 Marshall Stone extended his celebrated representation theorem for Boolean
algebras to distributive lattices. In modern terminology, the representing topological
spaces are zero-dimensional stably compact, but typically not Hausdorff. In 1970,
Hilary Priestley realised that Stone’s topology could be enriched to yield order-
disconnected compact ordered spaces.

In the present paper, we generalise Priestley duality to a representation theorem
for strong proximity lattices. For these a “Stone-type” duality was given in 1995 in
joint work between Philipp Sünderhauf and the second author, which established
a close link between these algebraic structures and the class of all stably compact
spaces. The feature which distinguishes the present work from this duality is that
the proximity relation of strong proximity lattices is “preserved” in the dual, where
it manifests itself as a form of “apartness.” This suggests a link with constructive
mathematics which in this paper we can only hint at. Apartness seems particularly
attractive in view of potential applications of the theory in areas of semantics where
continuous phenomena play a role; there, it is the distinctness between different
states which is observable, not equality.

The idea of separating states is also taken up in our discussion of possible mor-
phisms for which the representation theorem extends to an equivalence of categories.

Key words: strong proximity lattices, totally order-disconnected
spaces, Priestley duality, stably compact spaces, apartness
relations.

1 Introduction

Philipp Sünderhauf and the second author in their paper [7] introduced a class
of bounded distributive lattices enriched with additional structure as follows:
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Definition 1.1 A binary relation≺ on a bounded distributive lattice 〈L;∨,∧, 0, 1〉
is called a proximity if, for every a, x, y ∈ L and M ⊆fin L,

(≺≺) ≺ ◦ ≺ = ≺,

(∨− ≺) M ≺ a ⇐⇒
∨

M ≺ a,

(≺ −∧) a ≺ M ⇐⇒ a ≺
∧

M,

(≺ −∨) a ≺ x ∨ y =⇒ (∃ x′, y′ ∈ L) x′ ≺ x, y′ ≺ y and a ≺ x′ ∨ y′,
(∧− ≺) x ∧ y ≺ a =⇒ (∃ x′, y′ ∈ L) x ≺ x′, y ≺ y′ and x′ ∧ y′ ≺ a.

M ≺ a and a ≺ M , respectively, stand for (∀m ∈ M) m ≺ a and (∀m ∈
M) a ≺ m. A strong proximity lattice is a bounded distributive lattice
〈L;∨,∧, 0, 1〉 together with a proximity relation ≺ on L. 3

The notion of strong proximity lattice subsumes that of bounded distribu-
tive lattice as the lattice order ≤ is always a proximity.

The objective in [16] and [7] was to define a duality for stably compact
spaces, which are those topological spaces that are sober, compact, locally
compact, and for which the collection of compact saturated subsets is closed
under finite intersections where a saturated set is an intersection of open sets.
A reason why stably compact spaces are interesting for computer scientists is
that this notion captures by topological means most semantic domains in the
mathematical theory of computation [14,15]. The duality established in [7],
then, is the basis for a logical description (expounded in [5,6]) of these spaces
similar to Samson Abramsky’s domain theory in logical form, [1].

While stably compact spaces are typically T0, Priestley duality, [10,11],
associates with a bounded distributive lattice a Hausdorff space. The resulting
spaces are defined as follows:

Definition 1.2 A Priestley space is a compact ordered space 〈X; T ,≤〉 such
that for every x, y ∈ X, if x 6≥ y then there exists a clopen lower set U such
that x ∈ U and y 6∈ U .

The question that this paper is answering is the following:

How can Priestley’s representation theorem for bounded distributive lattices
be extended to strong proximity lattices?

From a representation point of view the various dualities can be classified as
follows:

3 The qualifier “strong” distinguishes the concept from its precursor in [16], where (∧− ≺)
was not a requirement.
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T0 T2

strong proximity lattices Jung & Sünderhauf, [7] present paper

distributive lattices Stone, [19] Priestley, [10,11]

Boolean algebras Stone, [17,18]

Our interest is partly driven by mathematical systematics but there is also
a story to be told from a semantics point of view. In [6] the argument was
made that the proximity ≺ relates two logical propositions φ and ψ if the
observation of φ always implies that ψ is actually true. Consequently, the
logical system does not necessarily satisfy the identity axiom φ ` φ, and
while the paper [6] demonstrates that a satisfactory and even elegant logical
apparatus can still be built, the lack of this basic law of logic may feel strange.
In the present paper, the view is that the proximity is additional structure,
over and above the lattice operations, and that for the latter the usual axioms
of logic are still valid. Consequently, a model of the logic is given by a prime
ideal, prime filter pair, as it is usually. The additional structure on the logic
then gives rise to additional structure on the space of all models, which we
read as apartness information. 4 The intuition is that two states of affair
(i.e., models) can be observably separated if and only if they are “sufficiently
apart.” To give an example, consider the real numbers represented in their
usual decimal representation. Mathematically, we deem a = 1.000 . . . and
b = 0.999 . . . equal; constructively, the concrete presentation of a number is
important, and in our example one would find that a and b can not be told
apart in finite time but their equality can also not be established in finite time
(if our only access to the numbers is by successively reading digits).

The following definition attempts to capture the intuitive notion of apart-
ness on a Priestley space:

Definition 1.3 A binary relation ∝ on a Priestley space 〈X;≤, T 〉 is called
an apartness if, for every a, c, d, e ∈ X,

(∝T ) ∝ is open in 〈X; T 〉 × 〈X; T 〉
(↓∝↑) a ≤ c ∝ d ≤ e =⇒ a ∝ e,

(∝∀) a ∝ c ⇐⇒ (∀b ∈ X) a ∝ b or b ∝ c,

(∝↑↑) a ∝ (↑c ∩ ↑d) =⇒ (∀b ∈ X) a ∝ b, b ∝ c or b ∝ d,

(↓↓∝) (↓c ∩ ↓d) ∝ a =⇒ (∀b ∈ X) d ∝ b, c ∝ b or b ∝ a.

where A ∝ B is a shorthand for a ∝ b for all a ∈ A, b ∈ B.

