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Modern algebra also enables one to reinterpret the results of classical algebra, giving them

far greater unity and generality.

G. Birkhoff and S. Mac Lane, A Survey of Modern Algebra,

Macmillan, New York, 1965





Abstract

A category CoLog of distributive laws is introduced to unify different approaches to

modal logic for coalgebras, based merely on the presence of a contravariant functor P

that maps a state space to its collection of predicates. We show that categorical

constructions, including colimits, limits, and compositions of distributive laws as

a tensor product, in CoLog generalise and extend existing constructions given for

Set coalgebraic logics and that the framework does not depend on any particular

propositional logic or state space.

In the case that P establishes a dual adjunction with its dual functor S , we show that

a canonically defined coalgebraic logic exists for any type of coalgebras. We further

restrict our discussion to finitary algebraic logics and study equational coalgebraic

logics. Objects of predicate liftings are used to characterise equational coalgebraic

logics.

The expressiveness problem is studied via the mate correspondence, which gives an

isomorphism between CoLog and the comma category from the pre-composition to

the post-composition with S . Then, the modularity of the expressiveness is studied in

the comma category via the notion of factorisation system.
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Preface

This paragraph is left empty intentionally.

Structure of Thesis

The main theme of this thesis is explained in Chapter 1.

Chapter 2 consists of an introduction to coalgebras over Set, Hennessy-Milner logic,
coalgebraic modal logics over Set, and the motivation for generalising coalgebraic
logics. There are barely any new insights in this chapter but mostly existing or slightly
improved results or proofs. We will revisit coalgebras in Chapter 4.

Chapter 3 provides the necessary categorical machinery used throughout this thesis.
We present factorisation systems and notions related to Kan extension. A section
on foundations is included to clarify the difference between set-based functors and
finitary functors, and to present to an improper notion of Set-functor.

In Chapter 4, we ‘re-invent’ the theory of coalgebras using factorisation systems and
a new operation inspired by the generalised product of Kripke frames. The second
section of this chapter contains a categorical transfinite induction for constructing the
language of logics and free monads. The third section is mainly a re-working of sifted
colimit-preserving functors in elementary category theory for presenting equations in
logics.

Chapter 5 is the core of this thesis. We study a category of coalgebraic logics to unify
the many different approaches that exist in the literature. See the Introduction for
more details. Most of this material is—to the best of my knowledge—completely
original.

Conventions

Contributions, or what’s new?

If a ‘cf.’ appears with a pointer to the literature, then this indicates that a similar notion
or a result exists but here it is different, improved, or (maybe trivially) generalised;
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similarly a ‘see’ with a pointer indicates an unoriginal result, though we may have a
different, sometimes simplified, argument. Where there is no annotation, this means
that the result is either trivial or well-known, or otherwise, original to this thesis.

For example, the notion of (co)algebras for an endofunctor first appeared in the 1960s,
as Richard Bird said in his book [27]:

. . . The notion of F-algebras first appeared in the categorical literature
during the 1960s, for instance in (Lambek 1968 [78]). Long before the
applications to program derivation were realised, numerous authors e.g.
(Lehmann and Smyth 1981; Manes and Arbib 1986) pointed out the
advantages of F-algebras in the area of program semantics. . . .

Basic properties of coalgebras for an endofunctor are very well-known in its dual form,
for example

‘Let T be a Set endofunctor. The forgetful functor SetT → Set creates
colimits. In particular, SetT is cocomplete.’

However, a complete proof is not easy to find in the literature, or it is only sketched
briefly, as in [19]. In such a case, we do not place a pointer in this proposition, but
neither do we claim credit. Instead, we give a complete proof, if helpful. As for
another well-known result dating back 1968—the Lambek’s Lemma:

‘For any endofunctor T , every final coalgebra is an isomorphism.’

the proof is widely available and the source is also well-known. In such a case, we
only sketch it.

Assumptions

� Any assumptions that are meant to remain in force for the reminder of a chapter
(a section, or a subsection) will be marked by a dangerous-bend symbol, as in

this paragraph.

Typefaces

Bold typeface is used for new terms in formal definitions; however, such terms may be
used before the formal declaration and in such cases are set in italics. For example,

. . . transition systems are coalgebras for the covariant powerset functor.

. . . Formally a coalgebra is a function from X to TX for some endo-
functor T . . .



Typefaces for Mathematics

The formal script typeface, e.g. C ,D , is used for categories, and every specific name
for a category is in sans-serif type face, e.g. Set,Top, and Pos. The calligraphic font
is mostly used for named functors, e.g. the powerset functor P , the identity functor I ,
and the Yoneda embedding Y .

Objects of a category C are denoted by lower case letters c,d, . . .; if a category C is
concrete, then instead objects are in upper case C,D, . . . and elements are in lower
case c, . . . ∈ C.

Monads are mostly typed in blackboard boldface. For example, a monad will be
indicated by M = (M,η,µ) or just M, and the symbol for an arrow L→M between
monads, although a natural transformation, is different from that for a general natural
transformation L ˙−→M .

Notations

Hom-set The hom-set from an object c to an object d in a category C is indicated
by

Hom(c,d) or C (c,d).

The collection of natural transformations between functors F,G : C →D is
indicated by Nat(F,G) or [C ,D ](F,G) where [C ,D ] is the notation for the
functor category from C to D .

Natural numbers are sets. Every natural number n is a set and consists of exactly n-
many elements {0, . . . ,n− 1}. E.g. 0 = ∅, 1 = {0} = {∅}.

One element set: 1 = {0} = {∗} = {X}. As stated above, 1 is {0}, but to avoid
confusion we also use ∗ or X to indicate the unique element in 1.

Two element set For similar reasons, 2 = {0,1} = {⊥,>}.
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Chapter 1

Introduction

The aim of this thesis is to provide a unified and novel framework for coalgebraic
modal logics in a point-free style. We introduce a category CoLog consisting of
one-step interpretations of coalgebraic modalities as objects and pairs of a translation
of modalities and a transformation of coalgebras as morphisms. It is based on the
observation by Kupke et al. in [65] that modalities can be formulated as natural
transformations of type LQ ˙−→QT for the contravariant powerset functor Q and an
endofunctors T for the type of coalgebras and an endofunctor L on the category of
Boolean algebras for encoding the syntax.

Our framework is parametric in the contravariant functor P : X →A mapping from
the ‘state’ category X to the ‘logical’ category A of predicates. The full strength of
our results, however, relies on P establishing a dual adjunction. The category CoLog
accommodates different proposed coalgebraic logics, such as Moss’ cover modality
and Pattinson’s predicate liftings, and it allows us to combine these approaches in a
uniform way.

Our development does not depend on any assumptions such as concreteness of
coalgebras, the use of propositional calculus, or the functor T being finitary functors.
For equational coalgebraic logics, the strongest assumption we do use is that the
models of propositional logic form a single-sorted variety, although a many-sorted
variety may be used as demonstrated in [75].

Despite its generality, the category CoLog faithfully represents various notions and
constructions in the literature. For example, the fusion of coalgebraic modal logics
is a coproduct, and the composition is a tensor product. It also provides the setting
for other novel constructions such as limits of coalgebraic modal logics. A seemingly
useless logic for coalgebras of the identity functor plays an essential role in composition
and it makes CoLog a monoidal category. This fact only became apparent within the
categorical formulation.

The category itself gives birth to a family of categories indexed by types of coalgebras,
and every such a category consists of families of modalities for a specific type functor T ,
denoted by CoLogT in Chapter 5. By standard categorical techniques, we obtain the
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2 Chapter 1 Introduction

canonically defined and most expressive coalgebraic modal (resp. equational) logic, and
we characterise its equational version in terms of generalised predicate liftings. A
category of multi-step interpretations is also born from CoLog, which is tentatively
proposed to be a categorical formulation of coalgebraic modal logics involving multi-
step behaviours. A multi-step interpretation enables us to describe coalgebras for
comonads instead of functors, and a free construction is given to construct a multi-step
interpretation from a one-step interpretation without using transfinite induction, as
one might have expected. Due to its complexity, we leave this line of research for
future work. We suggest that CoLog is the right level of abstraction for coalgebraic
logic.

Due to the generality of our framework, however, we have to give a detailed background
of category theory beyond Mac Lane’s textbook and ‘re-invent’ the theory of coalgebras
without using points. The most important technique throughout this thesis is probably
the Kan extension. Other notions in category theory such as density presentation will
be re-worked in ordinary category theory. As for coalgebras, the usual formulation of
behavioural equivalence (also known as bisimilarity under a certain condition) relies
on the concreteness of the underlying structure of coalgebras or a regular category
where categorical relations are well-behaved. To achieve generality, we characterise
behavioural equivalence using factorisation systems and show that it still has the
coinduction principle (under mild conditions). Of course, it also covers the classical
theory of coalgebras over Set.

To set the scene, we begin with a chapter on the recapitulation of the field of coalgebras
and coalgebraic logics. This will serve as the main source of examples and motivations
for subsequent chapters. We hope that this chapter will be a pleasing tour for both
experts and beginners alike.



Chapter 2

Recapitulation

In this chapter, we present a tour on coalgebras and coalgebraic logics from a
traditional point of view covering transition systems, homomorphisms, bisimulations,
colimit constructions, etc.

We walk through various examples and notions using the language of elementary cat-
egory theory, for example, categories, functors, natural transformations, etc. Everything
we use may be found in any textbook such as [6, 31, 81].

The coalgebraic approach in theoretical computer science has proved to be effective
and inspirational. As we will exhibit in Section 2.1, many state-based transition
systems can be modelled as coalgebras parametric in endofunctors of Set, and generic
constructions exist for every type of coalgebra (under reasonable assumptions). In
Section 2.2, we introduce modal logic briefly as a natural logic for describing Kripke
frames viewed as coalgebras. In Section 2.3, we generalise classical modal logic
to coalgebraic modal logics (parametric in types of Set coalgebra) via Moss’ cover
modality [82, 83] and Pattinson’s predicate liftings [88, 89].

� In this chapter, T : Set→ Set always denotes an endofunctor of Set.

2.1 Coalgebras in Set

Definition 2.1.1. A Set coalgebra of T is a function ξ : X → TX for some carrier
set X, denoted 〈X,ξ〉. The functor T is called the type of 〈X,ξ〉. A coalgebra
homomorphism f : 〈X,ξ〉 → 〈Y ,γ〉 between coalgebras is a function f : X → Y
such that the diagram

X
ξ
//

f
��

TX

T f
��

Y γ
// T Y

commutes.

3



4 Chapter 2 Recapitulation

It is easy to check the following:

Proposition 2.1.2. The collection of T -coalgebras with coalgebra homomorphisms and
usual function composition forms a category, denoted SetT .

Each SetT has a forgetful functor SetT → Set mapping a coalgebra 〈X,ξ〉 to its
carrier X and a coalgebra homomorphism f : 〈X,ξ〉 → 〈Y ,γ〉 to the underlying
function f ; we leave the functor unnamed.

Despite the simplicity of the concept of coalgebras, there are plenty of interesting
examples. We will illustrate constructions and notions using these examples throughout
this chapter.

Example 2.1.3. Let I denote the identity functor. The following are examples of
T -coalgebras:

1. Let A be any set and consider T ..= A × I . Then a T -coalgebra consists of
a function ξ from X to A ×X. Each element of X gives rise to a countably
infinite sequence (ai)i∈N where ai ∈ A. Conversely, given a set of such sequences,
then we can construct a set X and a function ξ : X → A ×X such that the
associated set of streams consists of all the given sequences together with their
tails. Similarly, a T -coalgebra gives rise to a set of streams or lists over A.

2. Again, assume that A is a set and T ..= (1 +A × I × I ). Then a T -coalgebra
consists of a set X and a function ξ : X→ 1+A×X×X. Each element of X gives
rise to an ordered binary tree with labels over A. It is called ordered because the
node 〈a, t1, t2〉 is distinct from 〈a, t2, t1〉. To get unordered trees, let TX be the
quotient of X×X under the equivalence relation generated by 〈x1,x2〉 ∼ 〈x2,x1〉
for every x1,x2 ∈ X. Then, every (1 + A × T )-coalgebra generates a set of
unordered binary trees with labels.

3. Let DA ..= 2 × (−)A for some set A, where (−)A is the A-fold product. DA-
coalgebras are deterministic automata over alphabets A. EachDA-coalgebra 〈X,ξ〉
may be viewed as a pair of functions a : X→ 2 = {0,1} and δ : X→ XA where
a is the characteristic map of the set of accepting states {x ∈ X | a(x) = 1 } and
δ is the transition function of the automaton. In particular, a deterministic finite
state automaton is a DA-coalgebra with an element in the carrier as its initial
state and a finite carrier. A more detailed treatment of this example can be
found in [94].

4. Kripke frames, unlabelled transition systems, or relations, are coalgebras of the co-
variant powerset functor, denoted P , that is, because every relation→⊆ X ×X
defines a function from X to the powerset of X:

fR : x 7→ {x′ ∈ X | x→ x′ } (2.1)

and vice versa. For a fixed set Φ of atomic formulae, recall that Kripke models
over Φ are triples consisting of a Kripke frame 〈X,ξ〉 and a valuation X→PΦ .
They are coalgebras of the functor P ×PΦ .



Chapter 2 Recapitulation 5

5. Labelled transition systems (LTS for short) are coalgebras of the functor P (A×−).
Denoted 〈X,A,→〉, they are traditionally defined as a relation→⊆ X ×A×X
and 〈x,a,x′〉 in → is written as x

a−→ x′ . A P (A × −)-coalgebra ξ defines a

relation→ by x
a−→ x′ if and only if 〈a,x′〉 ∈ ξ(x).

6. Transitions may be weighted according to a probability distribution (with a finite
support), and we obtain the following. Define the discrete distribution functor D
on a set X by

DX ..= {µ : X→ [0,1] |
∑
x∈X

µ(x) = 1, and µ has finite support }

where the support of µ is the nonzero valued set {x ∈ X | µ(x) , 0 }; and maps
a function f : X → Y to a function Df : DX →DY sending any distribution
µX : X→ [0,1] to a distribution on Y by

Df (µX) : y 7→
∑
f x=y

µX(x).

The distribution Df (µX) has finite support, because µX does. D-coalgebras
are finitely-branching discrete-time Markov chains. An extensive treatment of this
example can be found in [101].

More examples can be found in, e.g. [52, 95] for general Set coalgebras, [47] for
neighbourhood frames, and [100, 106] for coalgebras of probability distribution
endofunctors.

2.1.1 Generic Constructions

One of the benefits of the coalgebra abstraction is the series of constructions uniformly
available for all kinds of structures. To start with, colimits in SetT are inherited
from Set:

Proposition 2.1.4. The forgetful functor SetT → Set creates colimits. In particular,
SetT is cocomplete.

Proof. Let F : D → SetT be a diagram in SetT . We want to show that ColimF exists
in SetT . Denote the forgetful functor SetT → Set by | − |. Since Set is cocomplete,
there exists a limiting cocone of |F|, denoted by 〈C,µ : F ˙−→C〉. Define a cocone v
from |F| to the set TC by

vi : |Fi |
Fi−−−−−−−→ T |Fi |

T µi◦Fi−−−−−−−−−−−→ TC,
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for each i ∈D so that there exists a unique function from C to TC satisfying

|Fi |

Fi
��

µi
// C

k
��

T |Fi | T µi
// TC,

(2.2)

i.e. a T -coalgebra on C such that the limiting cocone µ consists of coalgebra homo-
morphisms by (2.2).

It is not hard to see that 〈C,k〉 with µ is a limiting cocone: Let v : F ˙−→〈X,ξ〉 be a
cocone from F to some coalgebra 〈X,ξ〉. Consider the diagram

|Fi |
µi

""

Fi
��

vi // X

ξ
��

T |Fi | T vi

T µi ""

C

k
��

//

ρ
==

TX

TC
T ρ

<<

where ρ is the mediating function from C to X of the cocone v. It remains to show
that T ρ ◦ k = ξ ◦ ρ, but it follows from the fact that ξ ◦ ρ is the unique function of
the cocone ξ ◦ v and for each i, we have T ρ ◦ k ◦ µi = ξ ◦ vi by chasing the above
diagram.

For example, the coproduct of two deterministic automata 〈X1,ξ1〉 and 〈X2,ξ2〉 is
simply an automaton with the disjoint union X1 +X2

..= { (i,x) | x ∈ Xi } as the state
space and a transition function ξ defined by

ξ(i,x) = ξi(x).

In the following discussion, we will see many applications of colimit constructions in
different occasions.

2.1.2 Behavioural Equivalence and Bisimilarity

Definition 2.1.5. Let x and y be elements in T -coalgebras 〈X,ξ〉 and 〈Y ,γ〉 re-
spectively. We say x and y are behaviourally equivalent if there is a pair of

homomorphisms 〈X,ξ〉
f
−→ 〈Z,ζ〉

g
←− 〈Y ,γ〉 such that f x = gy.

This is one coalgebraic generalisation of the classical notion of bisimilarity and was
first coined by Kurz [73] in the form of an epi cospan in the category of coalgebras.

Coalgebra homomorphisms, by definition, preserve the coalgebraic operations of every
coalgebra, similar to the situation in universal algebras:
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Proposition 2.1.6. For every coalgebra homomorphism f : 〈X,ξ〉 → 〈Y ,γ〉 and every
x ∈ X, x and f x are behaviourally equivalent.

By Proposition 2.1.4, two different coalgebras may be joined, so we may consider
behavioural equivalence on a single coalgebra. Then, we can show that behavioural
equivalence is an equivalence relation on the carrier set:

Proposition 2.1.7. Let x and y be elements of a coalgebra 〈X,ξ〉. Then x and y are
behaviourally equivalent if and only if there is a coalgebra homomorphism f from 〈X,ξ〉
such that its kernel Bf ..= { (x1,x2) ∈ X ×X | f (x1) = f (x2) } contains (x,y).

Proof. By definition, x and y are behaviourally equivalent if x Bf y.

Conversely, suppose that x and y are behaviourally equivalent, witnessed by f ,g : 〈X,ξ〉⇒
〈Y ,γ〉 with f (x1) = g(x2). Then, by Proposition 2.1.4, we have the coequaliser h of f
and g , and (x1,x2) are contained in the kernel of hf = hg .

Remark 2.1.8. For a direct formulation of Bf in the previous proposition, we may use
the following characterisation: An equivalence relation B ⊆ X ×X is a kernel of some
coalgebra homomorphism if and only if for any x and y

x B y =⇒ Tπ ◦ ξ(x) = Tπ ◦ ξ(y) (2.3)

where π : X→ X / B is the projection mapping x to its equivalence class.

Another formulation of bisimulation used widely in the earlier literature, e.g. [4, 83], is
defined as follows. A (T -)bisimulation (in a coalgebraic sense) is a relation R ⊆ X×Y
such that there exists a T -coalgebra with carrier R such that projections πX : R→ X
and πY : R→ Y are coalgebra homomorphisms:

R
πX

||

πY

""��

X

ξ
��

TR

TπX
||

TπY
""

Y
γ
��

TX T Y

(2.4)

Two elements are said to be bisimilar if there exist a bisimulation relating them.
Behavioural equivalence and bisimilarity in the coalgebraic sense are defined to unify
existing notions of bisimilarity for transition systems and other dynamical systems
over Set and their difference is quite minor:

Proposition 2.1.9. The following statements hold:

1. Any two bisimilar elements are behaviourally equivalent.

2. Conversely, any two behaviourally equivalent elements are bisimilar, provided that
the type functor preserves weak pullbacks.
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A direct computation of (2.4) gives the following formulation, which will allow us to
link the coalgebraic concept to the traditional counterpart.

Proposition 2.1.10. A relation R ⊆ X ×Y is a bisimulation if and only if

x R y =⇒ ∃z ∈ TR .
[
ξ(x) = TπX(z) and γ(y) = TπY (z)

]
(2.5)

where πX ,πY are canonical projections from X ×Y to X and Y respectively.

Example 2.1.11. In the following examples, listed in the same order as Example 2.1.3,
〈X,ξ〉 and 〈X,γ〉 always denote coalgebras of the specific type and R ⊆ X × Y is a
relation between the carrier sets.

1. For stream coalgebras, bisimulations between ξ : X→ A×X and γ : Y → A×Y
are relations R such that for every x and y, x R y implies that ξ(x) = 〈a,x′〉
and γ(y) = 〈a,y′〉, with the same label a ∈ A, and 〈x′, y′〉 ∈ R. It follows that the
elements x and y generate the same stream. The stream structure is defined on
the bisimulation R by setting 〈x,y〉 7→ 〈a,〈x′, y′〉〉.

2. For tree coalgebras, a bisimulation is a relation satisfying the property that t Ru
implies either

(a) ξ(t) ∈ 1 and γ(u) ∈ 1; or

(b) ξ(t) = 〈a, t1, t2〉 and γ(u) = 〈a,u1,u2〉 with t1 R u1 and t2 R u2.

As in the previous example, it follows that related elements generate the same
labelled tree.

3. For deterministic automata, a bisimulation is a relation R such that xRy implies

(a) x is an accepting state if and only if y is, i.e. ξ1st(x) = γ1st(y);

(b) for every letter a ∈ A, the a-transition of x is related to the a-transition of
y, i.e.

x

a
��

R y

a
��

x′ R

��

y′

��

...
...

It follows that bisimilar states accept the same language.

4. As for Kripke frames, the coalgebraic definition boils down to the usual bisimu-
lation: A bisimulation is a relation R such that x R y implies

(a) for every x′← x, there is y′← y with x′ Ry′ ; and conversely

(b) for every y′← y, there is x′← x with x′ Ry′ .
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5. As for A-labelled transition systems, the situation is similar to the above: A
bisimulation is a relation R such that x R y implies that for all a ∈ A

(a) for every x′
a←− x, there is y′

a←− y with x′ Ry′ ;

(b) for every y′
a←− y, there is x

a←− x′ with x′ Ry′ .

6. As for finitely-branching discrete-time Markov chains, a bisimulation is a re-
lation R such that x R y implies there is a distribution ν : X ×Y → [0,1] such
that

µx(x
′) =

∑
y∈Y
{ν(x′, y) : x′ Ry } and µy(y′) =

∑
x∈X
{ν(x,y′) : x R y′ }

where µx = ξ(x) and µy = γ(y).

Staton [102] compares four formulations of coalgebraic bisimulation, including T -
bisimulation (AM-bisimulation op. cit.) and behavioural equivalence (kernel bisimula-
tion op. cit.), and the latter is the most liberal we have known so far.

2.1.3 Final Coalgebras

A final coalgebra 〈Z,ζ〉 is a final object in SetT , i.e. for every T -coalgebra 〈X,ξ〉
there exists a unique coalgebra homomorphism (−)† : 〈X,ξ〉 → 〈Z,ζ〉. It follows that
every element in a T -coalgebra 〈X,ξ〉 is mapped to a unique element in Z :

Proposition 2.1.12. Suppose that the final coalgebra exists. Let x and y be two elements
of a coalgebra 〈X,ξ〉. The following are equivalent:

1. x and y are behaviourally equivalent.

2. x† = y†.

The above proposition is the coinduction principle. For example, in order to show
that states in an automaton accept the same language, it suffices to show that they
are bisimilar [94]. In non-well-founded set theory, to show that two sets are equal, it
suffices to show that the roots of corresponding tree representations are bisimilar [3,
21].

Example 2.1.13. The following examples of final coalgebras are listed in the same
order as in Example 2.1.3:

1. The collection of countably infinite sequences over A, denoted Aω, can be given
a stream structure s by shifting: for any x = (xi)i∈N

(sx)i = xi+1
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where we write sx for s(x) for simplicity. For every stream coalgebra 〈X,ξ〉, the
A-sequence associated with each element in X provides the unique coalgebra
homomorphism from 〈X,ξ〉 to Aω. The situation for (1 +A × I )-coalgebras
is similar: First a final coalgebra is given by A∞ ..= A∗ ∪Aω where A∗ is the
collection of finite sequences. The coalgebraic structure maps non-empty lists
and streams to their tails as before, and the empty list is mapped to the unique
element in 1 = {0}.

2. The collection of all ordered binary trees with labels from A,1 denoted OTA,
also forms a (1+A×I ×I )-coalgebra in a natural way. Define a structure map ζ
as follows:

ζ(t) =

0 if t is a leaf,

〈a, t1, t2〉 if t has label a with t1 on the left and t2 on the right.

Clearly, each (1+A×I ×I )-coalgebra 〈X,ξ〉, has a homomorphism to 〈OTA,ζ〉
as we know that each element in X represents a tree. From the definition of
homomorphism, any homomorphism f from 〈X,ξ〉 to 〈OTA,ζ〉 must be the
same.

3. Let L denote the set of all formal languages over A, i.e. collections of finite
sequences over A. The derivative operation, i.e. La = {w : aw ∈ L } for L ∈ L
and a ∈ A, defines a deterministic automaton ζ : L→ 2×LA by

ζ1st(L) =

1 ε ∈ L,
0 otherwise

and ζ2nd(L)(a) = La.

Given a deterministic automaton 〈X,ξ〉 over A, each state x is in association
with a language L ∈ L accepted by x, and the association is, in fact, the unique
homomorphism from 〈X,ξ〉 to 〈L,ζ〉.

4. For Kripke frames and labelled transition systems, final coalgebras cannot exist.
See below.

5. For discrete time Markov chains, see [84, 101].

We notice that types of streams, ordered trees, and automata are built upon on
constants (e.g. A), identities I , products ×, coproducts +, and exponents (−)A with a
fixed set A. A functor defined in this way is called polynomial and in fact this class
of functors has a nice property, which will be a corollary of Proposition 2.1.33:

Proposition 2.1.14. Every polynomial functor has a final coalgebra.

However, not every category of coalgebras has a final coalgebra. First we note that
every final coalgebra ζ : Z→ TZ is a bijection, an isomorphism in Set:

1 We assume that there is a canonical presentation for ordered binary trees. It can be obtained by a
final sequence introduced in Chapter 4.
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Lemma 2.1.15 (Lambek’s Lemma [78]). For any endofunctor T : C → C , every final
coalgebra ζ : Z→ TZ (if any) is an isomorphism in C .

Proof. Consider the following diagram

Z

ζ
��

1Z = !◦ζ

��

ζ // TZ

T ζ
��

! // Z

ζ
��

TZ

1TZ = T (1Z ) = T !◦T ζ = ζ ◦ !

OO
T ζ // T TZ T ! // TZ

showing that ζ is an isomorphism by uniqueness and the right commutative square.

Then, by Cantor’s diagonal argument, we know that PX � X and it follows that:

Corollary 2.1.16. There is no final coalgebra for the covariant powerset functor.

One way to remedy this situation is to restrict the powerset functor to its finitary part:
Every Set functor T has a finitary coreflection, i.e. there exists an endofunctor Tω
determined by finite sets only and a natural transformation Tω ˙−→T (satisfying the
universal property of coreflection).2 A particular definition for Set functor will be
given in the following and a general definition will be given in Chapter 3.

We say that a functor T is finitary if for every set X, the set TX is equal to the
following directed union:

TX =
⋃
{T ι[T S] ⊆ TX | ι : S ⊆ω X }. (2.6)

Example 2.1.17. Consider the covariant finitary powerset functor Pω, i.e. PωX consists
of the finite subsets of X and for every function f : X→ Y , Pωf is equal to P f . Since
a finite subset is obviously a subset, we have an inclusion PωX ↪→PX natural in X.

Here is the classic result in the coalgebra theory:

Theorem 2.1.18 (see [19, 109]). A T -final coalgebra of T exists, if T is finitary.

Remark 2.1.19. Another way to have a final coalgebra for the covariant powerset
functor is to consider the category SET of classes instead: Aczel and Mendler [4] show
that every SET endofunctor determined on sets (called set-based op. cit.) has a final
coalgebra.

2Indeed, every functor on locally finitely presentable categories has a finitary version. We will
discuss this in Chapter 3.
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These two approaches (set-based vs. finitary) are essentially the same [17]. In ZF
set theory, a class is an informal notion and we may interpret it in a Grothendieck
universe, i.e. a set closed under set-theoretical operations, whose existence is equal
to the existence of a (strongly) inaccessible cardinal.3 Finitary Set endofunctors
are interpretations of set-based SET endofunctors in the first infinite inaccessible
cardinal ℵ0 (or ω). We will discuss this foundation issue in Section 3.5.

2.1.4 Homomorphism Factorisation

Every function (in Set) is a composite of an injection and a surjection. Similarly, the
factorisation also holds for coalgebras. In [95], it is shown under the assumption that
the type functor preserves weak pullbacks, but in fact it holds for every type:

Proposition 2.1.20. The following statements are true for any Set functor T :

1. T preserves surjections;

2. T preserves injections with a non-empty domain.

Every (Surjections,Injections)-factorisation of functions can be lifted to the category
of T -coalgebras: Recall that every function f : X→ Y can be written as a composite
of a surjection e : X� f X and an inclusion m : f X ↪→ Y , where we write f X for the
image of X under f . Further, the factorisation is orthogonal :

Proposition 2.1.21. Let m : X→ Y be an injection and e : A→ B a surjection. For every
function u,v with ve = mu, there exists a unique function w satisfying the following
diagram:

A e // //

u

��

B

w

��

v

��

X // m
// Y

(2.7)

Proof. By commutativity and the surjection e, v[B] = ve[A] = mu[A]. It follows
that v(b) ∈m[X], so define a function w from B to X by composing v with the left
inverse m−1 : m[X]→ X of m. It is easy to see the uniqueness.

The factorisation of Set can be lifted to SetT :

3 See Definition 3.5.3.
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Corollary 2.1.22. For any coalgebra homomorphism f : 〈X,ξ〉 → 〈Y ,γ〉, the following
diagram

X e // //

ξ

��

f

��

f X

ξ ′

��

// m // Y

γ

��

TX T e //

T f

OOT (f X) // Tm // T Y

(2.8)

commutes, i.e. m and e are coalgebra homomorphisms. Also, the factorisation given by
classes of injective homomorphisms and surjective homomorphisms has the diagonal fill-in
property as in Proposition 2.1.21.

Proof. In the case of coalgebra homomorphisms with a non-empty domain, the
injection m always has a non-empty domain, so it follows by Proposition 2.1.20 and
Proposition 2.1.21. As for the homomorphism with an empty domain, the factorisation
must be trivial, so ξ ′ is equal to ξ .

By applying the above factorisation to the unique homomorphism from a given
coalgebra 〈X,ξ〉 to the final coalgebra (if any) we will obtain a coalgebra in which any
two distinct elements are not behaviourally equivalent.

2.1.5 Preservation of Injections

Although Set endofunctors do not preserve injections in general, the restriction to the
class of injection-preserving functors does not affect the coalgebra theory at all due to
the following facts:

Proposition 2.1.23 (see [13, p. 134]). For every functor T : Set→ Set, there exists an
injection-preserving functor T ′ : Set→ Set and they are equal on the subcategory Set,∅
consisting of non-empty sets.

Corollary 2.1.24. For every functor T : Set→ Set, there exists an injective-preserving
functor T ′ such that the category of T -coalgebras is isomorphic to the category of T ′-
coalgebras.

Proof. There is only one T -coalgebra over the empty set, i.e. the empty function ∅→
T ∅. Then, using Proposition 2.1.23, it follows easily.

Moreover, every injection-preserving functor T is naturally isomorphic to an inclusion-
preserving functor T ′ :

Theorem 2.1.25 ([13, Theorem III.4]). Every injection-preserving Set functor is naturally
isomorphic to an inclusion-preserving functor.
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The preservation of inclusions is sometimes called standard, but it is actually weaker
then the original definition of standard functor in [13, Definition III.4].

2.1.6 Minimality

A coalgebra 〈X,ξ〉 is called minimal [46] if every kernel of 〈X,ξ〉 is the diagonal ∆X ;
or in the contrapositive form, any two distinct elements are not behaviourally equiva-
lent.

Example 2.1.26. Let 〈Z,ζ〉 be a final coalgebra.

1. 〈Z,ζ〉 is a minimal coalgebra.

2. For any coalgebra 〈X,ξ〉, the image of the unique homomorphism from 〈X,ζ〉
to 〈Z,ζ〉 is a minimal coalgebra.

Looking at Proposition 2.1.7, we immediately have the following proposition:

Proposition 2.1.27 (cf. [46, 95]). Let 〈X,ξ〉 be a coalgebra. 〈X,ξ〉 is minimal if and
only if 〈X,ξ〉 has no proper quotient, i.e. every surjective homomorphism from 〈X,ξ〉 is
bijective.

We shall consider the collection of minimal coalgebras as a full subcategory of SetT ,
denoted M(SetT ), and show that every coalgebra can be minimised functorially. The
collection of quotients of a coalgebra 〈X,ξ〉 (i.e. isomorphism classes of surjective
homomorphisms from 〈X,ξ〉) forms a complete lattice where pushouts are the lattice
sups:

• First, define an order f � g on surjective homomorphisms if there exists a
homomorphism h such that the diagram

〈X,ξ〉
f
// //

g
$$ $$

〈Y ,γ〉

h
��

〈Z,ζ〉

commutes, where h must also be surjective and unique. It follows that if f � g
and g � f then the codomains of f and g are isomorphic. Therefore, � gives a
partial order on quotients of 〈X,ξ〉.

• Second, since the forgetful functor SetT → Set creates colimits and Set is
cocomplete, the pushout of a set S of surjective homomorphisms from 〈X,ξ〉
exists and it is the sup of S . There is always a top element, i.e. the pushout of
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all of them, denoted (−)‡ : 〈X,ξ〉� ∇〈X,ξ〉: for any surjective homomorphism
〈X,ξ〉� 〈Y ,γ〉 there is a homomorphism f such that the diagram

〈X,ξ〉

(−)‡ %% %%

// // 〈Y ,γ〉
f
��

∇〈X,ξ〉

(2.9)

commutes.

From the complete lattice structure, we obtain a minimisation functor:

Theorem 2.1.28 (see [46, Theorem 2.3]). The inclusion from the full subcategory of
minimal coalgebras to the category of coalgebras has a left adjoint, i.e. M(SetT ) is a
reflective subcategory of SetT .

The left adjoint functor is called minimisation, denoted ∇, and the unit of the reflection
is the greatest quotient, denoted (−)‡. By reflection, we also have the coinduction
principle :

Corollary 2.1.29. Let x,y be elements in a coalgebra 〈X,ξ〉. The following are equiva-
lent:

1. x and y are behaviourally equivalent.

2. x‡ = y‡.

As Gumm showed [46] that finite products of minimal coalgebras are intersections of
coalgebras, we obtain a concrete construction of products of minimal coalgebras in
the category SetT of coalgebras since the inclusion is a right adjoint.

The class of minimal coalgebras plays an essential role in the construction of a final
coalgebra: Every homomorphism to a minimal coalgebra is unique, as otherwise there
would be distinct but behaviourally equivalent elements. The existence of a final
coalgebra boils down to the existence of a weakly final coalgebra, i.e. a coalgebra to
which every coalgebra has at least one homomorphism.

Corollary 2.1.30. Let T be a Set endofunctor. A final coalgebra exists if and only if a
weakly final coalgebra exists.

By the same reasoning, minimisation is stable under repetitions, i.e. for a non-empty
set I

∇
∐
I

〈X,ξ〉 is isomorphic to ∇〈X,ξ〉. (2.10)

The last two facts are the fundamental technique used in the following discussion.
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2.1.7 Construction of Final Coalgebras

We finish our tour around coalgebras by a final coalgebra construction using the
minimisation functor ∇ and a generating set of coalgebras:

Definition 2.1.31. A generating set of coalgebras is a set of coalgebras {〈Gi ,γi〉}i∈I
such that for each coalgebra 〈X,ξ〉 the canonical morphism∐

f : 〈Gi ,γi〉→〈X,ξ〉
〈Gi ,γi〉� 〈X,ξ〉

is surjective.

By definition, for each coalgebra 〈X,ξ〉 and x ∈ X we can always find a coalgebra
〈Gi ,γi〉 in the generating set and an element g ∈ Gi such that x is behaviourally
equivalent to g . Hence, since the category SetT of coalgebras is cocomplete, we may
simply join all of them to derive a final coalgebra as a quotient of

∐
i∈I〈Gi ,γi〉 using

(2.9) and Corollary 2.1.30 as follows.4

Theorem 2.1.32. If there is a generating set G = {γi : Gi → TGi | i ∈ I }, then the min-
imised coalgebra of the coproduct

〈G,γ〉 ..=
∐
i∈I
〈Gi ,γi〉

is a final coalgebra.

Proof. Consider a T -coalgebra 〈X,ξ〉. Let Gξ be the coproduct of 〈Gi ,γi〉 indexed by
〈Gi ,γi〉 → 〈X,ξ〉. By definition, the canonical homomorphism from Gξ to 〈X,ξ〉 is
surjective, so there is a unique morphism to the minimised coalgebra of Gξ :

Gξ

&& &&

// // 〈X,ξ〉

��

∇Gξ

by (2.9).

Let J be the subset of I such that for some i the coalgebra 〈Gi ,γi〉 actually appears
in a homomorphism to ξ, i.e. J = { j ∈ I : ∃(γj → ξ) }. Then, each ∇Gξ always has a
unique homomorphism to the minimised coalgebra of the coproduct of G:

∇Gξ
� // ∇

∐
j∈J
〈Gi ,γi〉

ι // ∇
∐
i∈I
〈Gi ,γi〉

4The following result is proved without assuming that the type functor preserves weak pullbacks, in
contrast to [95].
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where the first isomorphism comes from (2.10), the second homomorphism comes
from injections

ιi : 〈Gj ,γj〉 →
∐
i∈I〈Gi ,γi〉

for j ∈ J , and the uniqueness follows from the minimality.

In particular, we may find a generating set by considering subcoalgebras generated by
some state x, used in the following proposition:

Proposition 2.1.33 (See [19, 95]). Each of the following conditions implies the existence
of a generating set of T -coalgebras:

1. T is a polynomial functor.

2. T is accessible, i.e. there exists a regular infinite cardinal5 κ such that

TX =
⋃
{T i[T S] ⊆ TX | i : S ⊆κ X }

where S ⊆κ X indicates S ⊆ X with |S | < κ. In particular, T is finitary if T is
ℵ0-accessible.

The above construction is not algorithmic but rather descriptive. In Chapter 3 we will
provide another construction via the so-called final sequence which is more instructive
and the latter technique has been used to find bisimilarity and minimisation [15].

Remark 2.1.34. A final coalgebra can also be constructed by logical methods, see [45]
for Set coalgebras and [84] for coalgebras over measurable spaces.

2.2 Hennessy-Milner Logics

In the previous section, we described coinduction principles. For stream, ordered trees,
and deterministic automata, the coinduction principles are rather obvious: two states
in a stream (resp. ordered tree and automaton) are behaviourally equivalent if and
only if they produce the same sequence (resp. correspond to the same labelled tree
and accept the same language). However, the characterisation in general is not that
simple. We provide another characterisation of the coinduction principle for labelled
transition systems as an example to be generalised.

In order to show that elements are not behaviourally equivalent, by definition, we have
to show that there is no such a bisimulation relating the targeted elements, provided
that the type functor preserves weak pullbacks. Consider the labelled transition
systems in Figure 2.1.

5 An infinite cardinal λ is regular if and only if
∑
i∈α λi < λ for any α < λ and λi < λ for i ∈ α. In

the following content, a regular cardinal always means regular infinite.
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•

x a // •

c
��

b
??

•

• b // •

y

a
??

a
�� • c

// •

Figure 2.1: An example of non-bisimilarity

Proof. Every a-transition (in fact, the only one) of x moves to a state with two possible
transitions via labels b and c; while every a-transition of y moves to a state with
only one possible transition via either b or c. Therefore, there does not exist any
bisimulation relating x and y, because every pair of x’s and y’s successors are not
bisimilar.

Like any informal and ad hoc mathematical proof, the above argument is error-prone
and it is hard to spot a mistake. To avoid any ambiguity, we formalise the informal
description using Hennessy-Milner logic, a multi-modal logic introduced by Hennessy
and Milner [50]:

Definition 2.2.1. The language of Hennessy-Milner logic over a set A of labels is
generated by the following syntax:

ϕ ..=> | ¬ϕ | ϕ ∧ϕ | 〈a〉ϕ

where a ∈ A. We denote the language by ωHMA.

