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Abstract

We put forward a revised definition of stably compact spaces which allows
us to show their equivalence with Nachbin’s compact ordered spaces in an en-
tirely elementary fashion. We then exhibit some constructions for stably compact
spaces which apparently have not appeared in the literature before. These con-
structions allow us to show that the set of (sub-)probability valuations can be
equipped with a topology which turns this set into another stably compact space.
The topology chosen is not random; it is the weakest topology which makes inte-
gration of lower semicontinuous functions a continuous operation.

1 Introduction
This text contains the notes of a talk given at the Bellairs Research Centre in Barba-
dos in April 2003. It is intended to explain the topological background to our work

*Participation in the Barbados workshop was made possible through a travel grant of the School of
Computer Science of the University of Birmingham.
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with Mathias Kegelmann, M. Andrew Moshier, and Philipp Sünderhauf on a continu-
ous version of Domain Theory in Logical Form (a programme introduced in [Abr87]),
published under the heading Multi-lingual Sequent Calculus, [JS96, JKM97, JKM99,
Keg02, JKM01, MJ02, Mos]. From a classical perspective, the Multi-lingual Sequent
Calculus provides logical descriptions for stably compact spaces, and it is this con-
cept which is here developed to some extent. A lot of the material below is not new
but the fundamental facts are somewhat scattered in the literature. It is hoped that
these notes, over time, will be developed into a more comprehensive account of stable
compactness.

One reason why a directly accessible source for information on these topological
spaces is still missing, perhaps, is the fact that they are commonly defined as a cer-
tain class of sober spaces. This points to their prominent role in Stone Duality but
unfortunately makes the subject somewhat specialised for mainstream mathematicians
and computer scientists. Below we will work with an equivalent definition which only
uses the basic concepts of “open” and “compact”. The possibility of such a definition
was recently pointed out in the presentation of the subject in [GHK+03, Section VI-6].
Besides only employing elementary topological concepts, the new definition makes it
clear that stably compact spaces are precisely the T0 analogues of compact Hausdorff
spaces, in particular, they are those T0 spaces in which (saturated) compact subsets
behave as one is used to: They can be intersected arbitrarily, and whenever an inter-
section belongs to an open set so does a finite intersection already. Finally, it is possible
to explain in an entirely elementary fashion the precise relationship between Nachbin’s
compact ordered spaces, [Nac65], and stably compact spaces. This first appeared in
[GHK+80, Exercises VII-1.16-19] and is here carried out in sections 2.1 to 2.3.

In Section 2.5 we present some constructions for stably compact spaces which in
some form or other have surely been observed before but again, it may be helpful to
have them collected together in one place. Our own motivation for studying them is
related to the probabilistic powerspace construction, introduced into the world of Se-
mantics by Saheb-Djahromi, [SD80], and studied from a domain theoretic viewpoint
by a number of authors, [JP89, Jon90, Kir93, Tix95, Hec96, JT98, AM01]. The el-
ements of the probabilistic powerspace are valuations, which are functions assigning
a “measure” to every open set of a topological space. This in itself is sufficient to
define integration of (semi-)continuous functions (for a survey, see [Law]) but the re-
lationship with measures has also been explored, see [AM01] and the article by Klaus
Keimel in this volume.

It was a bothersome aspect of the probabilistic powerspace construction that it
could not be restricted to any of the well-known classes of continuous domains, [JT98],
and this issue remains unresolved. However, the class of stably compact spaces does
support it, and in the second part of this note we present a proof of this fact. It requires
us to define a topology for the set of (probability) valuations which is again stably
compact. Of course, the topology must be meaningful, and indeed, we can show that
it is the weakest topology which makes integration of semicontinuous functions a con-
tinuous operation.
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The author is preparing a paper together with Klaus Keimel which will put the
results presented here in a wider context. This joint work has already influenced the
present text and Klaus Keimel’s suggestions and comments are gratefully acknowl-
edged. Comments from Reinhold Heckmann and Martı́n Escardó have helped to iron
out some unevenness in presentation in an earlier version.