4 Indeed, there is a rather conventional way to fill in the right upper position in the table
above. For this one equips the collection of round prime filters of L with the topology
generated by all Ux := {F | x ∈ F}, and all Ox := {F | ∃y 6∈ F.x ≺ y}, x ∈ L. This
yields the patch topology of a stably compact space which is already obtainable from the
Jung-Sünderhauf dual.
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Remark 1.4 (i) For any Priestley space 〈X;≤, T 〉, 6≥ is an apartness (be-
cause the order is required to be closed for ordered spaces).

(ii) ∝ is an apartness on 〈X;≤, T 〉 if and only if ∝−1 is an apartness on
〈X;≥, T 〉.

(iii) It aids the intuition to assume that an element can not be apart from
itself but as a matter of fact our results do not rely on this assumption.

(iv) If we were to axiomatise indistinguishability instead of apartness, then
(∝∀) would express the transitivity of this relation. Axiom (↓∝↑), how-
ever, would not have a simple formulation.

(v) On the real line, axioms (∝↑↑) and (↓↓∝) are the same as (∝∀).
Our question above is answered as follows:

The dual of a strong proximity lattice L is the corresponding Priestley space
of prime ideals, equipped with the apartness,

I ∝≺ J
def⇐⇒ (∃ x /∈ I)(∃ y ∈ J) x ≺ y.

Vice versa, the dual of a Priestley space X with apartness ∝ is the lattice
of clopen downsets equipped with the proximity,

A ≺∝ B
def⇐⇒ A ∝ (X \B).

Up to isomorphism, the correspondence is one-to-one.

We will show that the action of Priestley duality on morphisms can also be
adapted to the current setting.

Continuous order-preserving maps that reflect the apartness relation are in
one-to-one correspondence with lattice homomorphisms that preserve the
proximity relation.

While Priestley maps are the correct choice for establishing the duality, they
are too specialised from a computational point of view; if we consider their
manifestation on semantic domains then we recognise them as (order-preserving)
Lawson continuous functions. This does not cover the computable maps, how-
ever, which typically are only Scott-continuous. Nevertheless, the situation
here is no different from domain theory where also more than one kind of map
is studied on a fixed class of spaces, for example, embedding-projection pairs,
Scott-continuous function, strict Scott-continuous function, stable function,
etc.

We consider two more general notions of morphism in order to capture
more computable functions, and study their transformation under the dual-
ity. On the side of strong proximity lattices we replace homomorphisms with
approximable relations ; this approach goes back to Scott’s morphisms for in-
formation systems in [15], and was adapted to strong proximity lattices in [7].
The definition is as follows:

Definition 1.5 Let 〈L1;∨,∧, 0, 1;≺1〉 and 〈L2;∨,∧, 0, 1;≺2〉 be strong prox-
imity lattices and let ` be a binary relation from L1 to L2. The relation ` is
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called approximable if for every a ∈ L1, b ∈ L2, M1 ⊆fin L1 and M2 ⊆fin L2,

(` − ≺2) ` ◦ ≺2 = `,

(≺1 − `) ≺1 ◦ ` = `,

(∨− `) M1 ` b ⇐⇒
∨

M1 ` b,

(` −∧) a ` M2 ⇐⇒ a `
∧

M2,

(` −∨) a `
∨

M2 =⇒ (∃ N ⊆fin L1) a ≺1

∨
N and (∀n ∈ N)

(∃ m ∈ M2) n ` m.

The relation ` is called weakly approximable if it satisfies all of the above
conditions but not necessarily (` −∨).

Note that since we are dealing with a relation, rather than a function, we
are free to turn around the direction. Thus we will arrive at an equivalence of
categories rather than a duality. The relationship between proximity homo-
morphisms and approximable relations is then seen to be analogous to that
between Dijkstra’s weakest preconditions and Hoare logic: A homomorphism h
from L2 to L1 gives the weakest precondition h(φ) that needs to be satisfied
for φ to hold at the end of the computation. An approximable relation ` from
L1 to L2, on the other hand, links all propositions φ, ψ where φ (before the
computation) entails ψ afterwards.

Let us now look on the side of Priestley spaces; whereas in [7] we identi-
fied the corresponding morphisms as those functions that are continuous with
respect to the upper topology, now we can not expect functionality at all.
The reason is that the Priestley dual contains more points than the spectrum
considered in [7] and there is no reason to assume that the process acts func-
tionally on the additional elements. In keeping with the spirit of the present
paper, we instead consider relations between Priestley spaces which relate
those pairs of elements that are “observably unrelated” by the computational
process. Here is the definition:

Definition 1.6 Let 〈X1;≤1; T1〉 and 〈X2;≤2, T2〉 be Priestley spaces with
apartness relations ∝1 and ∝2, respectively, and let n be a binary relation
from X1 to X2. The relation n is called separating (or a separator) if it is
open in T1×T2 and if, for every a, b ∈ X1, d, e ∈ X2 and {di | 1 ≤ i ≤ n} ⊆ X2,

(↓1n↑2) a ≤1 b n d ≤2 e =⇒ a n e,

(∀n) b n d ⇐⇒ (∀c ∈ X1) b ∝1 c or c n d,

(n∀) b n d ⇐⇒ (∀c ∈ X2) b n c or c ∝2 d,

(nn↑) b n
⋂
↑di =⇒ (∀c ∈ X1) b ∝1 c or (∃ i) c n di.

The relation n is called weakly separating if it is open and satisfies all of the
above conditions, but not necessarily (nn↑).