The first three >, ¬ϕ, and ϕ ∧ϕ, are logical constants and connectives. The last
one 〈a〉ϕ is a modal operator, meaning that the next state after performing some
a-transition has the property ϕ. Write x 
 ϕ if the property ϕ holds at state x, and
[a]ϕ for ¬〈a〉¬ϕ. Modal operators are now interpreted as follows

x 
 〈a〉ϕ if and only if ∃y a← x .y 
 ϕ (2.11)

x 
 [a]ϕ if and only if ∀y a← x .y 
 ϕ (2.12)

where ϕ is any Hennessy-Milner formula.

Hennessy-Milner logic is invariant under bisimilarity which is a pleasing property,
called adequacy. This property can be used in order to show non-bisimilarity:

Proposition 2.2.2. Let 〈X,A,→〉 be a labelled transition system. Suppose that elements
x and y in X are bisimilar. Then, for every Hennessy-Milner formula ϕ,

x 
 ϕ ⇐⇒ y 
 ϕ. (2.13)

Following this proposition, we say that x and y are logically equivalent with respect
to Hennessy-Milner logic if (2.13) holds for all ϕ.
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•
•

•

•

•

•

•...

•
...
...

��

•

•

•

•

•

•...

Figure 2.2: Bisimilarity is contained in logical equivalence

Given this property, in the contrapositive form, to show that elements are not bisimilar
it suffices to find a witness formula distinguishing them. For example, in Figure 2.1 it
is easy to verify that the formula

ϕ ..= [a] (〈b〉>∧ 〈c〉> )

distinguishes x and y in Figure 2.1, i.e. x 
 ϕ but y 1 ϕ, so they are not bisimilar by
Proposition 2.2.2.

2.2.1 Hennessy-Milner Property

On the other hand, we have no guarantee on non-bisimilar states can be distinguished
by some Hennessy-Milner formula. Indeed, it requires the converse of Proposition 2.2.2,
called expressiveness (also known as expressivity and Hennessy-Milner property)
: any two non-bisimilar elements have at least one formula distinguishing them.
The class of labelled transition systems does not have expressiveness in general,
see Figure 2.2.

However, expressiveness holds for a smaller class of labelled transition systems [49]:
We say that a labelled transition system is image-finite if for each element x ∈ X
and a ∈ A

the set of successors
(x

a−→ −) = {x′ ∈ X | x a−→ x′ }

is finite. Then, Hennessy-Milner logic is expressive over the class of image-finite
labelled transition systems:

Proposition 2.2.3. For every two elements x and y in an image-finite A-labelled trans-
ition system, x and y are bisimilar if x and y are logically equivalent.

To find out where the image-finiteness is actually used, we sketch the proof here.

Proof. Suppose that x and y are logically equivalent. We would like to show by
contradiction that the relation

E ..= { 〈x,y〉 ∈ X ×X | ∀ϕ . (x 
 ϕ ⇐⇒ y 
 ϕ) }
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is a bisimulation, i.e. the following assumption leads to a contradiction: there exists

a ∈ A and x′
a← x such that every y′

a← y has some ϕy′ with x′ 
 ϕy′ but y′ 1 ϕy′ .

Note that the set
(y

a−→ −) = {y′ ∈ X | y a−→ y′ }

is finite by image-finiteness, so we can pick finitely many formulae ϕy′ distinguishing

x′ and y′ for each y′
a← y. Now define

ϕ ..= 〈a〉
∧
y
a−→y′

ϕy′ .

By construction x 
 ϕ but y 1 ϕ, contradicting the assumption that x and y are
logically equivalent. It follows that E must be a bisimulation, so logically equivalent
elements are bisimilar.

From the above proof, we have an immediate generalisation by replacing Hennessy-
Milner logic with finitary conjunctions (denoted ωHMA) by Hennessy-Milner logic
with conjunctions of up to κ-many formulae (denoted κHMA), or arbitrary conjunc-
tions (denoted HMA):

Proposition 2.2.4. Let x and y be elements of a labelled transition system 〈X,A,→〉.
Then,

1. x and y are bisimilar if and only if x and y are logically equivalent with respect to
HMA, i.e. Hennessy-Milner logic with arbitrary conjunctions.

2. Assume that there exists a cardinality κ such that, for all a ∈ A, the set of a-
successors of every element is bounded by κ. x and y are bisimilar if and only if
x and y are logically equivalent with respect to κHMA, i.e. Hennessy-Milner logic
with conjunctions up to κ-many formulae.

Corollary 2.2.5. For each labelled transition system 〈X,A,→〉, there exists some cardin-
ality κ such that κHMA characterises bisimilarity of 〈X,A,→〉.

Proof. Let κ be the cardinality of X.

2.2.2 Algebraic Logics

Boolean algebras provide algebraic semantics for propositional calculus; the same ap-
plies to Boolean algebras with operators for Hennessy-Milner logic (normal multimodal
logic K, see [28]).

Definition 2.2.6. Let I be a set of labels. A Boolean algebra with operators
indexed by I (or, I-BAO for short) is a Boolean algebra A = 〈A,⊥,>,¬,∨,∧〉 with
an I-indexed family of unary operation ♦i satisfying
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Normality ♦i⊥ =⊥ and ♦i(ϕ ∨ψ) = ♦i(ϕ)∨♦i(ϕ) for any ϕ,ψ ∈ A.

A homomorphism f between BAOs is a Boolean algebra homomorphism such that f
also preserves the additional modal operations, i.e. f (♦iϕ) = ♦i(f ϕ) for each a.

Example 2.2.7 (Complex algebra). Given a labelled transition system 〈X,I,→〉, define
a Boolean algebra with operators indexed by I , called the complex algebra of 〈X,I,→
〉, as follows. The powerset algebra 2X of X forms a Boolean algebra, and for each i ∈ I ,
define a modal operation ♦→i : 2X → 2X by

S � ♦
→
i // {x ∈ X | ∃x′ i←− x.x′ ∈ S } (2.14)

for every subset S ⊆ X. Clearly, the empty set ∅ models false ⊥, the universe X
truth >, the intersection conjunction, and so on. Let ~−� : ωHM→ 2X denote the
interpretation defined by

x ∈ ~ϕ� ⇐⇒ x 
 ϕ,

which can easily be shown to satisfy i) x ∈ ~>� for all x ∈ X; ii) x ∈ ~¬ϕ� if and
only if x < ~ϕ�; iii) x ∈ ~ϕ ∧ψ� if and only if x ∈ ~ϕ�∩ ~ψ�. The inverse image
function f −1[−] : 2Y → 2X of any homomorphism f : 〈X,I,→〉→ 〈Y ,I,→〉 between
I-labelled transition systems is a homomorphism between BAOs.

2.2.3 Modal Algebras as Algebras of Endofunctor

For every endofunctor L : A →A , the dual notion of coalgebra is also very helpful:
an L-algebra with a carrier A ∈ A is a A -morphism α from LA to A, denoted
by 〈A,α〉; an L-algebra homomorphism f : 〈A,α〉 → 〈B,β〉 is a morphism f in A
satisfying f ◦α = β ◦Lf . The category of L-algebras is precisely the opposite category
of Lop-coalgebras.

In this subsection, we will represent Boolean algebra with operators in this way, not in
the category Set, but in the category of Boolean algebras. We characterise the functor
part of algebra as follows.

Definition 2.2.8. Given a Boolean algebra A, define MIA by the following presenta-
tion6

BA〈 {�ia}i∈I,a∈A | �i⊥ =⊥;�i(a∨ b) = �ia∨�ib 〉

and given a Boolean algebra homomorphism f : A→ B define a Boolean algebra
homomorphism MIf : MIA→MIB on the set of generators

�ia 7→ �if (a).

Whenever confusion is unlikely, we suppress the subscript I .

Proposition 2.2.9. The mapping M in Definition 2.2.8 is an endofunctor of BA.

6 A Boolean algebra presentation BA〈G | R〉, consisting of a set G and a set of relations R on terms
generated by G, defines the freest Boolean algebra generated by G subject to relations in R
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The modalities of a Boolean algebra with operators A = 〈A,⊥,>,¬,∨,∧, (♦i)i∈I〉
may be viewed as an α : MI -algebra MIA→ A on the Boolean algebra reduct A by
evaluation:

α : �ia 7→ ♦i(a) (2.15)

where �ia is a generator of MIA and ♦i(a) is an actual element in A. This is well-
defined because the relations that define MIA translate to actual equalities in A, so
the assignment lifts to a Boolean algebra homomorphism from MIA to A.

Theorem 2.2.10 (see [1, 68]). The category of Boolean algebras with operations indexed
by I is isomorphic to the category of algebras for MI , denoted by BA

MI .

Proof. For brevity assume that the index is singleton. For every Boolean algebra with
operator A, define a Boolean homomorphism α from MA to A by (2.15); for every
homomorphism f : A→ B between Boolean algebras with operator we verify the
following diagram

MA
Mf
��

α // A

f
��

MB
β
// B

commutes. It suffices to check generators, i.e.

(f ◦α)(�a) = f (♦Aa) = ♦B(f a) = β(�f a) = (β ◦Mf )(�a),

so we have defined a functor from the category of Boolean algebras with operator to
the category of M-algebras.

Conversely, for every Boolean algebra homomorphism α : MA→ A define a modal
operation ♦ by

♦ : a 7→ α(�a)

and it satisfies normality by the construction of MA. E.g. ♦(a∨ b) = α(�(a∨ b)) =
α(�a ∨ �b) = α(�a) ∨ α(�b) = ♦a ∨ ♦b where the second equality holds by the
construction of MA and the last equation holds by the preservation of opera-
tions of the Boolean algebra homomorphism α. Given an M-algebra homomorph-
ism f : 〈A,α : MA→ A〉 → 〈B,β : MB→ B〉, it is also straightforward to check the
preservation of operators:

(f ◦♦)(a) = (f ◦α)(�a) = (β ◦Mf )(�a) = β(�f a) = ♦(f a)

for every a ∈ A.

Now it is evident the correspondence is bijective.

2.2.4 Functorial Construction of Complex Algebras

The naive construction of complex algebras has a deeper connection with the endo-
functor M defined previously. We notice the following fact:
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Proposition 2.2.11. For every set X and a Kripke frame, represented as a P -coalgebra
ξ : X→PX, we have ♦→ = ξ−1 ◦♦X where ♦X : 2X → 2PX is defined by

(U ⊆ X) 7→ {S ⊆ X |U ∩ S , ∅}. (2.16)

Equation (2.16) defines a natural transformation not just mere functions:

Proposition 2.2.12. The mapping ♦ is a natural transformation from the contravariant
powerset functor 2− to the composite 2P−.

Proof. For every function f : X→ Y , the following diagram

2Y
♦Y //

f −1

��

2PY

P f −1
��

2X
♦X
// 2PX

commutes by a simple computation: for every subset U ⊆ Y ,

(P f −1 ◦♦Y )(U )

=P f −1 {S ⊆ Y |U ∩ S , ∅}
= {V ⊆ X |U ∩ f [V ] , ∅}
= {V ⊆ X | f −1(U )∩V , ∅} {see below }
=♦X(f −1U )

where U∩f [V ] , ∅ simply says that there exists some element v ∈ V such that f v ∈U ,
i.e. v ∈ f −1(U )∩V .

Then, the symbol � presenting the modal operation is linked to the aforementioned
natural transformation ♦ in the following way:

Proposition 2.2.13. Let Q be the contravariant powerset functor to the category of
Boolean algebras. There exists a natural transformation δ from MQ to QP defined
by

�S 7→ ♦X(S)

on generators of MQX for each component X.

Proof. First we notice that ♦X is subject to normality, i.e. ♦X(∅) = ∅ and ♦X(U ∪V ) =
♦X(U )∪♦X(V ). Therefore, a function δ from the set of generators of MQX extends
to a Boolean algebra homomorphism from MQX to QPX consistent with δ on
generators, using the same symbol δ.
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Secondly, we verify that δ is a natural transformation from MQ to QP . For every
function f : X→ Y , consider the following diagram

MQY δY //

M(f −1)
��

QPY
P f −1

��

MQX
δX
// QPX

which commutes since the following

(P f −1 ◦ δY )(�U ) = P f −1(♦Y S) = ♦X(f −1U ) =
(
δX ◦M(f −1)

)
(�U )

holds for every subset U ⊆ Y by Proposition 2.2.12.

We are now able to show that the construction of complex algebras is functorial :

Theorem 2.2.14. In Proposition 2.2.13, the natural transformation δ defines a contra-
variant functor Qδ from the category of P -coalgebras to the category of Boolean algebras
with operators and Qδ is a lifting of Q, i.e.

SetP
Qδ
//

U
��

BAM

U
��

Set
Q
// BA

commutes where the U ’s are forgetful functors mapping each coalgebra (X,ξ) ( resp. M-
algebra (A,α)) to its carrier X ( resp. A).

Proof. For each P -coalgebra 〈X,ξ〉, define an M-algebra by

Qδ〈X,ξ〉 =MQX
δX−−→QPX

ξ−1

−−−→ PX;

and for each coalgebra homomorphism f : 〈X,ξ〉 → 〈Y ,γ〉 define Qδf =Qf = f −1.
Qδf is an M-algebra homomorphism by the following commutative diagram

MQY δY //

Mf −1

��

QPY
P f −1

��

γ−1
// QY

f −1

��

MQX
δX
// QPX

ξ−1
// QX

using the naturality of δ and the application of Q to the coalgebra homomorphism f .

Remark 2.2.15. In this subsection, we notice the following facts
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1. the modal operation ♦→ is a composite of the inverse image of P -coalgebra
and a natural transformation ♦;

2. the natural transformation ♦ defines a natural transformation δ fromMQ to QP
where P is the type of coalgebras;

3. to sum up, we derive a lifting Qδ of the contravariant functor Q along forgetful
functors from categories of coalgebras and algebras.

2.3 Coalgebraic Logics

Modal logics parametric in endofunctors on Set (or SET), called coalgebraic logic, was
first explored by Jon Barwise and Lawrence Moss in their book on non-well-founded
set theory Vicious Circles [21] and Moss’ groundbreaking paper Coalgebraic Logic [83].
For a more comprehensive coverage including proof systems and various extensions,
we refer to [69] and [74].

Two approaches to coalgebraic logic a) Moss’ cover modality [83], and b) Pattinson’s
predicate lifting [88, 89] are successful in producing a wide range of modal logics
parametric in endofunctors on Set. To briefly explain the main difference, we provide
the definitions with examples first, and then address their properties in subsequent
subsections. Logics of predicate liftings and the cover modality can be formulated
in an abstract functorial framework which plays the central role when comparing
different approaches to coalgebraic logics, and we will introduce it subsequently.

We will focus on coalgebraic modalities without propositional connectives explicitly in
the following. Indeed, it is possible to disregard every propositional connective, but
adequacy and expressiveness still remain [82].

Remark 2.3.1. In the study of coalgebraic logic, the Set functor under consideration is
usually assumed to be injection-preserving or even inclusion-preserving. This does
not affect the category of coalgebras by Corollary 2.1.24 and Theorem 2.1.25.

Moss’ coalgebraic logic

Moss’ idea is to apply the type functor T to the language MT and every element
α ∈ TMT is taken as an argument of the unique modality of T , the so-called cover
modality ∇ = ∇T ,7 i.e. a logical connective

∇ : TM→M

is introduced in the languageMT , whose arity is not a natural number but T itself.

To be precise, the language is generated by propositional connectives and the cover
modality inductively. As for the satisfaction relation 
, propositional connectives

7 The notation ∇ is preferred in recent literature, e.g. [26, 67, 69, 74, 87, 105] in place of the original
notation ∆ [21, 83].
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are interpreted in the usual way, and the modality ∇α is interpreted in a Kripke-like
semantic: Define the satisfaction relation for a T -coalgebra 〈X,ξ〉


 ⊆ X ×MT

between the carrier X and the language MT of Moss’ coalgebraic logic such that
propositional connectives are interpreted in the usual way; and for every element x ∈ X
and α ∈ TMT define by applying the type functor T to the satisfaction relation 

(that is, T (
) in the following):

〈X,ξ〉; x 
 ∇α ⇐⇒ ∃w ∈ T (
) .

(TπX)w = ξ(x),
(TπM)w = α

(2.17)

where πX and πM are the projections from X ×MT to X andMT respectively.

Remark 2.3.2. The cover modality ∇ and its interpretation depend on nothing but T
alone, so the expressive power of Moss’ coalgebraic logic is fully determined by the
type functor T if propositional connectives are fixed a priori.

Example 2.3.3. In the following examples of T -coalgebras, defined in Example 2.1.3,
the symbol 〈X,ξ〉 always denotes a T -coalgebra:

1. Let T ..= A× (−) for some fixed set A. The corresponding cover modality then
is in the following form:

∇ : A×MT →MT

which takes an element of a ∈ A and a formula ϕ ∈MT such that x 
 ∇〈a,ϕ〉
for some x in 〈X,ξ〉 if and only if

ξ(x) = 〈a,y〉 and y 
 ϕ, (2.18)

i.e. x satisfies ∇〈a,ϕ〉 if the output symbol is exactly a and the next state
satisfies ϕ. Similarly, when T ..= 1 +A× (−), then, ∇ : 1 +A×MT →MT either
takes a unique element X from 1 such that

x 
 ∇X if and only if ξ(x) =X

or a pair 〈a,ϕ〉 as above.

2. Let T ..= P (A×−), i.e. the type of labelled transition systems over A. The cover
modality of T is an operation

∇ : P (MT )A→MT

taking an A-indexed collection (Sa)a∈A of sets of formulae such that for any
a ∈ A and Sa ⊆MT , a state x satisfies ∇〈Sa〉 if and only if for every a ∈ A:

(a) for every y
a←− x, there is some ϕ ∈ Sa such that y 
 ϕ;

(b) for every ϕ ∈ Sa, there exists y
a←− X such that y 
 ϕ,
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and ∇〈Sa〉 is equal to the following Hennessy-Milner formula∧
a∈A

(
[a]

(∨
Sa

)
∧

∧
〈a〉Sa

)
(2.19)

where 〈a〉Sa indicates the set { 〈a〉ϕ | ϕ ∈ Sa }. For unlabelled transition systems,
i.e. Kripke frames, (2.19) becomes

�
(∨

S
)
∧

∧
♦S,

which is exactly the normal form for modal logic without atomic propositions
derived by Fine [42].

3. Recall that D is the discrete probability distribution functor and D-coalgebras
are finitely-branching discrete-time Markov chains. The cover modality of D

∇ : DMD→MD,

takes a discrete distribution µ on the language as its parameter, and an element
x ∈ X satisfies ∇µ if and only if there is ρ : X ×MD→ [0,1] with its support in
the relation 
 such that

v(y) =
∑
y
ϕ

ρ(y,ϕ) and µ(ϕ) =
∑
y
ϕ

ρ(y,ϕ).

where v = ξ(x) : X→ [0,1].

For example, let X = {x1,x2} and a D-coalgebra ξ : X→DX represented by a
transition matrix (

0.3 0.7
0.4 0.6

)
where the probability of moving from xi to xj is given in the i-th row and
j-th column element. E.g. (ξ x1) x2 = 0.7 and (ξ x2) x2 = 0.6. Let µ be a
probability distribution on MD assigning 0 to everything but 1 to the truth
constant > and is presented by a partial function {〈>,1〉}. Then, we can see
that x1 
 ∇{〈>,1〉} because there exists a witness

ρ = {(〈x1,>〉,0.3), (〈x2,>〉,0.7)}

with
ξ(x) =

∑
−
>

ρ(−,>) and µ(>) = 1 =
∑
y∈X

ρ(y,>).

The statement ∇{〈>,1〉} can be seen as saying that the probability of moving to
a state satisfying > is 1.
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Pattinson’s predicate liftings

Pattinson’s view is that a modal operation for a functor T is a map from predicates over
a carrier X to predicates over TX, and T -coalgebras take predicates over TX back
to X: A predicate lifting for T is a natural transformation from the contravariant
powerset functor 2− to the composite 2T of 2− with T , i.e. a family of functions λX
for every set X such that

2X
λX // 2TX

2Y
λY

//

f −1

OO

2TY
(Tf )−1

OO

commutes for every function f : X→ Y . The composite with the inverse image of any
T -coalgebra maps any predicate over X to a predicate over X again.

The technical notion of predicate liftings was first devised for generalising induction
principles in a fibrational setting by Hermida and Jacobs [51] and found an application
in coalgebraic modal logic by Pattinson. Later, predicate liftings were generalised to
polyadic predicate liftings by Schröder [97] to obtain a general (strong) expressiveness
property for any accessible (e.g. finitary) functor.

Definition 2.3.4. A polyadic predicate lifting for T is a natural transformation

λ : (2−)κ −→ 2T (2.20)

for some cardinality κ which is the arity of λ. A finitary predicate is a polyadic
predicate lifting whose arity is a natural number n ∈ ℵ0.

Given a set Λ of predicate liftings, every κ-ary predicate lifting λ in Λ introduces an
κ-ary logical connective

[λ] : L(Λ)κ→L(Λ)

in the language L(Λ) generated by propositional connectives along with the set Λ
of predicate liftings. Besides propositional connectives, the modal formula [λ]ϕ is
interpreted in a Kripke-like semantics as follows. For any T -coalgebra 〈X,ξ〉, the
satisfaction relation 
 for the modal formula [λ]ϕ of some κ-ary predicate lifting λ ∈
Λ is defined by

〈X,ξ〉; x 
 [λ]ϕ ⇐⇒ ξ(x) ∈ λX~ϕ� (2.21)

for any x ∈ X and an κ-indexed set of formulae ϕ : κ→L(Λ) where

~ϕ� ..= ( {y ∈ X | y 
 ϕi } )i∈κ

is the interpretation of ϕ on the carrier X.

Remark 2.3.5. In contrast with the cover modality ∇, a coalgebraic logic given by
a predicate lifting or a set of predicate liftings depends on not only the type T but
also the choice of predicate liftings, cf. Remark 2.3.2. However, a canonical choice
of predicate liftings can be made: the collection of all finitary predicate liftings, if T
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is finitary.8 Such a choice is possible because there is only a proper set of predicate
liftings, see Lemma 2.3.9 below.

Example 2.3.6. In the following examples, coalgebraic logics based on the cover
modality and predicate liftings, respectively, coincide in their expressive power, if we
choose the sets of predicate liftings properly: a) for sets of streams over A, the cover
modality ∇ can be expressed as a family of predicate liftings indexed by A; b) for
labelled transition systems, the possibility ♦ and necessity � modal operations in
Hennessy-Milner logic are exactly predicate liftings.

1. Consider the type for sets of streams. Define a family ΛA of unary predicate
liftings ā for each a ∈ A by

āX : S 7→ {a} × S = { 〈a,s〉 ∈ A×X | s ∈ S }

for any subset S of some set X.

Although it is routine to check the naturality of ā, we still verify it: Let f : X→ Y
be a function from X to Y . For any subset U ⊆ X, verify the following:

(āX ◦ f −1)U = { 〈a,x〉 ∈ A×X | f x ∈U }
= (idA × f )−1 { 〈a,y〉 ∈ A×Y | y ∈U }
= (idA × f )−1 (āYU )

= ((idA × f )−1 ◦ āY )U,

so āX is natural in X.

Given a (A × −)-coalgebra 〈X,ξ〉, an element x in X satisfies [ā]ϕ for some
formula ϕ if and only if ξ(x) ∈ āX~ϕ�, that is

ξ(x) = 〈a,y〉 and y 
 ϕ (2.22)

which coincides with the interpretation of the cover modality given in (2.18).

2. For unlabelled transition systems, we can define a predicate lifting ♦ introduced
in (2.16), i.e.

♦X : U 7→ {S ⊆ X | S ∩U , ∅}

for any subset U of X. The naturality of ♦ was checked previously in Proposi-
tion 2.2.12.

Moreover, the dual operator �ϕ = ¬♦¬ϕ is also a predicate lifting: First note
that ~¬ϕ� is equal to the complement ~ϕ�{. Then for any function f : X→ Y
and a subset U ⊆ Y , we verify the following by using the naturality of 〈a〉 and

8 In general, if T is κ-accessible for some regular cardinality κ, then we can take all α-ary predicate
liftings for any α < κ. For convenience, we omit this generalisation.
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the commutativity between f −1 and (−){, i.e. f −1(−){ = f −1(−{):

(�X ◦ f −1) U =
(
♦X (f −1U ){

){
=

((
♦X ◦ f −1

)
U{

){
=

((
P f −1 ◦♦Y

)
U{

){
= P f −1

(
♦YU

{
){

= (P f −1 ◦�Y ) U,

(2.23)

so the naturality of � follows.

The interpretation of ♦ and � match (2.11) and (2.12) exactly.

3. Last but not least, consider finitely-branching discrete-time Markov chains. For
each real number p in the unit interval [0,1], define a predicate liftings p̄ by

p̄ : S 7→ {µ ∈ DX |
∑

µS ≥ p }

for each subset S of some set X.

The naturality of p̄ follows similarly to the previous examples in few easy steps:
Let f : X→ Y be a function from X to Y . Verify the naturality as follows: for
each p ∈ [0,1] and any subset U ⊆ X,

(p̄X ◦ f −1) U = {µ ∈ DX |
∑

µ(f −1U ) ≥ p }

= {µ ∈ DX |
∑

(Df µ) U ≥ p } (∗)

=Df −1 {v ∈ DY |
∑

vU ≥ p }

= (Df −1 ◦ p̄Y ) U

where (∗) follows from the identities∑
(Df µ) U =

∑
y∈U

∑
f x=y

µ(x) =
∑
f x∈U

µ(x) =
∑

µ(f −1U ).

Given a D-coalgebra 〈X,ξ〉, an element x in X satisfies a formula [p̄]ϕ for
some ϕ, i.e.

x 
 [p̄]ϕ if and only if
∑

µ~ϕ� ≥ p

where µ = ξ(x). The statement says precisely that the formula ϕ ‘will’ hold with
a probability greater than or equal to p after one transition from x.

2.3.1 Logics of Predicate Liftings

Now we fix a propositional logic. Assume that the propositional logic we choose is
propositional calculus consisting of two truth values, negation, and finitary conjunction
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and disjunction. Following the terminology in modal logic, a set of symbols with finite
arities is called a similarity type [28, Definition 1.11] (also known as a signature in
universal algebra), so an indexed set of finitary predicate liftings for a Set endofunctor
is a similarity type with interpretations.

Given a similarity type Λ for T , the language L(Λ) induced by the similarity type Λ
is generated by the following syntax:

ϕ ..=⊥ | > | ¬ϕ | ϕ ∨ϕ | ϕ ∧ϕ | [λ](ϕi)i∈n (λ ∈Λ,n is the arity of λ ). (2.24)

Given a T -coalgebra 〈X,ξ〉, the interpretation ~ϕ� = ~ϕ�〈X,ξ〉 of a formula ϕ in L(Λ)
is a predicate over X, i.e. a subset, defined inductively as follows:

~⊥� = ∅ ~>� = X
~ϕ ∨ψ� = ~ϕ�∪ ~ψ� ~ϕ ∧ψ� = ~ϕ�∩ ~ψ�

~¬ϕ� = ~ϕ�{ ~[λ](ϕi)i∈n� = ξ−1 ◦λ(~ϕ0�, . . . ,~ϕn−1�).

The satisfaction relation 
 is then simply an alias for the membership relation on the
interpretation of a given T -coalgebra 〈X,ξ〉: 〈X,ξ〉; x 
 ϕ if and only if x ∈ ~ϕ�〈X,ξ〉.

Note that the satisfaction relation matches (2.21) exactly.

Every logic induced by a set of predicate liftings is adequate. We begin with a simple
observation:

Lemma 2.3.7. Let 〈X,ξ〉 and 〈Y ,γ〉 be T -coalgebras, and f a coalgebra homomorph-
ism from 〈X,ξ〉 to 〈Y ,γ〉. Then, every element x ∈ X is logically equivalent to its im-
age f x ∈ Y , i.e.

〈X,ξ〉; x 
 ϕ ⇐⇒ 〈Y ,γ〉; f x 
 ϕ

for any formula ϕ ∈ L(Λ).

Proof. This will follow from Theorem 2.3.28 in a generalised framework.

Since two elements are behaviourally equivalent if they can be identified by two
coalgebra homomorphisms, the adequacy is an immediate consequence of the above
lemma:

Theorem 2.3.8 (Adequacy). Let 〈X,ξ〉 and 〈Y ,γ〉 be T -coalgebras. Elements x ∈ X
and y ∈ Y are logically equivalent provided that x and y are behaviourally equivalent.

From the definition, a predicate lifting can be wild, but there are only set-many of
them, [97] (this also appears in [66, Proposition 9]):

Lemma 2.3.9 (see [97, Proposition 20]). There is a one-to-one correspondence between
the collection of κ-ary predicate liftings and the powerset of T 2κ.

Proof. Observe that 2− is naturally isomorphic to Hom(−,2). Then, the statement
follows from the Yoneda Lemma.
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The actual bijection between natural transformations and morphisms from T 2κ to 2 is
given by ‘tracing the identity’: Viewing a predicate lifting λ as a natural transformation
from Hom(−,2κ) to Hom(T−,2), the correspondence is given by λ 7→ λ2κ(id2κ) and
each λX(f ), for f : X → 2κ, is equal to λ2κ(id2κ) ◦ T χ. A κ-indexed collection of
subsets of X can be described uniquely by its characteristic function χ : X→ 2κ and
vice versa. It follows that the identity on 2κ is the κ-indexed collection of subsets

π−1
i {>}

where πi is the i-th projection function from 2κ to 2. Thus, a predicate lifting λ,
viewed as a natural transformation from 2− to 2T−, is uniquely determined by the
subset

λ2κ(π−1
i {>})i∈κ ⊆ T 2κ.

Conversely, since λX(χS) = λ2κ(id2κ) ◦ T χS for any subset S ⊆ X by the Yoneda
Lemma, we can translate the equality using subsets:

t ∈ λX(S) ⇐⇒ T χS(t) ∈ λ2κ〈π−1
i {>}〉i∈κ, (2.25)

and it follows that any subset of T 2κ defines a predicate lifting λX(S) ..= T χ−1
S [C].

The lemma provides another characterisation of predicate liftings in Example 2.3.6:

Example 2.3.10. Let A and X be sets. The following examples are listed in the same
order as in Example 2.3.6:

1. The predicate lifting āX , for some a ∈ A, sending a subset S of X to the
subset {a} × S of A×X is determined uniquely by the subset ā2{>} = {〈a,>〉}
of A× 2.

2. The predicate liftings ♦X sending a subset S ⊆ X to {S ⊆ X | S ∩R , ∅} is
determined uniquely by the collection of subsets

♦2{>} = {S ⊆ 2 | S ∩ {>} , ∅} = {{⊥,>}, {>}} ⊆ P2.

Similarly, the predicate lifting � is uniquely determined by

�2{>} = {∅, {>}} ⊆ P2.

3. For each p ∈ [0,1], the predicate lifting p̄ for discrete-time Markov chains,
sending a subset S ⊆ X to {µ ∈ DX |

∑
µS ≥ p }, is determined uniquely by the

subset of D2:

p̄2{>} = {µ ∈ D2 |
∑

µ{>} ≥ p } = {µ ∈ D2 | µ(>) ≥ p }.

It is worth mentioning that the characterisation of a κ-ary predicate lifting for T by a
subset of T 2κ only involves a subset while the original definition involves a family of
functions with naturality.

To obtain expressiveness, the chosen set of predicate liftings needs a certain property:
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Definition 2.3.11 (see [88, 97]). A set Λ of n-ary predicate liftings λ for T has the
separation property on a set X if the Λ-indexed family of maps

λ[X : TX→ 2(2X )n

t 7→ { (S ⊆ X)i∈n | t ∈ λX(S)i } (n is the arity of λ)

is jointly injective. We say that Λ is separating if Λ has the separation property for
any set.

That is, a set of predicate liftings has the separation property on a set X if any two
distinct elements t,u ∈ TX can be distinguished by a predicate lifting with an n-ary
predicate on X.

Theorem 2.3.12 (see [97, Theorem 41]). Let T be finitary and Λ a separating set of
finitary predicate liftings. The logic L(Λ) of predicate liftings is expressive.

Example 2.3.13. Using the above theorem, we proceed to verify the expressiveness of
the following logics of predicate liftings given previously:

1. Consider predicate liftings ā : 2−→ 2A×− for sets of streams over A. Each pair
of elements 〈a,x〉,〈a′,x′〉 ∈ A×X on a set X with a , a′ can be distinguished by
ā and any subset S ⊆ X. Then, 〈a,x〉 ∈ āX(S) but 〈a′,x′〉 < āX(S). Otherwise, a
pair 〈a,x〉 and 〈a,x′〉 with x , x′ can be distinguished by ā(S) for a subset S ⊆ X
with x ∈ S but x′ < S .

2. Consider the predicate lifting ♦ for unlabelled transition systems. Let U,V ∈ PX
be two distinct subsets of X and U is non-empty, and x ∈U but x < V . Hence
the singleton {x} has a non-empty intersection with U but an empty intersection
with V . That is, U ∈ ♦X{x} but V < ♦X{x}.

3. Consider predicate liftings p̄, p ∈ [0,1], for discrete-time Markov chains. Let µ
and µ′ be distributions with finite support on a set X with p ..= µ(x) > µ′(x) for
some x ∈ X. It follows that µ(x) = µ ∈ p̄{x} but µ′ < p̄{x} by definition.

The separation property for subsets of T 2 or T 2κ can be formulated by using the
translation in Lemma 2.3.9:

Lemma 2.3.14 (see [97, Corollary 44]). A Set endofunctor T has a set of polyadic
predicate liftings bounded by κ which has the separation property on X if and only if the
family

{T χ : TX→ T 2γ | γ < κ,χ : X→ 2γ } (2.26)

is jointly injective on X.

Proof. For convenience, we only prove it for unary predicate liftings and the general
case follows similarly.
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The powerset PT 2 is the collection of all predicate liftings up to bijection by
Lemma 2.3.9. By (2.25), for each subset S ⊆ X and a subset C ⊆ T 2, the sub-
set T χ−1

S [C] is the value of S mapped by the predicate lifting induced from C. Hence,
the set of all predicate liftings PT 2 is separating if and only if it is jointly injective,
since PT 2 distinguishes each pair of distinct elements in T 2.

Lemma 2.3.15. A setΛ of (unary) predicate liftings for a finitary and inclusion-preserving
Set endofunctor is separating if and only if Λ has the separation property on all finite
sets.

Proof. As for the if part: Note that for an inclusion-preserving and finitary functor T ,
the set TX is the directed union of {T S ⊆ TX | S ⊆ω X }, so for any t1, t2 ∈ TX,
there exists a finite subset S ⊆ X such that t1, t2 ∈ T S . Thus there exists a predicate
lifting λ ∈Λ and a subset S ′ ⊆ S with χλS ′ (t1) , χλS ′ (t2). Moreover, by naturality

2X

i−1
��

λX // 2TX

T i−1
��

2S
λS
// 2T S

we have λX(U ) for any subset U of S where i : S ⊆ X is the inclusion.

The only-if part follows by definition.

Using the above two facts, a finitary Set endofunctor admits a separating set of
finitary predicate liftings if and only if (2.26) holds for all finite sets X. The latter is
easily established for the set of all finitary predicate liftings:

Theorem 2.3.16 (see [97, Corollary 45]). A finitary and inclusion-preserving endofunctor
of Set admits a separating set of finitary predicate liftings.

Proof. Let X be a finite set. Clearly, there is an injective function χ : X → 2X such
that

χ(x)(y) =

> if x = y,
⊥ otherwise.

By assumption, T preserves injections, so T χ is also injective. It follows that (2.26) is
jointly injective, so the set of all finitary predicate liftings is separating.

Corollary 2.3.17. The logic of all finitary predicate liftings for an inclusion-preserving
and finitary Set endofunctor is expressive.

2.3.2 Logics of Cover Modality

As we have seen, Moss’ cover modality provides a modal operator ∇ = ∇T only
dependent on the type functor T . The languageMT of the corresponding logic for a
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finitary Set endofunctor T is generated by the following syntax:

ϕ ..=⊥ | > | ¬ϕ | ϕ ∨ψ | ϕ ∧ψ | ∇α (2.27)

where α ∈ T i[T S] for some finite subset i : S ⊆MT . Note that, since T is finitary,
TMT =

⋃
{T i[T S] | i : S ⊆ωMT }. For convenience, we may assume further that T

preserves inclusions so that the cover modality ∇α can be equally constructed by

α ∈ T {ϕ0, . . . ,ϕn−1}

for finitely many formulae ϕi ∈MT for i ∈ n.

In (2.17), we have seen the interpretation of the cover modality in terms of the
satisfaction relation. This formulation can be captured by relation lifting : Given a Set
endofunctor T , the relation lifting TR of a relation R ⊆ X ×Y for T is defined to be
the image of the following diagram

TR
TπX

||

TπY

""����

TX TX × T YπTX
oo

πT Y
// T Y ,

(2.28)

i.e. TR ..= { 〈u,v〉 ∈ TX × T Y | ∃w ∈ TR.T πX(w) = u,T πY (w) = v }. We can re-
write (2.17) using relation liftings as

〈X,ξ〉;x 
 ∇α ⇐⇒ ξ(x) T (
) α.

The interpretation ~−� = ~−�〈X,ξ〉 of Moss’ logic MT , for a T -coalgebra 〈X,ξ〉, as
subsets of X is defined as follows:

~⊥� = ∅ ~>� = X
~ϕ ∨ψ� = ~ϕ�∩ ~ψ� ~ϕ ∧ψ� = ~ϕ�∪ ~ψ�

~¬ϕ� = ~ϕ�{ ~∇α� = (ξ−1 ◦∇X)((T ~−�)α)

where ∇X : T 2X → 2TX is defined by

∇X : α 7→ { t ∈ TX | (t,α) ∈ T (∈X) } (2.29)

and ∈X ⊆ X ×PX is the membership relation on X.

Weak-pullback preservation

The relation lifting T of T : Set→ Set is a Rel endofunctor if and only if it preserves
weak pullbacks, where Rel consists of sets as objects and relations as morphisms with
compositions defined by

R ◦ S = { 〈x,z〉 | ∃y .x R y and y S z }.
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Lemma 2.3.18 (see [18]). T preserves weak pullbacks if and only if T (R◦S) = TR◦T S
for any relation R ⊆ X ×Y and S ⊆ Y ×Z .

Proposition 2.3.19. Let T be weak-pullback preserving. The following statements are
true:

1. The map ∇ defined in (2.29) is a natural transformation from T 2− to 2T .

2. In particular, the logic of the cover modality for T is adequate.

Proof. The naturality of ∇ : T 2−→ 2T amounts to the equation

{ t ∈ TX | 〈T f (t),β〉 ∈ T (∈Y ) } = { t ∈ TX | 〈t,T 2f (β)〉 ∈ T (∈X) }

for any f : X→ Y and β ∈ T 2Y . However, it suffices to show that in Rel the following
diagram on the left commutes; and by Lemma 2.3.18, it follows from the commutative
diagram on the right:

TX
T (∈X )� //

graph(T f )_

��

T 2X

graph(T 2f )
op_

��

T Y
T (∈Y )

� // T 2Y

and

X
∈X� //

_graph(f )

��

2X

_
graph(2f )

op

��

Y �
∈Y
// 2Y

where graph(T f ) = T (graphf ) and graph(T 2f )
op

= T (graph(2f )
op

) by a direct
computation.9 The above diagram on the right is simply the diagrammatic form of
the statement

x ∈X f −1(S) ⇐⇒ f (x) ∈Y S

for x ∈ X and S ⊆ Y . Hence, the first statement follows.

As for the second statement, it will follow from the naturality using Theorem 2.3.28.

Theorem 2.3.20 ([83]). Let T be finitary and preserve weak pullbacks. Then, the logic
of the cover modality for T is expressive.