2 Compact ordered and stably compact spaces

2.1 Compact ordered spaces
A partially ordered topological space (or ordered space, for short) in the sense of
Nachbin [Nac65] is a set X with a topology O and a partial order ≤ such that the
graph of the order is closed in X ×X . This captures the (reasonable) assumption that,
for two converging nets xi → x and yi → y, the property xi ≤ yi for all i ∈ I implies
x ≤ y. In terms of open sets, this is equivalent to saying that for any two points x 6≤ y
in X there are open sets U containing x and V containing y such that for every x′ ∈ U
and y′ ∈ V , x′ 6≤ y′ holds. Since x 6= y is equivalent to “x 6≤ y or y 6≤ x”, it follows
that ordered spaces are Hausdorff.

A subset U of X is called an upper (lower) set, if x ∈ U implies y ∈ U for
all y ≥ x (resp., y ≤ x). The smallest upper (lower) set containing a subset A is
denoted ↑A (resp., ↓A). In an ordered space sets of the form ↑x = ↑{x} or ↓x = ↓{x}
are always closed. More generally, one has:

Lemma 1. If A is a compact subset of a partially ordered space (X,O,≤) then ↑A
and ↓A are closed.

Proof. Consider x 6∈ ↑A. For every y ∈ A we have y 6≤ x, so we find open sets
y ∈ Uy, x ∈ Vy where no element of Vy is above any element of Uy. The collection of
all Uy, y ∈ A covers A and by compactness a finite subcollection Uy1 , . . . , Uyn does so
as well. We form the intersection of the corresponding Vyi and obtain a neighbourhood
of x, no element of which is above any element of A. In other words,

⋂n
i=1 Vyi is

disjoint from ↑A.
The claim for ↓A is proved analogously.

Our emphasis in this note is on partially ordered spaces which are compact. In this
case the preceding observation has strong consequences as was first noted by Leopoldo
Nachbin [Nac65]:

Lemma 2. Let (X,O,≤) be a compact ordered space.

(i) (Order normality) Let A and B be disjoint closed subsets of X , where A is
an upper and B is a lower set. Then there exist disjoint open neighbourhoods
U ⊇ A and V ⊇ B where again U is an upper and V is a lower set.
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(ii) (Order separation) Whenever x 6≤ y there exist an open upper set U containing x
and an open lower set V containing y which are disjoint.

(iii) (Order Urysohn property) For every pair A,B of disjoint closed subsets, where
A is an upper and B is a lower set, there exists a continuous order-preserving
function into the unit interval which has value 1 on A and 0 on B.

Proof. By normality of compact Hausdorff spaces, A and B have disjoint open neigh-
bourhoods U ′ and V ′. Observe that X \ U ′ and X \ V ′ are compact subsets of X , so
we can employ Lemma 1 and set U = X \ ↓(X \ U ′) and V = X \ ↑(X \ V ′). Or-
der separation is a special case of order normality, and the order preserving version of
Urysohn’s Lemma follows, as usual, by repeated application of order normality.

2.2 The upwards topology of a compact ordered space
One way to interpret Lemma 2 is to say that there is an abundance of open upper sets
in a compact ordered space. For any ordered space, the set

U := {U ∈ O | U = ↑U}

of open upper sets is a topology coarser than the original one; we call it the topology
of convergence from below or upwards topology for short. The resulting topological
space (X,U) we denote by X↑.

Sets of the formX \↓x always belong to U and therefore every upper set is equal to
the intersection of its U-open neighbourhoods, that is, it is U-saturated. The converse
direction being trivial (i.e., intersections of upper sets are always upper), we thus have:

Proposition 3. In an ordered space the upper sets are precisely the U-saturated ones.

For a general topological space (X,G) one sets x ≤G y if every neighbourhood
of x also contains y. This is always a preorder and it is anti-symmetric if and only if
the space is T0. It is called the specialisation order associated with G. The preceding
proposition tells us that ≤U is precisely the original order ≤ in any ordered space.

In order to analyse the properties of U further in the case where (X,O,≤) is com-
pact, we also consider the set of compact saturated sets:

KU := {K ⊂ X | K is U-saturated and U-compact}

Lemma 4. Let (X,O,≤) be a compact ordered space. The elements of KU are pre-
cisely those subsets of X which are upper and closed with respect to O.