Some effort is required to show that we get a category this way (see Sec-
tion 4.3) but the expected equivalence does hold:
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Let X1 and X2 be Priestley spaces with apartness relation. Then (weakly)
separating relations from X1 to X2 are in one-to-one correspondence with
(weakly) approximable relations from the dual of X1 to the dual of X2.

We state two more results which cannot be fully proved here because of
lack of space. The first concerns the connection between the T0 dualities
and the T2 dualities tabulated above. It is well known that the Stone dual
of a distributive lattice is strongly related to the Priestley dual [4]: In one
direction one takes the patch topology, in the other one restricts to upper
open sets. 5 We expect to be able to construct the Jung-Sünderhauf duals of
strong proximity lattices (which are precisely the stably compact spaces) from
Priestley spaces with apartness, and vice versa. This is indeed possible. To
state the precise result we make the following definitions.

Definition 1.7 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness ∝
and A, B ⊆ X. Then

(i) ∝ [A] = {x ∈ X | x ∝ A} and [A] ∝ = {x ∈ X | A ∝ x}.
(ii) An open upper set O in X is said to be isolated if O = [X \O] ∝. The

set of all isolated subsets of X is denoted by iso(X).

(iii) core(X) = {x ∈ X | [x] ∝ = X \ ↓x} = {x ∈ X | X \ ↓x is isolated}.
Theorem 1.8 Let 〈X;≤, T 〉 be a Priestley space with apartness ∝. Then
〈core(X), T ′〉, where

T ′ = {O ∩ core(X) | O is an open lower subset of X},
is a stably compact space. Moreover every stably compact space can be obtained
in this way and is a retract of a Priestley space with apartness.

Our terminology suggests that apartness relations on Priestley spaces are
related to Giuseppe Sambin’s pre-topologies, [12,13,2]; this is indeed the case:

Theorem 1.9 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness ∝.
Then iso(X) is closed under finite intersections. Therefore 〈iso(X);∩, X〉 is
a commutative monoid. The relation ¢ on iso(X), defined by

O1 ¢ O2
def⇐⇒ O1 ∝ (X \O2),

satisfies the requirements for a precover in the sense of [13].

We conclude our overview with two examples. The first concerns the stably
compact space that consists of a single elements ∗. Its strong proximity lattice
is a chain of three elements 0 < e < 1 with 0 ≺ x and x ≺ 1 for all three
choices of x. Our Priestley dual has two elements; besides ∗ = {0} there is
now also n = {0, e} which is indistinguishable from ∗, that is, the apartness
relation is empty. A case can be made that this is in analogy to an automated
theorem prover which can answer either with a proof or a counterexample for

5 This is also the way in which the dual described in Footnote 4 would be related to the
corresponding stably compact space.
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Fig. 1. The lattice B on the left together with its representing Priestley space X.

a given statement. In the denotational semantics, value ∗ would be assigned
if the process stops with a proof, and value n is assigned if the process is
trapped in an infinite search for a counterexample. In finite time we are not
able to distinguish the validity of the two propositions that the theorem prover
is working on. 6

For a more elaborate example consider the strong proximity lattice B =
{((o, 1], [k, 1]) | 0 ≤ k ≤ o ≤ 1} where

((o, 1], [k, 1]) ≺ ((o′, 1], [k′, 1])
def⇐⇒ o′ < k.

It represents the unit interval (with the Scott topology) as a stably compact
space under the Jung-Sünderhauf duality. Figure 1 gives a pictorial description
of the lattice B. For a given r ∈ [0, 1], we define a horizontal line hlr and a
vertical line vlr of the lattice B as follows

hlr = {((r, 1], [k, 1]) | 0 ≤ k ≤ r }, vlr = {((o, 1], [r, 1]) | r ≤ o ≤ 1 }.
The following facts describe the Priestley space 〈X; T ,≤,∝〉 which repre-
sents B. A pictorial presentation is given in Figure 1.

(i) X is the set of prime ideals of B which can be described concretely as:

X = {I1
r , I2

r , G1
r, G

2
r | 0 ≤ r ≤ 1},

where

I1
r = ↓hlr, I2

r = ↓hlr \ hlr, G1
r = ↓vlr and G2

r = ↓vlr \ vlr.

Pictorial descriptions of I1
0.5 and G2

0.5 are also given in Figure 1.
For a computational interpretation, assume some concrete representa-

tion of real numbers as finite and infinite streams of digits. A stream
that begins with 0.5 and then stops explicitly (indicating that all follow-
ing digits are zero) corresponds to value G2

0.5 in that it validates all tests
x < 0.5 + ε with ε > 0. On the other hand, a stream that begins with

6 A more complete model of this situation would also have values for the case that a
counterexample is produced, and for the case that the process searches forever for a proof.
These two values are clearly apart from ∗ and n but indistinguishable from each other.
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0.4 and then produces 9’s forever, corresponds to G1
0.5 in that the test

x < 0.5 does not produce “false” in finite time. No test can distinguish
between the two streams by looking at a finite initial segment of digits;
the most we have is a test (x < 0.5) which terminates for one and never
answers for the other.

(ii) ≤ = ⊆.

(iii) The following collection is a sub-basis for T ,

S(T ) = {↓I2
r , ↓G2

r, ↑I1
r , ↑G1

r | 0 ≤ r ≤ 1}.
(iv) (∀Ar, Ar′ ∈ X) Ar ∝ Ar′ ⇐⇒ r > r′.

(v) Let 0 ≤ r ≤ 1. Then A = ↑G1
r and Br =

⋃
r′<r ↑G1

r′ are open upper
subsets of X. We note that A is not isolated because G2

r ∈ X \ A and
G2

r 6∝ G1
r which means that A 6= [X \ A] ∝. On the other hand, Br is

isolated because, clearly, Br = [X \ Br] ∝. Moreover {Br | 0 ≤ r ≤ 1} is
the set of isolated proper subsets of X.