In particular, if T is a polynomial functor defined by the following syntax:

T ..= I | KX | T + T | T × T |
∐

T , (2.30)

i.e. built from the identity functor I , constant functors KX with value X, binary
products T × T , and coproducts T + T and

∐
T , then ∇ : T 2−→ 2T is a family of

predicate liftings.

9 The slashed arrow X � // Y indicates a relation.
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Moss liftings

Moss’ coalgebraic logic is different from logics of predicate liftings in the sense that
there is always a modality by default and the syntax is different. However it is pointed
out by Leal [74] that the cover modality for finitary and weak-pullback preserving Set
endofunctor essentially introduces a family of polyadic predicate liftings.

We begin with a presentation property of finitary functors:

Theorem 2.3.21. Every finitary functor T : Set→ Set is a coequaliser of the following
diagram ∐

f : m→n
Tm×Xn

ρ1
//

ρ2
//

∐
n∈ω

T n×Xn EX // // TX

natural in X where for any function f : m → n and (σ,x) ∈ Tm ×Xn the above two
functions are defined by

ρ1 : (σ,x) 7→ (T f (σ ),x) and ρ2 : (σ,x) 7→ (σ,x ◦ f )

respectively.

Proof. See Corollary 3.4.11

An equational presentation of T is a pair 〈Σ,E〉 consisting of a functor Σ from the
discrete small category ℵ0 to Set and a surjective natural transformation E :

∐
Σn×Xn ˙−→T

in the functor category. The set Σn is called the collection of n-ary operations and
E the set of equations. We call 〈T ,E〉 defined above the canonical (equational)
presentation.

The canonical presentation is usually not the most efficient one:

Example 2.3.22. The finitary powerset functor Pω can be presented by operations
and equations as follows. For every n-tuple x = 〈xi〉i∈n and m-tuple y = 〈yj〉j∈m in X,
we say σ (x) = σ (y) if and only if for any i ∈ n, there is some j ∈m such that xi = yj
and vice versa, i.e.

{x0, . . . ,xn−1} = {y0, . . . , ym−1}.

It shows that the finitary powerset functor on a set X is a coequaliser

RX
π1 //

π2
//

∐
n∈ω

Xn // // PωX

where RX =
{
(x,y) ∈ (

∐
n∈ωX

n)2
∣∣∣ {x0, . . . ,xn−1} = {y0, . . . , ym−1}

}
and πi is the i-th

projection, for i = 1 and 2. (To see that RX is a functor, define RX → RY for
f : X→ Y by (x,y) 7→ (f x,f y). Now, it is not hard to see that R is a functor and πi
is natural in X.)
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On the other hand, the canonical presentation of the finitary powerset functor Pω is
given by ∐

f : m→n
Pω(m)×Xn

ρ1
//

ρ2
//

∐
n∈ω
Pω(n)×Xn EX // // PωX

with equations

({f i ∈ n | i ∈ S },〈x0, . . . ,xn−1〉) = (S,〈xf 0, . . . ,xf (m−1)〉)

for f : m→ n, a subset S of m, and an n-tuple x. Informally, a finite subset X ′ of X
is presented by an n-tuple x and a subset S of n where xi is ‘picked’ in X ′ if i ∈ S .

Back to the cover modality, given an equational presentation 〈Σ,E〉 of T , every
operation σ in Σn gives rise to an n-ary predicate lifting ∇σ via the following diagram

(2X)n //
iσ //

(∇σ )X
��

∐
Σn× (2X)n

EX // // T 2X

∇X
��

2TX
id

// 2TX

(2.31)

where iσ : S 7→ (σ,S) is the injection. Conversely, since every element of T 2X is an
equivalence class with representative 〈σ,S〉 for some σ ∈ Σn and (Si ⊆ X)i∈n, for
α ∈ T 2X , the set ∇Xα ⊆ TX is equal to ∇σ (Si)i∈n.

Definition 2.3.23 (see [74]). Given an equational presentation 〈Σ,E〉 of a finitary
functor T , a 〈Σ,E〉-Moss lifting (or Moss lifting if the presentation is clear) is a
polyadic predicate lifting equal to some ∇σ defined in (2.31) for σ ∈ Σn.

By Theorem 2.3.21, every finitary and weak-pullback preserving Set endofunctor has
a canonical set of Moss liftings

{∇t : (2−)n→ 2T | n ∈ω,t ∈ T n } � {∇t〈π−1
i {>}〉i∈n | n ∈ω,t ∈ T n }

by Lemma 2.3.9 and the set of Moss liftings can be identified as a subset of
∐
n∈ω T (n).

2.3.3 Abstract Functorial Framework

The two approaches introduced so far can be unified into a single categorical frame-
work. It was first observed in [65] starting from the algebraic semantics of logics of
predicate liftings, and discussed as an abstract tool for coalgebra logics in [30, 53, 63,
72, 76, 92, 107] to name but a few. The cover modality was then subsumed into this
picture in [74] used to investigate the equational aspects of Moss’ coalgebraic logic.

Definition 2.3.24. Let BA denote the category of Boolean algebras. An abstract
logic over BA for a functor T : Set→ Set is a pair consisting of

• a syntax, in the form of an endofunctor L : BA→ BA, and
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• an interpretation, in the form of a natural transformation δ : LQ ˙−→QT

where Q : Set → BA is the contravariant powerset functor mapping any set X to
its powerset (Boolean) algebra; and any function f : X → Y to the inverse image
function f −1.

Example 2.3.25. In the following discussion, we shall note that the contravariant
powerset functor 2− is the composite of P with the forgetful functor U : BA→ Set
and denote the left adjoint to U by F for the free Boolean algebra construction.

1. An n-ary predicate lifting λ : (2−)n ˙−→2T is understood as a natural transforma-
tion from UP n to UP T , and then a set Λ of predicate liftings can be identified
as a natural transformation:

δΛ : F

∐
n∈ω

Λn ×U (−)n
 ◦ P ˙−→P T

where Λn denotes the set of n-ary predicate liftings, i.e. a logic consisting
of F(

∐
Λn ×U (−)n) as the syntax and δΛ as the interpretation.

2. Assume that the coalgebra type functor T is finitary and preserves weak pull-
backs. The map ∇ : T 2X → 2TX defined in (2.29) is a natural transformation by
Proposition 2.3.19 where T 2− and 2T are equal to TUP and UP T respectively.
By the adjointness, ∇ corresponds uniquely to a natural transformation

∇ : FTUPX −→ P TX,

i.e. a logic consisting of FTU as the syntax and ∇ as the interpretation.

The language of a given abstract logic is defined as an initial L-algebra, if it exists.
The initial algebra can be constructed from the initial sequence of L:

2→ L2→ ·· · → Li2→ . . .

which is equivalent to the construction of an inductively defined language.

Example 2.3.26. 1. The language L(Λ) for a set Λ of predicate liftings for a
functor T subject to the Boolean laws is clearly a Boolean algebra; we denote it by
L(Λ). Predicate liftings λ ∈Λ define a (trivial) Boolean algebra homomorphism

i : F

∐
n∈ω

Λn ×UL(Λ)ar(λ)

 −→L(Λ)

by sending (λ,ϕ) to the formula [λ](ϕ) for any n-ary predicate lifting λ
and ϕ = (ϕi)i∈n. The existence of the unique map from (L(Λ), i) to any L-
algebra (A,α) is shown inductively with the basic step: ⊥ and > must be
mapped to the bottom element and top element in A respectively. Notably, the
semantic map ~−� : L(Λ)→ 2X is indeed the unique homomorphism.
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2. For a finitary functor T , the existence of an initial algebra for FTU : BA→ BA,
i.e. the syntax for the logic of the cover modality, is shown similarly.

Similar to complex algebras of Kripke frames, any T -coalgebra can be turned into
an L-algebra: Every abstract logic (L,δ : LP ˙−→P T ) defines a contravariant functor P̃
from the category of T -coalgebras to the category of L-algebras via

(X
ξ
−→ TX) 7→ (LPX

δX−−→ P TX
ξ−1

−−−→ PX) and f 7→ f −1

for any T -coalgebra (X,ξ) and coalgebra homomorphism f .

Definition 2.3.27. Assume that a language (Φ , i) for a given abstract logic (L,δ)
for T exists. For any T -coalgebra (X,ξ), we say that an element x ∈ X satisfies
a formula ϕ ∈ Φ , if x ∈ ~ϕ�(X,ξ) where ~−�(X,ξ) : Φ → PX is the unique L-algebra
homomorphism from the language (Φ , i) to the complex algebra P̃ (X,ξ). As a formula,

(X,ξ); x |= ϕ if and only if x ∈ ~ϕ�(X,ξ). (2.32)

For any abstract logic induced by a set Λ of predicate liftings and λ ∈Λ, the semantics
of a formula λ(ϕ) for some ϕ ∈ Φ is calculated via the following diagram

LΦ

L~−�
��

i // Φ

~−�
��

i−1

��

PX
δX
// P TX

ξ−1
// PX

such that we obtain the following interpretation of λ(ϕ):

~λ(ϕ)� = (ξ−1 ◦ δX ◦L~−� ◦ i−1)(λ(ϕ))

= (ξ−1 ◦ δX ◦L~−�)(λ,ϕ)

= (ξ−1 ◦ δX)(λ,~ϕ�)

= (ξ−1 ◦λX)(~ϕ�) = ξ−1(λX~ϕ�)

which coincides with the definition given in page 31.

The following theorem generalises Theorem 2.3.8 and Proposition 2.3.19:

Theorem 2.3.28. Let (L,δ) be an abstract logic for T such that an L-initial algebra
exists. Then, (L,δ) is adequate.

Proof. Without loss of generality, it suffices to show that for any coalgebra homo-
morphism f : (X,ξ)→ (Y ,γ), every x is logically equivalent to its image f x.
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For brevity, let ~−� = ~−�(X,ξ) and ~−�′ = ~−�(Y ,γ) respectively. The following diagram

(Φ , i)
~−�

//

~−�′ ''

P̃ (X,ξ)

P̃ (Y ,ξ)

f −1

OO

commutes by the initiality of (Φ , i), so x ∈ ~ϕ� if and only if f x ∈ ~ϕ�′ for every
ϕ ∈ Φ .

Expressiveness

To study expressiveness, it is more convenient to rephrase the statement in terms of
morphisms in Set instead of Boolean algebra homomorphisms in Theorem 2.3.28, as
discussed in [63] and formulated using a duality with a factorisation system in [53]. It is
possible by using the well-known Stone duality: every Boolean algebra A corresponds
to the set UfA of ultrafilters over A, i.e. Boolean algebra homomorphisms from A to
the two-element algebra {⊥,>}, and each Boolean algebra homomorphism f gives
rise to a map between the sets of ultrafilters, defined by precomposition, i.e.

(x : B→ 2) 7→ (x ◦ f : A→ B→ 2)

for any x ∈ UfA. The resulting contravariant functor is denoted by S . Then the
contravariant powerset algebra functor Q with S form a dual adjunction (on the right)
Set(X,SA) � BA(A,QX) natural in X and A defined via currying

X→ (A→ 2) � X ×A→ 2 � A→ (X→ 2).

Given an abstract logic (L,δ), the interpretation δ : LQ ˙−→QT can be translated into
a natural transformation

δ∗ : T S δ[S %9 SLQS
SLη

%9 SL (2.33)

called the mate of δ where δ[ is the transpose of δ by Stone duality and η : I → P S
is the unit defined by a 7→ {f : A→ 2 | f (a) =>} ⊆ SA.

Theorem 2.3.29 (see [53, 63]). Let (L,δ) be an abstract logic for T : Set → Set for
which the initial L-algebra exists. If the mate δ∗

Φ
on the language Φ is injective, then the

logic (L,δ) is expressive.

Proof. We will show this in Chapter 5 in a more general setting.

The correspondence (2.33) is called mate correspondence, see Section 5.1.4 for details.
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2.4 Coalgebras beyond Set

A number of coalgebras over the category Pos of posets with order-preserving func-
tions or related categories have been studied. For example, a real number representa-
tion as a final coalgebra of some endofunctor on Pos appears in [91]; Kripke frames
for positive modal logic, a negation-free modal logic, are presented as coalgebras of
the convex powerset functor on Pos in [24, 86]; a coalgebraic view on the π-calculus is
given in [29], inspired from [2], which is also an instance of coalgebras over a category
of domains.

Further, coalgebras over measurable spaces or metric spaces with distribution or
valuation functors are also considered in the literature, e.g. [33, 41, 84, 85, 101, 106].

Coalgebras over topological spaces are also of interest due to the long-standing
connection between logic and topology, i.e. Stone duality [103] and Jónsson-Tarski du-
ality [57]. A coalgebraic view on the dual representation of modal algebras is discussed
in [68] as coalgebras over Stone spaces, the corresponding ultrafilter extension in [66]
and the corresponding notion of bisimulation in [23]. Descriptive Kripke frames,
coalgebras for the Vietoris functor on Stone spaces, are generalised and discussed
in [22].

For example, compactly branching transition systems can be formulated as coalgebras
on Top:

Definition 2.4.1. Let X be a topological space. The Vietoris space VX consists of
the collection KX of compact subsets of X with a topology generated by the following
subsets as subbasis:

�(U ) ..= {K ∈ KX | K ⊆U } and ♦(U ) ..= {K ∈ KX | K ∩U , ∅}

for every open subset U ⊆ X. Define the Vietoris (space) functor V by mapping a
space X to VX and a continuous function f to a continuous function Vf defined
by mapping K to {f x | x ∈ K }. The functoriality follows from the compactness-
preservation.

It is apparent from the definition that every set ξ(x) of successors in a Vietoris
coalgebra 〈x,ξ〉 is compact; Vietoris coalgebras with discrete carrier are exactly
coalgebras of the finitary powerset functor.

2.5 Coalgebraic Logic beyond Set

Compared to the rich collection of coalgebras beyond Set, there are relatively few
systematic attempts to define coalgebraic logic in a generic way, i.e. coalgebraic logic
for (almost) arbitrary functors.

A notable study of coalgebraic logic over locally finitely presentable categories, where
every object is a filtered colimit of ‘finite’ objects, is given by Klin [63]. In op. cit., the
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type of coalgebras is assumed to be finitary and monomorphism-preserving. Following
Klin’s work, Jacobs studies the expressiveness property for a number of instances
in [53].

Similar assumptions are also proposed in the study of coalgebraic logic for Pos
coalgebras via order-enriched predicate liftings in [58] where the preservation of
injections becomes the preservation of embeddings.10

A comprehensive study of coalgebraic logic for coalgebras over measurable spaces via
predicate liftings is studied by Doberkat [38–40] with a survey paper comparing them
with Set predicate liftings [41].

Some generic approaches to coalgebraic logic for coalgebras over spaces are discussed
under dualities between certain spaces and complete lattices with the infinite dis-
tributive law, e.g. [30, 71], and coalgebraic logic for Vietoris polynomial functors on
Stone spaces is discussed in [68].

10An embedding function between posets is an order-reflecting function, i.e. f (x) ≤ f (y) if and
only if x ≤ y.





Chapter 3

Categorical Preliminaries

Category theory and its terminologies covered by the textbook by Mac Lane [81] is
assumed in the following chapters. To lay down the necessary foundations for the
main framework, this chapter serves a gentle walk-through of useful techniques in [6,
10, 31, 61]. In addition, we also aim to clarify assumptions and conventions common
in the study of coalgebras and coalgebraic logics, e.g. set-based, the preservation of
inclusions, and the definition of finitary Set functor.

The foundation of category theory does not affect the following discussion. The
distinction between set and class is left informal, except Section 3.5. Thus, we only
need to know that a category is small if the collection of all morphisms is a set; a
category is locally small if the collection of all morphisms between each pair of objects
is a set. On the other hand, the collection of all objects might be a proper class, e.g.
Set.

3.1 Factorisation Systems

Definition 3.1.1. Given a category C and morphisms f ,g , we say that f is ortho-
gonal to g and it is written as f ⊥ g if for any commutative diagram

·
f
//

��

·

��

∃!

��· g
//

g
// ·

there is a unique morphism filling the diagonal.

Given a collectionM of morphisms, ⊥M denotes the collection of morphisms defined
by

{e | ∀m ∈M . e ⊥m },

45
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and similarly E⊥, for some collection E of morphisms, is the collection of morphisms m
satisfying e⊥m for every e ∈ E . Further, write E ⊥ M if e ⊥ m for every e ∈ E
and m ∈M.

Definition 3.1.2. Given two collections of morphisms E andM of some category C ,
we say that (E ,M) is a factorisation system if a) every morphism f ∈ C has
an (E ,M)-factorisation; b) E and M contain isomorphisms and are closed under
compositions; c)M⊥ E .

Example 3.1.3. Let C be any category in the following examples:

1. The collection MorC of morphisms in C and the collection IsoC of isomorph-
isms give two factorisation systems: (MorC , IsoC ) and (IsoC ,MorC ).

2. The category of sets has the (Surjection, Injection)-factorisation system as
shown in Proposition 2.1.21.

3. Every regular category (see Definition 4.3.38), such as a variety of algebras, has
a (RegEpi,Mono)-factorisation system, see Theorem 4.3.39.

Proposition 3.1.4 (see [6, Section 14]). Given a factorisation system (E ,M) on a cat-
egory C , the following statements hold:

1. E andM determine each other: E = ⊥M andM = E⊥.

2. Every E-morphism ( resp.M-morphisms) is preserved by pushouts ( resp. pullbacks).

3. The M-class ( resp. E-class) is closed under limits ( resp. colimits) in the arrow
category C→.

4. The left cancellation law holds, i.e.

f ◦ g ∈M and f ∈M implies g ∈M.

5. Dually, the right cancellation law holds, i.e.

f ◦ g ∈ E and g ∈ E implies f ∈ E .

Given an (E ,M)-factorisation system, we always use // // and // // to denote an
M-morphism and an E-morphism, respectively.

3.1.1 Quotients and Right Factorisation Systems

A factorisation system is called right if every E-morphism is epic. This kind of
factorisation system generalises the notion of quotient in a natural way:
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Definition 3.1.5. Given an (E ,M)-factorisation system on a category C where every
E-morphism is epic, an E-quotient of an object c is an isomorphism class of E-
morphisms

c� d.

For every object c ∈C we define a preorder on E-morphisms out of c

(c
e1
� d1) � (c

e2
� d2)

if there exists a morphism f from d1 to d2 such that f e1 = e2.

Note that there is at most one such morphism from d1 to d2 because e1 is epic, so the
preorder is lifted to a partial order on the collection of E-quotients. We may call an
E-morphism from c as an E-quotient of c if it only matters up to isomorphism.

Every right (E ,M)-factorisation system reveals about the class M as well: Recall
that an extremal monomorphism is a monomorphism m satisfying that for every
factorisation m = g ◦ e, the morphism e is epic if and only if e is invertible.

Proposition 3.1.6 (see [10, Proposition 14.10]). For every right (E ,M)-factorisation sys-
tem on a category C , every extremal monomorphism in C is anM-morphism.

Also, a strong monomorphism is a monomorphism contained in EpiC ⊥. Every
strong monomorphism is extremal.1 Conversely, every extremal monomorphism is
strong if the category has pushouts.2

The extremal condition (resp. and the strong condition) provide a general factorisation
system for every category with enough limits (resp. and pushouts):

Theorem 3.1.7 (see [6, Theorem 14.19]). Every category with equalisers and intersec-
tions, i.e. the pullback of an arbitrary collection of subobjects, has the (Epi,ExtrMono)-
factorisation system.

3.1.2 The Reflective Subcategory determined by a Factorisation
System

It is well-known that [35] every factorisation system on a category C with a terminal
object determines a reflective subcategory A consisting of ‘M-subobjects’ of the
terminal object:

1 For any factorisation m = ge where e is an epimorphism, apply the diagonalisation property to
obtain a morphism s such that g = mh and id = he. Since e is epic, we have id ◦ e = ehe and thus
id = eh.

2 For any extremal monomorphism m and a commutative square v◦e =m◦h for some epimorphism
e, the pushout e′ of e along h is epic, so by the universal property f factors through e′ . By the extremal
condition, e′ is invertible, so some morphism fills the commutative square. The uniqueness is simple to
check.
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Proposition 3.1.8 (see [31, Proposition 5.5.5]). Every (E ,M)-factorisation system on a
category C with a terminal object induces an E-reflective subcategory ∇ a i : A ↪→C such
that

1. for every object c ∈C , the reflection of c is the E-part

!c : c� ∇c� 1;

of the unique morphism to the terminal object;

2. every morphism f ∈ E is inverted by ∇, i.e. ∇f is an isomorphism.

However, considering applications in the category of coalgebras, the existence of a
terminal object is a very strong assumption as it states the existence of final coalgebra
against the leading example—coalgebras of the powerset functor. First we observe
that:

Lemma 3.1.9. Given a category C with a terminal object 1 ∈ C and a right (E ,M)-
factorisation system of C , for every object c ∈C the factorisation of the unique morphism

!c : c�!c� 1

consists of a greatest E-quotient of c and anM-subobject of 1.

Proof. We only need to show that e is the greatest E-quotient: for any E-morphism
from c to some object d the following diagram always commutes

c

e
����

// // d

��

!c // // 1

since 1 is the terminal object. It follows that there is a unique morphism from d to !c
by the diagonalisation property.

Proposition 3.1.10 (cf. [31, Proposition 5.5.5]). Every right (E ,M)-factorisation system
on a category C with pushouts and a greatest E-quotient object for each object in C
induces an E-reflective subcategory ∇ a i : A ↪→C such that

1. the reflective subcategory consists of objects without proper E-quotient;

2. for every object c ∈C , the reflection is an E-greatest quotient

ec : c� ∇c;

3. every morphism f ∈ E is inverted by ∇, i.e. ∇f is an isomorphism.
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Proof. Let A be the full subcategory of C consisting of objects without proper E-
quotients, i.e. every morphism from an object in A is anM-morphism.

Every object c ∈C has the greatest E-quotient ∇c. By the Axiom of Choice, there is
always a representative c� ∇c for each isomorphism class and it is easy to see that
∇c is in A .

To see that the greatest E-quotient is a reflection, consider the following diagram for
every morphism f : c→ a to some a ∈A :

c
ec // //

f

��

∇c
h

||

ιc

��

a // ιa
// a+c ∇c

(3.1)

where (ιc, ιa) is a pushout of (ec, f ). By assumption, ιa is anM-morphism, so there
exists a unique morphism h filling the diagonal.3 To see that h is indeed the unique
morphism satisfying h ◦ ec = f , we show that the commutativity of the upper triangle
also implies the lower triangle. Given a morphism g : ∇c→ a satisfying g ◦ ec = f ,
we have ιa ◦ g ◦ ec = ιc ◦ ec by diagram chasing, so, by e being epic, it implies that
ιa ◦ g = ιc. That is, the lower triangle commutes.

To show the last statement, let f : c → d be an E-morphism and ∇f the unique
morphism satisfying f = ∇f ◦ ec in the diagram:

c
ec // //

f

����

ed◦f
    

∇c

∇f

��

$$

ι∇c

$$

d ed
// // ∇d // ι∇d

// ∇c+c ∇d.

Applying the right (resp. left) cancellation law for E-morphisms (resp.M-morphisms)
to ed ◦f (resp. ι∇c), the morphism ∇f is an E-morphism (resp.M-morphism). Since ∇f
is at the same time an E-morphism and anM-morphism, it is an isomorphism.

3.1.3 The Reflective Thin Subcategory by a Proper Factorisation
System

Given a right (E ,M)-factorisation system, theM-morphisms are often monomorph-
isms, e.g. in the standard factorisation system for Set; and we call this kind of
factorisation system proper.

3 The morphism h in (3.1) can be deduced directly as follows. Since E-morphisms are preserved
by pushouts, ιa is an E-morphism. By assumption ιa is anM-morphism, so ιa is an isomorphism. It
follows that h is equal to the ι−1

a ◦ ιc by commutativity.
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Lemma 3.1.11. Let (E ,M) be a proper factorisation system on a category C with coequal-
isers.

1. For any greatest E-quotient c and an object d, there is at most one morphism from d
to c.

2. In particular, the full subcategory of greatest E-quotients is thin, i.e. for every pair
of objects c and d there exists at most one morphism from c to d.

Proof. For any two morphisms f ,g to a greatest E-quotient c from some object d,
consider the coequaliser of f and g :

d
g
//

f
//
c // h // e

where h must be anM-morphism, so monic. Thus, hf = hg implies f = g .

Proposition 3.1.12. Let C be a cocomplete category with a proper (E ,M)-factorisation
system such that C isM-wellpowered. Then, a terminal object exists in C if and only if
there is a small thin reflective subcategory ∇ a i : A ↪→C satisfying that

1. every object in A is a greatest E-quotient; and

2. for every object c ∈C , the reflection is a greatest quotient.

Proof. Proposition 3.1.8 shows that there is a reflective subcategory A of C satisfying
the above conditions. Every greatest E-quotient is an M-subobject of the terminal
object by finality and the fact that every greatest E-quotient has no proper quotient.
By the Axiom of Choice, the skeleton of A exists and by well-poweredness it is small.

Conversely, suppose that there is a small reflective subcategory A consisting of greatest
E-quotients. By assumption, the coproduct of every object in A exists in C , and each
object c ∈ C has at least a morphism to the coproduct by the reflection of c. Also,
the coproduct has a greatest E-quotient by reflection and thus every object c ∈ C
has a morphism to the greatest E-quotient. By Lemma 3.1.11, every morphism to a
E-greatest quotient is unique:

c� ∇c
ι∇c−−→

∐
a∈A

a� ∇
∐
a∈A

a,

so it follows.

Note that A is cocomplete, small and thin, i.e. a complete lattice.
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3.2 Canonical Limits

3.2.1 End

Many (co-)limits appear in a canonical way, and they are more conveniently computed
by (co-)ends using a generalised natural transformation:

Definition 3.2.1. Given categories C and D , functors S and T from the product
category C op ×C to D , a diagonally natural transformation (dinatural trans-
formation for short) is a family of morphisms S(c,c)→ T (c,c) for each c ∈C such
that for any morphism f : c→ c′ the diagram

S(c,c)
τc // T (c,c)

T (c,f )

%%

S(c′, c)

S(f ,c)
99

S(c′ ,f ) %%

T (c,c′)

S(c′, c′) τc′
// T (c′, c′)

T (f ,c′)

99

commutes. If either functor S or T is a constant, say d ∈ D , we call a dinatural
transformation from S to T a wedge, i.e. a family of morphisms either {τc : d →
T (c,c)}c∈C or {τc : T (c,c)→ d} with commutative diagrams

d
τc //

τc′

��

T (c,c)

T (c,f )

��

T (c′, c′)
T (f ,c′)

// T (c,c′)

or S(c′, c)
S(f ,c)

//

S(c′ ,f )

��

S(c,c)

τc

��

S(c′, c′) τc′
// d

respectively for each f : c→ c′ .

Example 3.2.2 (Every natural transformation is a dinatural transformation). LetQ : C op×
C →C be the second projection functor, i.e. Q(c′, c) = c and Q(f ,g) = g . Every nat-
ural transformation σ from S : C →D to T : C →D is a dinatural transformation
from SQ to TQ: for any f : c→ c′

Sc
σc // T c

T f

""

Sc

Sf !!

id
==

T c′

Sc′ τc′
// T c′

id

<<

which is equal to the naturality diagram of σ .



52 Chapter 3 Categorical Preliminaries

Definition 3.2.3 (see [81, Definition IX.5]). Given categories C and D and a functor
S : C op ×C →D , an end consists of an object e ∈D and a universal wedge τ from
e to the functor S , i.e. a wedge such that for any wedge σ to S , there exists a unique
morphism h from d to e with the commutative diagram

d

h

��

σc′

  

σc // S(c,c)
S(c,f )

))

S(c,c′)

e

τc

>>

τc′
// S(c′, c′)

S(f ,c′)

55

for any f : c→ c′ . A coend is an end in the opposite category.

By abuse of notation, an end of S : C op ×C →D is written as an object∫
c
S(c,c) or

∫
C
S

inD without writing down the universal wedge; similarly a coend of S : C op×C →D
is written as

∫ c
S(c,c) or

∫ C
S .

Example 3.2.4 (The collection of natural transformations is an end). Let U,V : C →D
be functors. A natural transformation from U to V consists of morphisms from Uc
to V c for each object c, and the association itself is a map from the collection of
natural transformations Nat(U,V ) to Hom(Uc,V c), denoted (−)c, for each c. Using
the association (−)c, the naturality can be written as, for f : c→ c′,

Hom(Uc′,V c′)
−◦Uf

// Hom(Uc,V c′)

Nat(U,V )

(−)c′

OO

(−)c
//

OO

Hom(Uc,V c)

V f ◦−
OO

which exhibits a wedge from Nat(U,V ) to the functor Hom(U−1,V−2) : C op ×C →D .
Every wedge from some set X to Hom(U−1,V−2) defines a natural transformation for
every element in X, so every element is indeed a natural transformation and a unique
function, the inclusion, exists. To sum up, the collection of natural transformations
from U to V is an end of the hom-functor Hom(U−,V−):

Nat(U,V ) =
∫
c
Hom(Uc,V c).

Example 3.2.5. Let Q : C op × C → C be the second projection functor and S
a functor from C to D . A wedge 〈σc : e → Sc〉 is a limit for S if and only if
〈σc : e→ SQ(c,c) = Sc〉 is an end for SQ. See [81, Proposition IX.5.3] for the details.

The computation of an end can be reduced to products and equalisers:
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Theorem 3.2.6. For categories C ,D and a functor S : C op ×C → D , an end of S
exists if the following products∏

c∈C

S(c,c)
//

// ∏
f : c→c′

S(c,c′) (3.2)

and an equaliser of the parallel morphisms, induced by S(f , c′) and S(c, f ) for c,c′ ∈ C
and f : c→ c′, exist.

In detail, one of the parallel morphisms is given as follows. For any c ∈ C and any
morphism f from c to some c′ , there exists a morphism S(c, f ) : S(c,c)→ S(c,c′). By
the universal property of product, there is a mediating morphism

(S(c, f ))f : c→c′ : S(c,c)→
∏

f : c→c′
S(c,c′)

where the index of the product is the collection of morphisms from c. It induces a
morphism ∏

c∈C

S(c,c)→
∏
c∈C

∏
f : c→c′

S(c,c′)

where the double product is isomorphic to
∏
f : c→c′ S(c,c′).

Proof. Suppose the above products exist. Any equaliser (e,h : e→
∏
c S(c,c)) of the

morphisms induced by S(c, f ) and S(f , c′), for c,c′ ∈ C and f : c → c′, defines a
family of morphisms from e to S by composing with the projections.

The dinaturality follows because e equalises the parallel morphisms: The product
∏
c
∏
f S(c,c′)

is
∏
f S(c,c′). For each f : c→ c′ the diagram (3.2) gives the following commutative

diagram
S(c,c) S(c,f )

��

e h //

88

%%

∏
c∈C

S(c,c)
i //

j
//

pc

OO

pc′

��

∏
f : c→c′

S(c,c′) pf
// S(c,c′)

S(c′, c′) S(f ,c′)

??

where i and j denote morphisms induced by S(c, f ) and S(c′, f ) respectively. The
commutativity of the above diagram is exactly the dinaturality. The universal property
of the equaliser gives the universal property of the end, so it follows.

As corollaries, every end of a small diagram in a complete category C exists; every
limit is constructed by an equaliser of products by Example 3.2.5. As an application,
we demonstrate another use of the coend formula to simplify complicated arguments:
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Proposition 3.2.7 (see [81, Section III.7]). Every Set-valued functor F : C → Set from
a small category C is a colimit of representable functors.

Proof. The following isomorphisms are natural in G

[C ,Set](F,G)

�

∫
c
C (Fc,Gc) {by Example 3.2.4 }

�

∫
c
C (Fc,[C ,Set](C (c,−),G)) {by the Yoneda Lemma }

�

∫
c
[C ,Set](Fc ·C (c,−),G) {by the universal property of copower }

�[C ,Set](
∫ c

Fc ·C (c,−),G), {every representable functor maps coends to ends }

so by the Yoneda Lemma, F is naturally isomorphic to the coend of Fc ·C (c,−). Then,
it follows from Theorem 3.2.6.

3.2.2 Kan Extension

All concepts in category theory are subsumed by the notion of Kan extension as
indicated by Mac Lane [81, Section X.7]. This notion also characterises finitary
functors elegantly and naturally as well as other functors we will use later.

Definition 3.2.8 (see [81, Definition X.3]). Given functors

M

K
��

F // A

C

a left Kan extension of F along K consists of a functor L = LanKF : C →A with a
bijection

[C ,A ](LanKF,S)
ρS
� [M ,A ](F,SK)

natural in S . Likewise, a right Kan extension of F along K is a functor R with a
bijection [M ,A ](SK,F) � [C ,A ](S,R) natural in S .

To spell out the definition in detail, there is a natural transformation η from F to LK
by mapping the identity on L using ρ, and for any functor S : C →A with a natural
transformation µ from F to SK there exists a unique natural transformation σ from L
to S satisfying

F
η
//

µ
  

LK

σK
��

SK
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which follows by tracing the identity of the following diagram

[C ,A ](L,S) � // [M ,A ](F,SK)

[C ,A ](L,L)

σ◦−
OO

�
// [M ,A ](F,LK)

σK◦−
OO

and the natural transformation σ is equal to ρ−1(µ).

Fixing the functor K in the above definition, if for every functor F a left Kan extension
of F along K exists, then the left Kan extension is a left adjoint to the precomposition
functor of K by the general adjunction criteria [81, Theorem IV.1.2].

The computation of a left Kan extension can be reduced to a colimit provided that
there are enough colimits. This kind of Kan extension is called pointwise. However,
we prefer to define it by a preservation property:

Definition 3.2.9 (see [81, Definition X.5]). Given a left Kan extension (L,η : F ˙−→LK)
of F along K and a functor G : A → D , we say that G preserves the left Kan
extension (L,η) if (GL,Gη) is a left Kan extension of GF along K .

Definition 3.2.10 (see [81, Definition X.5]). Given functors A
F←−M K−→C where A

is locally small, a left Kan extension (L,η : F ˙−→LK) of F along K is called pointwise
if it is preserved by all representable functors G �A (−, a).

Theorem 3.2.11. Let A
F←−M K−→ C be functors where A is locally small and (K↓c)

denote the comma category from K to c. The following statements hold:

1. (see [81, Corollary X.5.4]) (L,η : F ˙−→LK) is a pointwise left Kan extension of F
along K if and only if for any a ∈A and c ∈C , the function

A (Lc,a) −→ [M op,Set](C (K−, c),A (F−, a)) (3.3)

which maps any (Lc
g
−→ a) to the natural transformation

C (Km,c)
LKm,c−−−−→A (LKm,Lc)

g◦(−)◦ηm−−−−−−−−→A (Fm,a)

for each component m ∈M is a bijection.4

2. (see [81, Lemma X.5&Theorem X.3.1]) (L,η : F ˙−→LK) is a pointwise left Kan ex-
tension of F along K if Lc is the colimit of

(K↓c) P c−−→M F−→A (3.4)

with a limiting cocone

(
Fm

Lf ◦ηm−−−−−→ Lc

)
f : Km→c

for all objects c ∈ C where P c is

the functor projecting a morphism (Km → c) to m. Conversely, if the colimit of

4 For the interested reader, this shows that Lc is a colimit of F weighted by C (K−, c).
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(3.4) exists with a limiting cocone λ for any c, then the left Kan extension of F
along K is given by

Lc ..= ColimFP c, Lg : ColimFP c→ ColimFP d and ηm
..= λidKm

where Lg is the unique morphism commuting with the limiting cocones.

3. (see [81, Exercise X.4.1].) Suppose that for any m,m′ ∈ M and c ∈ C the co-
powers C (Km′, c) · Fm exist. Then, a pointwise left Kan extension of F along K
exists if and only if the following coend∫ m

C (Km,c) ·Fm (3.5)

exists for every c ∈C where C (K−, c) ·F− is a bifunctor from C op ×C to A .

Proof. Each statement can be found in the cited theorems, so we only sketch the coend
version. Using (3.3), it suffices to show there is an isomorphism

A (
∫ m

C (Km,c) ·Fm,a) � [M op,Set](C (K−, c),A (F−, a))

natural in a. This follows from a simple computation:

A (
∫ m

C (Km,c) ·Fm,a)

�

∫
m
A (C (Km,c) ·Fm,a) {Hom maps coends to ends }

�

∫
m
Set(C (Km,c),A (Fm,a)) {by the universal property of copowers }

�[M op,Set](C (K−, c),A (F−, a)) {by Example 3.2.4 }

In (3.3), we use the so-called canonical functor (also known as nerve functor, restricted
Yoneda embedding ) K̃ : C → [M op,Set] of K which is defined by

K̃c =C (K−, c) and K̃f = f ◦− : K̃c→ K̃d (3.6)

for f : c → d. In (3.4), the projection P : (K↓c) → M is regarded as a diagram
and it is called the canonical diagram of c with respect to K ; whenever K is an
inclusion functor from a subcategory C ′ we call P the canonical diagram of c in C ′ .
Moreover, if an object c with all morphisms Km→ c is a colimit of the canonical
diagram, then we call c the canonical colimit with respect to K .

Example 3.2.12. The finitary powerset functor is a left Kan extension of the powerset
functor:

Pω = LanJP J with ηn = idn : P Jn = Pn→PωJ = Pn
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where J is the full inclusion from the category Setω of finite sets to Set. Since Set is
cocomplete, the colimit of (3.4) always exists and it is not hard to see that the finitary
powerset of X is a colimit of

(J↓X)
P c−−→ Setω

P◦J
−−−→ Set.

Whenever the colimits of (K↓c)→M →A exist for every c, the left Kan extension
is always pointwise; however, the converse is not true, see [31, Exercise 3.9.7] for a
counterexample; a Kan extension of F along K is not necessarily an extension of F in
the sense that LanKF ◦K is not necessarily isomorphic to F.

Corollary 3.2.13 (see [81, Corollary X.3.2-4]). Let A
F←− M K−→ C be functors. The

following statements hold:

1. IfM is small and A cocomplete, then the precomposition functor with K has a left
adjoint, i.e. the left Kan extension of F along K exists.

2. If the functor K is full and faithful, then the natural transformation η : F ˙−→LK
of a left Kan extension (L,η) is an isomorphism F � LK .

3. In particular, if M is a full, small subcategory of a cocomplete category C and K
is the full inclusion, then there exists a functor L such that

F = LK with idF : F ˙−→F

is a left Kan extension extending F.

We close this part with cocompletion of any small category.

Lemma 3.2.14. For every small category M and a functor K : M → C to a cocomplete
category C , the canonical functor K̃ : C → [M op,Set] is a right adjoint to the left Kan
extension of K along the Yoneda embedding Y .

M K //

Y
&&

C

LanYK

WW

K̃

��

`

[M op,Set]
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Proof. For any functor H : M op→ Set, we have the following natural isomorphisms

C (
(
LanYK

)
H,d)

�C (
∫ c

Hc ·Kc,d) {see below }

�

∫
c
C (Hc ·Kc,d) {Hom(−,d) preserves coends }

�

∫
c
Set(Hc,C (Kc,d))

�[M op,Set](H,C (K−,d)) {by example 3.2.4 }

where LanYKH �
∫ c
Hc ·Kc by the coend formula of the left Kan extension and the

Yoneda Lemma as well as a few simple computations.

Every left adjoint preserves colimits and the category [M op,Set] of contravariant Set-
valued functors is cocomplete, so LanYK is uniquely determined by representables as
we know that every H : M op→ Set is a colimit of representables by Proposition 3.2.7.
Thus, the category [M op,Set] is the free cocompletion of M .

3.3 Density and its Presentation

One example that uses the canonical diagram is the notion of density:

Definition 3.3.1 (see [81, Definition X.6]). A functor K : M → C is dense if the
identity functor I of C with the identity natural transformation idK : K ˙−→K is the
pointwise left Kan extension of K along K . A subcategory of C is dense if the
inclusion functor is dense.