Proof. The upper closed sets of X are U-compact because the topology U is weaker
than O. For the converse we use order separation: Let x 6∈ A ∈ KU. For every y ∈ A
we have y 6≤ x and hence find an open upper set y ∈ Uy and an open lower set x ∈ Vy
which are disjoint. By compactness, finitely many Uy cover A and the intersection of
the corresponding Vy will provide the open neighbourhood of x disjoint from A.
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We now have enough information to show that from U alone we can reconstruct
the original compact ordered space. In general, one considers the patch topology Gp of
a topological space (X,G) by augmenting G with complements of compact saturated
sets. With this terminology we can formulate the following:

Theorem 5. Let (X,O,≤) be a compact ordered space. Then O = Up and ≤ = ≤U.

Proof. Because of Lemma 4, Up is contained in O. It is Hausdorff because of order
separation and therefore the identity map i : (X,O)→ (X,Up) is a homeomorphism.

The possibility to reconstruct the order out of the upwards topology has been re-
marked before.

Since with (X,O,≤), the “upside-down” space (X,O,≥) is also compact ordered,
the results in this section hold equally well for the topology D of convergence from
above or downwards topology. By Lemma 4, its open sets are precisely the comple-
ments of the compact saturated sets of U.

2.3 Stably compact spaces
As it turns out, topologies which arise as upwards topologies in compact ordered
spaces can be characterised intrinsically. We begin with the following observations:

Proposition 6. For a compact ordered space (X,O,≤) the upwards topology U is

(i) T0;

(ii) compact;

(iii) locally compact;

(iv) coherent, that is, pairs of compact saturated sets have compact intersection;

(v) well-filtered, that is, for any filter base (Ai)i∈I of compact saturated sets, for
which

⋂
iAi is contained in an open upper set U , there is an index i0 such that

Ai0 is contained in U already.

Proof. The T0 separation property follows from order separation, (ii) is trivially true
because U is weaker than O, and (iii) is a reformulation of order normality. Coherence
and well-filteredness follow from Lemma 4 which says that the compact saturated sets
of (X,U) are compact subsets in the original Hausdorff space (X,O,≤).

Definition 7. A T0 space which is compact, locally compact, coherent, and well-
filtered is called stably compact.
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In recent literature it has been customary to use “sober” instead of “well-filtered” in
the definition of stably compact spaces. However, in the presence of local compactness
these two properties are equivalent, [GHK+03, Theorem II-1.21]. With this note we
would like to make a case for the revised definition, because it makes it apparent that
stably compact spaces are the T0-analogue of compact Hausdorff spaces, in the sense
that compact saturated sets in the former have the same properties as compact subsets
in the latter.1 The following lemma illustrates this:

Lemma 8. Let (X,U) be a stably compact space. Then any collection of compact
saturated subsets has compact intersection.

Proof. Finite intersections leading again to compact saturated subsets, we can assume
the collection to be filtered. By well-filteredness, an open cover of the intersection will
contain an element of the filter base already. This being compact, a finite subcover will
suffice.

This result justifies the following definition.

Definition 9. Let (X,U) be a stably compact space. The co-compact topology Uκ on
X is given by the complements of compact saturated sets.

The reader is correct in suspecting that the passage to the co-compact topology is an
involution for stably compact spaces. This will follow easily from Theorem 12 and is
recorded as Corollary 13 below. For the moment we consider the following proposition
which is reminiscent of the well-known fact that a compact Hausdorff-topology cannot
be weakened without losing separation.

Proposition 10. Let (X,U) be a stably compact space. Let further B be a subset of U
and C a subset of the co-compact topology Uκ, such that the following property holds:

∀x, y ∈ X. x 6≤U y ⇒ ∃U ∈ B, L ∈ C. x ∈ U, y ∈ L,L ∩ U = ∅ .

Then B is a subbasis for U.

Proof. Let x be an element of an open set O ∈ U. Then by assumption for every y in
X \O there exist disjoint sets Uy ∈ B and Ly ∈ C which contain x and y, respectively.
The complements of the Ly are compact saturated by definition and their intersection is
contained in O. Well-filteredness tells us that the same is true for a finite subcollection
of Ly’s. The intersection of the corresponding Uy is a neighbourhood of x contained
in O.

Corollary 11. Let U and U′ be stably compact topologies on a set X such that ≤U =
≤U′ , U ⊆ U′ and KU ⊆ KU′ . Then U = U′.

1I am indebted to Paweł Waszkiewicz, whose interest in the topic forced me to reconsider the defi-
nition of stable compactness.
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We are now ready to complete the link with compact ordered spaces.