2 From Priestley spaces with apartness to strong prox-
imity lattices

In the following we denote the sets of clopen lower and upper sets of a Priestley
space X by OT (X) and UT (X), respectively. We begin with two preparatory
technical results (where the first is well known from the theory of compact
ordered spaces, [8]).

Lemma 2.1 Let 〈X;≤, T 〉 be a Priestley space. For closed upper subsets
A,B ⊆ X and O ∈ T , if A ∩ B ⊆ O, then there exist V1, V2 ∈ UT (X) such
that A ⊆ V1, B ⊆ V2 and V1 ∩ V2 ⊆ O.

Proof. In a Priestley space every closed upper subset is the intersection of
clopen upper subsets containing it. Therefore

A ∩B =
⋂
{W ∈ UT (X) | A ⊆ W} ∩

⋂
{W ′ ∈ UT (X) | B ⊆ W ′}

=
⋂
{W ∩W ′ | W,W ′ ∈ UT (X), A ⊆ W and B ⊆ W ′}.

By the compactness of (X \O) and the closedness of sets W ∩W ′, there exists
a finite set

{Wi ∩W ′
i | Wi,W

′
i ∈ UT (X), A ⊆ Wi, B ⊆ W ′

i and 1 ≤ i ≤ n}
such that

⋂
1≤i≤n(Wi ∩W ′

i ) ⊆ O, so we can set V1 =
⋂

i Wi and V2 =
⋂

i W
′
i .2

Lemma 2.2 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness ∝.
For closed subsets A,B ⊆ X, if A ∝ B then there exist U ∈ OT (X) and
V ∈ UT (X) such that A ⊆ U , B ⊆ V and U ∝ V .

Proof. By (↓∝↑), ↓A ∝ ↑B. Recall that ↓A and ↑B are closed subsets of
X because T is a Priestly topology. We first show that there exist open sets
O1 and O2 such that ↓A ⊆ O1, ↑B ⊆ O2 and O1 ∝ O2. Fix x ∈ ↓A. Then
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for every y ∈ ↑B, by openness of ∝, there exist O1y, O2y ∈ T such that
x ∈ O1y, y ∈ O2y and O1y ∝ O2y. The set {O2y | y ∈ ↑B} is an open cover of
↑B, and so a finite sub-cover {O2yi

| 1 ≤ i ≤ n} exists. Set O1x =
⋂

i O1yi
and

O2x =
⋃

i O2yi
. Then O1x and O2x are open sets with x ∈ O1x, ↑B ⊆ O2x and

O1x ∝ O2x. Now, the set {O1x | x ∈ ↓A} is an open cover of ↓A and so a finite
sub-cover {O1xi

| 1 ≤ i ≤ m} exists. Set O1 =
⋃

i O1xi
and O2 =

⋂
i O2xi

.
Then O1 and O2 are open sets with ↓A ⊆ O1, ↑B ⊆ O2 and O1 ∝ O2.

Now as (X,≤, T ) is a Priestley space, ↓A =
⋂{U ∈ OT (X) | ↓A ⊆ U} ⊆

O1, and because X \ O2 is a compact subset of X, there exists a finite set
of clopen-lowers {Ui ∈ OT (X) | 1 ≤ i ≤ n} such that ↓A ⊆ ⋂

i Ui ⊆ O1. Set
U =

⋂
i Ui. Then U is a clopen-lower subset of X with ↓A ⊆ U ⊆ O1.

Similarly there exists a clopen-upper subset V of X with ↑B ⊆ V ⊆ O2.
Therefore U ∝ V , which completes the proof. 2

Remark 2.3 Singletons are closed subsets in a Priestley space. Therefore,
as a special case of Lemma 2.2 we have that for every a, b ∈ X, if a ∝ b then
there exists U ∈ OT (X) and V ∈ UT (X) such that a ∈ U , b ∈ V and U ∝ V .

Remark 2.4 Our proof of Lemma 2.2 uses only the openness of ∝ and (↓∝↑).
Conversely, considering Remark 2.3, the lemma implies (↓∝↑) and the open-
ness of ∝.

We define the dual for a Priestley space with apartness as follows:

Definition 2.5 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness
∝. Then

Prox (X) = 〈OT (X);∪,∩, ∅, X;≺∝〉,
where ≺∝ is the binary relation defined on OT (X) as:

A ≺∝ B
def⇐⇒ A ∝ (X \B).

Remark 2.6 Note that if X carries the trivial apartness 6≥ then the lat-
tice OT (X) will be equipped with the trivial proximity ≺∝ = ⊆. In fact, the
converse is also true: if ≺∝ = ⊆ then ∝ = 6≥.

Lemma 2.7 The relation ≺∝ satisfies (≺≺).

Proof. Suppose A ≺∝ C and D = X \ C. So A ∝ D. Fix a ∈ A and
set Oa = {x ∈ X | a ∝ x}. Then Oa ∈ T by openness of ∝, a ∝ Oa and
(X \Oa) ∝ D by (∝∀) and the fact that a ∝ D.