Considering the fact that c � d iff C (−, c) �C (−,d), i.e. every object is determined
by morphisms into it, a dense functor sharpens the idea by the following:

Proposition 3.3.2 ([81]). Let K : M → C be a functor. The following statements are
equivalent:

1. K is dense.

2. The canonical functor K̃ is full and faithful.

3. Every object c in C is the canonical colimit with respect to K .

Proof. By definition, K is dense if and only if the identity functor I with idK is the
pointwise left Kan extension LanKK . Thus, the above two equivalent characterisations
are applications of Theorem 3.2.11:
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1. By the first statement of Theorem 3.2.11, the identity functor with idK is a
pointwise left Kan extension of K along K if and only if the function defined
in (3.3)

A (c,a) −→ [M op,Set](C (K−, c),C (K−, a))

is a bijection. By definition, this function maps g : c→ a to a natural transform-
ation C (K−, c)→C (K−, a) defined for each component m by

(α : Km→ c) 7→ (g ◦ (Iα) ◦ id) = g ◦α,

and this natural transformation is precisely K̃g . Thus, the bijectivity means that
K̃ is full and faithful.

2. By the second statement of Theorem 3.2.11, the identity functor with idK is a
pointwise left Kan extension of K along K if and only if the functor

(K↓c) P c−−→M K−→C

has the limiting cocone

(
Km

f
−→ c

)
for every c ∈C , but it is simply the definition

of canonical colimit with respect to K .

It is now easy to see that the category consisting of only the singleton set is dense
in Set. Considering the canonical colimits, we wonder if we can replace canonical
diagrams with more convenient diagrams when K is full and faithful.

Definition 3.3.3. Let Φ = (Gγ : Kγ →C )γ∈Γ be a collection of diagrams in C such
that a colimit of each Gγ exists. For any full subcategory A of C , the (colimit) clos-

ure under Φ , denoted A , of A is the smallest isomorphism-closed full subcategory
containing A such that for any diagram Gγ lying in A its colimit is also in A .

The closure can be constructed by transfinite induction:

Lemma 3.3.4 (see [61, Section 3.5]). The closure of a full subcategory A of C under a
collection of diagrams exists if C has colimits for these diagrams.

Definition 3.3.5. A density presentation of a full and faithful functor K : M →C
is a collection Φ = (Gγ : Kγ →C )γ∈Γ of diagrams in C satisfying that

1. each diagram Gγ has a colimit;

2. C is the closure of M under Φ5;

3. every colimit of Gγ is preserved by the restricted Yoneda embedding K̃ .

5 Since K is a full and faithful functor, M is equivalent to a full subcategory of C . To be precise,
the isomorphism-closed full subcategory generated by the image of K .



60 Chapter 3 Categorical Preliminaries

For every full, faithful, and dense functor K , there is a canonical density presenta-
tion of K formed by canonical diagrams of objects in C along K .

Colimits preserved by the restricted Yoneda embedding K̃ of some functor K are
of particular interest, since it implies that any morphism from some Km to some
object c factors through some morphism Km→ Gi . To see this, consider a colimit

(Gi
αi−−→ c)i∈I preserved by K̃ . The natural transformation

C (K,α) : K̃G ˙−→K̃c =C (K−, c)

is a colimit of K̃G. In particular, every C (Km,c) is a colimit of a diagram C (Km,G−)
in Set, since (co)limits of functors are computed pointwise. Therefore, every morphism
Km → c factors through some αi : Gi → c. Moreover, such an αi is uniquely
determined up to a zigzag of morphisms by the colimit construction in Set. In detail,
the canonical colimit in Set is given by the quotient of⋃̇

i∈I
C (Km,Gi)

subject to the smallest equivalence relation containing a relation defined by f ∼ g if g
factors through f

Km

f
��

g
// Gj

Gi

Gh

>>

for some h : i → j . Morphisms are equal precisely if there exists a finite se-
quence (hj)j∈n of morphisms such that the diagram

Km

f
��

= · · · = Km

��

= · · · = Km

g
��

Gi Gh0

// · · · Gk Ghj
//

Ghj−1

oo · · ·
Ghn−1

// Gj ,

commutes, namely, a zigzag of morphisms connecting f and g .

Theorem 3.3.6. Given a full and faithful functor K : M → C , the following are equi-
valent:

1. K is dense.

2. A density presentation Φ = (Gγ : Kγ →C )γ∈Γ of K exists.

IfM is small, then each diagram Gγ can be chosen to be small.

Proof. Since K is dense, there is a canonical density presentation of K .
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On the other hand, suppose that there is a density presentation Φ of K . Let B be
the isomorphism-closed full subcategory of C such that for every object c ∈B the
mapping

C (c,d)
K̃c,d−−−→ Hom(K̃c, K̃d)

is a bijection. The essential image ofM under K , i.e. the isomorphism-closed category
spanned by Km, for m ∈M , is a full subcategory of B :

C (Km,d)
�Hom(M (−,m),C (K−,d)) {by Yoneda Lemma }
�Hom(C (K−,Km),C (K−,d)) {K is full and faithful }
=Hom(K̃Km,K̃d) {by definition }

which maps any g : Km→ d to a natural transformation α : C (K−,Km) ˙−→C (K−,d)
defined by

(f : Kc→ Km) 7→ Kc
f
−→ Km

g
−→ d

for each component, so the bijection is exactly K̃c,d .

Consider any diagram G ∈ Φ which is not only a diagram in C but also a diagram
in B . It suffices to show that its colimit is also in B , so by the closure property B
must be C and K̃ is full and faithful, i.e. K is dense: For any colimit c of G, the
following natural isomorphisms

Hom(c,d)
�Lim

k
Hom(Gk,d) {c is a colimit of G }

�Lim
k

Hom(K̃Gk, K̃d) {G is a diagram in B }

�Hom(Colim
k

K̃Gk, K̃d) {Hom-functor maps colimits to limits }

�Hom(K̃c, K̃d) { K̃ preserves ColimG }

show that c is in B by definition.

Example 3.3.7. The category of finite subsets is dense in Set. Note that every set is
a directed union of its finite subsets, and to show this to be a density presentation,
it suffices to show that the canonical functor J̃ of the inclusion functor J preserves
directed unions of finite subsets. Again, it suffices to show that every function f : n→
X for n ∈ω factors through some finite subset of X, and it is trivial by the standard
factorisation of f .

Correspondingly, we say that a functor L : C →D is determined by a category M
along a full, faithful, and dense functor K : M → C if (L, id : LK → LK) is the left
Kan extension L = LanKLK of LK along K .

By a similar argument to Theorem 3.3.6, we have further the following facts:

Theorem 3.3.8 (see [61, Theorem 5.29]). Let K : M →C be a full, faithful, and dense
functor. The following properties of a functor L : C →D are equivalent:
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1. The identity id : LK ˙−→LK is the unit of the pointwise left Kan extension L of LK
along K .

2. L preserves every colimit which is preserved by K̃ .

3. For any density presentation Φ of K , each colimit of a diagram in Φ is preserved
by L.

4. There is a density presentation Φ of K such that each colimit of a diagram in Φ is
preserved by L.

Example 3.3.9. Let J : Setω ↪→ Set be the full inclusion functor. Instead of the
canonical colimits as in Example 3.2.12, the finitary powerset functor Pω is the
pointwise left Kan extension of P J along J by the above theorem since Pω preserves
directed unions, and J is full and faithful.

Remark 3.3.10. Note that Setω is not small, but for our purposes it can be replaced
with the category of natural numbers and functions between them. For simplicity, we
denote it also by Setω.

3.4 Locally Presentable Categories and Accessibility

In the previous subsection, we showed that the category of finite ordinals is a dense
subcategory of Set; in this section, we generalise this situation to so-called locally
presentable categories, introduced by P. Gabriel and F. Ulmer [44], where every object is
a filtered colimit from a set of presentable objects. For elementary proofs and details,
we refer to [10, 14].

Recall that in [81, Chapter IX] a small category is called filtered if every finite
subcategory has a cocone. A special case is a directed poset regarded as a category.
Filteredness can be described in another way: a category D is filtered if and only if
D -colimits commute with finite limits in Set, see [14, 59]. That is, D is filtered if for
every diagram F : D ×J → Set where J is finite, the canonical morphism

Colim
d∈D

Lim
j∈J

F(d, j) −→ Lim
j∈J

Colim
d∈D

F(d, j) (3.7)

is an isomorphism.

For any regular cardinal λ, a category is called λ-small if it has fewer than λ many
morphisms, and is called λ-complete if it has all limits of λ-small diagrams. In
particular, an ℵ0-small category is called finite.

Proposition 3.4.1. Let D be a small category and λ a regular cardinal. The following
statements are equivalent:

1. Every λ-small subcategory of D has a compatible cocone in D .

2. Every D -colimit commutes with λ-limits.
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Any small category D satisfying one of the above statements is called λ-filtered; a λ-
filtered colimit is a colimit of a λ-filtered diagram.

3.4.1 Presentable Object

Definition 3.4.2 (see [10, Definition 1.13 & 1.21, Remark 1.21]). Let λ be a regular car-
dinal. An object k in a locally small category K is λ-presentable if the representable
functor

Hom(k,−) : K → Set

preserves λ-filtered colimits. In particular, an object is finitely presentable if it is
ℵ0-presentable.

For any category K and regular cardinal λ, the notations

Kλ or PresλK

denote any small full subcategory of K equivalent to the category of λ-presentable
objects by abuse of notation.

Proposition 3.4.3 (see [10, Lemma 1.6]). For any regular cardinal λ, a λ-small colimit
of λ-presentable objects is λ-presentable.

Proof. Let K be a locally λ-presentable category, D : I →K a λ-small diagram
in K consisting of λ-presentable objects, and F a λ-filtered diagram in K . The
following isomorphisms

Hom(Colim
i∈I

Di ,Colim
j∈J

Ej)

�Lim
i∈I

Hom(Di ,Colim
j∈J

Ej) {Hom(−, a) preserves colimits }

�Lim
i∈I

Colim
j∈J

Hom(Di ,Ej) {Di is λ-presentable }

�Colim
j∈J

Lim
i∈I

Hom(Di ,Ej) {by Proposition 3.4.1 }

�Colim
j∈J

Hom(Colim
i∈J

Di ,Ej) {Hom(−, a) preserves colimits }

shows that any λ-colimit of λ-presentable objects is λ-presentable.

3.4.2 Locally Presentable Categories

Proposition 3.4.4 (see [10, Remark 1.19]). Let K be a locally small and cocomplete
category and λ a regular cardinal. The following are equivalent:

1. There exists a full small subcategory A of K consisting of λ-presentable objects
such that every object k ∈K is a λ-filtered colimit of objects from A .
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2. Every object k ∈K is a λ-filtered colimit of objects from Kλ and there exists a set
of representatives up to isomorphism.

Any category K satisfying one of the above statements is called locally λ-presentable; a
locally presentable category is locally κ-presentable for some regular cardinal κ.

Therefore, a locally λ-presentable category K consists of a category K and a
set PresλK =Kλ of λ-presentable objects generating K .6

Lemma 3.4.5. For every full inclusion J : Kλ → K , the canonical functor J̃ preserves
any λ-filtered colimit.

Proof. Let τ : G ˙−→c be a λ-filtered colimit for some diagram G. For every λ-
presentable object k,

K (k,G) ˙−→K (k,c)

is a colimit by definition. Since colimits of functors are computed pointwise, the
functor J̃ preserves every λ-filtered colimit.

Using the density presentation consisting of filtered diagrams, we have following
corollaries by Theorem 3.3.6:

Corollary 3.4.6. Given a locally λ-presentable categoryK , the small subcategory PresλK
is dense in K .

Recall that a functor J is dense iff the canonical functor J̃ is full and faithful.

Corollary 3.4.7. Every locally λ-presentable category K is equivalent to a reflective
subcategory of [A op,Set] where A = Kλ. In particular, every locally λ-presentable
category is complete.

Proof. Let J : Kλ→K be the full inclusion. By Lemma 3.2.14, the canonical functor

J̃ : K → [K op
λ ,Set]

is a right adjoint to LanY J . By Corollary 3.4.6, J̃ is full and faithful, soK is equivalent
to a reflective subcategory of [K op

λ ,Set].

Example 3.4.8. Every variety of single-sorted algebras is locally finitely presentable.
In detail, a variety A of single-sorted algebras is precisely a category A with a
monadic and finitary functor U : A → Set with the free algebra construction as the
left adjoint by [32, Proposition 4.6.2]. Moreover, finitely presentable objects in A are
precisely finitely generated algebras by Proposition 3.8.14 op. cit., and every object
in A is a filtered colimit of finitely generated algebras by Proposition 3.8.12 op. cit. As
a result, the category of Boolean algebras, distributive lattices, and modal algebras
are all locally finitely presentable.

6The term “generating” is not ambiguous; indeed, a category is locally presentable if and only if it
is cocomplete and has a strong generator formed by λ-presentable objects, see [10, Theorem 1.11].
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3.4.3 Finitary and Accessible Functors

As objects in a locally presentable category are formed by λ-filtered colimits, it would
be of interest to consider the following functors:

Definition 3.4.9. Given a regular cardinal λ, a functor F is called λ-accessible if F
preserves λ-filtered colimits. In particular, an ℵ0-accessible functor is called finitary.

The full subcategory consisting of λ-accessible functors is denoted by Accλ[K ,L ]
and particularly the full subcategory consisting of finitary functors is denoted by Fin[K ,L ].

Given a locally λ-presentable category K , the collection of λ-filtered diagrams is
a density presentation of J : Kλ→K , so by Theorem 3.3.8 we have the following
corollary:

Corollary 3.4.10. Let λ be a regular cardinal, K with a set Kλ
J
−→ J of λ-presentable

objects generating K , and L locally λ-presentable categories. There is an equivalence

LanJ : [Kλ,L ]
�−→ Accλ[K ,L ]

with a pseudo-inverse (−) ◦ J . That is, F is of the form

F = LanJFJ

if and only if F is λ-accessible.

In particular, every functor F between locally presentable categories has an accessible
coreflection defined by LanJFJ . For example, the finitary powerset functor Pω is given
by the finitary coreflection of the powerset functor P .

Corollary 3.4.11. Let K be a locally λ-presentable category. The following statements
hold:

1. Every λ-accessible endofunctor F is of the form∫ a∈Kλ
K (Ja,−) ·Fa

where Kλ is the set of λ-presentable objects generating K and J the full inclusion
from Kλ to K .

2. Particularly, every finitary Set endofunctor T : Set → Set can be written as a
coequaliser: ∐

Tm×Xn
//

//

∐
T n×Xn // // TX.

Proof. Every finitary Set endofunctor has the coend formula and the coend for-
mula can be written as the coequaliser by Theorem 3.2.6. Furthermore, the co-
power Set(n,−) · T n is isomorphic to T n×Xn, so the second statement follows.
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Corollary 3.4.12. For any Set functor T , T is finitary in the sense of Definition 3.4.9 if
and only if T is finitary in the sense of (2.6)

Proof. The collection of directed families of finite subsets and the collection of filtered
diagrams in Set are both density presentations of Setω ↪→ Set, so by Theorem 3.3.8
it follows.

3.4.4 Properties of Locally Presentable Categories

Recall that every reflective subcategory, which is full by definition, is closed under
limits of its super-category, so by Corollary 3.4.7 it follows that

Corollary 3.4.13. Every locally presentable category is well-powered, i.e. each object has
only a set of subobjects.

Proof. It follows from the fact that the category [Kλ,Set] is complete and well-
powered.

Theorem 3.4.14 (see [10, Theorem 1.66]). Given locally presentable categoriesK andL ,
the following statements hold:

1. A functor L : K →L has a right adjoint if and only if L preserves colimits.

2. A functor R : L → K has a left adjoint if and only if R preserves limits and is
accessible.

Proof Sketch. Consider the Freyd Adjoint Functor Theorem. The solution set condition
is satisfied by the set of presentable objects.

The proof of the following Theorem 3.4.15 is rather technical, see [10, Section 1.D] for
details:

Theorem 3.4.15 (see [10, Theorem 1.58]). Every locally presentable category is well-
copowered, i.e. every object has a set of quotients.

Corollary 3.4.16. Every locally presentable category has the (StrongEpi,Mono)- and the
(Epi,StrongMono)-factorisation system.

Proof. By Theorem 3.1.7 and its dual.



Chapter 3 Categorical Preliminaries 67

3.5 Foundations

In category theory, various foundations may be able to accommodate category of small
categories, category of all small sets, and so on. Set-theoretically, a universe is used
where the set theory does not contain the notion of proper class:

Definition 3.5.1. A Grothendieck universe is a set U satisfying

Transitivity x ∈U implies x ⊆U ;

Closure under Operations for u ∈U and v ∈U , the union u ∪ v, the pair 〈u,v〉,
the product u × v, the powerset set Pu, the union

⋃
u

are all in U ;

Infinity the set ω of all finite ordinals is in U .

Replacement for any surjective function f : a→ b such that a ∈ U
and b ⊂U , then b ∈U .

Every universe is clearly a model of ZFC set theory, i.e. axioms in ZFC set theory are
interpretable in the given universal set. Even the first infinite cardinal ω is a model of
ZFC without the Axiom of Infinity. Under a universe U , a set u is U -small if u ∈U ;
u is U -large if it is a subset of U . By transitivity, every U -small set is U -large. Then,
we say a set is U -superlarge if it is not U -large, e.g. {U }. A category is U -large if
the collection of objects is a U -large set; and it is U -superlarge if the collection of
objects is not U -large.

We give an explicit definition of the category of sets:

Definition 3.5.2. Given a Grothendieck universe U , the category SetU = Set of
U -small sets consists of

objects: the large set U as the collection of objects;

morphisms: the large set

mor ..= { (X,Y ,f ) | X ∈U,Y ∈U,f is a functional relation from X to Y }

and the identity (X,X, idX) for every set X ∈U is the identity function idX with
its domain and codomain.

domain and comain: the domain function

dom: mor→U is defined by (X,Y ,f ) 7→ X

and similarly for the codomain function cod: mor→U ;

compositions: the composition of morphisms are the usual composition of functions.
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The category Set of U -small sets with functions between U -small sets is U -large. On
the other hand, the category SET(= SETU ) used in [3] of classes consisting of U -large
sets with functions is not large but superlarge since the collection PU of U -large sets
is not a subset of U .

We may characterise universes by cardinalities as well:

Definition 3.5.3. A cardinal κ is called (strongly) inaccessible if it is a strong limit,
i.e. 2λ < κ for every λ < κ, larger than ℵ0, and is regular.

Every set can be classified by its rank using transfinite induction in the von Neumann
universe. For any ordinal α define the following sets:

1. V0 = ∅;

2. Vα+1 = PVα ;

3. Vα =
⋃
β<αVβ if α is a limit ordinal.

Given this hierarchy, we can characterise any Grothendieck universe precisely by an
inaccessible cardinal:

Theorem 3.5.4 (see [108]). U is a Grothendieck universe if and only if U = Vα for some
inaccessible cardinal. Moreover, the cardinality of a Grothendieck is equal to the index α.

Also, op. cit., the existences of universes and inaccessible cardinals are equivalent:

1. For every cardinal β, there exists an inaccessible cardinal α such that β < α

2. (Axiom of Universes) For every set x, there is a Grothendieck universe U such
that x ∈U .

Note that any one of the above statements is not provable in ZFC and is independent
of ZFC, see [55, Theorem 12.12]. By postulating the Axiom of Universes, every set x
has a universe U of discourse and thus a category SetU where x belongs to.

3.5.1 Set-based v.s. λ-accessibility

As claimed in Remark 2.1.19, we clarify that λ-accessible functors and set-based
functors are all the same. Some discussions also appear in [8, 17], but it is still nice to
mention it on the ground of the foundation issue.

Definition 3.5.5 (see [3]). Given a universe U , a SET endofunctor T is called set-
based if for every U -large set X and x ∈ TX there exists a U -small X0 ⊆ X such that
x0 ∈ TX0 and x = (T ι)x0 where ι : X0 ↪→ X is the inclusion function.



Chapter 3 Categorical Preliminaries 69

Given a functor T , it is trivial to see that T is set-based if and only if

TX =
⋃
{T ι[TX0] | ι : X0 ⊆U X }

where X0 ⊆U X means that X0 is a U -small subset of X. Note that X0 ⊆U X if and
only if the cardinality of X0 is less than the cardinality of the universe U .

By Corollary 3.4.12 and Theorem 3.5.4, the equivalence then follows:

Proposition 3.5.6. For any SET functor T , T is set-based if and only if T is α-accessible
as a functor into the category SetU ′ where α is the cardinality of the given Grothendieck
universe U and U ′ is any universe containing U .

The set-based condition itself is also superfluous:

Theorem 3.5.7 (see [8, Theorem 2.2]). Every endofunctor of SET is set-based.

For any functor T : Set→ SET, we extend T to a set-based SET functor continuously
by the left Kan extension:

Set
J
//

T ##

SET

LanJT
��

SET,

but, given that every endofunctor of SET is set-based, the extension is unique, up to
isomorphism. In particular, every endofunctor of Set has a unique extension to SET.

Remark 3.5.8. Regarding the final coalgebra construction given by P. Aczel [3], the
result asserts that the final coalgebra exists for any Set functor, in SET, without
any assumption. By enlarging the universe of discourse, we may simply assume the
existence of a final coalgebra for any Set functor under the Axiom of Universes.

3.5.2 Preservation of Inclusions

The preservation of inclusions and the preservation of injections are two common
assumptions for Set endofunctors in practice, but they differ fundamentally. One
classical example distinguishing these two notions is the Hom-functor:

Example 3.5.9. For every set X, the Hom-functor Hom(X,−) does not preserve
inclusions only injections. By the very definition of category given in [81] or Defin-
ition 3.5.2, every morphism in Set has a domain and codomain. Thus Hom(X,Y )
is disjoint from Hom(X,Z) whenever Y , Z . On the other hand, given a monomor-
phism j : Y → Z , the post-composition j∗ : Hom(X,Y )→ Hom(X,Z) by j is injective
simply by j being mono.

Notice the preservation of inclusions depends on the definition of category. In the
context of ZFC set theory with the Axiom of Universes, an alternative definition of
category is given in [31]:
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Definition 3.5.10. A category C consists of a collection obC of objects; and for
every two objects x,y in obC there is a set C (x,y) as the collection of morphisms
from x to y. Moreover, there is an identity idx ∈ C (x,x) for every object x and a
composition function

◦ : C (x,y)×C (y,z)→C (x,z)

subject to the unit law and the associativity law. Note that C (x,y) and C (x′, y′) are
not assumed to be disjoint when x , x′ or y , y′ .

Then, we can define a category of sets with untyped functions:

Definition 3.5.11 (cf. Definition 3.5.2). Given a Grothendieck universe U , a cat-
egory Set′U consists of U as the collection of objects; and for every two sets X,Y ∈U ,
the following set

Set′U (X,Y ) ..= {f ∈ P (X ×Y ) | f is functional }

as the collection of morphisms from X to Y . The identity morphism idX is the diagonal
relation and the composition of morphisms ◦ : Set′U (X,Y )×Set′U (Y ,Z)→ Set′U (X,Z)
is the composition of relations.

The category Set′′U of sets with typed functions is defined similarly by replacing Set′U (X,Y )
with the collection of typed functions:

Set′′U (X,Y ) ..= { (X,Y ,f ) ∈ {X} × {Y } × P (X ×Y ) | f is functional }.

There is a functor I ′ : Set′′U → Set′U which is an identity on objects and maps each
typed functions (X,Y ,f : X → Y ) to its graph f . Conversely, we can map each
untyped function f ∈ Set′U (X,Y ) to its typed function. It follows that Set′U is
isomorphic to Set′′U , unsurprisingly. However, the hom-functor preserves inclusions in
the untyped version:

Example 3.5.12. In Set′U the hom-functor preserves inclusions. By the Axiom of
Extensionality, two sets X and Y are equal if and only if

x ∈ X ⇐⇒ x ∈ Y

for every x. Therefore, given any inclusion j : Y ⊆ Z and a function f : X→ Y , the
composite j ◦ f is equal to f , so f is in Hom(X,Z) and j∗ : Hom(X,Y ) ⊆ Hom(X,Z).

To sum up, the preservation of inclusions is not a property stable under another
equivalent definition of category; it depends on the very definition of the category of
sets; and it is not invariant under natural isomorphisms by Theorem 2.1.25.

On the other hand, the preservation of injections is independent of the definition of
category (of sets) and invariant under natural isomorphisms. Moreover, injections are
precisely monomorphisms in Set, and the preservation of injections can be equally
phrased in the context of an elementary topos.
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3.6 Concreteness

3.6.1 Concrete Categories

First, a concrete category is a category C with a faithful functor U : C → Set.
Moreover, there are a number of examples where every object is determined by a
single object.

Definition 3.6.1. A concrete category (C ,U : C → Set) is representable if the
forgetful functor U is representable, i.e. U is naturally isomorphic to Hom(X0,−) for
some X0.

Example 3.6.2. 1. For the category Set, the category Pos of posets, the cat-
egory Top of topological spaces, and the category Meas of measurable spaces,
every object X is bijective with the collection of morphisms from the singleton 1
to X.

2. For the category of Boolean algebras, distributive lattices, lattices, and semi-
lattices, the underlying set of any object A is bijective with the hom-set Hom(F1,A)
where F is the left adjoint to the forgetful functor, i.e. the free functor.

3. In general, every concrete category A whose forgetful functor has a left ad-
joint F is representable, since for every object A ∈ A , we have the following
isomorphisms

A (F1,A) � Set(1,UA) �UA

natural in A where the first isomorphism follows from the adjunction and the
second follows from the representable forgetful functor of Set. Namely, the
forgetful functor of A is representable by F1. Particularly, every variety of
(single-sorted) finitary algebras is, of course, concrete and representable.

Proposition 3.6.3 (see [6, Proposition 7.37 & 7.44]). Every representable faithful functor
reflects monomorphisms and epimorphisms; and it also preserves monomorphisms.

Proposition 3.6.4. For every representable concrete category (X ,U ), the representing ob-
ject of U is a generator, i.e. given any two morphisms f ,g : X → Y , if f x = gx for
every x : X0→ X then f = g .

Given this property, we call every morphism from the representing object to an
object X an element of X, and using this property we show that there is a concrete
category which is not representable.

Example 3.6.5. Some categories have a non-representable faithful functor to Set:

1. The obvious forgetful functor for coalgebras is generally not representable. For
example, the category of image-finite Kripke frames has a terminal object, so
there exists only one morphism from the representing object. It implies that
there is only one element in the final Pω-coalgebra, so every two elements in
any Kripke frame are bisimilar, clearly a contradiction.
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2. The product category Set2 of Set has a faithful functor U to Set defined as
follows

〈X1,X2〉 7→ X1 +X2 and 〈f1, f2〉 7→ f1 + f2.

The forgetful functor is obviously faithful since f1 + f2 = g1 + g2 if and only if
f1 = g1 and f2 = g2. However, it is not representable, and it suffices to show
there is no generator for Set2. Consider a pair 〈Y ,∅〉 where Y is a non-empty
set. The only one function with codomain ∅ is the empty graph, i.e. ∅ itself. It
follows that there is no pair of functions from 〈A,B〉 to 〈Y ,∅〉 for any nonempty
set B. Therefore, to have

Hom(〈A,B〉,〈Y ,∅〉) � Y ∪̇ ∅ = Y

the set Bmust be empty and A = 1. However, it follows that Hom(〈1,∅〉,〈∅,Y 〉) =
∅� Y . Thus, the forgetful functor U is not representable.

3.6.2 Concrete Dualities

Given two categories X and A , we say that X is dual to A if there exists a dual
adjunction on the right, that is, an isomorphism

A (a,P x) �X (x,Sa)

natural in x and a for some contravariant functors P : X → A and S : A → X .
Covariantly, every dual adjunction is an adjunction P a S : A op→X with a natural
isomorphism A op(P x,a) �X (x,Sa).

Proposition 3.6.6 (see [93]). Given a dual adjunction P a S : A op→ X between rep-
resentable concrete categories (X , |−|) and (A , |−|) whose forgetful functors are represented
by X0 and A0 respectively, the following statements hold:

1. The underlying sets of PX0 and SA0 are isomorphic, i.e. |PX0| � |SA0|;

2. Contravariant functors P and S are given by homming into PX0 and SA0, i.e. for
each X ∈X and A ∈A we have

|PX | �X (X,ΩX ) and |SA| �A (A,ΩA )

where ΩX = SA0 and ΩA = PX0 respectively.

Proof. It is simple to show by definition and the dual adjunction.

Since the underlying sets of ΩA and ΩX are isomorphic, we simply denote them
by Ω.



Chapter 4

Coalgebras and Algebras

In this chapter, we focus on categorical properties of coalgebras based on endofunctors
of general categories instead of Set. We cover a few topics related to the coinduction
principle, e.g. bisimilarity (also known as behavioural equivalence), final coalgebras
and minimisation, in line with coalgebraic logic which describes coalgebras up to
behavioural equivalence.

In the second part, we turn to the transfinite construction for the situation where the
category of (co)algebras for a (co)free (co)monad over an endofunctor L coincides with
the category of (co)algebras for the endofunctor L.

In the end, we discuss the categorical perspective of varieties of algebras, and give a
few density presentations towards the class of endofunctors which are presentable by
operations and equations.

4.1 Coalgebras

Instead of any particular category, we formulate properties in an axiomatic way with a
few results requiring that the category is locally λ-presentable.

Definition 4.1.1. A T -coalgebra for an endofunctor T : X → X consists of an

object x ∈ X and a morphism x
ξ
−→ T x. Given T -coalgebras 〈x,ξ〉 and 〈y,γ〉, a

coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉 is a morphism f in X satisfying T f ◦
ξ = γ ◦ f .

� In this section, T always denotes an endofunctor of X .

Similar to Set coalgebras, the collection of T -coalgebras with coalgebra homomorph-
isms forms a category, denoted by XT . The forgetful functor defined 〈x,ξ〉 7→ x is
usually denoted by UT or U ; it is clearly faithful.

73
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Proposition 4.1.2. The forgetful functor U : XT →X is conservative, i.e. U reflects
isomorphisms.

Proof. Assume we are given a coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉 whose
underlying morphism is an isomorphism with the inverse f −1. It suffices to show
that f −1 is a coalgebra homomorphism:

(T f ◦ ξ) ◦ f −1 = (γ ◦ f ) ◦ f −1 = γ {f is a coalgebra homomorphism }
=⇒ ξ ◦ f −1 = T f −1 ◦γ {by applying T f −1 }

so f −1 is the inverse to f in XT .

4.1.1 Limits and Colimits of Coalgebras

Similar to the category of algebras, colimits are inherited from the underlying category,
and depending on the type functor limits may be inherited:

Proposition 4.1.3. The following statements hold:

1. The forgetful functor U : XT → X creates colimits. In particular, U preserves
colimits of a diagram D if X has colimits of UD .

2. The forgetful functor U : XT →X creates the limit of a diagram D ( resp. weakly)
whenever T preserves the limit of UD ( resp. weakly). In particular, U creates
U -absolute limits.

Proof. The creation of colimits follows from a similar argument to that in Propos-
ition 2.1.4. We sketch the creation of limits for the sake of completeness. Given a
diagram D : I →XT in the category of coalgebras for T , consider the limit of UD
in X :

xi

ξi
&&

f
// xj

ξj
%%

Limxi

ξ %%

πj

88

πi

OO

T xi T f
// T xj

T (Limxi)

Tπi

OO

Tπj

::

where the cone
(
T (Limxi)

Tπi−−−→ T xi

)
is limiting as T preserves it by assumption.

Therefore, given the cone defined by(
Limxi

πi−−→ xi
ξi−−→ T xi

)
there is a unique morphism ξ : Limxi → T (Limxi), i.e. a T -coalgebra with carrier

Limxi . It is now routine to check that
(
Limxi

ξ
−→ T (LimXi)

)
is a limit of D .
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In particular, if
(
UDi

µi−−→ x
)
i∈I

is a U -absolute limit, then T preserves it by definition

so U creates this limit.

It is easy to see that every faithful functor reflects epimorphisms and monomorphisms.
Moreover, the pair of identities (idY , idY ) is the cokernel1 of an epimorphism f : X→
Y . Thus, we have the following corollary:

Corollary 4.1.4. The forgetful functor U : XT → X reflects epimorphisms and mono-
morphisms; it preserves epimorphisms, if X has cokernels.

4.1.2 Comonadicity

The comonadicity of U : XT →X implies the existence of a final T -coalgebra, if X
has a terminal object. Recall that by Beck’s Monadicity Theorem [81, Theorem VI.7.1]
a functor V : C →D is monadic if and only if V has a left adjoint and V creates
coequalisers of V -split pairs. Dually, a functor U is comonadic if and only if U has
a right adjoint and U creates equalisers of U -split pairs. However, since U -split
pairs are U -absolute equalisers, T must preserve them. Hence by Proposition 4.1.3
the forgetful creates equalisers of U -split pairs. To sum up, we have the following
equivalent characterisations:

Proposition 4.1.5. The following statements are equivalent:

1. The forgetful functor U : XT →X is comonadic.

2. The forgetful functor has a right adjoint.

4.1.3 Generalised Products of Coalgebras

In the following, we generalise the product of Kripke frames [43] or so-called generalized
product [96], parametric in any strong endofunctor on a monoidal category.

Definition 4.1.6. Given Kripke frames 〈Xi ,Ri〉, for i = 1,2, the product of Kripke
frames 〈X1,R1〉 and 〈X2,R2〉 consists of two Kripke frames

R∨1
..= { (〈x,z〉,〈y,z〉) | x R1 y } and R∨2

..= { (〈x,y〉,〈x,z〉) | y R2 z }

on the Cartesian product X1 ×X2.

The product of Kripke frames is used to study multi-modal logic, a modal logic
with two modalities associated with two different Kripke structure on the Cartesian
product X1 ×X2.

1 Given a morphism f , a pair (p1,p2) of morphisms is a cokernel pair of f is (p1,p2) is a pushout
of (f , f ).
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Observe that the product of Kripke frames gives rise to a coalgebra for P ×P given
by the universal property

P (X1 ×X2)

X1 ×X2

fR∨1

55

//

fR∨2 ))

P (X1 ×X2)×P (X1 ×X2)

π1

OO

π2
��

P (X1 ×X2)

(4.1)

since P (X1 ×X2)×P (X1 ×X2) is equal to (P ×P )(X1 ×X2) where fR∨i is the corres-

ponding P -coalgebra for the Kripke frame 〈X1 ×X2,R
∨
i 〉.

However, the product of Kripke frames is not categorically a product. Recall the
definition of a strong functor:

Definition 4.1.7 (see [64]). Let (X ,⊗, I) be a monoidal category with an associator

αx,y,z : (x⊗y)⊗z �−→ x⊗(y⊗z), a left unitor λx : I⊗x �−→ x, and a right unitor ρx : x⊗I �−→
x. An endofunctor T of X is called strong if there exists a morphism, called tensorial
strength,

tx,y : x⊗ T y→ T (x⊗ y)

natural in x and y satisfying the unit law and the associative law, i.e.

I ⊗ T x
tI,x
//

λT x %%

T (I ⊗ x)

T λx
��

T x

and

(x⊗ y)⊗ T z
αx,y,T z
//

tx⊗y,z

��

x⊗ (y ⊗ T z)
x⊗ty,z

��

T ((x⊗ y)⊗ z)

T αx,y,z &&

x⊗ T (y ⊗ z)

tx,y⊗zxx

T (x⊗ (y ⊗ z))

commute for every x,y and z.

Proposition 4.1.8. For every strong endofunctor T of a monoidal category (X ,⊗, I) with
a tensorial strength, the operation defined by

x⊗T 〈y,γ〉 = x⊗ y
x⊗γ
−−−→ x⊗ T y

tx,y
−−−→ T (x⊗ y)

for any object x and a coalgebra 〈y,γ〉; and f ⊗T g = f ⊗ g for any morphism f and a
coalgebra homomorphism g is a functor from X ×XT to XT .2

Proof. It suffices to check that g ⊗T 〈x,ξ〉 is a T -coalgebra homomorphism for any
morphism g : y→ z and coalgebra 〈x,ξ〉, and x⊗T g is a coalgebra homomorphism

2This proposition essentially says that the category (X ,⊗, I) has a monoidal action ⊗T , see [54], on
the category of coalgebras for any strong endofunctor T of X .
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for any object x and coalgebra homomorphism g so the functoriality of ⊗T is inherited
from the functoriality of ⊗. As for x⊗T g consider the following diagram

x⊗ y
x⊗g
��

x⊗T 〈y,γ〉

��x⊗γ
// x⊗ T y

tx,y
//

x⊗T g
��

T (x⊗ y)

T (x⊗g)
��

x⊗ z
x⊗ζ
//

x⊗T 〈z,ζ〉

OO
x⊗ T z

tx,z
// T (x⊗ z)

where the left square commutes by the functoriality of x ⊗ − and the right square
commutes by the naturality of tx,−, so g ⊗T 〈x,ξ〉 is a coalgebra homomorphism. As
for g ⊗ 〈x,ξ〉, consider the following diagram

y ⊗ x
y⊗ξ
//

g⊗x
��

y⊗T 〈x,ξ〉

��

y ⊗ T x
ty,x
//

g⊗T x
��

T (y ⊗ x)

T (g⊗x)
��

z⊗ x
z⊗ξ
//

z⊗T 〈x,ξ〉

OO
z⊗ T x

tz,x
// T (z⊗ x)

where the right square commutes by naturality of t−,x and the left square commutes
by the functoriality of ⊗.

Theorem 4.1.9. Let (X ,⊗, I) be a monoidal category with the left unitor λy : I ⊗ y � y
and T a strong functor with a tensorial strength tx,y : x ⊗ T y → T (x ⊗ y). For any

morphism
(
x
h−→ I

)
to the unit I , the composite(
x⊗ y

h⊗y
−−−→ I ⊗ y

λy
−−→ y

)
: (x⊗T 〈y,γ〉)→ 〈y,γ〉

is a T -coalgebra homomorphism for any object x and T -coalgebra 〈y,γ〉.
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Proof. Consider the following diagram:

x⊗ y
h⊗y
��

x⊗T 〈y,γ〉

��x⊗γ
// x⊗ T y

h⊗T y
��

tx,y
// T (x⊗ y)

T (h⊗y)
��

T (λy◦h⊗y)

oo

I ⊗ y
I⊗γ
//

λy

��

I ⊗ T y
tI,y
//

λT y
��

T (I ⊗ y)

T λy
��

y γ
// T y = T y

where the upper-left square commutes by the functoriality of ⊗; the upper-right and
the lower-left square commute by naturality; and the lower-right square commutes by
the unit law of the strength.

If the monoidal category is symmetric, i.e. there exists a natural isomorphism
x⊗ y � y ⊗ x satisfying the coherence condition, then the tensorial strength also
has a left strength t′x,y : T x⊗ y → T (x ⊗ y) natural in x and y. Similarly, we may
extend ⊗ to a functor T⊗ : XT ×X →XT using the left strength.

Proposition 4.1.10. Let X be a category with binary products and a terminal object 1.
The following statements hold:

1. Given an object x, and a coalgebra
(
y
γ
−→ T y

)
for a strong endofunctor T of (X ,×,1),

the projection πy : x × y→ y is a coalgebra homomorphism, i.e. the diagram

x × y
πy

��

x×T γ
// T (x × y)

Tπy
��

y γ
// T y

commutes.

2. Particularly, given strong endofunctors Ti of (X ,×,1) and Ti-coalgebras 〈Xi ,ξi〉
for i = 1,2, the projection πi : x1 × x2→ xi is a Ti-coalgebra homomorphism, i.e.

x1 × x2

π1

��

XT1
×ξ1
// T1(x1 × x2)

T1π2
��

x1 ξ1

// T1x1

and

x1 × x2

π2

��

X×T2ξ2
// T2(x1 × x2)

T2π2
��

x2 ξ2

// T2x2

commute.

Proof. Note that (X ,×,1) forms a symmetric monoidal category.