Theorem 12. Let (X,U) be a stably compact space. Consider its patch topology Up

and specialisation order ≤U. Then (X,Up ,≤U) is a compact ordered space. Fur-
thermore, the upwards topology arising from Up and ≤U is equal to U, and the co-
compact topology Uκ is equal to the topology of convergence from above derived from
Up and ≤U.

Proof. The Hausdorff separation property and the closedness of ≤U follow from T0
and local compactness. Compactness of the patch topology requires the Axiom of
Choice in the form of Alexander’s Subbase Lemma: Let B ∪ C be a covering of X
where the open sets in B are chosen from U and the ones in C are complements of
compact saturated sets. The points not covered by the elements of C form a compact
saturated set by Lemma 8 and must be covered by elements of B. A finite subcollection
B′ ⊆fin B will suffice for the purpose. By well-filteredness, then, a finite intersection
of complements of elements of C will be contained in

⋃
B′ already. This completes

the selection of a finite subcover, and we have shown that (X,Up ,≤U) is a compact
ordered space.

The same argument shows that every compact saturated set in (X,U) is also com-
pact in the patch topology.

The specialisation order that one derives from the topology of convergence from
below on the space (X,Up ,≤U) is the same as ≤U by Theorem 5.

We are therefore in the situation described by Corollary 11 and can conclude that
no new open upper sets arise in the patch construction. Lemma 4, then, tells us that the
closed upper sets in (X,Up ,≤U) are precisely the compact saturated sets of U. Hence
the co-compact topology with respect to U is equal to the topology of convergence
from below on (X,Up ,≤U).

Corollary 13. Let (X,U) be a stably compact space.

(i) The co-compact topology Uκ is also stably compact.

(ii) (Uκ)κ = U

2.4 Examples
The prime example of an ordered space is given by the real line with the usual topology
and the usual order. The upwards topology in this case consists of sets of the form
]r,∞[ (plus R and ∅, of course), and non-empty compact saturated sets associated to
this, in turn, are the sets of the form [r,∞[. We denote the real line with the upwards
topology by R↑. Also of interest to us is the non-negative part of this, denoted by R↑+.
One obtains a compact ordered space by either restricting to a compact subset, such
as the unit interval, or by extending the real line with elements at infinity in the usual
way, denoted here by R = [−∞,∞] and R+ = [0,∞].
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In general, one cannot expect a compact ordered space to be fully determined by
its order alone, after all, every compact Hausdorff space can be equipped with a trivial
closed order, namely, the identity relation. The before-mentioned semantic domains,
however, do provide examples where the order structure is rich enough to determine a
non-trivial stably compact topology. We review the definitions: A dcpo (for directed-
complete partial order) is an ordered set in which every directed subset has a supre-
mum. The closed sets of the Scott-topology σD of a dcpo D are those lower sets which
are closed under formation of directed suprema. It follows that a function between
dcpos is continuous with respect to the two Scott-topologies if and only if it preserves
the order and suprema of directed sets. In order to emphasise the dcpo context, such
functions are usually called Scott-continuous.

The specialisation order associated with the Scott-topology, which is always T0,
will give back the original order of the dcpo. An element x of a dcpo D is way-below
an element y (written x � y) if whenever y is below the supremum of a directed set
A ⊆ D, then x is below some element of A. A dcpo D is continuous or a domain if
every element equals the directed supremum of its way-below approximants.

The Scott-topology of a domain is always well-filtered, [Jun89, Lemma 4.12],
and coherence can be characterised in an order-theoretic fashion as well, see [Jun89,
Lemma 4.18], [GHK+03, Proposition III-5.12]. As a special case, coherence holds in
every continuous complete lattice (known as continuous lattice for short). Two exam-
ples are of interest here: The unit interval [0, 1] (or R or R+) is a continuous lattice
and the Scott-topology is precisely the topology of convergence from below, discussed
before. An element x of [0, 1] is way-below y if x = 0 or x < y. The other class of
examples is given by open set lattices of locally compact spaces. Here, the way-below
relation is characterised by U � V if and only if there exists a compact saturated
set K such that U ⊆ K ⊆ V . Stably compact spaces qualify, and their open set lat-
tices have the additional property (not true in general) that U � V1 and U � V2 imply
U � V1 ∩ V2.