Now by Lemma 2.2, there exists a clopen-lower subset Ba of X such that
(X \ Oa) ⊆ Ba and Ba ∝ D. Therefore a ∝ (X \ Ba). Using Lemma 2.2
again, there exists Ua ∈ OT (X) such that a ∈ Ua and Ua ∝ (X \Ba). The set
{Ua | a ∈ U} is an open cover of A which is compact as it is closed. Hence
a finite sub-cover {Uai

}1≤i≤n exists. Set U =
⋃

1≤i≤n Uai
and B =

⋃
1≤i≤n Bai

.
Therefore U and B are clopen-lower subsets of X with A ⊆ U ∝ (X \B) and
B ∝ D which implies A ≺∝ B and B ≺∝ C. This proves ≺∝ ⊆ ≺∝;≺∝.
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For the other inclusion, suppose A ≺∝ B, B ≺∝ C and D = X \C. Then
A ∝ (X \ B) and B ∝ D. Pick any a ∈ A and d ∈ D, then any b ∈ X is
either in B or in X \ B, so a ∝ b or b ∝ d from which a ∝ d follows by (∝∀).
Therefore A ∝ D which implies A ≺∝ C. 2

Lemma 2.8 The relation ≺∝ satisfies (≺ −∨) and (∧− ≺).

Proof. Suppose A ≺∝ U ∪ V , C = X \ U and D = X \ V . Then A ∝ C ∩D
implies

(∀a ∈ A)(∀c ∈ C)(∀d ∈ D) a ∝ (↑c ∩ ↑d).

Fix c ∈ C and d ∈ D. Set Oc = {x ∈ X | x ∝ c} and Od = {x ∈ X | x ∝ d}.
By (↓∝↑) and openness of ∝, Oc and Od are open lower subsets of X and
clearly Oc ∝ c, Od ∝ d. Moreover, by (∝↑↑), A ∝ (X \ (Oc ∪Od)).

By Lemma 2.2 and Lemma 2.1,

A ∝ (X \Oc) ∩ (X \Od) hence (∃Vc, Vd ∈ UT (X)) (X \Oc) ⊆ Vc,

(X \Od) ⊆ Vd and A ∝ (Vc ∩ Vd)

and (X \ Vc) ∝ c and (X \ Vd) ∝ d

hence (∃Wc,Wd ∈ UT (X)) c ∈ Wc, d ∈ Wd,

(X \ Vc) ∝ Wc and (X \ Vd) ∝ Wd.

The sets {Wc | c ∈ C} and {Wd | d ∈ D} are open covers of compact sub-
sets C and D, respectively. Therefore finite subcovers {Wci

| ci ∈ C and 1 ≤
i ≤ n} and {Wdi

| di ∈ D and 1 ≤ i ≤ m} exist.

Set U ′ =
⋂

i X \ Vci
and V ′ =

⋂
i X \ Vdi

. Then U ′ and V ′ are clopen
lower subsets satisfying U ′ ∝ C ⊆ ⋃

i Wci
which implies U ′ ≺∝ U . Equally,

V ′ ∝ D ⊆ ⋃
i Wdi

implies V ′ ≺∝ V . And finally A ∝ X \ (U ′ ∪ V ′) implies
A ≺∝ U ′ ∪ V ′.

The argument for (∧− ≺) is dual to this. 2

Theorem 2.9 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness ∝.
Then Prox (X) = 〈OT (X);∪,∩, ∅, P ;≺∝〉 is a strong proximity lattice.

Proof. Clearly 〈OT (X);∪,∩, ∅, X〉 is a bounded distributive lattice. Lemma 2.7
proves that ≺∝ satisfies (≺≺). (∨− ≺) and (≺ −∧) only require Boolean ma-
nipulation. Lemma 2.8 proves (≺ −∨) and (∧− ≺). 2

3 From strong proximity lattices to Priestley spaces
with apartness

For a lattice L, the set of prime ideals of L is denoted by IP(L). This is ordered
by inclusion and given the Priestley topology TL generated by the collections
Ox = {I ∈ IP(L) | x 6∈ I} and Ux = {I ∈ IP(L) | x ∈ I}. Obviously,
Ux = IP(L)\Ox and so each Ox is a clopen lower, and each Ux a clopen upper
set.

10
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Definition 3.1 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice. We set

Pries(L) = 〈IP(L);⊆, TL;∝≺〉,
where ∝≺ is the binary relation defined on IP(L) as follows:

I ∝≺ J
def⇐⇒ (∃ x /∈ I)(∃ y ∈ J) x ≺ y.

Remark 3.2 ≺ = ≤ =⇒ ∝≺ = 6⊇.

We will now show that ∝≺ does indeed validate the requirements for an
apartness. The following preparatory result extends the definition to the basic
clopen sets Ox and Ux.

Lemma 3.3 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice and x, y ∈ L.
Then

x ≺ y ⇐⇒ Ox ∝≺ Uy.

Proof. (=⇒) is clear. For the other direction, suppose x, y ∈ L such that
x 6≺ y. Set ξ = {I ∈ I(L) | y ∈ I, (∀t ∈ I) x 6≺ t}. ξ 6= ∅, because ↓y ∈ ξ and
(ξ,⊆) is a poset. If {Ii} is a non-empty chain in (ξ,⊆) then clearly

⋃
i Ii ∈ ξ.

Therefore by Zorn’s Lemma ξ has a maximal element J . We claim that J is
prime. Suppose a, b ∈ L \ J but a ∧ b ∈ J . Ja = ↓{a ∨ c | c ∈ J} is an ideal
properly containing J . Because J is maximal in ξ, Ja 6∈ ξ. So there exists
ca ∈ J such that x ≺ a∨ ca. Similarly, there exists cb ∈ J such that x ≺ b∨ cb.
Now, by [7, Lemma 7], we note the following:

x ≺ a ∨ ca and x ≺ b ∨ cb =⇒ x ≺ (a ∨ ca) ∨ cb and x ≺ (b ∨ cb) ∨ ca

⇐⇒x ≺ ((a ∨ ca) ∨ cb) ∧ ((b ∨ cb) ∨ ca)

⇐⇒x ≺ (a ∧ b) ∨ (ca ∨ cb).

This gives a contradiction, because J ∈ ξ and (a ∧ b) ∨ (ca ∨ cb) ∈ J .