Chapter 4 Coalgebras and Algebras 79

1. By assumption, 1 is a terminal object, so every object x has a unique morphism
to 1, denoted h. Moreover, the projection map πy : x × y may be realised as the
composite

x × y
h×y
−−−→ 1× y

λy
−−→ y

where λy is the obvious isomorphism. Now, apply Theorem 4.1.9.

2. Since the tensor product × is symmetric, we have functors ⊗T2
: X ×XT2

→X
and T1

⊗ : XT1
×X → X given by T2 and T1 respectively. Then, use the first

statement with T1
⊗ and ⊗T2

repeatedly.

Every Set endofunctor has a unique tensorial strength with respect to the Cartesian
closed structure by the composite:

X × T Y
η×id
��

// T (X ×Y )

Hom(Y ,X ×Y )× T Y
TY ,X×Y ×id

// Hom(T Y ,T (X ×Y ))× T Y

ev

OO

where ev and η is the counit and the unit of the adjunction Hom(X × Y ,Z) �
Hom(X,Hom(Y ,Z)), and TY ,X×Y is the functor acting on the hom-set Hom(Y ,X ×
Y ).3

Thus, we find that the product of Kripke frames is an application of Proposition 4.1.10:

Corollary 4.1.11. Given two coalgebras 〈Xi ,ξi : Xi → TXi〉 on Set, there is a coalgebra
for T1 × T2 with the carrier X1 × X2 such that the projection πi : X1 × X2 → Xi is a
Ti-coalgebra homomorphism for i = 1,2.

Proof. Using Proposition 4.1.10, we have two coalgebras for T1 and T2 with X1 ×X2
as the carrier respectively, and they amount to a coalgebra for T1 × T2 by universal
property in a similar way to (4.1).

Remark 4.1.12. This construction on Set is discussed with the coalgebraic hybrid
modal logic in [96], but it is in fact works for any strong functor with respect to the
monoidal structure given by finite products.

4.1.4 Factorisation Systems on Coalgebras

One of the most useful perspectives of coalgebras is its power of formalising bisimilarity
parametric in endofunctors T . As we have seen in Chapter 2, the classical notion of

3 Indeed, every Set functor determines a strength uniquely, see [64].
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bisimilarity can be formalised in more than one way. The formalisation chosen impacts
on the later development of the theory. In particular, we are interested in a notion
dependent on a ‘factorisation system’ as the recent development on minimisation [15]
suggests. This also covers the classic results about Set coalgebras using the standard
(Surjection, Injection)-factorisation system, e.g. [46].

Definition 4.1.13. Given a right (E ,M)-factorisation system on the category of T -
coalgebras, we define the following notions:

1. an E-minimal coalgebra with respect to (E ,M) is a coalgebra 〈x,ξ〉 without
proper E-quotient;

2. the behavioural equivalence with respect to (E ,M) of a coalgebra 〈x,ξ〉 is
the kernel in X of the greatest E-quotient map of 〈x,ξ〉. Note that the greatest
E-quotient object must be E-minimal.

3. E-minimisation is the reflector ∇ from XT to the subcategory of E-minimal
coalgebras, if exists.

Remark 4.1.14. By Proposition 2.1.27, a Set coalgebra is minimal if and only if it has no
proper quotient. Hence, we take the latter characterisation as our general definition.
Moreover, the kernel of the reflection given by minimisation in Theorem 2.1.28 is
behavioural equivalence by Corollary 2.1.29. A stronger condition on the factorisation
system is needed to have a coinduction principle, see Section 4.1.5.

Given a functor U and a collectionM of morphisms, the notation U−1M denotes
the collection of morphisms whose image is inM.

Proposition 4.1.15. Given an (E ,M)-factorisation system on X , the category of T -
coalgebras has the (U−1E ,U−1M)-factorisation system, if T preservesM-morphisms.

Proof. By Proposition 4.1.2, it is trivial to see that U−1E and U−1M are closed under
isomorphisms and compositions.

Assume that T preserves M-morphisms. For every a T -coalgebra homomorph-
ism f : 〈x,ξ〉 → 〈y,γ〉, the underlying morphism is factored into a composite

x
f
−→ y = x

e−→ f x
m−→ y

for some e ∈ E and m ∈ M and by the diagonalisation property there is a unique
morphism from f x to T (f x) as follow

x

ξ
��

e // // f x // m //

��

y

γ
��

T x
T e
// T (f x) //

Tm
// T y.
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Therefore, every coalgebra homomorphism has an (E ,M)-factorisation. To see the
diagonalisation property, considering the following diagram

a // //

&&

��

b

h′

~~

β

&&
h

vv
��

T a //

��

T b
T h

vv
��

c // m //

γ
&&

d

δ
&&

T c //
Tm

// T d

where h and h′ are the unique morphisms filling the square in the underlying category.
It remains to show that h is a coalgebra homomorphism, and we simply need to verify
that γ ◦ h and T h ◦ β also fill the diagonal from b to T c by diagram chasing. Then,
by the uniqueness of h′, it follows that h is a coalgebra homomorphism.

Corollary 4.1.16. Let (E ,M) be a right factorisation system on a cocomplete and E-
cowellpowered category X , and T an endofunctor of X . If T preserves M-morphisms,
then XT admits (U−1E)-minimisation.

Proof. This follows from Proposition 3.1.10.

Example 4.1.17. Minimal coalgebras with respect to a factorisation system given by
anM-morphism preserving functor are discussed in various places in the literature:

1. Minimal coalgebras considered in [46] are essentially minimal coalgebras with
respect to the (U−1Surjections,U−1Injections)-factorisation, since every Set
endofunctor preserves injections with a non-empty domain and Set supports
the standard factorisation system consisting of surjections and injections.4

2. The minimisation given in [15] is another construction of the reflective sub-
category without using the cointersection of E-quotients, connecting it to the
known minimisation algorithms for automata.

4.1.5 Minimality and Behavioural Equivalence

In general, behavioural equivalence with respect to a right (E ,M)-factorisation sys-
tem on Set does not generalise behavioural equivalence for Set in the sense of
Proposition 2.1.27:

4 To use the corollary directly, consider that the category of T ′-coalgebras is isomorphic to XT
for an injection-preserving functor T ′ which is naturally isomorphic to T on non-empty sets by
Proposition 2.1.4.
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Example 4.1.18. Consider the trivial right factorisation system (isomorphism,morphism)
on the category of P -coalgebras. Every P -coalgebra is itself the greatest E-quotient,
since every E-map is an isomorphism. Thus, every behavioural equivalence of a
P -coalgebra 〈X,ξ〉 with respect to this factorisation system is simply the kernel of the
identity map on 〈X,ξ〉, that is, equality on the carrier. Obviously, any two bisimilar
elements are not necessarily equal.

To remedy the insufficiency for describing behavioural equivalence (or bisimilarity),
we require that every coalgebraM-homomorphism is also monic in the underlying
category. This extra requirement is sufficient for us to obtain the coinduction principle:

Theorem 4.1.19 (The Coinduction Principle). Let X be a category with pullbacks
and a right (E ,M)-factorisation system on XT such that UM ⊆ MonoX . Given a
T -coalgebra 〈x,ξ〉, the behavioural equivalence of 〈x,ξ〉, if exists, is the greatest kernel
among morphisms from 〈x,ξ〉.

Proof. Let rξ : 〈x,ξ〉 → ∇〈x,ξ〉 be a greatest E-quotient. For any coalgebra ho-
momorphism f : 〈x,ξ〉 → 〈y,γ〉, consider the following diagram in the underlying
category:

x

rξ
    

e

    

f

""

S

p1

11

p2
--

R

π1

??

π2

��

∇x f xhoooo // m // y

x

rξ

>> >>

e

== ==

f

<<

where f is factored as f = me, (π1,π2) is the kernel pair of rξ , and (p1,p2) is the
kernel pair of f . By construction, we derive rξ ◦p1 = rξ ◦p2 from the kernel pair of f :

f p1 = f p2

⇐⇒ (me)p1 = (me)p2 {by factorisation }
=⇒ ep1 = ep2 {m is monic in X }
=⇒ hep1 = hep2 {by post-composing with h }
=⇒ rξp1 = rξp2 {by the greatest quotient ∇x }

so there is a unique morphism i from S to R such that p1 = π1i and p2 = π2i.

Corollary 4.1.20. For any Set-coalgebra 〈x,ξ〉, the behavioural equivalence with respect
to the standard (U−1Surjections,U−1Injections)-factorisation system is the behavioural
equivalence in the sense of Definition 2.1.5.

Proof. Recall Proposition 2.1.7.

Let us close this subsection by giving a condition which guarantees the existence of a
small final coalgebra, making use of Proposition 3.1.12 and Proposition 4.1.15:
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Corollary 4.1.21. Let (E ,M) be a proper factorisation system on a cocomplete and M-
well-powered category X , and T anM-preserving endofunctor of X . The following are
equivalent:

1. A final coalgebra exists.

2. A complete lattice, regarded as a category, equivalent to the reflective subcategory of
(U−1E)-minimal T -coalgebras exists.

Remark 4.1.22. To summarise, the notion of behavioural equivalence is parametric in
right (E ,M)-factorisation systems and it has the coinduction principle ifM-morphisms
are monic in the underlying category. One might be justified to conclude that the use
of a final coalgebra for behavioural equivalence is rather heavy.

4.1.6 Coalgebras of Accessible Functors

Given an accessible endofunctor T of a locally presentable category, the category of
T -coalgebras is well-behaved by the following theorem:5

Theorem 4.1.23 ([9, Theorem 4.2]). Let K be a locally λ-presentable category for an
uncountable regular cardinal λ. Then, for every λ-accessible endofunctor T of K

1. a coalgebra is λ-presentable inKT if and only if its underlying object is λ-presentable
in K and

2. the category KT is λ-accessible.

Corollary 4.1.24. Given a locally presentable categoryK and an accessible functor T , the
forgetful functor U : KT →K has a right adjoint G. In particular, the final coalgebra
exists as the value of G on a final object in K .

Proof. According to Theorem 3.4.14, a functor between locally presentable categories
has a right adjoint if and only if it preserves colimits. Since K is cocomplete, the
forgetful functor preserves all colimits and thus this statement follows.

The right adjoint is isomorphic to the functor defined by

Gx ..= Colim((U↓x)→K ) =
∫ 〈y,γ〉

K (y,x) · 〈y,γ〉 (4.2)

for every x ∈K by the formal criterion of the existence of an adjoint [81, Theorem 2].
Using the Special Adjoint Functor Theorem, the final coalgebra can be regarded as
a coequaliser of the coproduct of the λ-presentable coalgebras. This follows in the
same spirit as [3, 19].

5 The original statement in [9, Theorem 4.2] uses an accessible category with ω-chains. Here, we
simplify the situation by using a locally presentable category and the fact that the forgetful functor
creates colimits.
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Another useful fact related to minimisation is the existence of the reflective subcategory
of minimal coalgebras:

Proposition 4.1.25. For any accessible endofunctor T of a locally presentable categoryK ,
the category KT admits Epi-minimisation.

Proof. Every locally presentable category has the (Epi,StrongMono)-factorisation
system by Corollary 3.4.16 and every factorisation system determines a reflective
subcategory by Proposition 3.1.8.

4.2 Transfinite Induction

The usual techniques for constructing a final coalgebra, an initial algebra, or free
algebras are actually based the same categorical construction. In [60], M. Kelly
provides a comprehensive study of transfinite induction for well-pointed endofunctors
and reduces other situations such as pointed endofunctors and (mere) endofunctors to
the well-pointed case. In this section, we present the situation for mere endofunctors
for later use in detail.

4.2.1 The Free Algebra Sequence

We denote the category of small ordinals, i.e. ordinals which are small sets, by Ord.
Formally, Ord is an inaccessible cardinal and also an ordinal, so we can apply
transfinite induction on objects of Ord.

Definition 4.2.1 (see [60]). Given an endofunctor L of a cocomplete category A , the
free algebra sequence L̂ : Ord→ [A ,A ] is defined by mutual transfinite recursion

on objects and morphisms, where L̂κ and L̂(κ
f
−→ σ ) are written as Lκ and f κσ for

convenience:

Objects: define objects Lκ by induction on κ:

Zero ordinal: L0
..= I .

Successor ordinals: Lκ+1
..= I +LLκ for every κ ∈Ord.

Limit ordinals: for a limit ordinal λ, define Lλ to be a colimit of the morphisms

{f κσ : Lκ→ Lσ | κ ≤ σ < λ }

where the f κσ are defined as follows:

Morphisms: for each ordinal κ ≤ σ < λ, define f κσ : Lκ → Lσ by induction on κ
omitting the case f κκ = id:
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Zero ordinal: define
f 0
σ+1 = inl : L0→ Lσ+1

to be the injection; for a limit ordinal α < λ define f 0
α to be the morphism

from L0 to Lα in the limiting cocone.

Successor ordinals: define

f κ+1
σ+1

..= id+Lf κσ : I +LLκ→I +LLσ

for κ < σ ; for a limit ordinal α < λ define f κ+1
α to be the morphism

from Lκ+1 to Lα in the limiting cocone of Lα .

Limit ordinals: for a limit ordinal α < λ and α < σ < λ, define

f ασ : Lα // Lσ

to be the mediating morphism from the colimit Lα to the vertex of the
cocone (f κσ )κ<α given by induction hypothesis.

Note that strictly speaking it is necessary to show that L̂ is a functor from Ord, i.e.
f κλ ◦ f

σ
κ = f σλ . For convenience, the transfinite sequence L̂ on an object a is denoted

by L̂a by currying.

The free algebra sequence on an object a ∈ A may be considered as the following
informal expression

a+L(a+L(a+ · · · )).

We say that the sequence stabilises on an object a ∈ A if the connecting morphism
f κκ+1 : Lκa→ Lκ+1a is an isomorphism for some ordinal κ.

Definition 4.2.2. An L-algebra α : La→ a is free over some object x if it is the initial
object in the comma category (x↓U ) for the forgetful functor U : A L→A .

That is, there exists a morphism i : x → a injecting x into a such that every L-
algebra β : Lb→ b with a morphism f : x→ b has a unique L-algebra homomorph-
ism f : 〈a,α〉 → 〈b,β〉 such that f = f ◦ i.

Theorem 4.2.3 (see [60]). Given an endofunctor L of a cocomplete category A and an
object a ∈A , if the free algebra sequence of L over a stabilises at κ with the inverse

[i,α] : a+LLκa→ Lκa,

then the morphism α : LLκa→ Lκa is the free L-algebra over a with i : a→ Lκa inject-
ing a into Lκa.

Proof. Let
(
Lb

β
−→ b

)
be a L-algebra with a morphism g : a→ b. First we construct a

cocone
(gκ : Lκa→ b)κ∈Ord

by transfinite induction as follows.
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basic step: define g0 = g ;

successor ordinal κ+ 1: define gκ+1 as the composite [idb,β] ◦ (g + Lgκ) in the
following diagram

Lκa
f κκ+1 //

gκ
��

a+LLκa

g+Lgκ
��

b b+Lb
[idb,β]

oo

where [idb,β] is the mediating morphism given by idb : b→ b and β : Lb→ b;

limit ordinal λ: define gλ as the meditating morphism from the colimit Lλa of (Lκa)κ<λ
to b given by (

Lκ
gκ−−→ b

)
κ<λ

which is a cocone of (Lκa)κ<λ by construction.

Assume that the sequence (Lκa)κ∈Ord stabilises at some ordinal γ with [i,α] : a +
LLγa→ Lγa as the inverse of f

γ
γ+1. Then, the diagram

Lγa

gγ
��

f
γ
γ+1
// a+LLγa

g+Lgγ
��

b b+Lb
[idb,β]
oo

commutes so does

Lγa

gγ
��

a+LLγa
[i,α]
oo

g+Lgγ
��

b b+Lb.
[idb,β]

oo

But, the diagram on the right simply says that gγ is an L-algebra homomorphism
from 〈Lγa,α〉 to 〈b,β〉 and g = gγ ◦ i. Moreover, f 0

γ = i by construction. Now it
remains to show uniqueness.

Let h : 〈Lγa,α〉 → 〈b,β〉 be another L-algebra homomorphism with g = h ◦ i. We
show that gκ = h ◦ f κγ for each ordinal κ by transfinite induction so that it follows

gγ = h ◦ f γγ = h ◦ id = h.

For the basic step, g = h ◦ i = h ◦ f 0
γ holds trivially as f 0

γ = i; and for limit ordinals it
is also trivial. For any ordinal κ, note that gκ+1 = [idb,β]◦ (g +Lgκ) by definition and
consider the diagram

a+LLκa

id+Lf κγ
��

f κ+1
γ

zz

g+Lgκ

oo

Lγa

h
��

a+LLγa[i,α]
oo

g+Lh
��

b b+Lb
[id,β]

oo

where id + Lf κγ = f κ+1
γ+1 ; the right square commutes by induction hypothesis gκ =

h ◦ f κγ ; and the lower square commutes by assumption. The upper triangle also



Chapter 4 Coalgebras and Algebras 87

commutes, because f
γ
γ+1 ◦ f κ+1

γ = f κ+1
γ+1 and [i,α] is the inverse of f

γ
γ+1. Therefore,

gκ+1 = h ◦ f κ+1
γ .

Example 4.2.4. An initial sequence of an endofunctor L is the free algebra se-
quence L̂0 over an initial object 0.

Example 4.2.5. Let X be a complete category and T an endofunctor of X . A final
sequence of T is a free algebra sequence of T op : X op → X op over the terminal
object 1 of X , i.e. a final sequence is T̂ op1. By 1×x � x for any object x, the sequence
is the usual final sequence defined in [19, 109]:

1 T 1
f 0
1oo T 21

f 1
2oo · · ·oo

where f 0
1 is the unique morphism to the terminal object. If the final sequence stabilises

at λ, the inverse of the isomorphism f λλ+1 : T λ+11→ T λ1 is a final T -coalgebra.

Proposition 4.2.6. Given a finitary endofunctor L on a cocomplete category A , the free
algebra sequence of L over any object a ∈ A stabilises at ω, i.e. the first infinite limit
ordinal.

Proof. It suffices to show that the next object Lω+1a is a colimit of the sequence of first
ω objects, so by construction it is isomorphic to Lωa with the mediating morphism as
the isomorphism.

By assumption,
(
LLf iω : LLia→ LLωa

)
i∈ω

is a colimit, so by the Parameter The-
orem [81, Theorem V.3.1], the following cocone is a colimit of (Li+1a)i∈ω(

a+LLia
ida+LLf iω=f i+1

ω+1−−−−−−−−−−−−−→ a+LLωa
)
i∈ω

.

It remains to show that f 0
ω+1 = f 1

ω+1◦f
0

1 with the limiting cocone (f i+1
ω+1)i∈ω is a colimit

of (Lia)i∈ω. However, given any cocone (σi)i∈ω from (Lia)i∈ω to some b, it is easy to
see that σ0 = h ◦ f 0

ω+1 by diagram chasing

a
f 0
1 //

σ0

��

f 0
ω+1

""

a+La

f 1
ω+1

��

σ1

||
b a+Lω+1ah
oo

where h is the mediating morphism from the colimit Lω+1a and σi+1 = h ◦ f i+1
ω+1

for i ∈ ω by construction. Thus Lω+1a is a colimit of the first ω-objects in the
sequence.

Similarly, the free algebra sequence of any λ-accessible endofunctor stabilises at λ
using the same argument.
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Corollary 4.2.7. For any λ-accessible functor L of a cocomplete category A , the forgetful
functor UL : A L→A has a left adjoint. Moreover, it is monadic.

Proof. Define a mapping F0 on objects by assigning to a the λ-th object Lλa with the
injecting map i : a→ Lλa as the unit. By [81, Theorem 2], there is a left adjoint F
to U with Fa = F0a. By the dual of Proposition 4.1.5, UL is also monadic.

Remark 4.2.8. By the dual of Proposition 4.1.5, the forgetful functor U : A L → A
is monadic for any λ-accessible functor L. Moreover, the induced monad is a free
monad over L. However, given a monadic and λ-accessible functor6 U : A → Set,
the composite (

A L UL−−→A U−→ Set
)

does not need to be monadic.

4.2.2 Minimisation via Transfinite Sequence

For any endofunctor T of Set, not every interesting final sequence stabilises at the
first non-empty limit ordinal ω or stabilises at all—there might be no final coalgebra,
as the example of the covariant powerset functor shows. On the other hand, minimal
coalgebras always exist.

Given a right (E ,M)-factorisation system on a complete and E-cowellpowered category
X , we can further construct minimal coalgebras from the final sequence:

Theorem 4.2.9 (see [15]). Given a right (E ,M)-factorisation system on a complete cat-
egory X which is E-cowellpowered, and anM-preserving endofunctor T , then XT admits
(U−1E)-minimisation.

So far, we have collected several conditions for minimisation, i.e. Proposition 3.1.8,
Proposition 3.1.10, Corollary 4.1.16, Proposition 4.1.25, and Theorem 4.2.9, using
either colimits or limits; with or without a terminal object, M-preservation, and
M-wellpoweredness or E-cowellpoweredness.

4.3 Algebras

For the use of equational logics, we characterise the isomorphism between the category
of (co)algebras for a functor L and the category of (co)algebras for the (co)monad L
induced by L, also continuing Section 4.1.2 and the free algebra construction.

Then, we discuss categorical properties of varieties of (Σ,E)-algebras. In addition to
Example 3.4.8, we characterise every algebra as a sifted colimit of finitely generated

6 That is, A is a variety of single-sorted algebras.
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free algebras. The class of finitely based endofunctors on a variety, which are functors
preserving sifted colimits, is introduced.

According to Remark 4.2.8, the composite of finitary monadic functors is not neces-
sarily monadic. On the other hand, if an endofunctor L of a variety is finitely based,
then the previous composite is monadic, see Theorem 4.3.35.

Remark 4.3.1. The notion of finitely based functor was first introduced by Velebil
and Kurz [104] in the context of enriched category theory. In spite of the generality
developed in op. cit., our discussion is restricted to varieties of single-sorted algebras
with an eye towards applications in Chapter 5. Another approach via the presentation
of a functor is given in [30] and they coincide in varieties.

4.3.1 Free Monads

By Remark 4.2.8, one might expect the converse, namely the category of algebras of a
given free monad over an endofunctor L is isomorphic to the category of L-algebras,
but this is not true as pointed out by Barr [60, Section 22.2].

Definition 4.3.2. Given an endofunctor L of some category A , a monad M =
(M,µ,η) on A with a natural transformation (θ : L ˙−→M) is algebraically-free over

L if every L-algebra (La
α−→ a) factors though θa via a unique M-algebra Ma

α−→ a and
every L-algebra homomorphism f : (a, ᾱ)→ (b, β̄) is also an M-algebra homomorph-
ism, i.e.

La

α

!!

θa //Ma

∃!α

��

a

and

La θa //

Lf
��

α

��

Ma ᾱ //

Mf
��

a

f
��

Lb

β

OOθb
//Mb

β̄
// b

commutes.

That is, the functor from the category of M-algebras to the category of L-algebras,
given by θ, is an isomorphism. Correspondingly, we have cofree comomad and
coalgebraically-cofree comonad as duals to free monad and algebraically-free monad.7

Proposition 4.3.3. Let L : A → A be an endofunctor on A . The following statements
are equivalent:

1. There exists an algebraically-free monad over L.

2. The forgetful functor A L→A has a left adjoint.

7 Algebraically free monads coincide with free monads in a complete and locally small category,
see [60].
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Proof. For any algebraically-free monad M over L, the forgetful functor A L→A has
a left adjoint as it is isomorphic to the category of M-algebras.

Conversely, suppose that the forgetful functor U : A L→A has a left adjoint F with
η as the unit and ε as the counit. Let Fa : LUFa→ UFa denote the free algebra
over a. The composite

θa : La
Lηa−−−→ LUFa

Fa−−→UFa

defines a natural transformation from L to UF. By Proposition 4.1.5, U is monadic,
so the comparison functor K : A L→A UF defined by

K(La
α−→ a) =UFa

Uεα−−−−→ a and Kf = f

is an isomorphism. We show that the pre-composition functor θ∗ : A UF → A L is
the left inverse of K , so the induced monad (UF,UεF,η) is algebraically-free over L.

Given an L-algebra (La
α−→ a), consider its image under θ∗◦K in the following diagram

La
Lη(Uα)

//

Lηa
��

id

��

LUFa
Lεα //

Fa=FUα
��

La

α
��

LUFa
Fa

// UFa εα
// a

where the upper rectangle commutes by the triangular identities, the left square
commutes by Uα = a; and the right square commutes since εα is an L-algebra
homomorphism from FUα to α. To sum up, α = (θ∗ ◦ K)α, so the statement
follows.

4.3.2 Algebras of Finitary Functors over Varieties

To motivate the subsequent subsections, we walk through algebras of a finitary
endofunctor of some variety informally. First, let A be a variety of single-sorted
algebras with a forgetful functor U : A → Set and a left adjoint F to it, and Aω the
full subcategory consisting of finitely generated algebras.

Given a finitary endofunctor L of A , consider the coend formula of L for an L-algebra

α :
∫ K∈Aω

A (K,A) ·LK → A,

which corresponds uniquely to a family of mappings(
A (K,A)

αK−−→A (LK,A)
)
K∈Aω
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indexed by Aω because of the following one-to-one correspondence

Hom(
∫ K

A (K,A) ·LK,A) �
∫
K
Hom(A (K,A) ·LK,A) �

∫
K
Set(A (K,A),A (LK,A)).

Every morphism σ from the free algebra F1 to LK defines a K-ary operation8 σ by

K
a−→ A

F1
αK (a)◦σ
−−−−−−−→ A

1
σ (a)
−−−→UA

mapping each morphism a : K → A to an element of A. Note that such a morphism σ
may be identified with an element of LK .

Thus, an L-algebra precisely consists of a carrier A and K-ary operations(
A (K,A)

σ−→UA
)
σ∈LK

satisfying certain equations for each K ∈ Aω and σ ∈ LK . For K = Fn, a K-ary
operation gives rise to an n-ary operation UAn → UA, in the sense of universal
algebra, by the bijection A (Fn,A) � Set(n,UA). Moreover, each L-algebra homo-
morphism f : 〈A,α〉 → 〈B,β〉 is precisely an operation-preserving morphism.

Remark 4.3.4. In some situations, every finitely generated object is free, e.g. finite-
dimensional vector spaces, finite sets, and every finitely generated Boolean algebra,
except the trivial Boolean algebra 1 [76]. In that case, every K-ary operation boils
down to an n-ary operation UAn→ UA by the adjunction A (Fn,A) � Set(n,UA).
However, it does not hold in general.

4.3.3 Varieties of Algebras

Density Presentation for Varieties of Algebras

Definition 4.3.5. Similar to filtered categories defined in (3.7), a category S is sifted
if for every functor F : S ×J → Set where J is finite and discrete, the canonical
morphism

Colim
s∈S

∏
j∈J

F(s, j)→
∏
j∈J

Colim
s∈S

F(s, j) (4.3)

is an isomorphism. A sifted colimit is a colimit of a sifted diagram.

Theorem 4.3.6 (see [11, Theorem 2.15]). A small category D is sifted if and only if
it is not empty and for every pair 〈a,b〉 of objects, the comma category (〈a,b〉↓∆) for the
diagonal functor ∆ : D →D ×D is (non-empty and) connected.

8 It is an operation in the sense of Linton’s categorical algebra [79] and in particular Kelly and
Power’s notion [62]. Also see [7] for a recent study for finitary functors on locally finitely presentable
categories.
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Example 4.3.7. Every filtered colimit and reflexive coequaliser is sifted. A reflexive
coequaliser is a coequaliser of a pair of morphisms with a common section s, i.e. it is
a colimit of the diagram

a
f
//

g
//
bsoo idee

where f s = gs = id. Every colimit of a filtered diagram commutes with finite limits
in Set including finite products, so filtered colimits are sifted. Reflexive coequalisers
are also examples, as it is easy to verify by Theorem 4.3.6.

Example 4.3.8. For every monadic functor U : A →X , the canonical presentation
of an object A ∈A

FUFUA
εFUA //

FUεA
// FUA

εA // A (4.4)

is a reflexive coequaliser with a common section FηUA by the triangular identities.

Lemma 4.3.9. Every finitary and monadic functor U : A → Set creates sifted colimits.

Proof. Let H : J →A be a sifted diagram and (τi : UHi → C)i∈J a colimit of UH .
Without loss of generality, we assume that C is a quotient of the disjoint union UHi .
For any n-ary operation σ , the canonical morphism h : Colim(UHi)n → Cn is an
isomorphism by definition. Thus, we can define an n-ary operation σC on C by

Colim(UHi)n

Colim(σHi )
��

Cnh−1
oo

σC
��

Colim(UHi) id
// C.

To see that each τi is a homomorphism, let σ be an n-ary operation and consider the
diagram

(UHi)n
τni //

σHi

��

µi
&&

Cn

σC

��

Colim(UHi)n

Colim(σHi )

��

h

::

UHi

τi
&&

τi
// C

Colim(UHi)
id

99

where µ is the limiting cocone of UHn. By diagram chasing, we know that the
function τi is an A -homomorphism. Since Colim(UHi)n is a quotient of the disjoint
union (UHi)n so that every n-tuple ([ai])i∈n of C must be mapped by some τni . Hence
σC is uniquely defined, because τi is a homomorphism. Therefore, we have shown
that there is a unique cocone τ ′ of H satisfying Uτ ′ = τ .
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Finally, we show that τ ′ is indeed a limiting cocone. Let (λi : Hi → A)i be a cocone
and f : UC→UA a mediating function for Uλ. To check that f is a homomorphism,
it suffices to check that σA ◦ λni = λi ◦ σHi for each σ because of the isomorphism
h : Colim(UHi)n→ Cn, but this is just the assumption.

Lemma 4.3.10. Given a finitary and monadic functor U : A → Set with a left ad-
joint F, the Set-valued functor

A (Fn,−) : A → Set

preserves sifted colimits for every n ∈ω.

Proof. By adjunction, every set A (Fn,A) is bijective with Set(n,UA) natural in A.
The forgetful functor U creates sifted colimits, so U preserves them. Then, it suffices
to show that Set(n,−) preserves sifted colimits in Set for each finite number n. Now,

given a sifted colimit (Hi
τi−→ C)i∈D , we observe that Set(n,Hi) = Hn

i , so it follows
that Hn

i → Cn is also a sifted colimit by the definition of being sifted.

Given a variety A of algebras, let A
f
ω and J : A f

ω ↪→A denote the full subcategory
consisting of Fn, for n ∈ω, and the embedding to A , respectively.

Theorem 4.3.11 (see [104, Lemma 3.5]). Given a finitary and monadic functorU : A → Set
with a left adjoint F : Set→ A , the collection of filtered diagrams in A and canonical

presentations is a density presentation of the embedding J : A f
ω →A .

Proof. Every variety of algebras is complete and cocomplete, so every colimit (σi : Ai → C)
of a diagram in any of the above collections exists. Hence it remains to show that

the closure of A
f
ω is A itself and every colimit (σi : Ai → C) is preserved by the

restricted Yoneda embedding J̃ defined in (3.6).

We observe that for every object A ∈A the canonical presentation (4.4) is a coequaliser
by monadicity, so every object A can be constructed as a coequaliser of free algebras.

Moreover, every free algebra FX is a filtered colimit of Fn in A
f
ω since F as a left

adjoint preserves every colimit and every set X is a filtered colimit of finite sets. Thus,

the closure of A
f
ω under filtered colimits and canonical presentations is A .

Since canonical presentations are reflexive coequalisers (see Example 4.3.8) and filtered
colimits are sifted (by definition), the restricted Yoneda embedding Ĵ preserves them
by Lemma 4.3.10.

In addition to the above presentation given in [104], we provide the following extra
presentations:

Theorem 4.3.12. Given a variety A of algebras, the following collections of diagrams

are density presentations of J : A f
ω →A :
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1. The collection of filtered diagrams and U -split pairs.

2. The collection of filtered diagrams and reflexive pairs in A .

3. The collection of sifted diagrams in A .

Proof. By Theorem 4.3.11, we know that the closure of A
f
ω under filtered colimits and

canonical presentations is A . By Example 4.3.7 and Example 4.3.8, filtered colimits are
sifted, and canonical presentations are also sifted, specifically reflexive coequalisers. In
addition, every canonical presentation is a U -split coequaliser, since ηUA and ηUFUA
split the canonical presentation:

UFUFUA UFUA
ηUFUA
oo UA.

ηUA
oo

Hence, the closure of A
f
ω under either

1. sifted colimits;

2. filtered diagrams and reflexive pairs; or

3. filtered diagrams and U -split pairs,

is the variety A .

It remains to show that the restricted Yoneda embedding J̃ preserves them.

sifted colimits & filtered colimits with reflexive coequalisers: By Lemma 4.3.10,
Ĵ preserves sifted colimits including filtered colimits and reflexive coequalisers.

filtered colimits with U -split coequalisers: Every U -split pair is a U -absolute co-
equaliser by [81, Corollary VI.6], i.e. the image under U is an absolute colimit.
Thus, every U -split coequaliser is preserved by Set(n,−) ◦U .

Properties of a Variety of Algebras

Lemma 4.3.13. The following statements hold:

1. If a coequaliser has a kernel pair, then it is the coequaliser of its kernel pair;

2. Every regular epimorphism in a category with kernel pairs is a reflexive coequaliser
of its kernel pair.

3. The regular epimorphisms in a variety of algebras are precisely surjective homomorph-
isms.
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Proof. 1. Let e : X→ Y be a coequaliser of morphisms f ,g : S→ X. Consider the
kernel pair of e in the following diagram

X
e

��

S

f //

s //

g //

R

π1
??

π2 ��

Y

X
e

??

where s is the mediating morphism since ef = eg by definition. Given a
morphism h with hπ1 = hπ2, it follows that

hπ1 = hπ2

=⇒ hπ1 s = hπ1 s

⇐⇒ hf = hg, {π1s = f and π2s = g by construction }

so by the coequaliser (f ,g) of e there is a unique morphism j with h = j e
satisfying the universal property of coequaliser.

2. Every regular epimorphism e is a coequaliser of some pair of morphisms, so f
is the coequaliser of its kernel pair. Then, consider the following diagram

X
e

��

X

id //

id //

d // R

π1
??

π2 ��

Y

X
e

??

and the outer diagram commutes trivially. It follows that there exists a mediating
morphism d : X→ R such that π1 ◦ d = π2 ◦ d = id.

3. Given an algebra A of a variety A , the kernel pair of a morphism f is exactly
the projections π1,π2 : R⇒ A of the congruence defined by

ker(f ) ..= { (a1, a2) ∈ A×A | f a1 = f a2 }.

It is not hard to check that ker(f ) is an algebra considering the preservation of
operations by homomorphisms, so it is a reflexive pair.9 It follows that a regular
epimorphism e : X → Y is in fact the quotient of X under the congruence,
i.e. Y � X/R, so e is surjective.

9The common section of projections is the diagonal function ∆(a) = (a,a) for each a ∈ A.
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Conversely, every homomorphism f : X→ Y is the composite of a coequaliser
of its kernel and an injective homomorphism

X

f
!!

//
f
// f [X]

id|f [X]
��

Y

where f [X] � X/ker(f ) by the First Isomorphism Theorem in universal algebra,
see [34, Section 6] for details. Thus, every surjective homomorphism is a regular
epimorphism.

4.3.4 Equationally Presentable Functors and Monads

By Theorem 3.3.8 and the density presentations given in Theorem 4.3.11 and The-
orem 4.3.12, we immediately have the following equivalent characterisations:

Corollary 4.3.14. Given a monadic and finitary functor U : A → Set and an endo-
functor L of A , the following statements are equivalent:

1. L is finitary and preserves canonical presentations.

2. L preserves sifted colimits.

3. L is finitary and preserves reflexive coequalisers.

4. L is finitary and preserves U -split coequalisers.

5. L is the left Kan extension of LJ along J : A f
ω →A .

A functor is called finitely based if it satisfies one of the above statements. A finitely
based monad is a monad (T ,µT ,ηT ) whose functor part is finitely based. The class
of finitely based endofunctors of a variety A is denoted by

FinB[A ,A ]

which is the full subcategory of the category of finitary endofunctors of A .

Remark 4.3.15. The equivalent characterisations of functors which preserve filtered
colimits and canonical presentations, and sifted-colimit preserving functors may be
found in the work of equationally-presentable functors in [30, 76, 104]. The third can
be found in [12, Theorem 2.1] assuming that the category is finitely cocomplete, but
we simplify the argument using the density presentation. The fourth appears to be
original.

Corollary 4.3.16. Every finitary endofunctor of Set is finitely based.
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Proof. Every reflexive coequaliser in Set is a surjection having a right inverse using
the Axiom of Choice, so it is preserved by any functor.

Definition 4.3.17. Given a finitary and monadic functor U : A → Set with a left
adjoint and a finitely based endofunctor L of A , the object LFn is called the object
of n-ary operations of L.

From the analysis in Section 4.3.2, we know that elements σ ∈ LFn give rise to n-ary
operations σ : UAn→UA over the carrier set UA.

Properties of Finitely Based Functors

Since finitely based functors are defined by the preservation of sifted colimits, it is
easy to see the following:

Proposition 4.3.18. The composite of two finitely based endofunctor is finitely based.

By Lemma 4.3.13, we also know that

Corollary 4.3.19. Every finitely based functor preserves surjections.

The condition of finitary surjection-preservation is strictly weaker:

Example 4.3.20 (cf. [104, Example 3.12]). Not every finitary functor which preserves
surjections is finitely based. Consider the category Ab of abelian groups. Every abelian
group A = (A,0,+) is the direct sum10 of its torsion subgroup AT defined by

AT ..= {a ∈ A | na = 0 for some natural number n },

and the quotient A∗ ..= A/AT . The quotient A∗ is torsion-free, i.e. every element a
of A∗ except the identity satisfies na , 0 for every n ∈ ω. For every group homo-
morphism ϕ : A→ B, there is an obvious map ϕ : A∗→ B∗ defined by

(a+AT ) 7→ (ϕ(a) +BT )

for every a ∈ A. It follows that the construction of the torsion-free subgroup is
functorial, denoted by I ∗ : Ab→ Ab. Now, it is not hard to see that I ∗ is finitary and
preserves surjections. Nevertheless, every finitely generated free Abelian group is
simply a torsion-free group Zn for some n ∈ ω, and thus (Zn)∗ = Zn The left Kan
extension of I ∗ along the subcategory of finitely generated free Abelian groups is just
the identity. It follows that I ∗ is not finitely based.

By Corollary 3.4.10, the equivalence of categories follows

LanJ : [Aω,A ]
�−→ Fin[A ,A ] (4.5)

10 In the category of abelian groups, direct sums are coproducts.
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with a pseudo-inverse (−)◦J where Aω is the full subcategory consisting of finitely gen-
erated algebras and J : Aω→A is the embedding. Similarly, there is an equivalence

LanJ ′ : [A
f
ω ,A ]

�−→ FinB[A ,A ] (4.6)

where A
f
ω is a full subcategory of A on finitely generated free algebras and J ′ : A f

ω →
A is the embedding. These two equivalences of categories are particularly important
and convenient for the subsequent discussion.

Proposition 4.3.21 (see [104, Lemma 3.13]). Given a variety A of algebras, the category
of finitely based endofunctors of A is a coreflective subcategory of the category of finitary
endofunctors of A , i.e. the inclusion

J : FinB[A ,A ] −→ Fin[A ,A ]

has a right adjoint.

Proof. For any functor L : A f
ω →A , the left Kan extension of L along the inclusion

J ′ : A f
ω →Aω always exists, i.e. an adjunction

(−) ◦ J ′ ` LanJ ′ : [A
f
ω ,A ] −→ [Aω,A ]

by Corollary 3.2.13, because A
f
ω is small and A is cocomplete.

Note that we have a chain of coreflective subcategories

FinB[A ,A ]
pp

11
> Fin[A ,A ]

qq

22
> [A ,A ] (4.7)

given by left Kan extensions, so finitely based (resp. finitary) endofunctors of A are
closed under colimits of [A ,A ].