The topic of this note is connected to Domain Theory via the Lawson-topology λ,
which is defined as the extension of the Scott-topology with complements of principal
upper sets ↑x. It is easy to see that in a domain every compact saturated set (with
respect to σD) is the intersection of finite unions of principal upper sets, and so in this
context the Lawson-topology is precisely the patch topology derived from σD.

Furthermore, a domain is λ-compact if and only if σD is stably compact. Since
σD always satisfies requirements (i)–(iii) and (v) for a stably compact space as listed
in Proposition 6, it is reasonable to call λ-compact domains coherent. This is the
terminology introduced in [JS96] and adopted in [GHK+03].

Coherent domains have played a significant role in the development of Domain
Theory. Without attempting completeness, we remind the reader of the following ap-
pearances of the concept in the literature. In [Plo76] a very large class of (algebraic)
domains is introduced, called SFP-objects (and later also referred to as bifinite do-
mains). Plotkin’s “2/3 SFP Theorem”, [Plo81], states that coherence accounts for two
of the three defining properties of SFP-domains. In [Jun90], a maximality result is
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shown for cartesian closed categories of domains; coherence is the crucial concept
there. Finally, in [JT98] we showed that the probabilistic powerdomain of a coherent
domain is again coherent. The results in Section 3 below are a direct generalisation of
this but the proof is much simpler.

2.5 Morphisms and constructions
Although theorems 5 and 12 suggest that we can switch freely between compact or-
dered and stably compact spaces, a difference between the two standpoints does be-
come apparent when one considers the corresponding morphisms: neither is a contin-
uous map between stably compact spaces patch continuous, nor is every patch con-
tinuous function continuous with respect to the original topologies. Indeed, it is the
fact that T0-continuous maps arise in applications to Denotational Semantics which
motivates our interest in stably compact spaces.

Nevertheless, a connection between subclasses of continuous maps can be made.
A continuous map f : X → X ′ between locally compact spaces is called perfect if
the preimage f−1(K) of every compact saturated set K ⊆ X ′ is compact in X . The
following is true:

Proposition 14. For locally compact spaces (X,U) and (X ′,U′) a map f : X → X ′ is
perfect, if and only if it is continuous with respect to the patch topologies on X and X ′

and monotone (i.e., order preserving) with respect to the specialisation orders.

In the remainder of this section we study some constructions on spaces and how
they interact with the translations given in theorems 5 and 12.

Proposition 15. Arbitrary products of stably compact spaces are stably compact, and
the product topology equals the upwards topology of the product of the corresponding
compact ordered spaces.

Proof. Let (Xi,Ui)i∈I be any family of stably compact spaces and let (Xi,Oi,≤i) be
the corresponding compact ordered spaces. We prove the second claim because it en-
tails the first. By Tychonoff’s Theorem the product O of the patch topologies Oi is
again compact Hausdorff, and the shape of basic open sets in the product gives im-
mediately that the coordinatewise order ≤ is closed. So (

∏
i∈I Xi,O,≤) is a compact

ordered space.
A basic open set from the product of the Ui is also open in O. For the converse

we employ Proposition 10, where the product of the Ui plays the role of B and the
product of the respective co-compact topologies (Ui)κ plays the role of C in the stably
compact space derived from (

∏
i∈I Xi,O,≤). The separation property is obviously

satisfied because x 6≤ y means xi 6≤ yi for some index i.

Subspaces do not, in general, inherit any of the properties under consideration,
except that the order remains closed. However, we have the following:
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Proposition 16. Let Y be a patch-closed subset of a stably compact space (X,U).
Then Y is stably compact when equipped with the subspace topology U�Y , and (U�Y )p =
Up�Y .

Proof. The subspace (Y,Up�Y ,≤�Y×Y ) is of course again a compact ordered space.
If A is a closed lower set in Y , then its lower closure ↓A in X is again closed as A is
compact in X . This shows that the upper opens of (Y,Up�Y ,≤�Y×Y ) belong to U�Y .
The converse inclusion is trivial.

The second case where we know something about the stable compactness of a
subspace is related to continuous retractions. This fact is mentioned in [Law88] already
but the proof uses a different characterisation of stable compactness.

Proposition 17. Let Y be a continuous retract of a stably compact space X . Then Y
is stably compact.