Let F(L) be the collection of filters in L, and set ζ = {F ∈ F(L) | x ∈
F and (∀a ∈ F )(∀b ∈ J) a 6≺ b}. ζ 6= ∅ because ↑x ∈ ζ and (ζ,⊆) is a poset.
If {Fi} is a non-empty chain in (ζ,⊆) Then clearly ∪iFi ∈ ζ. Hence by Zorn’s
Lemma ζ has a maximal element F . We claim that F is prime. Suppose
a, b ∈ L \ F but a ∨ b ∈ F . Then Fa = ↑{a ∧ c | c ∈ F} is a filter properly
containing F . Because F is maximal in ζ, Fa 6∈ ζ. So there exists ca ∈ F and
da ∈ I such that a ∧ ca ≺ da. Similarly, there exists cb ∈ F and db ∈ I such
that a ∧ cb ≺ db. By [7, Lemma 7], we note the following:

a ∧ ca ≺ da and b ∧ cb ≺ db =⇒ (a ∧ ca) ∧ cb ≺ da ∨ db

and (b ∧ cb) ∧ ca ≺ db ∨ da

⇐⇒ ((a ∧ ca) ∧ cb) ∨ ((b ∧ cb) ∧ ca) ≺ da ∨ db

⇐⇒ (a ∨ b) ∧ (ca ∧ cb) ≺ da ∨ db.

The last statement is a contradiction, because (a∨b)∧(ca∧cb) ∈ F , da∨db ∈ I
and F ∈ ζ. Hence F is a prime filter. Set I = B \F . Then I and J are prime
ideals with

x /∈ I, y ∈ J, and I 6∝≺ J

11
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which completes the proof. 2

Lemma 3.4 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice. Then the re-
lation ∝≺ of Pries(L) is open in TL × TL and satisfies (↓∝↑).

Proof. Clearly ∝≺ satisfies (↓∝↑). Now suppose I ∝≺ J . Then there exist
x, y ∈ L such that x ≺ y, x /∈ I and y ∈ J . Therefore

{I ∈ IP(L) | x 6∈ I} ∝≺ {J ∈ IP(L) | y ∈ J}.
But these sets are open in the Priestley space which proves the openness of
∝≺. 2

Remark 3.5 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice. Then the
relation ∝≺ of Pries(L) satisfies Lemma 2.2 by Remark 2.4 and Lemma 3.4.

Lemma 3.6 The relation ∝≺ satisfies (∝∀).

Proof. For any I, J ∈ IP(L),

I ∝≺ J ⇐⇒ (∃ a ∈ X \ I)(∃ c ∈ J) a ≺ c

⇐⇒ (∃ b ∈ L) a ≺ b and b ≺ c, by (≺≺)

⇐⇒Oa ∝≺ Ub and Ob ∝≺ Uc by Lemma 3.3

⇐⇒ (∀K ∈ IP(K)) I ∝≺ K or K ∝≺ J.

The right-to-left direction of the last equivalence is proved as follows. Set
O = {K ∈ IP(L) | K ∝≺ J}. Then O is an open set with I ∝≺ (IP(L) \ O)
and O ∝≺ J . Finally apply Lemma 2.2 to get a clopen upset A around
IP(L) \ O with I ∝≺ A and hence IP(L) \ A ∝≺ J . By the compactness of
IP(L) \O the set A can be chosen to be of the form Ub. 2

Lemma 3.7 The relation ∝≺ satisfies (∝↑↑) and (↓↓∝).

Proof. Let I, J,K ∈ IP(L) be such that I ∝≺ (↑K ∩ ↑J). Recall that ↑K
and ↑J are closed subsets of TL. Recalling Remark 3.5, we can apply Lemma
2.2 and 2.1 to get a, x, y ∈ L such that I ∈ Oa, ↑K ⊆ Ux, ↑J ⊆ Uy and

Oa ∝≺ Ux ∩ Uy = Ux∨y.

Hence, by Lemma 3.3, a ≺ x ∨ y. Now we have

a ≺ x ∨ y hence (∃ x′, y′ ∈ L) x′ ≺ x, y′ ≺ y and a ≺ x′ ∨ y′, by (≺ −∨)

hence Ox′ ∝≺ Ux, Oy′ ∝≺ Uy and Oa ∝≺ Ux′∨y′ by Lemma 3.3

hence (∀H ∈ IP(L)) H ∝≺ K, H ∝≺ J or I ∝≺ H.

The argument for (↓↓∝) is dual. 2

Lemmas 3.4, 3.6, and 3.7 prove:

Theorem 3.8 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice. Then the
relation ∝≺ of Pries(L) is apartness on the Priestley space 〈IP(L);⊆, TL〉.

12
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4 One duality and two equivalences

4.1 Objects

We show that the translations of the previous two sections are (essentially)
inverses of each other. Since our theory is based on Priestley duality, only the
behaviour of proximity and apartness need to be examined.

Definition 4.1 A lattice homomorphism (isomorphism) between strong prox-
imity lattices is said to be a proximity homomorphism (proximity isomor-
phism) if it preserves (preserves in both directions) the proximity relation
(relations).

Theorem 4.2 Let 〈L;∨,∧, 0, 1;≺〉 be a strong proximity lattice. Then the
map

ηL : L −→ OT (IP(L)); x 7−→ Ox,

is a proximity isomorphism from L to Prox (Pries(L)).

Proof. By Priestley duality, ηL is a lattice isomorphism. For every x, y ∈ L,

x ≺ y⇐⇒Ox ∝≺ Uy = (IP(L) \Oy), by Lemma 3.3

⇐⇒Ox ≺∝≺ Oy

⇐⇒ ηL(x) ≺∝≺ ηL(y).