Proposition 4.3.22. The free monad over a finitely based endofunctor is finitely based.

Proof. From the free algebra sequence, every functor (Li)i<ω is finitely based and by
Proposition 4.2.6, the free monad is the ω-th object in the free algebra sequence, i.e. a
colimit of (Li)i<ω, so the free monad is finitely based by Proposition 4.3.21.

Freely Generated Finitely Based Functors

Proposition 4.3.23 (see [104, Proposition 3.15]). Given a finitary and monadic func-
tor U : A → Set with a left adjoint F, the functor

[F,U] ..=U (−)F : FinB[A ,A ] −→ Fin[Set,Set]

is finitary and monadic.
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We first show that [F,U] is finitary; using Beck’s Monadicity Theorem, we then show
that [F,U] has a left adjoint and creates coequalisers of [F,U]-split pairs.

Proof. Colimits of [A ,A ] are computed pointwise and FinB[A ,A ] is its coreflexive
subcategory by Proposition 4.3.21, so colimits of FinB[A ,A ] are also computed
pointwise. It follows that (τiF : LiF ˙−→LF)i∈D is a colimit whenever (τi : Li ˙−→L)i is
a colimit in FinB[A ,A ]. By assumption U being finitary, (UτiF : ULiF ˙−→ULF)i is
a filtered colimit, provided that the diagram is filtered.

Let F′ : Setω → A
f
ω be the restriction of F. For each functor H : Setω → Set, the

left Kan extension LanF′FH always exists, since A is cocomplete and A
f
ω is small.

Therefore, we have isomorphisms

[A f
ω ,A ](LanF′FH,L) � [Setω,A ](FH,LF′) (4.8)

� [Setω,Set](H,ULF
′) (4.9)

natural in H and L.

Given a [F,U]-split pair τ1, τ2 : L1 ⇒ L2 of natural transformations for functors

L1,L2 : A f
ω →A , the split coequaliser

UL1Fn
Uτ1Fn //

Uτ2Fn
// UL2Fn // Xn (4.10)

exists for each n ∈ω. By the monadicity of U , there exists a coequaliser

L1Fn
τ1Fn //

τ2Fn
// L2Fn // An

whose image under U is (4.10), so the coequaliser of τ1 and τ2 exists in [A f
ω ,A ]. It

follows that the functor [F,U] is monadic.

Notation 4.3.24. Given a finitary functor H : Set→ Set, the resulting finitely based
endofunctor in Proposition 4.3.23 is denoted by Ĥ : A →A .
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The resulting finitely based functor Ĥ on A
f
ω for a finitary functor H : Set→ Set is

given explicitly as follows:11

(Lan′FFH)F′m

�

∫ n

A
f
ω (F′n,F′m) ·FHn {by Theorem 3.2.11 }

�

∫ n

Set(n,UFm) ·FHn {by the full inclusion A
f
ω ↪→A and F aU }

� F

(∫ n

Set(n,UFm) ·Hn
)

{ the left adjoint F preserves coends }

� F

(∫ n

Hn ·Set(n,UFm)
)

{copower in Set is commutative }

� FHUFm. {by Proposition 3.2.7 }

Since Ĥ preserves sifted colimits and every algebra is the sifted colimit of its canon-

ical diagram in A
f
ω by Theorem 4.3.11, the resulting value of Ĥ on any A ∈A is

precisely FHUA.

Example 4.3.25. For a finitary functor T , the syntax of the logic of the cover modality
is a finitely based functor FTU by Example 2.3.25.

Proposition 4.3.26. Given the adjunction FinB[A ,A ](Ĥ,L) � Fin[Set,Set](H,ULF),
the unit ηH : H ˙−→UĤF on finite sets is given explicitly as follows:

(ηH )n : a 7→ (UFHin ◦ iHn)(a) (4.11)

for a ∈Hn where i : I →UF is the unit for the adjunction F aU : A → Set.

Proof. The unit η′m : FHm→ ĤF′m of (4.8) of the coend formula is given by

FHm
ιidFm //

η′m ((

A
f
ω (F′m,F′m) ·FHm

wm
��∫ n

A
f
ω (F′n,F′m) ·FHn

where ιidFm is the canonical injection, and w is the universal wedge. The isomorphism
between the coend

∫ n
Set(n,UFm) ·Hn and HUFm is given by

(f ,x) 7→Hf (x).

for

(
n
f
−→UFm

)
and x ∈Hn. By (4.9), the resulting unit is then given in (4.11).

11 The computation appears in [104, Remark 3.16], but the last step is not explained in detail.
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For every variety of (Σ,E)-algebras, the set Σ of operations may be viewed as an
assignment, called finitary signature, from the set ℵ0 of natural numbers to the
set Σn of n-ary operations, i.e. a functor

Σ : ℵ0→ Set

where ℵ0 is regarded as a discrete category. Each signature gives rise to a polynomial
functor HΣ of Σ defined by

HΣ ..=
∐
n∈ω

Σn × (−)n, (4.12)

and an HΣ-algebra consists of a family of operations σ : Xn→ X for each σ ∈ Σn. The
polynomial functor HΣ is in fact a left Kan extension of Σ along the inclusion E : ℵ0→
Set as we can see from the coend formula

(LanEΣ)X =
∫ ℵ0

Set(−,X) ·Σn �
∐
n∈ω

Xn ·Σn

for each set X by Theorem 3.2.11. Therefore, there is a right adjoint to the construction
given by pre-composition with E. From the coend formula, the unit is given as follows:

Proposition 4.3.27. Given the adjunction Fin[Set,Set](HΣ,H) � [ℵ0,Set](Σ,HE)
where E : ℵ0→ Set, the unit ηΣ : Σ→HΣE is given explicitly as follows:

(ηΣ)n : σ ∈ Σn 7→ 〈σ, (0, . . . ,n− 1)〉.

Example 4.3.28. Given a set X, define a finitary signature ΣX by

(ΣX)n =

X ifn = 0
∅ otherwise.

The corresponding polynomial functor is simply a constant functor with value X.
Indeed, this mapping is a full embedding Set ↪→ [ℵ0,Set].

Theorem 4.3.29 (see [104, Theorem 3.18]). Given a finitary and monadic functorU : A →
Set with a left adjoint F, the composite

FinB[A ,A ]
[F,U]

−−−−−−−−−−→ Fin[Set,Set]
[E,Set]

−−−−−−−−−−−→ [ℵ0,Set]

is finitary and monadic where [E,Set] is the precomposition with the inclusion E : ℵ0→
Setω.

Proof. The functor [E,Set] = (−) ◦ E is finitary since colimits in Fin[A ,A ] as a
coreflective subcategory of [A ,A ] are computed pointwise, so the restriction to ℵ0
is also a colimit as well as the composite (−) ◦E with [F,U].

The composite of adjunctions is again an adjunction, so it remains to show that the
composite is monadic.
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Using the equivalences (4.5) and (4.6), it is equivalent to show the composite

[A f
ω ,A ]

[F,U]
−−−−−−−−−−→ [Setω,Set]

(−)◦E
−−−−−−−−−−→ [ℵ0,Set]

is monadic, but this follows from the same argument as the proof in Proposition 4.3.23.

Example 4.3.30. Given a set X, by the embedding Set ↪→ [ℵ0,Set] defined as in
Example 4.3.28, the resulting finitely based functor of X is the constant functor with
value FX.

Example 4.3.31. In Example 2.3.25, we showed that every set Λ of predicate liftings
gives rise to an abstract logic whose syntax functor is

F
(∐

Λn × (−)n
)
U = FHΛU = ĤΛ

which is finitely based by Theorem 4.3.29 where Λn is the set of n-ary predicate liftings.
That is, we regard the set Λ as a signature by mapping every natural number n to the
set of n-ary predicate liftings.

Remark 4.3.32. The monadic functor from FinB[A ,A ] to [ℵ0,Set] amounts to saying
that every finitely based endofunctor has a canonical presentation as a coequaliser of
freely generated finitely based endofunctors

ĤΓ
//

// ĤΣ // L (4.13)

since every finitely based endofunctor L has a canonical presentation by the monadicity
of [F,U] where Γ and Σ are finitary signatures given explicitly by

Σ ..=ULFE and Γ ..=UĤΣFE

where E : ℵ0→ Setω is the inclusion.

Remark 4.3.33. By Theorem 4.3.29, any map from ĤΓ to ĤΣ corresponds uniquely to
the transpose Γ →UĤΣFE; so the pair of parallel morphisms in (4.13) boils down to
a family of equations

ιn : En ⊆UĤΣFn×UĤΣFn (4.14)

for each n ∈ ω, where Fn serves as the object of n-many variables; UĤΣFn is
the set of rank-1 terms of n-many variables; and a pair of rank-1 terms in En is
a rank-1 equation valid in L. Conversely, let E be a family of rank-1 equations.
By the projections π1,π2 : (UĤΣFE)2⇒ UĤΣFE, E gives two maps π1ι,π2ι : E ⇒
UĤΣF, so E is bijective with a pair of natural transformations between finitely based
endofunctors (π1ι)∗, (π2ι)∗ : ĤE ⇒ ĤΣ by the monadic adjunction. For convenience,
write t ∼n t′ for (t, t′) ∈ (UĤΣFn)2, so a set E of equations for Σ is described by a
signature E : n 7→ { . . . , t ∼n t′, . . . , }.

A rank-1 term t ∈ UĤΣFn = UFHΣUFn for some finitary signature Σ is to be
understood as a term in A consisting of at most one layer of operations in Σ at terms
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of n-variables:

U F

Σ-operations︷           ︸︸           ︷
HΣ U Fn︸  ︷︷  ︸

n-ary terms︸                       ︷︷                       ︸
rank-1 terms

and see the following for a concrete example:

Example 4.3.34. In Definition 2.2.8, the endofunctor M is presented by a signa-
ture Σ : ℵ0→ Set and a family E of equations defined by

Σn
..=

{�} ifn = 1
∅ otherwise;

and En ..=


{�⊥ ∼0 ⊥} ifn = 0
{�(0∨ 1) ∼2 �0∨�1 } ifn = 2
∅ otherwise,

respectively, where each term in E is given step by step in following way:

0 (none) 2 0, 1
UF0 ⊥ UF2 0∨ 1, 0, 1

HΣUF0 =UF0 �⊥ HΣUF2 =UF2 �(0∨ 1), �0, �1
UFUF0 �⊥, ⊥ UFUF2 �(0∨ 1), �0∨�1

Algebras of Finitely Based Functors

Recall Corollary 4.2.7 that the category of L-algebras of a finitary endofunctor L of A
is monadic over A . Continuing Section 4.3.2, we show that every algebra LA→ A of
a finitely based functor on a variety A is indeed an extension of the carrier algebra A,
e.g. every modal algebra is an extension of Boolean algebra.

Theorem 4.3.35 (cf. [104, Theorem 4.1]). Let U : A → Set be a monadic and finitary
functor, L a finitely based endofunctor of A , and UL : A L → A the forgetful functor.
The composite UUL is monadic and finitary.

Proof. By the dual of Proposition 4.1.3, UL creates filtered colimits. Hence UL is
finitary, and so is the composite U ◦UL.

By the induction construction, UL has a left adjoint since L preserves ω-chains. It
follows that the composite has a left adjoint.

To prove the monadicity, we use the Crude Monadicity Theorem: the right ad-
joint UUL is monadic if it reflects isomorphisms, A L has and UUL preserves reflexive
coequalisers. By the dual of Proposition 4.1.2, the forgetful functor UL reflects iso-
morphisms so that the composite also reflects isomorphisms. The category A is
cocomplete, so it has all reflexive coequalisers. By definition, L preserves reflexive
coequalisers. Hence, UL creates reflexive coequalisers by the dual of Proposition 4.1.3.
In particular, A L has and UL preserves reflexive coequalisers. Finally, UUL preserves
reflexive coequalisers as U also does.
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Exactness of the Category of Finitely Based Endofunctors

Previously, we have seen that every finitely based endofunctor has a canonical present-
ation and every presentation consisting of rank-1 equations defines a finitely based
endofunctor. In this subsection, we study congruences for finitely based endofunctors
via regularity and exactness. See [32, Chapter 2] for general discussions.

Definition 4.3.36. Given a category with pullbacks, an equivalence relation on an
object x is a pair of jointly monic morphisms r1, r2 : R⇒ x such that there exist

(reflexivity) a morphism δ : x→ R with ri ◦ δ = id, for i = 1,2;

(symmetry) a morphism σ : R→ R with r1 ◦ σ = r2 and r2 ◦ σ = r1;

(transitivity) a morphism τ : R ×x R → R with ri ◦ τ = ri ◦ ρi , for i = 1,2, where
(ρ1,ρ2) is the pullback of (r1, r2) as depicted in the diagram

R×x R
ρ1
��

ρ2
// R

r1
��

R r2
// x.

An equivalence relation (R,r1, r2) is effective if the coequaliser, denoted e, of (r1, r2)
exists and e has (r1, r2) as its kernel pair.

Proposition 4.3.37. In a category with coequalisers, the kernel pair of any morphism is
an effective equivalence relation.

For example, every set-theoretic equivalence relation R ⊆ X × X with projections
π1,π2 : R ⇒ X is an equivalence relation. The reflexivity morphism δ and the
symmetry morphism σ are rather obvious, and the transitivity morphism τ : R×AR→
R is given by (〈x,y〉,〈y,z〉) 7→ 〈x,z〉. Further, equivalence relations in Set are all
effective. The coequaliser, of course, can be given by the canonical projection e to the
quotient X/R, and the condition that (r1, r2) is a kernel pair of e is equivalent to that
[x] = [y] if and only if x R y.

Similarly, a congruence R on a (Σ,E)-algebra A, which is an equivalence relation R on
its carrier and is also a subalgebra of A×A, is an equivalence relation in the category
of (Σ,E)-algebras. Moreover, every congruence is also effective.

Definition 4.3.38 (see [32]). A category is regular if a) every morphism has a kernel
pair; b) every kernel pair has a coequaliser; c) the pullback of a regular epimorphism
along any morphism exists and is also a regular epimorphism. Moreover, a regular
category is exact if every equivalence relation is effective.

For example, Set and any variety of algebras are exact; on the other hand, the
category of topological spaces is not regular.
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Theorem 4.3.39 (see [32, Section 2.1]). Every regular category has the (RegEpi,Mono)-
factorisation system.

Proof Sketch. Given any morphism f : X→ Y , consider its kernel pair (u,v) and the
coequaliser e of (u,v):

R
u //

v
// X

f
//

e
��

Y

X/R
i

==

Since f u = f v by construction, there exists a unique morphism i : X/R→ Y with f =
i ◦ e. To check that i is a monomorphism, we use the requirement that the pullback of
a regular epimorphism along any morphism exists and is also a regular epimorphism.
A complete proof can be found in [32, Theorem 2.1.3].

Proposition 4.3.40 (see [32, Example 2.4.7]). For every small category I and a regular
(resp. exact) category C , the functor category [I ,C ] is regular (resp. exact).

By the equivalence (4.6), it follows:

Corollary 4.3.41. Given a variety A , the category FinB[A ,A ] of finitely based functors
is exact. In particular, FinB[A ,A ] has the (RegEpi,Mono)-factorisation system and
every equivalence relation in FinB[A ,A ] is effective.

Remark 4.3.42. By (4.6), an equivalence relation on a finitely based functor corresponds
to a family of congruence relations involving n-many variables indexed by n ∈ ω
subject to substitution of variables.

Example 4.3.43. Define two natural transformation πi : KF1⇒MA for each com-
ponent A on the generator ∗ ∈ 1 by

π1
A(∗) = �> and π2

A(∗) =>,

that is, the generator ∗ represents the equation �> =>. The functor M defined by

MA = BA〈 {�a}a∈A | �⊥ =⊥; �(a∨ b) = �a∨�b; �> =>〉

with the canonical projection is the coequaliser of (π1,π2), c.f. Definition 2.2.8. Note
that the constant functor KF1 is generated by the signature consisting of only one
nullary operation and the equation �> => is a rank-1 equation involving no variables.

To sum up, every coequaliser of u,v : R⇒ L intuitively amounts to adding equations
to L.





Chapter 5

Coalgebraic Logics via Duality

We introduce a category consisting of interpretations of modalities, called one-step
semantics using a contravariant functor P : X →A . The categorical constructions in
this category generalise the fusion of modal logics as coproduct, (some) many-sorted
modal logics as tensor product, product of logics of predicate liftings, previously
discussed in [36, 37, 70, 98] in a set-level framework and [75] in a categorical setting
using Stone duality. Moreover, the combination of logics of predicate liftings and the
logic of the cover modality is possible in this context, since they are all objects in this
category.

By indexing over the category of endofunctors T of X , we obtain the category of
coalgebraic logics for T -coalgebras. An abstract analysis of this category shows that
there is always a full equational logic for T -coalgebras given by a dual adjunction on
the right. We characterise this full equational logic in terms of (generalised) predicate
liftings.

Further, the category of one-step semantics gives birth to the category consisting
of multi-step semantics. A free construction over a one-step semantics is given in
Section 5.3. This category outlines a possible formulation of multi-step coalgebraic
logic using monads and comonads.

In the end, we show how to use one-step semantics as a coalgebraic logic in a point-
free style. We show the adequacy property and the Hennessy-Milner property under
a suitable condition, and conclude by a few instances showing that this framework
properly generalises other existing approaches.

Note that we do not assume that the dual adjunction is a concrete duality or a logical
connection in the sense of [77, 93]. To study equational coalgebraic logics, the category
A is assumed to be a variety but nothing more. In fact, it is possible to allow other
structures such as quasi-varieties or enriched algebras. See Chapter 6 for future work.

� Throughout this chapter, we always assume that P : X →A is a contravariant
functor. Do not confuse P with the covariant powerset functor P .
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5.1 One-Step Semantics

Definition 5.1.1. A one-step semantics over P (or simply one-step semantics) is a
triple (L,T ,δ) consisting of

• an endofunctor T : X →X , called the type of one-step semantics;

• an endofunctor L : A →A , called the syntax of modalities;

• a natural transformation δ : LP ˙−→P T , called the interpretation of modalities.

A T -logic is a one-step semantics whose type functor is T .

Given type functors T1 and T2, every natural transformation ν : T2 ˙−→T1 converts a
T1-logic to a T2-logic:

LP δ //

!!

P T1

P ν
��

P T2

and it defines a functor from XT2
to XT1

.

Example 5.1.2. For predicate liftings of a Set endofunctor T , a natural relation [90]
for T is a natural transformation ν : T →P . A natural relation induces an interpreta-
tion for T by composing the standard interpretation for P using the syntax of modal
logic, i.e. modal operators � and ♦ so that classical modal logic is able to describe
T -coalgebras. A natural relation corresponds to intersection-preserving predicate
liftings, i.e. continuous predicate liftings. See [97] for more details.

Example 5.1.3. Given a subfunctor ν : T ′ ↪→ T of some endofunctor T : Set→ Set,
every T -logic is converted to a T ′-logic in a natural way by composing with P ν. For
example, the finitary powerset functor is a subfunctor of the full powerset functor, and
every predicate lifting for P is also a predicate lifting for the finitary powerset functor.
Subfunctors are of interest as they inherit expressiveness.

Definition 5.1.4 (see [63, 74]). Given T -logics (L1,δ1) and (L2,δ2), a translation
from (L1,δ1) to (L2,δ2) is a natural transformation τ : L1 ˙−→L2 such that the diagram

L1P
δ1 //

τP
��

P T

L2P
δ2

<<

commutes.

Example 5.1.5. In classical modal logic, the possibility ♦ and necessity � modalities
can be defined by Moss’ cover modality ∇ by setting:

�ϕ ..= ∇{ϕ} ∨∇∅ and ♦ϕ ..= ∇{ϕ,>}
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for every proposition ϕ ∈MP , and by (2.19) it follows that

∇{ϕ} ∨∇∅ =(�ϕ ∧♦ϕ)∨ (�⊥∧>)
=(�ϕ ∧♦ϕ)∨�⊥

and ∇{ϕ,>} =�(ϕ∨>)∧♦ϕ∧♦>. The translation defines a natural transformation τ
from M to FPωU such that the interpretation is invariant under this translation, i.e.
the diagram

MQX
τQX

//

δX $$

FPωU (QX)

∇Xxx

QTX
commutes where M and the natural transformation δ : MQ ˙−→QT are given in
Definition 2.2.8 and Proposition 2.2.13; the natural transformation ∇ is given in
Example 2.3.25.

Example 5.1.6. On the other hand, the cover modality for P can also be defined by
the usual modal operators:

∇α ..=�
∨

α ∧
∧
♦α for α ⊆ωML

where ML is the language of finitary modal logic and ♦α ..= {♦ϕ | ϕ ∈ α }. It also
defines a natural transformation from FPU to M and the interpretation is invariant
under this translation. Kurz and Leal study (one-step) translations between Moss’
cover modality and (singleton) predicate liftings in [74].

As we observed, there are two types of morphisms for one-step semantics: one is a
morphism between types of one-step semantics fixing the syntax; and the other is a
translation. Putting these morphisms together, we obtain the following category:

Definition 5.1.7. Let the pre-composition and post-composition with P be denoted
by

P ∗ : [A ,A ]→ [X ,A ] and P∗ : [X ,X ]→ [X ,A ]

respectively. Define the following categories:

1. the comma category (P ∗↓P∗) is called the category of one-step semantics of P ,
denoted CoLogP (or simply CoLog if there is no ambiguity);

2. each fibre (P ∗↓P T ) over some endofunctor T is the category of T -logics,
denoted CoLogPT (or simply CoLogT ).

The category of one-step semantics has two projection functors:

CoLog
UL

��

UR

��

[A ,A ] [X ,X ]
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defined by mapping (L,T ,δ : LP ˙−→P T ) to its syntax L and its type T respectively.

We give a ‘trivial’ example which plays an important role in composition.

Example 5.1.8. Every category of one-step semantics has an identity one-step se-
mantics consisting of (I ,I , idP ).

5.1.1 Properties of Categories of One-Step Semantics

Liftings

It is well-known that every one-step semantics provides a complex L-algebra construc-
tion for T -coalgebras:

Proposition 5.1.9. Every one-step semantics (L,T ,δ) defines a lifting P δ : XT → A L

of P along the forgetful functors of L-algebras and T -coalgebras by mapping

〈x,ξ〉 to (P x,P ξ ◦ δx) and f : 〈y,γ〉 → 〈x,ξ〉 to P f

Proof. By the naturality of δ and the functoriality of P the following diagram

LP x

LP f
��

δx // P T x
P ξ
//

P T f
��

P x

P f
��

LP y
δy
// P T y

P γ
// P y

commutes, namely, P f is an algebra homomorphism. Now, the statement follows
easily from the functoriality of P .

Proposition 5.1.10. Every morphism (τ,ν) of one-step semantics from (L,T ,δ) to (M,V ,θ)
defines functors

ν∗ : XV →XT and τ∗ : A M →A L

by 〈x,ξ〉 7→ 〈x,νx ◦ ξ〉 and 〈a,α〉 7→ 〈a,α ◦ τa〉. Moreover, P θ is also a lifting of P δ
along ν∗ and τ

∗.

Proof. A morphism (τ,ν) of one-step semantics satisfies P ν ◦ δ = θ ◦ τP . For every
V -coalgebra 〈x,ξ〉, we have the following commutative diagram

LP x

τPX
��

δx // P T x

P νx
��

P (νx◦ξ)
// P x

||

MPx
θx
// P V x

P ξ
// P x,

so the statement follows.
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Coreflections

Proposition 5.1.11. Given a coreflective subcategory B of [A ,A ], the pullback of the
inclusion J along the forgetful functor UL

CoLog×A B

��

� � J ′
// CoLog

UL
��

B � �

J
// [A ,A ].

is also coreflective.

Proof. Let r be the coreflector of J : B → [A ,A ] and (ρL : r(L) ˙−→L)L be the
coreflection. Given a semantics δ : LP ˙−→P T , the composite with the coreflec-
tion ρL : r(L) ˙−→L is an object (δ ◦ ρLP ) : r(L)P ˙−→P T in the pullback with a mor-
phism (ρL, id) by construction. Given another semantics (L′,T ′,δ′ : L′P → P T ′)
with L′ ∈B and a morphism (τ,ν) : δ′ → δ, there is a unique natural transforma-
tion τ : L′→ r(L) satisfying τ = ρL ◦ τ and (τ,ν) is a morphism from δ′ to δ ◦ ρLP :

r(L)P
ρLP

// LP δ // P T

L′P

τP

bb

τP

OO

δ′
// P T ′,

P ν

OO

so the morphism (τ,ν) is the unique morphism satisfying (τ,ν) = (ρL, id) ◦ (τ,ν).

Corollary 5.1.12. LetA be a variety of algebras (resp. locally finitely presentable category).
The full subcategory consisting of one-step semantics (L,T ,δ) with a finitely based functor
(resp. finitary) L is a coreflective subcategory of CoLog.

A one-step semantics (L,T ,δ) is finitary if L is finitary on a locally finitely presentable
category and it is (finitary) equational if L is finitely based on a variety of algebras.
For convenience, ECoLog denotes the full subcategory consisting of equational one-
step semantics and FCoLog denotes the full subcategory consisting of one-step finitary
semantics and thus ECoLog ⊆ FCoLog.

5.1.2 Colimits and Limits in CoLog

Colimits of functors may be calculated pointwise provided the colimits on each
object exist. We call such a colimit pointwise: Recall that there is an adjunc-
tion [I ,[C ,A ]] � [I ×C ,A ], so every diagram in a functor category [C ,A ] is a
family of diagrams in the codomain category A . Most limits and colimits in CoLogP

are computed pointwise.
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Example 5.1.13. Suppose that A has an initial object 0 and X has a terminal object 1.
The trivial one-step semantics (K0,K1,0P = 0→ P 1) is an initial object since by the
initiality the following diagram always commutes

0

��

0

��

// P 1

P !
��

1

0 LP
δ
// P T T

!

OO

in CoLogP for any contravariant functor P : X →A .

Colimits

Lemma 5.1.14. Given any functor P : X →A , the induced pre-composition functor

P ∗ : [A ,A ]→ [X ,A ]

preserves pointwise (co)limits.

Proof. Given a pointwise colimit (γi : Li → L)i∈I in the functor category [A ,A ],

the collection of morphisms
(
LiP x

γiP x−−−−→ LP x
)

is a colimit since γ is pointwise. It

follows that (γiP : LiP → LP )i∈I is a colimit. The argument for pointwise limits is
similar.

Theorem 5.1.15. The pair (UL,UR) of projection of CoLogP creates pointwise colimits.

Proof. Let D : I → CoLog be a diagram with Di denoted by (Li ,Ti ,δi : LiP ˙−→P Ti),

ULD(i
f
−→ j) ..= τf and URD(i

f
−→ j) ..= νf . Suppose that ULD and (URD)op have

a colimit (ιi : Li ˙−→ColimLi) and a limit (πi : LimTi ˙−→Ti)

which are pointwise in [A ,A ] and [X ,X ] respectively. By the preservation of point-
wise colimits of P ∗, there is a unique morphism (Colimδ) : (ColimLi)P ˙−→P (LimTi)
in the following diagram

LiP

ιiP

��

δi

))

(τf )P
// LjP

δj

))

ιjP

{{

ColimLiP

Colimδi

))

P Ti

P πi

��

P (νf )
// P Tj

P πj

{{

P (LimTi)
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since (P πi ◦ δi : LiP → P LimTi)i∈I is a cocone from ULD to P LimTi . It remains
to show that (LimTi ,ColimLi ,Colimδ) is a colimit in CoLog.

Let (γi)i∈I be a cocone of D to some one-step semantics (LP ˙−→P T ) which gives a
cocone for ULD and a cone for (URD)op respectively via projections. Let ULγi = τi
and URγi = νi for each i. Thus, there exists a unique pair of natural transformations

τ : ColimLi ˙−→L and ν : T ˙−→LimTi

such that
τi = τ ◦ ιi and νi = πi ◦ ν.

We only need to show that the pair (τ,ν) is a morphism in CoLogT , and it suffices to
show that, for each i ∈I in the following diagram

LiP

τiP

��

ιiP

%%

δi // P Ti
P πi

%%
P νi

��

ColimLiP
Colimδi //

τP
yy

P (LimTi)

P ν
yy

LP
δ

// P T

we have (P ν ◦Colimδi) ◦ ιiP = (δ ◦ τP ) ◦ ιiP . This follows by diagram chasing

P ν ◦Colimδi ◦ ιiP
= (P ν ◦ P πi) ◦ δi {by the morphism (ιi ,πi) in CoLog }
= P νi ◦ δi {by νi = πi ◦ ν and P contravariant }
= δ ◦ τiP {by the morphism (τi ,νi) in CoLog }
= δ ◦ τP ◦ ιiP {by τi = τ ◦ ιi }.

Corollary 5.1.16. Assume that A and X are cocomplete and complete respectively. Then,
the category CoLogP is cocomplete.

In particular, the categories of one-step semantics for

2− : Set→ Set and Q : Set→ BA

are all cocomplete. By Corollary 5.1.12, equational one-step semantics are closed under
colimits in CoLog. Thus, the notion of coproducts in CoLog generalises the fusion of
logics of predicate liftings:

Example 5.1.17 (Coproducts). The fusion of modal logics is a coproduct of logics,
in CoLog, induced by predicate liftings. Consider Q : Set→ BA and the free adjunc-
tion F a U : BA→ Set. As in Example 2.3.25 and Example 4.3.31, every set Λ of
predicate liftings defines a one-step semantics consisting of

LΛ ..= FHΛU and δΛ : LΛQ ˙−→QT
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as the syntax and the interpretation. Similarly, given an I-indexed set Λi of collections
of predicate liftings, the coproduct of induced one-step semantics (Li ,Ti ,δi)i∈I is a
one-step semantics for T ..=

∏
i∈I Ti consisting of the syntax

L ..=
∐
i∈I
FHΛiU � F

∐
i∈I
HΛiU,

and the interpretation δ : LQ ˙−→QT defined for each set X on the generators by

[λ](Sj)j∈n 7→
(
π−1
i ◦λ

)
(Sj)j∈n

for λ ∈ Λi,n and a family of subsets (Sj ⊆ X)j∈n where πi :
∏
Ti → Ti is the i-th

projection. The resulting logic is the minimal logic containing each Λi and extending
every coalgebraic logic (Li ,Ti ,δi) conservatively. See [37] for details in the situation of
predicate liftings in Set.

Example 5.1.18. Product of modal logics [43] and generalised product of coalgebraic
logics [96] are in fact a two-step construction:

1. As we have see in Chapter 4, the generalised product of (x1
ξ1−−→ T1x1) and (x2

ξ2−−→
T2x2) is a coalgebra for T1 × T2 in a category with finite products.

2. Given two families Λ1 and Λ2 of predicate liftings for T1 and T2 respectively, the
coproduct of the equational one-step semantics determined by Λ1 and Λ2 is an
equational one-step semantics of type T1×T2 with the syntax F

(
HΛ1

U +HΛ2
U

)
.

Then, the generalised product of coalgebraic logics of predicate liftings is a coalgebraic
logics for a pair of coalgebras of type T1 and T2 using the above two construction.

Example 5.1.19 (Coequalisers). Coalgebras of the non-empty powerset functor P,∅
are simply Kripke frames with a non-empty set of successors for each world/state. A
one-step semantics for this type P,∅ can be obtained as a coequaliser of the one-step
semantics for normal modal logic (M,P ,δ) by adding the equation �> => as follows.
First, we shall see P,∅ and M subject to �> => can be constructed as an equaliser
and a coequaliser, respectively:

1. Define two natural transformations ρiX : PX⇒ 2 for each component X by

ρ1
X(S) =

1 if S , ∅,
0 if S = ∅;

and ρ2
X(S) = 1,

and p2 is clearly natural and p1 is natural since P f maps (non-)empty sets to
(non-)empty sets. The equaliser of p1 and p2 for each component X is precisely
the collection of non-empty subsets:

{S ⊆ X | p1
X(S) = p2

X(S) = 1 } = P,∅X,

that is, P,∅ ↪→P is the equaliser of (p1,p2).
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2. The endofunctor M defined by

MA = BA〈 {�a}a∈A | �⊥ =⊥; �(a∨ b) = �a∨�b; �> =>〉

for each component A with the canonical projection is a coequaliser of M with
πi : KF1⇒M given in Example 4.3.43.

Let h : KF1→Q2 be the isomorphism mapping the generator to {1}, so (KF1,K2,h)
is a one-step semantics. We can see that (πi ,ρi)i=1,2 are morphisms (KF1,K2,h)→
(M,P ,δ) in ECoLog, by checking commutativity on the generator

δX(�X)
= {S ⊆ X | S ∩X , ∅}
= {S ⊆ X | ρ1

X(S) = 1 }

= (2ρ
1
X ◦ h)(∗)

and

δX(>)
= PX
= {S ⊆ X | ρ2

X(S) = 1 }

= (2ρ
2
X ◦ h)(∗).

Hence, the pair (πi ,ρi)i=1,2 has a coequaliser

F1
π1
QX
//

π2
QX

//

h

��

MQX

δX

��

πQX
// //MQX

δX

��

Q2
2ρ

2
X

//

2ρ
1
X
// QPX

2jX
// // QP,∅X

by Theorem 5.1.15 where j : P,∅ ↪→ P is the inclusion. By construction, this inter-
pretation maps each generator �U on MQX to the set ♦XU = {S ⊆ X | S ∩U , ∅}
for U ⊆ X, as expected.

Note that ECoLog is closed under colimits of CoLog by the coreflection, so the above
examples of colimits are also colimits in ECoLog.

Limits in CoLog

A (unary) predicate lifting of a binary coproduct T1 + T2 can be given separately
by a (unary) predicate lifting of T1 and T2 respectively. It can be seen from the
characterisation given in Lemma 2.3.9:

Set((T1 + T2)2,2) = Set(T12+ T22,2) � Set(T12,2)×Set(T22,2).

In fact, not only predicate liftings but also syntaxes can be combined in a uniform
way, and the corresponding one-step semantics is a product in CoLog.
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Lemma 5.1.20. Given a dual adjunction S a P : X op→A , the post-composition functor

P∗ : [X
op,X op]→ [X op,A ]

preserves pointwise limits. In particular, P maps a pointwise colimit of endofunctors of X
to a pointwise limit in [X op,A ].

Proof. It follows from the fact that every right adjoint preserves limits and every
endofunctor of X op is an opposite of some endofunctor of X .

Theorem 5.1.21. Given a dual adjunction S a P : X op → A , the pair (UL,UR) of
projections of CoLogP creates pointwise limits.

Proof. Let D : I → CoLogP be a diagram such that ULD and (URD)op have a
pointwise limit and a pointwise colimit

(πi : LimLi ˙−→Li) and (ιi : Ti ˙−→ColimTi)

in [A ,A ] and [X ,X ] respectively. The construction is dual to Theorem 5.1.15 and
the resulting one-step semantic of type ColimTi is given by the unique morphism δ
as follows:

LiP
δi // P Ti

LimLiP δ=Limδi
//

πiP

OO

LimP Ti � P (ColimTi).

P ιi

OO

Proposition 5.1.22. Given a dual adjunction S a P : X op → A , the following state-
ments are true:

1. Finite products in ECoLog coincide with products in CoLog.

2. Finite limits in FCoLog coincide with finite limits in CoLog.

Proof. 1. Let J be the full embedding A
f
ω ↪→ A , Li a finitely based functor

for i = 1,2. By (4.3), the value of the left Kan extension LanJ (L1 × L2)J on
any object A ∈ A is a sifted colimit of L1Fn × L2Fn indexed by the comma
category (J↓A). By definition, every sifted colimit commutes with finite products
in Set. The forgetful functor U : A → Set creates sifted colimits and limits,
and also reflects isomorphism, so the sifted colimit also commutes with finite
products in A . It follows that LanJ (L1 ×L2) � L1 ×L2. By Theorem 5.1.21, the
statement follows.

2. It follows similarly.
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Example 5.1.23. The one-step semantics for finitely-branching Kripke frames with
termination, i.e. coalgebras of 1+Pω, can be given by the coalgebraic logic of the cover
modality for P and a predicate lifting for 1. The combination of these two approaches
is possible, since their syntax functors are all finitely based by Example 4.3.25 and
Example 4.3.31.

Open Problem 5.1.24. Generally speaking, it is not clear what limits of equational
one-step semantics are. From the coreflection and the creation of limits, the category
of equational one-step semantics is complete. However, the limit of syntaxes is

constructed as LanJ (Limi Li)J for the full inclusion J : A f
ω ↪→A , so the syntax is not

the pointwise limit unless the index category is finite and discrete.

5.1.3 Composition of Logics as Tensor Products in CoLog

A construction for coalgebraic logics of type T1 ◦ T2 built from coalgebraic logics of
type T1 and T2 respectively appears in the work of Cîrstea [36]:

Example 5.1.25. A predicate lifting for P (A × I ), the type of Kripke frames in-
dexed by A, can be obtained by a predicate lifting for A × I and P respectively.
In Example 2.3.6, each ā : UQ → UQ(A × I ) is a predicate lifting for A × I ;
and ♦ : UQ → UQP is a predicate lifting for P . By the naturality, we also have
a natural transformation ♦A×− : 2A×− → 2P (A×−), and by composition we obtain a
predicate lifting for P (A×I ):

2−
ā−→ 2A×−

♦A×−−−−−−→ 2P (A×−),

and the resulting predicate lifting is the usual interpretation of 〈a〉 in multi-modal
logic.

To characterise the composition of one-step semantics, we describe one-step semantics

in 2-cells.1 An object in CoLog is a 2-cell
(
u	 δ��

//

��//

)
and a morphism (τ,ν) : δ1→ δ2

in CoLog amounts to an equality between 2-cells:

u	 δ2

//

�� ~~  

ey
τ

=
~~  

ey
ν

//

u	 δ1
��// //

(5.1)

as the morphism (τ,ν) defines a one-step semantics with type T2 and syntax L1 by the
commutativity δ2 ◦ τP = P ν ◦ δ1. The projection functors (UL,UR) may be displayed
by ‘projecting’ edges:

(UL,UR) :

 u	 δ2

//

�� ~~  

ey
τ

=
~~  

ey
ν

//

u	 δ1
��// //

 7→ 
~~  

ey
τ ,

~~  

ey
ν

 .
1 To read a 2-cell diagram, see [81, Section XII.3-4] for reference.
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Given two one-step semantics (Li ,Ti ,δi) for i = 1,2, define the composite δ1 ⊗ δ2 by
the pasting diagram

u	 δ1

L1oo
OO OO

T1

oo

⊗ u	 δ2

L2oo
OO OO

T2

oo

..= u	 δ1
u	 δ2

L1oo
L2oo

OO OO

T1

oo

OO

T2

oo

i.e. δ1 ⊗ δ2 = δ1T2 ◦L1δ2 is a one-step semantics of type T2T1 with the syntax L2L1.
In fact, such a composition defines a tensor product on CoLog:

Lemma 5.1.26. The composition ⊗ of one-step semantics, mapping each pair of morphisms

(τo,νo) : (L1,T1,δ1)→ (L3,T3,δ3) and (τe,νe) : (L2,T2,δ2)→ (L4,T4,δ4)

to (τo,νo)⊗ (τe,νe) : δ1 ⊗ δ2→ δ3 ⊗ δ4 defined by
L2

&&

L4

88�� τe

L1
&&

L3

88�� τo ,
T

op
2

&&

T
op
4

88�� νe

T
op
1

&&

T
op
3

88�� νo


i.e. the horizontal composites τoτe and νoνe, is a bifunctor.

Proof. First, we need to check that (τo,νo)⊗(τe,νo) is a morphism in CoLog; it follows
readily from the following pasting diagrams

z� δ2
~~  

ey
νe

//

��

//

z� δ4
�� ~~  

ey
τe

z� δ1

//

~~  

ey
τo

=

��

z� δ3
��

//

~~  

ey
νo

// //

since (τe,νe), as a morphism in CoLog, i.e. (5.1), implies that the upper pasting
diagrams are equal. The argument for the lower pasting diagrams is similar. By the
interchange law for 2-cells of natural transformations, the order of composition is
irrelevant.