Proof. Let e : Y → X be the section and r : X → Y the retraction map (both con-
tinuous). We check the defining properties for stable compactness. First of all, Y is
a T0-space because e is injective. The compactness of Y follows from the continuity
of the (surjective) map r. If x ∈ O ⊆ Y , with O open in Y , then r−1(O) is an open
neighbourhood of e(x). Hence there is an open set U and a compact saturated set L
in X such that e(x) ∈ U ⊆ L ⊆ r−1(O). The image of L under r is compact in Y , is
contained in O, and contains the open set e−1(U) which contains x. This proves that
Y is locally compact.

For stability, letK1, K2 be compact saturated sets in Y . We get that e(K1) and e(K2)
are compact in X and hence ↑e(Ki) is compact saturated in X . By the stability of X
the intersection (↑e(K1)) ∩ (↑e(K2)) is compact again. Its image under r is precisely
K1 ∩K2; it is compact in Y by the continuity of r. Well-filteredness is shown in the
same way.

Note that e does not need to be a perfect map in general, so the result is not sub-
sumed by Proposition 16 already.2

3 The probabilistic powerspace

3.1 Valuations
For a topological space (X,G) we consider maps µ : G → R with the following prop-
erties

• µ(∅) = 0 (strict);

• ∀O,O′ ∈ G. µ(O) + µ(O′) = µ(O ∩O′) + µ(O ∪O′) (modular);

2Perfectness of e is guaranteed if e is an upper adjoint. This situation is called an insertion-closure
pair in [AJ94, Section 3.1.5].
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• ∀O,O′ ∈ G. O ⊆ O′ ⇒ µ(O) ≤ µ(O′) (monotone).

Functions of this kind are called (monotone) valuations; they are the elements of mV(X).
We are interested in the case where the following additional property is satisfied

• µ(
⋃
i∈I Oi) = supi∈I µ(Oi) (Scott-continuous)

for all directed families (Oi)i∈I of open sets. If we equip the complete lattice (G,⊆)
with its Scott-topology, and likewise (R,≤) with the topology of convergence from
below, then the continuity of a valuation is just the topological one. We restrict further
by stipulating

• µ(X) = 1 (normalised)

which brings us to continuous probability valuations. We denote the set of all contin-
uous probability valuations by V1(X). Likewise, the condition µ(X) ≤ 1 gives rise to
the set of sub-probability valuations, denoted by V≤1(X).

We equip V1(X) with the topology inherited from the product topology on [0, 1]G,
where [0, 1] carries the upwards topology. For simplicity, we call it the product topol-
ogy and we denote it by P. Likewise, we consider the product order ≤P which is
inherited from the natural order on R.

On stably compact spaces there is a close relationship between monotone and con-
tinuous valuations, a fact which we will make crucial use of in the next section.

Proposition 18. Let (X,U) be a stably compact space and µ : U→ R+ be a valuation.
The following defines the largest continuous valuation below µ in the pointwise order:

Φ(µ)(O) := sup{µ(V ) | V � O}
where V � O means that there is a compact saturated set K such that V ⊆ K ⊆ O.
Furthermore, the operation Φ: mV(X) → mV(X) is idempotent and continuous
with respect to the product topology, and maps (sub-)probability valuations to (sub-
)probability valuations.

Proof. It is clear that Φ(µ)(∅) = 0 holds, and that Φ(µ) is monotone. For the modular
law, we exploit stable compactness which gives us that O∩O′ is approximated by sets
of the form V ∩ V ′ where V � O and V ′ � O′. The continuity of Φ(µ) follows from
its definition.

If ν is any other continuous valuation below µ, then for every O ∈ U we have
ν(O) = sup{ν(V ) | V � O} by local compactness and continuity, hence ν ≤ Φ(µ).

A continuous valuation is kept fixed by Φ because every open set equals the di-
rected union of those open sets way-below it.

In order to see that the operation of making a valuation continuous is itself con-
tinuous with respect to the product topology on mV(X), observe that Φ(µ)(O) is
greater than a real number r, if and only if µ(V ) > r for some V ⊆ K ⊆ O.
Hence the preimage of the subbasic open set {µ ∈ mV(X) | µ(O) > r} equals⋃
V�O{µ ∈ mV(X) | µ(V ) > r}.