2

Definition 4.3 Let X1 and X2 be Priestley spaces equipped with apartness
relations ∝1 and ∝2, respectively. A map f : X1 −→ X2 is said to be:

• an apartness map from X1 to X2 if it is continuous, order-preserving, and
for every a, b ∈ X1,

f(a) ∝2 f(b) =⇒ a ∝1 b,

• an apartness homeomorphism from X1 to X2 if it is an order-preserving
homeomorphism and for every a, b ∈ X1,

a ∝1 b ⇐⇒ f(a) ∝2 f(b).

Theorem 4.4 Let 〈X;≤, T 〉 be a Priestley space equipped with apartness ∝.
Then the map

εX : X −→ IP(OT (X)); x 7−→ {U ∈ OT (X) | x /∈ U},
is an apartness homeomorphism from X to Pries(Prox (X)).

Proof. By Priestley duality, εX is an order-preserving homeomorphism from
X onto IP(OT (X)). We have

x ∝ y⇐⇒ (∃U ∈ OT (X))(∃V ∈ UT (X)) x ∈ U, y ∈ V and U ∝ V

⇐⇒ (∃U ∈ OT (X))(∃V ∈ UT (X)) x ∈ U, y ∈ V and U ≺∝ X \ V

⇐⇒{U ∈ OT (X) | x /∈ U} ∝≺∝ {U ∈ OT (X) | y /∈ U}
⇐⇒ εX(x) ∝≺∝ εX(y).

13
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The first equivalence is true by Lemma 2.2. 2

Remark 4.5 Since we know that the trivial apartness and proximity relations
get translated into each other, it is clear that our representation theorem is a
proper extension of that of Priestley.

4.2 Morphism I: apartness maps and proximity homomorphisms

Lemma 4.6 Let X1 and X2 be Priestley spaces equipped with apartness re-
lations ∝1 and ∝2, respectively, and 〈L1;∨,∧, 0, 1;≺1〉 and 〈L2;∨,∧, 0, 1;≺2〉
be strong proximity lattices.

(i) For f : L1 −→ L2 a proximity homomorphism the map

Pries(f) : IP(L2) −→ IP(L1); I 7−→ f−1(I),

is an apartness map from Pries(L2) to Pries(L1).

(ii) For ϕ : X1 −→ X2 an apartness map the function

Prox (ϕ) : OT (X2) −→ OT (X1); U 7−→ ϕ−1(U),

is a proximity homomorphism from Prox (X2) to Prox (X1).

Proof.

(i) Pries(f) is a well defined continuous order preserving map by [3, Theorem
11.31]. For every I, J ∈ IP(L2),

Pries(f)(I) ∝1 Pries(f)(J) =⇒ (∃ a /∈ Pries(f)(I))

(∃ b ∈ Pries(f)(J)) a ≺1 b

=⇒ f(a) ≺2 f(b)

=⇒ I ∝2 J, because f(a) /∈ I

and f(b) ∈ J.

(ii) Prox (ϕ) is a lattice homomorphism by [3, Theorem 11.31]. We prove
that it preserves the proximity relation. For every U1, U2 ∈ OT (X2),

U1 ≺∝2 U2 =⇒U1 ∝2 X2 \ U2

=⇒ϕ−1(U1) ∝1 ϕ−1(X2 \ U2)

=⇒ϕ−1(U1) ∝1 X1 \ ϕ−1(U2)

=⇒ϕ−1(U1) ≺∝1 ϕ−1(U2)

=⇒Prox (ϕ)(U1) ≺∝1 Prox (ϕ)(U2).

2

We let PS be the category whose objects are Priestley spaces equipped with
apartness relations, and whose morphisms are apartness maps. PL is the cat-
egory of strong proximity lattices and proximity homomorphisms. Theorems
4.2 and 4.4 and Lemma 4.6 show that the classical Priestley duality between
distributive lattices and Priestley spaces can be restricted to the (non-full)
sub-categories PL and PS. To summarise:

14
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Theorem 4.7 The functors Pries and Prox establish a dual equivalence be-
tween the categories PS and PL.

4.3 Morphism II: approximable relations and separators

As explained in the introduction, the intended application of our results in
semantics suggests to consider wider classes of morphisms for spaces and lat-
tices. To this end we equip proximity lattices with (weakly) approximable
relations as presented in Definition 1.5, and obtain categories PLa and PLwa
(in which composition is given by relational product).

Their counterparts are the categories PSs and PSws of Priestley spaces
with apartness as objects, and (weakly) separating relations, Definition 1.6,
as morphisms. To make this meaningful, we must present identities and a
definition of composition, and then show that the laws for a category are
satisfied.

Proposition 4.8 Let 〈X;≤, T 〉 be a Priestley space with apartness ∝. Then
∝ is a separating relation from X to X.

Proof. (↓1n↑2), (∀n) and (n∀) are clearly satisfied. (nn↑) is proved by
induction on n as follows. The cases where n = 0, 1 or 2 are clear. For the
induction hypothesis, suppose (nn↑) is true for n = m and m ≥ 2. We now
prove that (nn↑) is true for n = m + 1. Suppose that for some b ∈ X,
b ∝ ⋂

1≤i≤m+1 ↑idi. We note the following
⋂

1≤i≤m+1

↑di =
⋂

1≤i≤m

↑di ∩ ↑dm+1 =
⋃
{↑t | t ∈

⋂
1≤i≤m

↑di} ∩ ↑dm+1

=
⋃
{↑t ∩ ↑dm+1 | t ∈

⋂
1≤i≤m

↑di}.

Therefore

b ∝
⋂

1≤i≤m+1

↑idi ⇐⇒ (∀t ∈
⋂

1≤i≤m

↑di) b ∝ (↑t ∩ ↑dm+1).