By the equality of the pasting diagrams, it suffices to consider one side of it and it is
trivial to show that ⊗ preserves identities and compositions. E.g.

identity: for any two semantics (L,T ,δ) and (L′,T ′,δ′) the horizontal composition

of identities is identity:
L′
��

L′
==�� id

L
��

L

==�� id =
LL′
��

LL′
==�� id .
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composition: for morphisms

{
(Li ,Ti ,δi)

(τi ,νi )−−−−−→ (L′i ,T
′
i ,δ
′
i)
}
i=1,2,3

it follows from the

associativity of horizontal composition:

L3
##

L′3

::�� τ3

L1L2
))

L′1L
′
2

55�� τ1τ2 =
L2L3

))

L′2L
′
3

55�� τ2τ3

L1
##

L′1

::�� τ1 =
L1L2L3

##

L′1L
′
2L
′
3

::�� τ

Proposition 5.1.27. The composition ⊗ of one-step semantics with the identity semantics (I ,I , idP )
defines a strict monoidal structure on CoLogP .

Proof. Associator, left unitor, and right unitor all follows from the associative law
and the unit law of composition of morphisms. E.g. the right unitor is given by
δ⊗ idP = δI ◦Lid = δ ◦ id = δ.

The full subcategory of equational one-step semantics is closed under compositions
by Proposition 4.3.18:

Corollary 5.1.28. Any composite of two equational (resp. finitary) one-step semantics is
(resp. finitary) equational.

Example 5.1.29. Continuing Example 5.1.25, we consider their corresponding one-
step semantics (FU,♦∗) and (F(A ·U ),λ) where ♦∗ is the transpose of ♦ and λ is the
transpose of

[ā]a∈A : A ·UQ ˙−→UQT .

Then, the composition of one-step semantics of type P (A×I ) consists of

FUF(A ·U ) and FUF(A ·U )Q FUλ−−−−→ FUQ(A×I )
♦A×I−−−−−→QP (A×I )

as the syntax and the interpretation, i.e. an equational one-step semantics for labelled
Kripke frames.

5.1.4 The Mate Operation of One-Step Semantics

The 2-cell perspective of one-step semantics with a dual adjunction S a P : X op→A
gives us a way of defining a transpose by pasting the unit and counit. In fact, the
transpose provides the same information, but the use of transpose will ease the study
of the expressiveness problem later.

� In this subsection, we assume that S a P : X op→A is a dual adjunction with
the unit η : I ˙−→P S in A and the counit εop : SP ˙−→I in X op. The counit may

be presented by ε : I ˙−→SP for simplicity.
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Definition 5.1.30. The mate δ∗ of a one-step semantics (L,T ,δ) is a natural trans-
formation from T S to SL defined by the following pasting diagram

L // S //

S
//

I
??

�)
η P

OO

T op
//

�)δ P

OO

�)ε
op

I

??

in the opposite of X , that is, δ∗ = SLη ◦ SδS ◦ εT S .

Note that the construction (−)∗ maps objects in CoLog = (P ∗↓P∗) to objects in the
comma category (S∗↓S∗) where S∗ and S∗ are the pre-composition and the post-
composition with S as before. We will show that (S∗↓S∗) is a category dually iso-
morphic to CoLog, so we denote it by CoLog∗. To see this, define the mate θ∗ of an
object θ in CoLog∗ by pasting the unit and the counit:

T // P //

P
//

I
??

�)
ε S

OO

Lop
//

�)θ S

OO

�)
ηop

I

??

which is a natural transformation from P T to LP in A op.

Lemma 5.1.31. Mate correspondence on objects of CoLog is a bijection.

Proof. By computing (δ∗)∗ of (δ : LP ˙−→P T ) directly, we have

L //

P

OO

T op
//

�)δ P

OO

7→

L // S //

S
//

I
??

�)
η P

OO

T op
//

�)δ P

OO

�)ε
op

I

??

7→ ⇓εop

//

��

⇓η

L //

��

⇓εop

//

⇓ηP

DD

//

DD

T op
//


!δ

DD

//

P

DD

where the last diagram is equal to δ by the triangle identities.

Proposition 5.1.32. The category CoLogop is isomorphic to CoLog∗.

Proof. By the previous lemma, it suffices to show that for every morphism (τ,ν) : (L1,T1,δ1)→ (L2,T2,δ2)
in CoLog, the pair (ν,τ) is a morphism from (L2,T2,δ

∗
2) to (L1,T1,δ

∗
1) in CoLog∗.2

2 The direction is reversed.
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Consider the following commutative diagram:

T1S //

δ∗1

��εT1S// SP T1S
Sδ1S // SL1P S

SL1η
// SL1

T2S

δ∗2

OO

νS

OO

εT2S
// SP T2S

SP νS

OO

Sδ2S
// SL2P S SL2η

//

SτP S

OO

SL2

Sτ

OO

where the upper and lower rectangles commute by definition, and the remaining
diagrams commute by naturality. Hence, (ν,τ) is a morphism in CoLog∗.

The isomorphism then gives the simple fact that the mate of a (pointwise) colimit
of one-step semantics is a (pointwise) limit. Likewise, the composition of one-step
semantics can be computed in the transpose form. Define a bifunctor ⊕ in CoLog∗ by
the pasting diagrams:

u	 θ1

T1oo
OO OO

L1

oo

⊕ u	 θ2

T2oo
OO OO

L2

oo

= u	 θ1
u	 θ2

T1oo
T2oo

OO OO

L1

oo

OO

L2

oo

that is, θ1⊕θ2 = θ1L2 ◦T1θ2 is a natural transformation from T1T2S to SL1L2. This
operation ⊕ with the triple (I ,I , id) of identities defines a monoidal structure on
CoLog∗.

Proposition 5.1.33. For any two one-step semantics (L1,T1,δ1) and (L2,T2,δ2), the
following equation holds

(δ1 ⊗ δ2)∗ = δ∗1 ⊕ δ
∗
2. (5.2)

In particular, (δ1 ⊗ δ2)∗ = δ∗1L2 ◦ T1δ
∗
2.

Proof. By the triangle identities, the following pasting diagrams (in X op)

u	 εop
u	 δ1

Soo

u	 δ2

L1oo
L2oo

u	 η
P

OO

I

__ OO

T1

oo

P

OO

T2

oo

S
oo

I
__

= S

��

�� δ1⇓εop

L1oo

⇓η

Ioo

��

⇓εop �� δ2

L2oo

⇓η

Ioo

S
��

\\

I
oo

\\

T
op
1

oo

\\

I
oo

\\

T
op
2

oo

are equal where the left pasting diagram presents (δ1 ⊗ δ2)∗ and the right diagram
presents δ∗1 ⊕ δ

∗
2, so the statement follows.
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5.1.5 One-Step Semantics for T -Coalgebras

We proceed with the investigation of the category of T -logics, i.e. the collection of
one-step semantics over a fixed type functor T : X →X .

� Throughout this subsection, T always denotes an endofunctor of X , and as
before P : X →A is a contravariant functor.

Proposition 5.1.34. The forgetful functor U : CoLogT → [A ,A ] reflects isomorphisms.

Proof. Given a translation τ : (L1,δ1)→ (L2,δ2) such that τ is an isomorphism in
[A ,A ], we have δ2 = δ1 ◦ τ−1P , i.e. the inverse τ−1 is a translation, since each
component τA : L1A→ L2A is an isomorphism. Thus, τ is an isomorphism in CoLogT
with the inverse τ−1.

Colimits in CoLogT

Theorem 5.1.35. The forgetful functor U : CoLogT → [A ,A ] creates pointwise colim-
its. In particular, U reflects and preserves colimits which exist in [A ,A ].

Proof. Let D : I → CoLogT be a diagram in CoLogT where every Di is denoted
by (Li ,δi), and a pointwise colimit (γi : Li ˙−→L)i∈I of UD in the category of endo-
functors of A . By Lemma 5.1.14, (γiP : LiP ˙−→LP )i∈I is a colimit of P ∗UD . Consider
the following diagram

LiP

(Df )P

��

δi

��

γiP

""

LP δ // P T

LjP
γjP

==

δj

??

where the outer triangle commutes, i.e. (δi : LiP ˙−→P T ) is a cocone from P ∗UD
to P T since Df is a translation (Definition 5.1.4); the inner triangle commutes because
(γiP : LiP → LP )i∈I is a limiting cocone. It follows that there exists a unique natural
transformation δ satisfying that δi = δ◦γiP , i.e. a translation. Thus, we have a cocone(

(Li ,δi)
γi−−→ (L,δ)

)
i∈I

in CoLogT . It remains to show that (γi)i∈I is a colimit of D .

Given a cocone α from D to some (L′,δ′) in CoLogT , we want to show that there is a
unique translation from (L,δ) to (L′,δ′). There is a unique natural transformation τ
from L to L′ satisfying αi = τ ◦γi since α is a cocone from UD to L′ . To show that τ



Chapter 5 Coalgebraic Logics via Duality 123

is a translation, i.e. δ = δ′ ◦ τP , it suffices to show that δ′ ◦ τP ◦ γiP = δi . By the
following diagram

LiP

αiP ""

γiP
//

δi

��

LP δ //

τP
��

P T

L′P
δ′

<<

where the outer triangle commutes by assumption (α is a cocone in CoLogT ); the inner
triangle on the left commutes since αi = τ ◦γi for each i, we have (δ′ ◦τP )◦γiP = δi
for each i. By the construction of δ, δ′ ◦τP must be δ, i.e. τ is a translation from (L,δ)
to (L′,δ′). It follows that the forgetful functor creates pointwise colimits.

Corollary 5.1.36. The category CoLogT is cocomplete if A is cocomplete.

Proposition 5.1.37. For every coreflective subcategory C of the category of endofunctors
of A , the pullback of the coreflective inclusion R ` i : C ↪→ [A ,A ] along the forgetful
functor is also coreflective, i.e.

C ×CoLogT

π2

��

qq

π1

22
> CoLogT

U

��

C
R

ss

i
22

> [A ,A ]

Proof. Note that the pullback category consists of T -logics with syntax in C . Let R
be the coreflector of i, i.e the right adjoint of the inclusion i. Define a functor
from CoLogT to the pullback by mapping each T -logic (L,δ) to a T -logic (RL,δ◦ρP )
where ρ is the coreflection of L. For any translation τ : (L′,δ′)→ (L,δ) for some L′ ∈
C , τ factors through ρ via a unique natural transformation τ , so it suffices to show
that τ is a translation, i.e. the diagram

(RL)P
ρP

//

δ◦ρP

$$

LP

δ

||

L′P
τP

==

τP

cc

δ′
��

P T

commutes. By diagram chasing, it follows easily.

In particular, it follows that any pullback of a coreflective inclusion is closed under
pointwise colimits of [A ,A ] and has any type of limits which CoLogT has.
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Terminal Object in CoLogT via Duality

If the functor P : X op → A is a dual adjoint, then the category of T -logics has a
‘maximal’ T -logic into which every other T -logic can be translated. It may be viewed
as the ‘most expressive’ T -logic as we will show that expressiveness is stable under
translation.

Theorem 5.1.38. Given a dual adjunction S a P : X op→A , there is a terminal object

(P T S,P T ε : P T S P ˙−→P T )

in CoLogT where ε : I → SP is the counit.

Proof. Let η : I ˙−→SP be a unit of the dual adjunction. For every T -logic (L,δ : LP ˙−→P T ),
there exists a natural transformation τ : L ˙−→P T S given by

A L // A

A

I
;;

S
//
�%
η

X op

P

OO

T op
//

�$δ

X op

P

OO

that is τ = δS ◦Lη. To see that τ is a translation consider the following diagram:

LP //
LηP
//

id
""

LP SP

LP ε

��

δSP // P T SP

P T ε

��

LP
δ

// P T .

The left triangle commutes by the triangle identity of adjunctions, and the right square
commutes by the naturality of the interpretation δ.

To see uniqueness, assume that τ ′ : L ˙−→P T S is another translation from (L,δ) to the
full logic (P T S,P T ε). Consider the following diagram:

L τ ′ //

Lη
��

P T S
id

%%

P T Sη
��

LP S
τ ′P S
//

δS

OOP T SP S
P T εS

// P T S

The left square commutes by the naturality of τ ′, the right triangle is the triangle
identities of adjunctions, and the lower edge is the definition of a translation. Therefore,
τ ′ = δS ◦Lη, i.e. the uniqueness of translation follows.

Such a terminal object (P T S,P T ε) in CoLogT is called the full (T -)logic.
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5.2 Equational Coalgebraic Logics

Recall that every collection of predicate liftings for an endofunctor T of Set introduces
a T -logic as well as the cover modality. Moreover, their syntax functors are finitely
based. Any T -logic consisting of a finitely based functor is a coalgebraic logic which
can be presented concretely and algebraically. We now aim to characterise this class
of logics.

Definition 5.2.1. Given a variety A , a T -logic (L,δ), where L is finitely based, is
called equational.

Denote the category of equational T -logics by ECoLogT ; by definition it is the pullback
of the following diagram:

ECoLogT

π2

��

rr

π1

22
> CoLogT

U

��

FinB[A ,A ]
qq

i
22

> [A ,A ]

By (4.7), Proposition 5.1.37, and Corollary 5.1.36, we obtain the following:

Corollary 5.2.2. The category of equational logics is a coreflective subcategory of CoLogT .
In particular, ECoLogT is closed under colimits of CoLogT and is cocomplete.

The following examples of equational logics are the main building blocks of equational
logics:

Definition 5.2.3. Let U : A → Set be a functor with a left adjoint F. Then, we
define the following:

1. A natural transformation λ from (UP )n to UP T for some set n ∈ Set is called
an n-ary predicate lifting for T . A finitary predicate lifting is a predicate
lifting of a finitary arity.

2. The n-ary unimodal logic (L,δλ) of a n-ary predicate lifting λ is a T -logic
consisting of

L ..= FUn and the transpose of λ : (UP )n ˙−→UP T

as the syntax and the interpretation, respectively.

3. Given a set of finitary predicate liftings Λ, the logic of predicate liftings (L,δΛ)
consists of

L ..= ĤΛ and the transpose of [λ]λ∈Λ :
∐
n∈ω

Λn · (UP )n ˙−→UP T
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as the syntax and the interpretation, respectively, where Λn denotes the collec-
tion of n-ary predicate liftings.

A Characterisation of Equational Coalgebraic Logic

In Chapter 2, we have seen that the logic of the cover modality gives rise to a set of
predicate liftings by the presentation of the type functor T . We would like to point out
further that every equational coalgebraic logic is precisely a logic of predicate liftings
subject to an axiomatisation.

Remark 5.2.4. Let U : A → Set be a finitary and monadic functor with a left adjoint F.
By Theorem 5.1.35 and Corollary 5.2.2, the following characterisations are evident:

1. Every equational T -logic with FUn as its syntax is precisely a unimodal T -logic.

2. Every equational T -logic with ĤΣ = FHΣU as its syntax is precisely a logic of
predicate liftings.

3. Moreover, every logic of predicate liftings for T is a coproduct of unimodal
T -logics, since the polynomial functor HΣ is a coproduct of copowers Σn · (−)n

indexed by n ∈ω.

By Theorem 4.3.29 and Theorem 5.1.35, we immediately have the following general
characterisation of every equational logic:

Corollary 5.2.5. Every equational T -logic is a coequaliser of a logic of predicate liftings
for T .

5.2.1 Translations between Equational Logics

Every equational logic is a coequaliser of a logic of predicate liftings, so we look at
translations from a logic of predicate liftings to some equational logic first and parallel
morphisms in ECoLogT , i.e. two parallel translations, later.

As a logic of predicate liftings is a coproduct of unimodal logics, any morphism from
a coproduct boils down to a family of morphisms from each component. To see how
translation works in detail, it suffices to look at a translation from a unimodal logic to
an equational logic (L,δ).

Given a unimodal logic induced by a predicate lifting λ, every translation τ : (FUn,δλ)→ (L,δ)
corresponds to a natural transformation τ : Un ˙−→UL in Set by restriction and it
satisfies the commutative diagram

(UP x)n τP x //

λ ''

ULP x

Uδx
��

UP T x
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as given in Example 5.1.5. That is, for each algebra A ∈ A , the translation τ
maps a ∈ (UA)n to an equivalence class of rank-1 sentences3 of A , i.e. an element
in ULA. The translation must respect the interpretation of the predicate lifting λ as
well.

5.2.2 Equations Valid under Interpretation and Complete Axio-
matisation

Continuing Remark 4.3.33, an equation for a logic of predicate liftings is similar, but it
has to remain valid under the given interpretation: Let Λ be a set of finitary predicate
liftings and (ĤΛ,δΛ) the corresponding equational logic. Then the composite

UĤΛFn
UĤΛa−−−−−→UĤΛP x

UδΛx−−−−→UP T x

for any (Fn
a−→ P x) gives an interpretation of terms, i.e. elements in UĤΛFn, under Λ.

We denote the composite by ~−�a
Λ,x or simply ~−�ax whenever confusion is unlikely.

Definition 5.2.6. Given a set Λ of predicate liftings for T , a rank-1 equation t ∼n t′
of Λ is valid under the interpretation of Λ if ~t�ax = ~t′�ax for any x and n-
tuple a = (ai)i∈n of P x.

Lemma 5.2.7. Let Λ be a set of predicate liftings for T , and E a family of rank-1
equations of the signatureΛ. Then, every equation t ∼ t′ in E is valid under interpretation
of Λ if and only if the diagram

En
(ηE)n

// UĤEFn
U (π1ι)∗Fn

//

U (π2ι)∗Fn
//
UĤΣFn

UĤΣa
��

UĤΣP x
UδΛx // UP T x

(5.3)

commutes for every n, x, and (Fn
a−→ P x).

Proof. Note that [F,U] = U (−)F is a right adjoint. For any f : E ˙−→UĤΣF the
following diagram

E
f

%%
ηE
��

UĤEF Uf ∗F
// UĤΣF

commutes, since Uf ∗F ◦ ηE is the transpose of f ∗. Let π1ι,π2ι : E ⇒ UĤEF be
the corresponding projections of E. Replacing f with πiι, it follows by a direct
computation.

3 LA is a quotient of ĤΣA for Σ ..=ULF.
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Theorem 5.2.8. Let Λ be a set of predicate liftings for T , E a family of rank-1 equations
of the signature Λ, and (πiι)∗ the transposes of πiι for i = 1,2. The following statements
are equivalent:

1. Every equation t ∼ t′ ∈ E is valid under the interpretation of Λ.

2. The following diagram commutes

ĤEP
(π1ι)∗P

//

(π2ι)∗P
//
ĤΛP

δΛ // P T . (5.4)

Proof. Let a be a morphism Fn→ P x. Then, we have the following diagram:

En
(ηE)n

// UĤEFn
U (π1ι)∗Fn

//

UĤEa

��

U (π2ι)∗Fn
// UĤΛFn

UĤΛa

��

UĤEP x
U (π1ι)∗P x

//

U (π2ι)∗P x
// UĤΛP x

UδΛx

// UP T x

where ηE is the unit of the monadic adjunction in Theorem 4.3.29, and the two
squares commute by naturality. If the lower fork commutes, then (5.3) holds by
diagram chasing.

Conversely, since finitely based functors are determined on the full subcategory A
f
ω

spanned by Fn’s, it suffices to show that for every n and Fn
a−→ P x the following

diagram
ĤEFn⇒ ĤΛFn→ ĤΛP x→ P T x

commutes. By assumption, every equation t ∼n t′ ∈ En leads to the identical val-
ues ~t�ax = ~t′�ax under the interpretation, so the generated equations in ĤEFn are
also valid.

Intuitively, a coequaliser in ECoLogT adds equations valid under the given interpreta-
tion.

Theorem 5.2.9. For any endofunctor T , the category ECoLogT has (RegEpi,U−1Mono)-
factorisation system where U is the forgetful functor U : ECoLogT → FinB[A ,A ].

For convenience, we adopt another equivalent definition of factorisation system: the
pair (E ,M) of classes of morphisms forms a factorisation system if every morphism f
has a unique factorisation f =m◦ e, for e ∈ E and m ∈M, up to unique isomorphism;
E andM contain isomorphisms and are closed under composition.
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Proof. Consider a morphism τ : (L1,δ1)→ (L2,δ2) in CoLogT and its factorisation,
by Corollary 4.3.41, in the diagram:

L1P
δ1

""

eP
����

τP

//

LP

iP
��

δ // P T

L2P ,
δ2

<<

and define δ ..= δ2 ◦ iP : LP ˙−→P T . We can see that i is a translation from (L,δ)
to (L2,δ2) by construction, and e is a translation from (L1,δ1) to (L,δ) by diagram
chasing. Thus, τ admits a (U−1RegEpi,U−1Mono)-factorisation.

Suppose that τ has another factorisation (L1,δ1)
v−→ (L′,δ′)

u−→ (L2,δ2) in CoLogT
such that u is a monomorphism in FinB[A ,A ] and v is a regular epimorphism in
FinB[A ,A ]. By unique factorisation, there exists a unique isomorphism f : L′→ L
satisfying f ◦ v = e and u = i ◦ f . By Proposition 5.1.34 and the preservation of
isomorphisms by any functor, the unique factorisation up to isomorphism follows
from that the unique isomorphism is a translation f : (L,δ)→ (L′,δ′): Consider the
diagram

L′P

δ′

!!

f P

��

L1P

vP

== ==

eP
// //

δ1

OOLP
δ

// P T

where every sub-diagram, except the right triangle, commutes by assumption. Since
δ′ ◦ vP = (δ ◦ f P ) ◦ vP by diagram chasing and vP is an epimorphism, it follows that
δ′ = δ ◦ f P , i.e. the isomorphism f is a translation from (L′,δ′) to (L,δ).

Note that the forgetful functor U preserves colimits by Theorem 5.1.35, so every
regular epimorphism in ECoLogT is also a regular epimorphism in FinB[A ,A ].
Thus, we have completed the proof.

Definition 5.2.10. We say that an equational logic has a complete axiomatisation
if it has no proper regular quotient, i.e. every regular epimorphism from it is an
isomorphism.

Remark 5.2.11. That is, an equational logic (L,δ) has a complete axiomatisation if the
syntax L contains every rank-1 equation valid under the interpretation δ but nothing
more.
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5.2.3 Coalgebraic Modalities via Dualities

So far, we have not yet established the existence of an equational logic. In this
subsection, we show its existence and the existence of a full equational logic and give
a characterisation of full equational logic.

� In this subsection, we assume a dual adjunction S a P : X op→A , so P is not
only a contravariant functor but also a dual adjoint. As before, T denotes an

endofunctor of X .

The Full Equational Logic via Duality

We observe that a terminal object in ECoLogT exists by Theorem 5.1.38 and Corol-
lary 5.2.2, and is completely determined by P T SFn by Corollary 4.3.14:

Corollary 5.2.12 (cf. [63, Theorem 5.3]). Given an algebraic category A , ECoLogT has
a terminal object consisting of

L ..= LanJP T SJ and δ : LP
ρP
−−→ P T SP

P T ε−−−−→ P T (5.5)

where J is the full embedding of the subcategory A
f
ω of A on finitely generated free objects,

ρ is the coreflection LanJP T SJ ˙−→P T S and ε is the counit of the dual adjunction.

We call the terminal object in ECoLogT the full equational (T -)logic.

By Example 4.3.25, the logic of the cover modality is categorically a logic of predicate
liftings subject to some axioms and it has nothing to do with the interpretation of
modalities but the syntax alone. We also obtain a unique translation to the full
equational logic immediately:

Corollary 5.2.13 (cf. [74, Theorem 4.27]). For the contravariant powerset functors
Q : Set→ BA and 2− : Set→ Set, the logics of the cover modality for any weak pullback
preserving functors has a unique translation to the full equational logic.

Objects of Finitary Predicate Liftings

In Lemma 2.3.9, the collection of n-ary predicate liftings for a Set functor T is in
bijection with the powerset of T 2n using the Yoneda Lemma and the contravariant
powerset functor Q : Set → BA being representable. However, an adjunction F a
U : A → Set suffices to give a characterisation of the object of predicate liftings:

Lemma 5.2.14. Let U : A → Set be a functor with a left adjoint F. The following
statements hold:
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1. (Object of n-ary Predicate Liftings). There is a one-to-one correspondence

[−] : UP T SFn
�−→ Nat (UP n,UP T )

for any set n and any endofunctor T of X .

2. (Substitution of Variables). The correspondence is natural in T and n in the
Kleisli category of the induced monad UF by F a U . That is, as for the naturality
in n, the diagram

UP T SFm

UP T Sf ∗

��

[−]
// Nat(UPm,UP T )

f̄ ∗

��

UP T SFn
[−]

// Nat(UP n,UP T )

commutes for any morphism f : n→ UFm where f ∗ : Fn→ Fm is the transpose

of f , and f̄ ∗ is the pre-composition with (UP n
f̄
−→UPm) defined by

(n
a−→UP ) 7→ (m

f
−→UFn

Ua−−→UFUP
UεP−−−−→UP ).

Proof. By the Yoneda Lemma, we have the correspondence

UP TX � Nat(X (−,X),UP T )

natural in X and T . Restricting X to SFn, it follows that UP T SFn is in bijection
with

Nat(A (Fn,P−),UP T ) {by the adjunction S a P : X op→A }
� Nat(UP n,UP T ). {by the adjunction F aU : A → Set }

Every morphism from Fn to Fm is determined uniquely by a function n to UFm, so
the second statement follows.

Note that the set n does not need to be finite.

Corollary 5.2.15. Assuming that P has a dual adjoint, the full subcategory consisting of
unimodal logics is small.

Remark 5.2.16. For convenience, we introduce the bracket notation for the correspond-
ence so that [λ] denotes the induced predicate lifting of λ with domain A (FX,P x)
or UP X . Given an element λ ∈ UP T SFX, the induced predicate lifting with do-
main A (FX,P x) is given explicitly by

[λ]x(a) =UP T a∗(λ) (5.6)

for any (FX
a−→ P x) where a∗ = Sa ◦ εx is the transpose of a for the dual adjunction

with counit εx : x→ SP x.
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A Characterisation of the Full Equational Logic

We show that the full equational logic can be understood as the logic of all finitary
predicate liftings subject to a complete axiomatisation.

By Corollary 5.2.5, we know that the full equational logic (LanJP T SJ,P T ε ◦ ρP ) is a
coequaliser of the logic of predicate liftings consisting of

F

∐
n∈ω

UP T SFn×Un

 and (P T ε ◦ ρP ) ◦ e (5.7)

as the syntax and the interpretation, respectively, where e is the counit of LanJP T SJ
given by the monadic adjunction in Theorem 4.3.29. We call it the logic of all
(finitary) predicate liftings, denoted by (LΛ,δΛ) if confusion is unlikely.

By Lemma 5.2.14, it is possible to form a coproduct of all unimodal logics, and it is
characterised explicitly as follows:

Lemma 5.2.17. The logic of all predicate liftings for T is a coproduct of all unimodal
T -logics.

Proof. It is easy to see that the syntax of the logic of all predicate liftings is the
coproduct of the syntaxes of all unimodal logics by reshuffling the order, i.e.∐

n∈ω,
λ∈UP T SFn

FUn � F
∐
n,λ

Un {F preserves coproducts }

� F
∐
n

∐
λ

Un { the order of coproducts is irrelevant }

� F
∐
n

UP T SFn ·Un {by the definition of copower }

� F
∐
n

UP T SFn×Un.

As for the interpretation, we compute the value for every λ in UP T SFn and n-

tuple (Fn
a−→ P x) through the interpretation. Let J be the full embedding A

f
ω ↪→A .

By Corollary 3.2.13, there is a left Kan extension L = LanJP T SJ with the iden-
tity id : L ˙−→L as the unit such that P T SJ = LJ , that is, P T SFn = LFn for every n.

By Theorem 3.2.11, we have

A (LP x,P T x) � [(A f
ω )op,Set](A (J−, P x),A (P T SJ−, P T x)),

so the interpretation of the full equational logic (P T εx ◦ ρP x) gives the natural trans-
formation [−2]′x(−1) : A (J−, P x) ˙−→A (P T SJ−, P T x) defined for each component Fn
by (

Fn
a−→ P x

)
7→ P T SFn

id−→ LFn = P T SFn
La−−→ LP x

ρP x
−−−→ P T SP x

P T εx−−−−→ P T x.
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The morphism ρP x ◦ La is equal to P T Sa, since ρ is the coreflection of P T S . For

each (Fn
a−→ P x), the resulting map U [−]′x(a) : UP T SFn→UP T x is precisely

U [−]′x(a) =UP T ε ◦UP T Sa =UP T (Sa ◦ ε) = [−]x(a)

where [−]x(a) is given in (5.6). Hence, it follows that every element

(λ,a) in UP T SFn×A (Fn,P x)

is interpreted as [λ](a). Now, it is clear that the logic of all finitary predicate liftings
is the coproduct of all unimodal logics.

Lemma 5.2.18. Every translation from the full equational T -logic is a split monomor-
phism. In particular, the full equational T -logic has a complete axiomatisation.

Proof. Recall that every morphism from a terminal object t is a split monomorphism,

because the identity is the only endomorphism of it: tid ::
f $$

x
!x
cc . Moreover, an

epimorphism f which is also a split monomorphism must be invertible.4

Theorem 5.2.19. An equational T -logic (L,δ) is full if and only if

1. every unimodal T -logic has a translation to (L,δ) and,

2. (L,δ) has a complete axiomatisation.

Recall that ECoLogT has (RegEpi,U−1Mono)-factorisation system by Theorem 5.2.9.

Proof. By finality, every unimodal logic has a translation to the full equational logic.
By Lemma 5.2.18, it has a complete axiomatisation.

Conversely, if every unimodal logic has a translation to (L,δ), then there exists a
translation τ from the logic of all predicate liftings (LΛ,δΛ) to (L,δ). Consider the
pushout i1 of the regular epimorphism e from (LΛ,δΛ) to (LanJP T SJ,P T ε ◦ ρP )
along the translation τ in the following diagram

(LΛ,δΛ) // //

��

(LanJP T SJ,P T ερP )

i2
��

(L,δ)
i1

// //

!

66

(L′,δ).

The morphism i1 is a regular epimorphism, because every pushout preserves E-
morphisms w.r.t. any (E ,M)-factorisation system. However, it implies that i1 is an
isomorphism by assumption. Hence, the composite (! ◦ i−1

1 ) is a split epimorphism,
since (!◦ i−1

1 )◦ i2 = id by the finality of the full equational logic. Again, by the assump-
tion that (L,δ) has no proper regular quotient, the unique map is an isomorphism, so
the statement follows.

4Let g be the right inverse of f . We have gf = id by assumption and also f gf = f by composing f
on both sides. It follows that f g = id by f being epic.
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By the characterisation, a full equational logic (L,δ) may be presented efficiently, if we
can show that every finitary predicate lifting can be translated to it and it is subject to
a complete axiomatisation:

Example 5.2.20. The equational logic (M,δ) for the powerset functor given in
Proposition 2.2.13 along with the standard interpretation of ♦ is a full equational logic.
It is known that every predicate lifting for the powerset functor can be translated to
a rank-1 sentence using ♦ and Boolean connectives only. It is also well-known that
normal modal logic is complete with respect to the class of Kripke frames, so that
every rank-1 equation valid under the usual Kripke semantics can be deduced from

♦⊥ =⊥ and ♦(a∨ b) = ♦a∨♦b.

Thus, (M,δ) has a complete axiomatisation by Remark 5.2.11.

Example 5.2.21. On the other hand, consider the non-empty powerset functor P,∅
with the inclusion j : P,∅ ↪→P again, which is in Example 5.1.19. The equational logic
(M,2j ◦ δ) does not have a complete axiomatisation with respect to the non-empty
powerset functor P,∅, since (M,δ) is a proper regular quotient of (M,2j ◦δ). Similarly,
(M,δ) has a complete axiomatisation, since it is complete with respect to the class of
Kripke frames with a non-empty set of successors.

Predicate Liftings, Concretely

Suppose that the category X has a representable forgetful functor U : X → Set, then
we also have a characterisation of predicate liftings in the same form of Lemma 2.3.9:

Proposition 5.2.22. Let U : A → Set be a functor with left adjoint F and (X ,U ) a
representable concrete category. Then,

1. every predicate lifting is precisely a natural transformationX (−,Ω)n ˙−→X (T−,Ω)
up to isomorphism.

2. there is a bijection |P T SFn| � Nat (X (−,Ω)n,X (T−,Ω)) for each set n ∈ Set;

3. if the category X has products, then for each set n ∈ Set, the underlying set
of P T SFn is bijective with X (TΩn,Ω)

where Ω is the dualising object of S a P : X op→A .

Proof. By Proposition 3.6.6, we have UP n � X (−,Ω)n and UP T � X (T−,Ω), and
by Lemma 5.2.14 the second statement follows.

Suppose that X has finite products. It suffices to show that SFn �Ωn, so it follows
that |P T SFn| � |P TΩn| �X (TΩn,Ω) by the Yoneda Lemma. Consider the following
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isomorphisms natural in X,

X (X,SFn) �A (Fn,P X) {by the dual adjunction }
�X (X,Ω)n {by Proposition 3.6.6 }
�X (X,Ωn) {by the universal property of product }

so SFn �Ωn by the Yoneda Lemma.

To end this section, we demonstrate the use of Lemma 5.2.14 with the contravariant
powerset functor Q, emphasising that the correspondence is not merely a set-theoretical
translation but also algebraic translation:

Example 5.2.23. The dual operator � of possibility ♦ was shown to be a predicate
lifting in Example 2.3.6, and this fact can be deduced from Lemma 5.2.14. Let S : BA→
Set be the ultrafilter functor, i.e. a dual adjoint to Q. Consider the function f : 1→
UF1 defined by

f : ∗ 7→ ¬∗

and its corresponding homomorphism f̄ : F1→ F1 on the free Boolean algebra F1.
The ♦ operator is mapped to a predicate lifting (♦◦¬). Then, we take the complement
of (♦ ◦¬) in QPSF1 and obtain the predicate lifting � given by

{{⊥,>}, {>}} � (−){
// {∅, {⊥}} � P f̄

// {∅, {>}}.

Note that the substitution is given by pre-composing with UP T Sf̄ , so the order of
above applications is important.

5.3 Multi-Step Semantics

The monoidal structure (CoLog,⊗, id), see Proposition 5.1.27, allows us to introduce
monoids in CoLog along with the composition of logics, and we tentatively suggest it
as a framework for multi-step coalgebraic modal logic. Since this monoidal structure
is very similar to the monoidal category of endofunctors, we may expect that every
monoid in (CoLog,⊗, id) is monad-like.

Definition 5.3.1. Considering the monoidal category CoLog = (CoLog,⊗, id), we
define the following:

1. Every monoid object in (CoLog,⊗, id) is called a multi-step semantics.

2. The category of monoids in (CoLog,⊗, id) is called the category of multi-step
semantics, denoted ∞CoLog.

Proposition 5.3.2. The forgetful functor UL : (CoLog,⊗, id)→ (End(A ),◦, I) is a strict
monoidal functor and similarly for UR.
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Proof. By definition.

Corollary 5.3.3. Every multi-step semantics consists of precisely a monad L = (L,µL,ηL)
on A , a comonad T = (T ,µT ,ηT ) on X and an interpretation δ : LP → T P preserving
the multiplication and the unit

L2P

µLP
��

δ⊗δ
// P T 2

P µT
��

LP
δ
// P T

and

P id //

ηLP
��

P

P ηT
��

LP
δ
// P T ,

(5.8)

i.e. (µL,µT ) and (ηL,ηT ) are morphisms in CoLog.

Corollary 5.3.4. Every morphism (τ,ν) : (δ,µ,η)→ (δ′,µ′,η′) in ∞CoLog consists of
precisely a monad morphism and a comonad morphism

τ : L→ L′ and ν : T→ T′

respectively such that (τ,ν) is also a morphism in CoLog, where L and T are a monad
and a comonad given by (δ,µ,η) and similarly for L′ and T′ .

We call (5.8) the homomorphism condition for multi-step logics. Intuitively, the multi-
step semantics is consistent with evaluation.

Notation 5.3.5. For every multi-step semantics (δ,µ,η), the corresponding monad and
comonad are denoted by L = (L,µL,ηL) and T = (T ,µT ,ηT ) respectively. By the
previous corollaries, a multi-step semantics is denoted by (L,T,δ).

Similarly, we say that a multi-step semantics (L,T,δ) is equational if the functor part
L is finitely based, and call it finitary if L is finitary.

5.3.1 Interpreting Multi-Step Semantics

Similar to one-step semantics, every multi-step semantics (L,T,δ) introduces a con-
travariant functor from the category XT of coalgebras of the comonad T to the
category A L of algebras of the monad L:

Proposition 5.3.6. Every multi-step semantics (L,T,δ) defines a lifting of P along the
forgetful functors:

XT

UT

��

P δ // A L

UL

��

X
P
// A

by P δ : (x,ξ) 7→ P ξ ◦ δx

Proof. Given a T-coalgebra (x,ξ), we verify that P δ(x,ξ) is an L-algebra by diagram
chasing:
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the unit law: The following diagram

P x
P ηT
//

id

��

ηLP x ""

P T x
P ξ
// P x

LP x
P δ(ξ)

<<

δx

OO

commutes, because the right triangle commutes by definition, the upper rectangle
commutes by the counit law, and the left triangle commutes by the preservation
of unit.

the associative law: Consider the diagram

L2P x

L(P δξ)

��

(δ⊗δ)x
##

µL

��

Lδx // LP T x

δT x
��

LP ξ
// LP x

δx

��

P δξ

oo

P T 2x

P µTx

��

P T ξ
// P T x

P ξ

��

LP x
δx

//

P δξ

OOP T x
P ξ

// P x

where the triangle inside commutes by the definition of ⊗. Now, notice that the
remaining squares

LP T x
LP ξ
//

δT x
��

LP x

δx
��

P T 2x
P T ξ
// P T x

and

P T 2x
P T ξ
//

P µTx
��

P T x

P ξ
��

P T x
P ξ
// P x

and

L2P x
(δ⊗δ)x

//

µL
��

P T 2x

P µTx
��

LP x
δx
// P T x

commute by naturality of δ, the co-associative law of ξ , and the preservation of
multiplication.

For every coalgebra morphism f : (x,ξ) → (y,γ), set P δ(f ) = P f and it is an L-
algebra morphism using the same argument as in Proposition 5.1.9.

Proposition 5.3.7. Every morphism (τ,ν) of multi-step semantics from (L,T,δ) to (M,V,θ),
defines functors

ν∗ : XV→XT and τ∗ : A M→A L

satisfying P θ ◦ ν∗ = τ∗ ◦ P δ as in Proposition 5.1.10.



138 Chapter 5 Coalgebraic Logics via Duality

5.3.2 Freely Generated Multi-Step Semantics

Given a one-step semantics δ : LP ˙−→P T with a morphism (τ,ν) from the identity
logic to δ, we may iterate the composition of δ with itself to obtain an interpretation
up to n-steps as far as we want by applying (δ⊗−) inductively:5

P

id
��

// LP

δ
��

// L2P

δ⊗δ
��

// · · · // Li+1P

δ⊗δi
��

// · · ·

P // P T // P T 2 // · · · // P T i+1 // · · ·

where δ0 = id,δi+1 = δ⊗ δi and δκ = Colimi<κ δ
i for any limit ordinal κ.

The sequence stabilises whenever both of the upper sequence and the lower se-
quence stabilise. The fixed-points Lκ,T λ of the upper and lower sequences are the
(co)free (co)monad of L and T respectively. The resulting natural transformation δµ,
where µ = max(κ,λ), from LκP to P T λ is the interpretation containing every step of
the interpretation. In the following, we extend the process to functors L and T such
that forgetful functors UL and UT have a left and right adjoint, respectively, without
induction.

Lemma 5.3.8 (see [32, Lemma 4.5.1]). Given a comonad T = (T ,µT ,ηT ) on X , and a
monad L = (L,µL,ηL) on A , liftings P of P along the forgetful functors

X T P //

FT

VV

UT

��

`

A L

FL

VV

UL

��

`

X
P

// A

(5.9)

are bijective with natural transformation δ : LP ˙−→P T satisfying (5.8).