The last statement follows immediately from the fact that the whole space X is
compact and open at the same time.
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3.2 The product topology on spaces of valuations
We now have all the tools to show that the product topology restricted to V1(X) is
stably compact. We start with the stably compact space Y =

∏
O∈U[0, 1], where each

copy of the unit interval is equipped with the upwards topology. The corresponding
patch topology is just the product topology of the usual metric topology. The projection
π∅ : Y → [0, 1] is patch-continuous, and hence the preimage π−1∅ (0) is patch-closed
in Y . Likewise for the preimage π−1X (1). Assume O ⊆ O′ ∈ U; then we can use the
projections πO and πO′ to excise the set of tuples µ for which µ(O) ≤ µ(O′). Again,
this is a patch-closed subset of Y . Exploiting the continuity of addition in the usual
topology on R we can restrict further to a patch-closed subset of tuples satisfying the
modular law. By invoking Proposition 16 we have thus shown that the set mV1(X) of
monotone sub-probability valuations on a stably compact space X is stably compact
when equipped with the product topology P. The same is obviously true of mV≤1(X).

Now we can apply the continuous retraction Φ from Proposition 18 to conclude
with the help of Proposition 17:

Theorem 19. The set V1(X) of continuous probability valuations on a stably compact
spaceX is stably compact when equipped with the product topology P. The same holds
for V≤1(X).

For the remainder of this paper we restrict ourselves to continuous valuations and
we ask whether the product topology can be characterised in other ways. Specifically,
we will compare P with weak topologies which arise as the initial topologies making
certain test functions γ : V(X) → R continuous. For example, every open set O ∈ U

gives rise to a test function γO : V(X) → R↑+ which evaluates a valuation at O. Of
course, these maps are just the projections πO, which we considered above, and the
product topology is the initial topology making all γO, O ∈ U, continuous.

More interestingly, let LSC(X) denote the set of lower continuous functions on (X,U)
into the extended non-negative reals. A number of authors, [Jon90, Kir93, Tix95,
Hec96], have given definitions (of increasing generality) of an integral for lower semi-
continuous functions with respect to continuous valuations. The definitions by Tix
and Heckmann are directly applicable to stably compact spaces, and give the same
result, [Hec96, page 197] (see also [AM01, Section 6.3]). Thus every lower semicon-
tinuous function f : X → R↑+ gives rise to a test function γf : V(X) → R↑+ by set-
ting γf (µ) :=

∫
fdµ. The following is now entirely straightforward to show ([Kir93,

Satz 8.5], [Tix95, Lemma 4.9], [Hec96, Theorem 8.3]):

Theorem 20. The product topology restricted to V1(X) and V≤1(X), respectively, is
equal to the weak topology arising from the test functions γf for f ∈ LSC(X).

In other words, a net (µi)i∈I of valuations converges to a valuation µ with respect
to P, if and only if the values of the integrals

∫
fdµi converge to

∫
fdµ in R↑+ for every

lower semicontinuous function f : X → R↑+.
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A subbasis for the product topology on V1(X) is given by sets of the form

[O > r] := {µ ∈ V1(X) | µ(O) > r}

where O ∈ U and r ∈ R. This is the starting point for the logical description of the
probabilistic powerspace construction carried out in [MJ02]. The fact that the sets

[K ≥ r] := {µ ∈ V1(X) | ∀O ∈ U. K ⊆ O ⇒ µ(O) ≥ r}

where K ∈ KU and r ∈ R, are a subbasis for the set of compact saturated sets in
(V1(X),P), is also important for the smooth working of the logical framework. Of
course, these two observations are also true for V≤1(X).

The natural order between valuations, µ 4 ν iff ∀O ∈ G. µ(O) ≤ ν(O), can
easily be shown to be directed-complete, and it therefore makes sense to study the
Scott-topology on V1(X). It is shown in [Tix95] that for domains D with their Scott-
topology this, too, yields the weak topology in the sense above. It follows that for co-
herent domains the product topology is given order-theoretically as the Scott-topology.
On a general stably compact space this need not be so:

Example 21. For X = {0, 1}, equipped with the discrete topology, the set of proba-
bility valuations is in one-to-one correspondence with the unit interval. The product
topology is the same as the usual metric topology on [0, 1] but the order is identity and
so the Scott-topology is discrete.

For sub-probability measures the order on V≤1(X) is never trivial, and so equality
between product and Scott-topology may hold in general. We leave this as an open
problem.3
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