Now let c ∈ X be such that b 6∝ c and c 6∝ dm+1. Then by (∝↑↑), (∀t ∈⋂
1≤i≤m ↑di) c ∝ t and by the induction hypothesis there exists 1 ≤ j ≤ m

such that c ∝ dj which completes the proof. 2

Definition 4.9 Let X1, X2, and X3 be Priestley spaces equipped with apart-
ness relations ∝1,∝2, and ∝3, respectively. Let n ⊆ X1 ×X2 and n′ ⊆
X2 ×X3 be separating relations. The composition n ◦ n′ ⊆ X1 ×X3 is de-
fined as follows:

(∀ − comp) a n ◦ n′ c def⇐⇒ (∀b ∈ X2) a n b or b n′ c.

The following technical lemma is needed to show that the composition of
two separators satisfies (nn↑):

15
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Lemma 4.10 For every a ∈ X1 and {Ai | 1 ≤ i ≤ n} ⊆ U(X2),

a n
⋂
i

Ai =⇒ (∀x ∈ X1) a ∝1 x or (∃i) x n Ai.

Proof. Suppose by way of contradiction that x ∈ X1 and di ∈ Ai such that
a 6∝1 x and (∀i) x 6n di. On the other hand, we note that a n

⋂ ↑di ⊆
⋂

Ai.
Then by (nn↑) there exists i such that x n di, which is a contradiction. 2

Lemma 4.11 The composition of two separators n and n′ is again a sepa-
rating relation.

Proof. Suppose x n ◦ n′ y and set O = {t ∈ X2 | t ∝2 y}. Then O
is an open subset of X2 with x n (X2 \ O). By Lemma 4.13 below, there
exist U ∈ OT (X1) and V ∈ UT (X2) such that x ∈ U , X2 \ O ⊆ V and
U n V . Therefore (X2 \ V ) n′ y. By applying Lemma 4.13 again, there
exists W ∈ UT (X3) such that y ∈ W and (X2 \ V ) n′ W . Hence U n V and
(X2 \ V ) n′ W implying U n ◦ n′ W . This proves that n ◦ n′ is open and
satisfies (↓1n↑2).

(∀n) is proved as follows. Let x n ◦ n′ y and z ∈ X1 such that x 6∝1 z.
We claim that z n ◦ n′ y. Let t ∈ X2 such that z 6n t. Therefore, by (∀n)
x 6n t, and so t n′ y, by definition of composition. Hence z n ◦ n′ y. (n∀) is
proved similarly.

(nn↑) is proved as follows. In the following let Oi = {t ∈ X2 | t n′ di}.
b n ◦ n′

⋂
↑di =⇒ (∀r ∈ X2) b n r or r n′

⋂
↑di

=⇒ (∀r, t ∈ X2) b n r, r ∝2 t or (∃i) t n′ di, by (nn↑)
=⇒ (∀t ∈ X2) b n t or (∃i) t n′ di, by (n∀)
=⇒ b n

⋂
i

(X2 \Oi) and (∀i) Oi n′ di

=⇒ (∀c ∈ X1) b ∝1 c or (∃i) c n (X2 \Oi)

and Oi n′ di, Lemma 4.10

=⇒ (∀c ∈ X1) b ∝1 c or (∃i) c n ◦ n′ di

2

Lemma 4.12 PSs and PSws are categories.

Proof. For associativity of composition we compute:

x (n ◦ n′) ◦ n′′ y⇐⇒ (∀r ∈ X3) x n ◦ n′ r or r n′′ y
⇐⇒ (∀r ∈ X3)(∀s ∈ X2) x n s, s n′ x or t n′′ y
⇐⇒ (∀s ∈ X2) x n s or s n′ ◦ n′′ y
⇐⇒x n ◦ (n′ ◦ n′′) y.

Identities are given by the internal apartness relations which is a valid choice
by Lemma 4.8. They satisfy ∝1 ◦ n = n and n ◦ ∝2 = n by definition. 2

Let us now turn to the translation between separating and approximable
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relations. For the rest of this section we make the following conventions:

(i) 〈X1;≤1; T1〉 and 〈X2;≤2, T2〉 are Priestley spaces with apartness relations
∝1 and ∝2, respectively. n is a separating relation from X1 to X2.

(ii) 〈L1;∨,∧, 0, 1;≺1〉 and 〈L2;∨,∧, 0, 1;≺2〉 are strong proximity lattices. `
is an approximable relation from L1 to L2.

(iii) For A ∈ Prox (X1) = OT (X1), B ∈ Prox (X2) = OT (X2), A `n B
def⇐⇒

A n (X2 \B).

(iv) For I ∈ Pries(L1) = IP(L1), J ∈ Pries(L2) = IP(L2), I n` J
def⇐⇒

(∃ x /∈ I)(∃ y ∈ J) x ` y.

The following facts are proved similarly to their counterparts earlier in the
paper.

Lemma 4.13 For closed subsets A ⊆ X1 and B ⊆ X2, if A n B then there
exist U ∈ OT (X1) and V ∈ UT (X2) such that A ⊆ U , B ⊆ V and U n V .

Lemma 4.14 (∀a ∈ L1)(∀b ∈ L2) a ` b ⇐⇒ Oa n` Ub.

Theorem 4.15 The relation `n satisfies (` − ≺2), (≺1 − `), (∨− `), (` −∧)
and (` −∨). So it is an approximable relation between Prox (X1) and Prox (X2).

Theorem 4.16 The relation n` satisfies (↓1n↑2), (∀n), (n∀) and (nn↑).
Therefore it is a separating relation between Pries(L1) and Pries(L2).

Lemma 4.17 • x n y ⇐⇒ εX1(x) n`n εX2(y).

• a ` b ⇐⇒ ηL1(a) `n` ηL2(b).

Theorem 4.18 The categories PSs (PSws) and PLa (PLwa) are equivalent
to each other.
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