Proof Sketch. In (5.9), FL a GL denotes the adjunction induced6 by the monad L;
and similarly for FT a GT . Define a natural transformation id∗ : FLP ˙−→P FT by the
pasting diagram:

X op FT //

I &&

(X op)T
op

UT

��

P // A L

UL

��

I
��

X op
P

//

;O(ηT )op

A

=

FL
// A L

7KεL

where εL : FLUL ˙−→I is the counit defined by εL(La
α−→ a) = α : (La,µL)→ (a,α) for

every L-algebra α. The desired natural transformation δ = δP : LP ˙−→P T is then

5 For ‘mere’ one-step semantics, apply the free algebra sequence of (δ⊗−) instead.
6See [81, Section VI.2]) for details.
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obtained by the pasting diagram

X op

FT ""

T

��

P //

x� id∗

A

FL

��

L

��

= (X op)T
op

=
P
//

UT

||

A L

UL
��

=

X op
P

// A

that is, δ = ULid∗ = U
(
εLP FT ◦FLP (ηT )op

)
= ULεLP FT ◦ULFLP (ηT )op. The res-

ulting natural transformation morphism on a component x is the composite

LP x
LP ηT x
−−−−−−→ LP T x

P (µTx )op

−−−−−−→ P T x. (5.10)

For verification, we refer to [32, Lemma 4.5.1].

Lemma 5.3.9. For every pair of a monad and comonad morphisms τ : L → M and
ν : V→ T and two multi-step semantics (T,L,δ) and (V,M,θ), the following diagram
commutes

XT
P δ // A L

XV

ν∗

OO

P θ
// A M

τ∗

OO

if and only if (τ,ν) is a morphism from (L,T,δ) to (M,V,θ) where τ∗ and ν∗ are defined
in Proposition 5.3.7.

Proof. By Proposition 5.3.7, it suffices to check necessary condition. However, this
is trivial by Lemma 5.3.8 since P δν∗ and τ∗ ◦ P θ given by P ν ◦ δ and θ ◦ τP are
equal.

Theorem 5.3.10. Let T and L be endofunctors of X and A respectively. If the forgetful
functors UT : XT →X and UL : A L→A have a right adjoint and a left adjoint,
respectively, then every one-step semantics (L,T ,δ) has a free multi-step semantics (L,T,δ)
over it defined in (5.11) below.

A free multi-step semantics (L,T,δ) on a one-step semantics (L,T ,δ) is a free object
along the forgetful functor from ∞CoLog to CoLog.

Proof. By Proposition 4.3.3 and the assumption, L has an algebraically-free monad L
and by the same reasoning T has a coalgebraically-cofree comonad T. By coal-
gebraical cofreeness, there is a natural transformation ν : T → T such that the
functor ν∗ : X T→X T is an isomorphism and similarly there is a natural transforma-
tion τ : L→ L such that τ∗ is an isomorphism.



140 Chapter 5 Coalgebraic Logics via Duality

Also, δ defines a lifting P δ of P along forgetful functors. Therefore, we have the
following commutative diagram

XT
ν∗ //

UT

		

G

II

`

P

��

XT
P δ // A L τ∗ // A L

F

VV

UL

��

`

X = X
P
// A = A .

It is clear that P = (τ∗)−1P δν∗ is a lifting of P . Such a lifting P corresponds uniquely
to a family of morphism δx defined by

LP x
LP ηTx−−−−−−→ LPTx

P µTx−−−−→ PTx (5.11)

natural in x by (5.10) and P µTx is equal to the unique L-algebra (LPTx
αx−−→ PTx)

making the following diagram commutes

LPTx
τPTx

��

δTx // P TTx P νTx // PTTx
P µx
��

LPTx αx
// PTx.

We show that (τ,ν) is an injection with the universal property:

(τ,ν) forms a morphism: To show that δ is injected into δ via (τ,ν), observe that
the outer square of the diagram

LP

id
��

δ // P T

P ν

��

LP
LP ηT
//

τP
��

LPT
τPT
��

LP
LP ηT
// LPT α

// PT

commutes. It remains to show that the intermediate diagram commutes, since
the innermost square commutes by the naturality of τ . By the very definition
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of α, the intermediate diagram is reduced to

LP δ //

LP ηT
��

P T

P T ηT
��

P ν

oo

LPT
δT
//

τPT

��

P TT
P νT
��

PT2

P µT
��

LPT α
// PT

(5.12)

where the upper square and the lower square commute by naturality and
definition respectively.

The right rectangle remains. Consider the following diagram

T

id
  

µT
// T2

TηT
��

νT // TT
T ηT
��

T ν
// T

where the left triangle commutes by the co-associative law of T; and the right
square commutes by the naturality of ν. The application of the contravariant
functor P shows that the right rectangle of (5.12) commutes.

Factorisation through (τ,ν): Suppose that there is a one-step semantics morphism
(σ,λ) : (L,T ,δ)→ (M,V,θ). By (co)freeness of L (and T), there exists unique
monad and comonad morphisms

σ : L→M and λ : V→ T

satisfying σ = σ ◦ τ and λ = ν ◦λ respectively. Displaying the situation by the
following diagram

XV
P θ //

λ∗

//

λ∗
��

A M

σ ∗

oo

σ ∗
��

XT
P=P δ //

ν∗
��

A L

τ∗
��

XT
P δ
// A L

we have λ∗ = v∗ ◦ λ∗ and σ ∗ = τ∗ ◦ σ ∗ by construction; σ ∗ ◦ P θ = P δ ◦ λ∗ by
assumption and Lemma 5.3.9; τ∗ ◦ P = P δ ◦ ν∗ by construction. Since ν∗ and τ∗

are isomorphisms, it follows that P ◦ λ∗ = σ ∗ ◦ P θ by diagram chasing. By
Lemma 5.3.9, (τ,ν) is a morphism from (L,T,δ) to (M,V,θ).
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By construction, we can invoke Proposition 4.3.22:

Corollary 5.3.11. The free multi-step semantics of a one-step equational semantics is
equational.

5.4 Logical Properties

In this section, we demonstrate the use of one-step semantics as the building block of
modalities for coalgebraic modal logic.

� Throughout this section, we assume that L is an endofunctor of A and T an
endofunctor of X . As before, P : X →A is a contravariant functor.

5.4.1 Language derived from a Syntax

Let Ψ be a set of atomic propositions. Every Kripke model of Ψ consists of a Kripke
frame 〈X,ξ : X→PX〉 and a valuation v : Ψ → 2X assigning to every element in Ψ
a subset of X. This gives the following fragment of the satisfaction relation

x |= ψ if and only if x ∈ v(ψ)

for every ψ ∈ Ψ . Equivalently, valuations Ψ → 2X are in bijection with Boolean
algebra homomorphisms FΨ → QX where QX is the algebra of powerset with
UQX = 2X .

The satisfaction relation |= is completely determined by the valuation v. This is
because the language of modal logic with respect to Ψ is, in fact, a free modal algebra
over the free Boolean algebra FΨ .

In general, we can replace FΨ with any Boolean algebra A. By Example 4.3.34, we
know that the modal construction M : BA→ BA is finitary, so there is a left adjoint
to the forgetful functor BAM→ BA. Then, a free modal algebra over A exists and it
serves as a language over A. Then, we define:

Definition 5.4.1. A language of a syntax L over an A -object Ψ (of atomic pro-
positions) is a free L-algebra over Ψ , i.e. an L-algebra 〈Φ , ι : LΦ → Φ〉 with an
isomorphism

A (Ψ ,U〈a,α〉) �A L(〈Φ , ι〉,〈a,α〉)

natural in 〈a,α〉 where U : A L→A is the forgetful functor.

We define (L,Ψ )-model as an object of (Ψ ↓U ) and we see that a language of L
over Ψ may also be seen as an initial (L,Ψ )-model. If confusion is unlikely, we omit
the object Ψ .

Every L-algebra 〈a,α〉 with a morphism from Ψ to a is an object of the comma
category (Ψ ↓U ).
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Lemma 5.4.2. Suppose that A has finite coproducts. The comma category (Ψ ↓U ) is
isomorphic to the category of (L+Ψ )-algebras.

Proof. Every (L +Ψ )-algebra is a morphism from the coproduct (La +Ψ ) to a, so

it precisely consists of an L-algebra (La
α−→ a) with a morphism (Ψ

v−→ a), i.e. an

object (α,v) in (Ψ ↓U ). Every (L+Ψ )-algebra homomorphism f :
(
(L+Ψ )a

α−→ a
)
→(

(L+Ψ )b
β
−→ b

)
satisfies the commutative diagram

La+Ψ

Lf +idΨ
��

[α,va]
// a

f
��

Lb+Ψ
[β,vb]

// b

so it is precisely an L-algebra homomorphism with f ◦ va = vb. f is a morphism
in (Ψ ↓U ).

Corollary 5.4.3. Suppose that A has finite coproducts. An L-algebra 〈Φ , ι〉 with a
morphism v : Ψ → Φ is a language if and only if the (L+Ψ )-algebra

LΦ +Ψ
[ι,v]
−−−→ Φ

is initial.

Notation 5.4.4. We denote the unique morphism from the initial (L+Ψ )-algebra to some
(L+Ψ )-algebra 〈a,α〉 as well as from the initial object in the comma category (Ψ ↓U )
by ~−�L,Ψα or just ~−�α and call it the interpretation of a language.

Language of Equational Coalgebraic Logic

In modal logic, a language is over a set Ψ of atomic propositions instead of an
arbitrary object. Thus, we say that an L-algebra 〈Φ , ι〉 is a language of L over a set Ψ
if 〈Φ , ι〉 is a language over the free object FΨ of Ψ . The usual inductive definition
corresponds to the following:

Proposition 5.4.5. Given a monadic and finitary functor U : A → Set with a left
adjoint F and a finitely based functor L : A → A , the language of L over any set Ψ
exists and can be constructed via the free-algebra sequence. Moreover, the category of
(L+FΨ )-algebras is monadic over Set.

Proof. By Corollary 5.4.3, Corollary 4.2.7, and Theorem 4.3.35, it suffices to show
that (L+ FΨ ) is finitely based, but this is easy: The coproduct commutes with any
colimit, the functor L and the constant functor of FΨ preserve sifted colimits, and so
does (L+FΨ ).
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Example 5.4.6. The language of normal modal logic with a set Ψ of atomic proposi-
tions subject to normality is generated by the initial sequence (M+FΨ ) where M is
the functor introduced in Definition 2.2.8.

5.4.2 Adequacy

� In this section, we assume that S a P : X op→A is a dual adjunction, and (L,δ)
is a T -logic.

Recall that a Kripke model consists of a Kripke frame and a valuation, so we define

a (T ,Ψ )-model as a T -coalgebra 〈x,ξ〉 with a morphism (Ψ
v−→ P x) from some

object Ψ in A . In the absence of Ψ , (T ,Ψ )-model simply refers to a T -coalgebra.

Every T -coalgebra can be turned into an L-algebra by a T -logic (L,δ), so every
(T ,Ψ )-model gives rise to a (L,Ψ )-model by the lifting P δ : XT →A L.

Definition 5.4.7. Let 〈Φ , ι〉 be a language of (L,δ) over an object Ψ . The the-
ory map thξ of a T -model 〈x,ξ,v〉 is the transpose of its language interpreta-
tion ~−� : Φ→ P x. The logical equivalence Rξ with respect to 〈Φ , ι〉 of 〈x,ξ,v〉 is
the kernel in X of the theory map:

Rξ
π1 //

π2

��

x

thξ
��

x
thξ
// SΦ .

Example 5.4.8. The satisfaction relation given in (2.32) is captured by the theory
map, i.e.

th(x) = {ϕ ∈ Φ | x |= ϕ }.

Two elements x,y are logically equivalent if and only if they satisfy the same set of
formulae, that is, th(x) = th(y).

Lemma 5.4.9. For any coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉, the theory map thξ
of 〈x,ξ〉 is a composite

thξ = thγ ◦ f .

Proof. Let 〈Φ , ι〉 be an initial L-algebra. By initiality, the following diagram

〈Φ , ι〉
~−�(P δξ)

//

~−�(P δγ)
&&

P δ〈y,γ〉

P f

��

P δ〈x,ξ〉
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commutes. By the dual adjunction, we have

x
ηx
//

f

��

SP x

SP f

��

S~−�
// SΦ

y ηy
// SP y

S~−�

==

where η : I ˙−→SP is the unit, so thξ = thγ ◦ f .

In the classical modal logic, the adequacy property means that every pair of bisimilar
elements are logically equivalent. From this it follows that logical equivalence is
invariant under p-morphisms (equivalently, P -coalgebra homomorphisms). In the
abstract framework, these two properties are translated to suitable commutative
diagrams as follows:

Lemma 5.4.10. For any coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉, the logical equi-
valence Rξ with respect to 〈x,ξ〉 is invariant under f and the kernel of f is contained
in Rξ .

Proof. Given a coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉, the theory map of ξ is
a composite thξ = thγ ◦ f by Lemma 5.4.9. Let Rξ and Rγ be kernels of the theory
maps thξ and thγ respectively in the following diagram

Rξ
π1 //

  

π2

��

x

thξ

oo

f

��

Rγ
π′1 //

π′2
��

y

thγ
��

x
f
//

thξ

OOy
thγ
// SΦ

By construction, we have thγ ◦ (f ◦π1) = thγ ◦ (f ◦π2), so there is a unique morphism
from the logical equivalence Rξ to Rγ .

Further, let B be the kernel of f in the following diagram:

x
f

��

thξ

��

B

π′1
//

π′2 //

// Rξ

π1

??

π2
��

y
thγ
// SΦ

x
f

@@

thξ

BB (5.13)
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By diagram chasing, it is easy to see that there exists a mediating morphism from B
to Rξ .

Proposition 5.4.11 (The Adequacy Property). Let 〈x,ξ,vx〉 and 〈y,γ,vy〉 be (T ,Ψ )-
models, and f : 〈x,ξ〉 → 〈y,γ〉 a coalgebra homomorphism. The logical equivalence Rξ
with respect to 〈x,ξ,vx〉 is invariant under f and the kernel of f is contained in Rξ ,
provided that vx = P f ◦ vy .

Proof. For a coalgebra homomorphism f with vx = P f ◦ vy , P f is a morphism in the
comma category (Ψ ↓U ), so it follows that ~−�P δξ = P f ◦ ~−�P δγ . Using the same
argument as in Lemma 5.4.10, it follows.

Remark 5.4.12. In classical modal logic, the requirement vx = P f ◦ vy says that the
worlds x and f (x) satisfy the same set of atomic propositions. The unique morphism
from Rξ to Rγ is given by mapping (x,y) to (f x,f y) in Set using the canonical
pullback. Hence, the theorem shows that the pair (f x,f y) are modally equivalent
if (x,y) are. Also, behaviourally equivalent elements are modally equivalent.

Remark 5.4.13. Since the difference between (T ,Ψ )-models and T -coalgebras are
minor, we focus on T -coalgebras in the subsequent discussion.

5.4.3 Expressiveness

� As in the previous subsection, we assume that S a P : X op → A is a dual
adjunction and (L, ,T ,δ) is a one-step semantics.

The Hennessy-Milner property, also known as expressiveness, states that every two
logically equivalent elements are also bisimilar. We give an abstract version as follows:

Definition 5.4.14. A one-step semantics (L,T ,δ) is called expressive if for any T -
coalgebra 〈x,ξ〉, the logical equivalence Rξ of 〈x,ξ〉 is contained in the kernel Bf of
some coalgebra homomorphism f : 〈x,ξ〉 → 〈y,γ〉, i.e. there is a morphism h from Rξ
to Bf such that πi = π′i ◦ h for i = 1,2:

x
f

��

thξ

��

Rξ

π1
//

π2 //

h // Bf

π′1
??

π′2 ��

y SΦ

x
f

@@

thγ

BB (5.14)

Note that we do not assume any (E ,M)-factorisation system or minimisation. However,
in the presence of minimisation, this reduces to the usual definition:

Proposition 5.4.15. Given the conditions as in Theorem 4.1.19, a one-step semantics (L,T ,δ)
is expressive if and only if for any T -coalgebra 〈x,ξ〉 the logical equivalence Rξ is con-
tained in the behavioural equivalence.
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Proof. If (L,T ,δ) is expressive, then by the Coinduction Principle (Theorem 4.1.19) the
statement follows immediately. The converse is trivial by definition.

Translations Preserve Expressiveness

Given a translation τ from an expressive T -logic (Le,δe) to a T -logic (L,δ), by the
very definition of it, the theory map w.r.t (Le,δe) factors through the theory map
w.r.t. (L,δ). To see this, let 〈x,ξ〉 be a T -coalgebra and consider the following diagram

LeΦe � //

Le~−�e
Φ

��

Le~−�eP x

//

Φe

~−�e
Φ

��

~−�eP x

oo

LeΦ
τΦ //

Le~−�P x
��

LΦ � //

L~−�P x
��

Φ

~−�P x
��

LeP x τP x
//

δex

OOLP x
δx
// P T x

P ξ
// P x

where Φ and Φe are languages for L and Le, respectively, ~−� denotes the unique
morphism from the initial L-algebra over Φ , and similarly for ~−�e. By the definition
of translation, the lower left square commutes and δex = δx ◦ τP x. The remaining
diagrams commute by initiality. Therefore, it follows that the theory map w.r.t. (Le,δe)
of 〈x,ξ〉 factors as

theξ = S~−�eΦ ◦ thξ (5.15)

where ~−�e
Φ

is independent of 〈x,ξ〉.

Informally, if any two elements x and y are logically equivalent w.r.t. (L,δ), then they
must be logically equivalent w.r.t. (Le,δe). By the expressiveness of (Le,δe), it follows
that (L,δ) is also expressive. It also holds for any one-step semantics:

Theorem 5.4.16. Let τ : (Le,δe)→ (L,δ) be a translation of T -logics. Then, (L,δ) is
expressive if (Le,δe) is expressive.

Proof. It suffices to show that for any coalgebra 〈x,ξ〉, the logical equivalence Rξ
of 〈x,ξ〉 w.r.t. (L,δ) is always contained in the logical equivalence Sξ w.r.t. (Le,δe). By
(5.15) and chasing the following diagram

x
theξ

!!

thξ

  

Rξ

π1
//

π2 //

h // Sξ

π′1
??

π′2 ��

SΦe SΦ
S~−�
oo

x
theξ

==

thξ

??
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there is a mediating map from Rξ to Sξ satisfying πi = π′i ◦ h for i = 1,2, so the
statement follows.

Recall that the full (resp. equational) T -logic is a terminal object in CoLogT (resp. ECoLogT ).

Corollary 5.4.17. There exists an expressive (resp. equational) T -logic if and only if the
full (resp. equational) logic is expressive.

One-Step Expressiveness

As argued by Klin informally [63, Definition 4.1], expressiveness holds if the theory
map thξ of 〈x,ξ〉 factors through a monomorphism in X after a coalgebra homo-

morphism 〈x,ξ〉
f
−→ 〈x′,ξ ′〉. We justify his definition formally in our framework and

further show that the monomorphism is indeed the theory map of 〈x′,ξ ′〉.

Lemma 5.4.18 (see [53, Theorem 4], also cf. [63, Theorem 4.2]). Let 〈Φ , ι〉 be a language
of L and (E ,M) a factorisation system on X . If the mate δ∗

Φ
: T SΦ→ SLΦ (Defini-

tion 5.1.30) is an M-morphism and T preserves M-morphisms, then the theory map thξ
of a coalgebra 〈x,ξ〉 factors through an coalgebra epimorphism e : 〈x,ξ〉 → 〈x′,ξ ′〉:

x

ξ

��

thξ

��
e // // x′

ξ ′

��

// m // SΦ

Sι

��

SLΦ

T x
T e
// T x′ //

Tm
// T SΦ

OO

δ∗
Φ

OO

(5.16)

Proof. The outer diagram of (5.16) commutes by computing the transpose of the
following diagram

P x

Φ

~−�
��

P T x
P ξ

oo LP x
δx

oo

LΦ�oo

L~−�
��

and a detailed argument can be found in [63, Theorem 4.2]. Then, by the (E ,M)-
factorisation and theM-preserving functor T , the theory map thξ factors and Tm
is also an M-morphism. Since M is closed under composition, δ∗

Φ
◦ Tm is an M-

morphism. By the diagonal fill-in property, there exists a unique morphism from x′

to T x′ such that the left and right squares in (5.16) commute.



Chapter 5 Coalgebraic Logics via Duality 149

Theorem 5.4.19. Suppose that a) X has a proper (E ,M)-factorisation system; b) T
preserves M-morphisms; c) the mate of δ : LP ˙−→P T is pointwise in M. Then, for any
coalgebra 〈x,ξ〉, the following statements hold:

1. The theory map thξ is a composite of a coalgebra epimorphism e : 〈x,ξ〉 → 〈x′,ξ ′〉
and the theory map of 〈x′,ξ ′〉.

2. The pullback of e is contained in the logical equivalence of 〈x,ξ〉, i.e. (L,δ) is
expressive.

Proof. 1. By Lemma 5.4.18, the theory map of 〈x,ξ〉 factors through a coalgebra
E-morphism e : 〈x,ξ〉� 〈x′,ξ ′〉 and anM-morphism m : x′� SΦ . It follows
that thξ = thγ ◦ e by Lemma 5.4.9. Moreover, since thξ = m ◦ e and by
assumption e is epic, it follows that thγ =m.

2. Let Rξ be the logical equivalence of 〈x,ξ〉 and B the kernel of e. Consider the
following commutative diagram:

x
e

�� ��

thξ

��

Rξ

π1
//

π2 //

// B

π′1
@@

π′2 ��

x′ //
thξ′
// SΦ

x
e

?? ??

thγ

AA

By diagram chasing and the monomorphism thξ ′ , it is clear that there exists a
mediating morphism from Rξ to the pullback B.

Definition 5.4.20. A one-step semantics is called one-step expressive if it satisfies
the conditions in Theorem 5.4.19.

As we have seen on page 127, a coequaliser of logics of predicate liftings does not add
any new modalities but equations, so it should not add any expressive power.

Proposition 5.4.21. Suppose that X has a proper (E ,M)-factorisation system and T
preserves M-morphisms. Then, for any pointwise coequaliser τ : (L1,δ1) → (L2,δ2)
in CoLogT , (L1,δ1) and (L2,δ2) are both one-step expressive if the mate of δ2 is a
pointwiseM-morphism.

Proof. By the isomorphism CoLog∗ � CoLogop, we have δ∗1 = Sτ ◦ δ∗2. By The-
orem 5.4.19, it suffices to show that Sτ : SL2 → SL1 is a pointwise M-morphism,
sinceM is closed under composition.

By the dual adjunction S a P : X op→ A , S maps colimits to limits, so the natural
transformation Sτ : SL2→ SL1 is a pointwise regular monomorphism. By Proposi-
tion 3.1.6 and the fact that every regular monomorphism is extremal, it follows that
Sτ is a pointwiseM-morphism.
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As we have characterised, every equational T -logic is in fact a coequaliser of logics of
predicate liftings shown in Section 5.2. From this, we can easily see the expressive
limit of equational logics in terms of predicate liftings.

Corollary 5.4.22. Suppose that X has a proper (E ,M)-factorisation system and T pre-
serves M-morphisms. The expressiveness of the logic of all finitary predicate liftings is
equivalent to the existence of an expressive equational T -logic.

A similar analysis shows that subfunctors also inherits one-step expressiveness:

Proposition 5.4.23. Suppose that X has a proper (E ,M)-factorisation system and T pre-
servesM-morphisms. Then, for any one-step expressive semantics (L,T ,δ) and a pointwise
M-natural transformation ν : T ′ ˙−→T , the one-step semantics

LP
δ−→ P T

P ν−−→ P T ′

is one-step expressive.

Proof. First we show that T ′ preserves M-morphisms: Let m : X � Y be an M-
morphism and consider the diagram

T ′X��

νX

��

T ′f
// T ′Y��

νY

��

TX //
T f

// T Y .

SinceM is closed under composition, the morphism T f ◦ νX is anM-morphism. By
commutativity and assumption, the morphism νY ◦ T ′f and νY areM-morphisms,
so T ′f is also anM-morphism by the left cancellation law. It shows that T ′ preserves
M-morphisms.

The mate of P ν ◦ δ is equal to νS ◦ δ∗ by the isomorphism CoLog∗ � CoLogop. Thus,
the composite is a pointwiseM-morphism since ν and δ∗ are pointwiseM-morphisms
by assumption.

Expressiveness for Strongly Locally Presentable Categories

For a finitary functor T : X → X , we improve Klin’s expressiveness condition [63,
Theorem 4.4] to the full equational T -logic instead of the full finitary T -logic. For the
difference between finitary T -logics and equational T -logics, see Section 4.3.2. First,
we recall the condition given by Klin:

Definition 5.4.24 (see [5]). A locally finitely presentable category is strongly loc-

ally finitely presentable if for any cofiltered limit (x
σi−−→ xi) and any monomor-

phism f : y→ x with y a finitely presentable object, σi ◦ f is monic for some i.
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For example, Set, Pos and Vec are strongly locally finitely presentable. On the other
hand, the category Ab and the category of Un of unary algebras, i.e. sets with a unary
operation are not strongly locally finitely presentable. See [5] for details.

Theorem 5.4.25 (See [63, Theorem 4.4]). Assume that a) X is strongly locally finitely
presentable; b) A is locally finitely presentable; and c) ε : I ˙−→SP is pointwise monic. If
T is finitary and preserves monomorphisms, then the mate δ∗ of the full finitary logic is
pointwise monic.

In [63], the theorem is established in two steps. First, it is shown that if

{T Sf : T SA→ T SAi }f ∈(Aω↓A) (5.17)

is jointly monic, where Aω is the category of finitely presentable objects, then the
mate δ∗ is pointwise monic. Second, the family (5.17) is shown to be jointly monic by
the strong local presentability.

Similarly, we can prove an equational version by the observation that every finitely
presentable object in a variety A is precisely a coequaliser of some Fn. Since
the dual adjoint S maps colimits to limits, the coequaliser becomes a monomor-
phism SA // // SFn .

Lemma 5.4.26. Let A be an object in a variety of algebras. Assume that T preserves
monomorphisms. The following collection of morphisms is jointly monic

{ T Sg : T SA→ T SFn }
g∈(A f

ω ↓A)

if and only if the family (5.17) is jointly monic where A
f
ω is the subcategory generated by

Fn, for n ∈ω.

Therefore we can show expressiveness for the full equational T -logic using the same
argument as in [63, Theorem 4.4]:

Theorem 5.4.27. Let X be a strongly locally presentable category, A a variety of al-
gebras, and T : X → X a finitary and monomorphism-preserving functor. If the counit
ε : I ˙−→SP is pointwise monic, then the mate of the full equational T -logic is one-step
expressive.

5.4.4 Modularity of Expressiveness

As shown by Cîrstea [36], the expressiveness property as well as completeness is stable
under fusion, composition, product, and other constructions of coalgebraic logics of
Set predicate liftings. In this subsection, we work out the cases of composition and
colimits in CoLog, and leave remaining constructions for future work.

� We assume that S a P : X op→A is a dual adjunction. Further, the category X
has a proper (E ,M)-factorisation system, so a T -logic (L,δ) is one-step expressive

if T preservesM-morphisms and the mate δ∗ is anM-morphism.
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Identity One-Step Semantics

As we said in the very beginning, the identity one-step semantics (I ,I , idP ) is
important, because it is exactly the placeholder in an informal expression such as
P × (−).

Proposition 5.4.28. The identity one-step semantics (I ,I , idP ) is one-step expressive.

Proof. The identity functor, of course, preserves M-morphisms, and the class M
contains isomorphisms, including the identity.

Composition of One-Step Expressive Semantics

Recall that by Proposition 5.1.33, we have the equality (δ1 ⊗ δ2)∗ = δ∗1 ⊕ δ
∗
2.

Theorem 5.4.29. Given two one-step semantics (Li ,Ti ,δi) for i = 1,2, their composition

δ1 ⊗ δ2 : L1L2P ˙−→P T1T2

is one-step expressive, if both (L1,T1,δ1) and (L2,T2,δ2) are one-step expressive.

Proof. By (5.2), the mate of δ1 ⊗ δ2 is equal to δ∗1L2 ◦ T1δ
∗
2. By assumption, Ti

preserves M-morphisms and δ∗i is a pointwise M-morphism for i = 1,2. Hence
the composite δ∗1L2 ◦ T1δ

∗
2 is a pointwise M-morphism and T1T2 preserves M-

morphisms.

Colimits of One-Step Expressive Semantics

For colimits of one-step expressive semantics, we have to take care of pointwise colimits
as before. Under the isomorphism between CoLogop and CoLog∗, colimits are mapped
to limits. Using the dual adjoint S, a pointwise limit of a diagram D : I → CoLog∗

is indeed a family of limits(
(LimTiSa)

(LimD)a
−−−−−−−→ (LimSLia)

)
i∈I

(5.18)

in the arrow category X → for each a ∈A . Thus, we conclude the following:

Theorem 5.4.30. Let D : I → CoLog be a diagram. If every (LiP
Di−−→ P Ti)i∈I is

one-step expressive and a pointwise colimit of D exists, then the colimit of D is one-step
expressive.

Proof. The colimit of D is a one-step semantics of type Limi Ti , so we first show that
Limi Ti preservesM-morphisms. By assumption, each Ti preservesM-morphisms
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and by Proposition 3.1.4, M-morphisms are closed under limits in X →, so LimTi
preservesM-morphisms.

Next we show that the mate of (ColimD) is a pointwiseM-morphism. Every D∗i is a
pointwiseM-morphism by assumption, that is, D∗i a : TiSa→ SLia is anM-morphism
for any a ∈A , so the limit of D∗i a in the arrow category X → is also anM-morphism.
It follows that Lim(D∗i ) � (ColimDi)∗ is a pointwiseM-morphism sinceM contains
isomorphisms.

Note that for Set functors, the hom-functor Hom(A,−) is naturally isomorphic to an
A-fold product

∏
AI . Thus, the above theorem also includes this case. We conclude

with an application of modularity.

5.4.5 Examples of Modular Constructions

To demonstrate the modularity, we exhibit a few examples used in the literature. We
begin with a well-known example of an expressive modal logic, which fails to apply
the general expressiveness theorem for finitary functors:

Example 5.4.31. We show that I-labelled image-finite branching transition systems,
i.e. coalgebras for the type

Pω(−)I �
∏
I

Pω(−)

has a one-step expressive equational semantics. Note that Pω(−)I is not a finitary
functor unless I is finite, so we cannot apply Theorem 5.4.27 directly. However, by
Theorem 5.4.30, we only need to give a one-step expressive semantics for Pω and it is
well-known that normal modal logic is equational and is one-step expressive for Pω.
Therefore, the copower by I of the one-step expressive semantics (M,δ) is one-step
expressive. The syntax functor

∐
IM is isomorphic to the functor defined by

MIA ..= BA〈 {�ia}i∈I,a∈A | �i⊥ =⊥, �i(a∨ b) = �ia∨�ib 〉,

and concretely the language can be generated by the syntax

ϕ ..=> | ϕ ∧ϕ | ¬ϕ | ♦iϕ (i ∈ I)

i.e. the usual multi-modal logic.

Segala Systems

The non-deterministic feature can also be combined with probabilistic distributions
in a number of ways. For example, a non-deterministic transition may lead to a
probabilistic transition as follows:

Definition 5.4.32 (see [98, 99]). A simple Segala system over a set I of actions
is a coalgebra of the type P (D(−))I where D is the probability distribution functor
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given in Example 2.1.3. That is, a simple Segala system on a state space X ∈ Set is a
function

ξ : X→ (I →P (DX)).

By Example 5.4.31, a one-step semantics for Segala systems over a set I of actions
can be constructed as the composition of a one-step semantics of type P (−)I and a
one-step semantics of type D. Example 2.3.6 gives a set of predicate liftings for D so
a one-step semantics. Thus, we obtain a logic as follows:

Example 5.4.33. Let (MD ,δD) denote the one-step semantics of the distribution
functor induced by the predicate liftings given in Example 2.3.6 and (MI ,δI ) the
normal multi-modal logic. The composition (MI ,P (−)I ,δI )⊗ (MD ,D,δD) is a one-
step semantics for Segala systems. Concretely, its language can be generated by a
two-sorted syntax

ϕ ..=> | ϕ ∧ϕ | ¬ϕ | ♦iψ (i ∈ I)
ψ ..=> | ψ ∧ψ | ¬ψ | [p]ϕ (p ∈ [0,1])

similar to the syntax given in [98, Section 2].7

The one-step expressiveness of (MD ,D,δD) is shown in [36, 53], so it follows that the
collection of image-finite Segala systems systems has the expressiveness:

Proposition 5.4.34. The composition of (MI ,Pω(−)I ,δI ) and (MD ,D,δD) is one-step
expressive for coalgebras of the functor Pω(D)I , viz. image-finite Segala systems.

Alternating Systems

Definition 5.4.35 (see [48, 98]). An alternating system over a set I of actions is a
coalgebra for the functor D +P I , i.e. a function ξ : X→DX +PXI .

Example 5.4.36. A one-step semantics for alternating systems is then given by a
product of (MD ,D,δD) and (MI ,P I ,δI ), and the resulting syntax functor is MD ×MI .
Abstractly, the initial sequence of (MD×MI ) generates its language at ω-th object, and
by the commutativity (4.3), the ω-th object is isomorphic to the product of the ω-th
objects in the MI -sequence and MD-sequence respectively. Concretely, its language L
is generated by a 3-sorted syntax:

ϕ ..=> | ϕ ∧ϕ | ¬ϕ | ♦iϕ (i ∈ I)
ψ ..=> | ψ ∧ψ | ¬ψ | [p]ψ (p ∈ [0,1])

L 3 χ ..= (ϕ,ψ)

where the third rule χ ..= (ϕ,ψ) replaces the third rule of the 3-sorted syntax given in
[98]:

χ ..=> | χ∧χ | ¬χ | ϕ +ψ.

7The probability modality in [98] is restricted to rational probabilities, i.e. [p]φ for p ∈ [0,1]∩Q.
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This does not affect the logic because each of cases can be translated to (>,>),
(ϕ ∧ϕ,ψ ∧ψ), (¬ϕ,¬ψ), and (ϕ,ψ) in L respectively.

5.4.6 Jónsson-Tarski Duality

For a dual adjunction S a P : X op → A , a Jónsson-Tarski duality for an endo-
functor L (or a monad L) of A to an endofunctor T (or a comonad T) of X is a dual
adjunction S a P : (X op)T op →AL where P is a lifting of P along forgetful functors
of A L and XT , i.e.

XT
P
))

S

ii

UX

��

A L

UA

��

X
P
((

S
ii A

(5.19)

If the lifting P is given by a semantics (L,T ,δ), it is called Jónsson-Tarski duality
for (L,T ,δ).

� We assume that S a P : X op→A is a dual adjunction in this subsection.

Jónsson-Tarski Duality for Multi-Step Semantics

Jónsson-Tarski duality for multi-step semantics is in fact a simple application of the
adjoint lifting theorem by Johnstone [56].

Theorem 5.4.37 ([56], also see [32, Section 4.5]). Let L be a monad on a category A
and T a comonad on a category X . Suppose that XT has coreflexive equalisers, then every
lifting P along forgetful functors has a dual adjoint on the right, i.e. a Jónsson-Tarski
duality.

Note that coreflexive equalisers are reflexive coequalisers in the opposite category.

The collection of liftings is in one-to-one correspondence with the collection of multi-
step semantics by Lemma 5.3.8, and it shows that every multi-step semantics has
a Jónsson-Tarski duality provided that the category of T-coalgebras has coreflexive
equalisers. Also note that the condition is independent of the choice of δ.

Remark 5.4.38. Suppose that X is complete. Then, the existence of coreflexive
equalisers is equivalent to the completeness of the category XT, see [80].

Jónsson-Tarski Duality for One-Step Semantics

Proposition 5.4.39. Let L and T be endofunctors of A and X respectively. Suppose
that the forgetful functor UT : XT → X (resp. UL : A L → A ) has a right (resp. left)
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adjoint and XT has coreflexive equalisers. Then every one-step semantics (L,T ,δ) has a
Jónsson-Tarski duality.

Proof. The forgetful functors UL and UT are monadic and comonadic, respectively,
by Proposition 4.1.5. The statement follows by Theorem 5.4.37.

It follows that every one-step equational (or finitary) semantics of an λ-accessible type
on a locally presentable category has such a duality:

Corollary 5.4.40. Let X and A be locally presentable categories, and L and T are
accessible endofunctors of A and X respectively. Then every one-step semantics (L,T ,δ)
has a Jónsson-Tarski duality.

Proof. By Corollary 4.2.7, the forgetful functor A L → A has a left adjoint. By
Corollary 4.1.24, the forgetful functor XT →X has a right adjoint and XT is complete.
Thus, the statement follows from the previous proposition.



Chapter 6

Future Work

6.1 More about CoLog

The definition of CoLog is fairly general and a few restrictions might be necessary
to exploit its logical use in depth. For example, we have shown in Proposition 5.1.22
that finite products of equational one-step semantics are computed pointwise, and this
does not hold in general.

Logical Connection A logical connection is a dual adjunction with a pair of
dualising objects, as discussed in [20, 77, 93]. In this setting, the dualising object
serves as an object of truth values, but it is not clear whether the definition of
CoLog should be strengthened in a similar fashion and whether we would have more
properties.

More Constructions We only discussed colimits, limits, and compositions of one-
step semantics. It is not clear if CoLog inherits other constructions from its underlying
categories of endofunctors. For example, it would be useful if CoLog had a closed
monoidal structure.

Order-Enrichment In particular, the collection of theories is naturally a partially
ordered set, and elements in a coalgebra might be ordered by satisfaction relation.
Also, the positive Kripke frames can be modelled by coalgebras for the convex
powerset endofunctor of Pos. This line of research is recently investigated in [16, 25,
58]. The author believes the picture would be clearer if CoLog were enriched over a
monoidal category instead of Pos.

Characterisations A few notions are formulated in high-level descriptions, and
some of them are not characterised explicitly in detail. For example, the one-step
expressiveness condition generalises the separating property. However, it is not clear
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what a separating condition should be in a point-free style. We notice that the mate δ∗

on a language 〈Φ , ι〉, which is constructed by the free algebra sequence, is a map of
type

T SΦ
δ∗
Φ−−→ SLΦ

�−→ SΦ

and SΦ is a cofiltered limit of the following sequence

SΨ ← SΨ × SLΨ ← S × SL(Ψ +LΨ )← . . .

since S : A → X maps colimits to limits. Assuming that X is strongly locally
presentable, then this implies that there exists a morphism Sσi : SΦ→ SLi such that
Sσi ◦δ∗Φ is monic if δ∗

Φ
is. A further characterisation may explain and link the classical

notion.

Modularity of Expressiveness We have shown that the expressiveness property is
stable under colimits and compositions. It would be useful in practice if we could
work out more constructions including limits of one-step semantics.

Completeness So far, we did not discuss the completeness property with respect
to one-step semantics in the general setting. It is shown in [65] and [75] that a
one-step semantics is complete if the interpretation is injective for Stone dualities BA
and Stone (resp. Set).

Multi-Step Semantics The category of multi-step semantics is only a first step
towards multi-step coalgebraic modal logic. We expect that it will aid the future
development in this direction.

6.2 A Classification of Coalgebraic Logics

The notion of finitely based functor was introduced originally for finitary adjunctions
of descent type in the enriched context. Therefore, it would be interesting to classify
different types of coalgebraic modal logics in line with this setting.

In addition, quasi-varieties are in somewhere between locally presentable categories
and varieties. It would be natural if logical axioms are given by implications instead
of equations.

6.3 Conclusion

We hope that this framework will help experts and beginners alike understand
coalgebraic modal logics in a systematic approach, as we have seen that the categorical
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structure unifies and generalises coalgebraic modal logic far beyond from the original
setting—Set.
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