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Abstract

In this thesis, we investigate meet-continuity over dcpos. We give different equivalent

descriptions of meet-continuous dcpos, among which an important characterisation

is given via forbidden substructures. By checking the function space of such sub-

structures we prove, as a central contribution, that any dcpo with a core-compact

function space must be meet-continuous. As an application, this result entails that

any cartesian closed full subcategory of quasicontinuous domains consists of contin-

uous domains entirely. That is to say, both the category of continuous domains and

that of quasicontinuous domains share the same cartesian closed full subcategories.

Our new characterisation of meet-continuous dcpos also allows us to say more about

full subcategories of locally compact sober dcpos which are generalisations of quasi-

continuous domains. After developing some theory of characterising coherence and

bicompleteness of dcpos, we conclude that any cartesian closed full subcategory of

pointed locally compact sober dcpos is entirely contained in the category of stably

compact dcpos or that of L-dcpos.

As a by-product, our study of coherence of dcpos enables us to characterise Lawson-

compactness over arbitrary dcpos.
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Chapter 1

Introduction

Domain theory, initially introduced by Dana Scott [Sco70], serves as a mathematical

universe within which people can interpret higher-order functional programming lan-

guages (see [Str06] for a systematic explanation). In this universe, types of programs

are interpreted as domains (algebraic or continuous ones), and programs themselves

are then viewed as Scott-continuous functions between domains. Such a transla-

tion leads one to a semantic category. Within this category, higher-order types are

naturally interpreted as hom-sets. Since types correspond to domains in this in-

terpretation, this means a suitable semantic category of a higher-order functional

programming language should be domain-enriched. Moreover, it should be cartesian

closed in order to model the currying and uncurrying processes in the language.

Indeed, there exists a quite satisfactory theory which deals with the cartesian closed-

ness of domains. Gordon Plotkin [Plo76], Michael Smyth [Smy83a], and Achim

Jung [Jun89, Jun90b] have made essential contributions to this theory. In the cat-

egory of pointed algebraic domains, bifinite domains and algebraic L-domains form

exactly the two maximal full subcategories in the sense that any cartesian closed

1



2 Chapter 1 Introduction

full subcategory of pointed algebraic domains is entirely contained in one of them,

[Jun90a, Corollary 3.8]. In the case of pointed continuous domains, we have a simi-

lar result with FS-domains in lieu of bifinite domains and continuous L-domains in

lieu of algebraic L-domains, respectively, [Jun90b, Corollary 10]. The category of

bifinite domains, in particular, has really nice mathematical properties. For exam-

ple, it is cartesian closed and closed under lifting, coalesced sum, bilimits and the

Smyth, Hoare and Plotkin powerdomain constructions, et cetera. The category of

bifinite domains also has a logical duality, the celebrated Domain Theory in Logical

Form, by Samson Abramsky [Abr91]. All those properties have their counterparts

in program constructs and have made this category a nice semantic universe to work

within.

In 1980, [SD80] Nasser Saheb-Djahromi considered programs with a probabilistic

choice operator and in order to accommodate this in the semantics, introduced the

set of probability measures on cpos. Following Saheb-Djahromi’s work, probabilis-

tic non-determinism was studied more deeply by Claire Jones and Gordon Plotkin

in [JP89, Jon90], where they introduced the probabilistic powerdomain construction,

and showed that the behaviour of such a construction is much more easily understood

in the context of continuous domains rather than algebraic domains and in fact, the

probabilistic powerdomain is never algebraic. This fact forces us to leave the cosy

zone of bifinite domains and search for semantic domains in the continuous setting,

especially in the categories of FS-domains and continuous L-domains. Indeed, con-

tinuous domains have their own advantages of making their entrance through the

real numbers over which probability values range, and being stable under retractions,

a crucial property with which certain mathematical techniques can be applied. How-

ever, the probabilistic powerdomain construction, as shown in [Jon90], destroys the

structure of continuous L-domains, and behaves opaquely over both FS-domains and
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RB-domains (retracts of bifinite domains), [JT98]. Actually, the question whether

the probabilistic powerdomain of an FS-domain is again an FS-domain has been

open for decades.

Facing such a difficulty, naturally one wonders whether we could extend our math-

ematics out of the scope of continuity to find a semantic category which is indeed

cartesian closed and closed under the probabilistic powerdomain construction. A nat-

ural and more liberal setting is the category of quasicontinuous domains which was

introduced in the early eighties by Gerhard Gierz, Jimmie Lawson and Albert Stralka,

[GLS83], as a generalisation of classical continuous domains. Indeed, Jean Goubault-

Larrecq, [GL12], was able to show that the category of ωQRB-domains (quasi-version

of countably-based RB-domains) is closed under the probabilistic powerdomain con-

struction, adding to what is a very small set of such closure results, and later this

result was generalised to the category of QRB-domains in [GLJ14]. This led many re-

searchers to re-examine quasicontinuous domains [GLJ14, HK13, LX14, LX13, ZK12]

and many pleasing properties were established. For example, it was proved by

Goubault-Larrecq and Jung [GLJ14], and independently by Lawson and Xiaoyong

Xi, [LX14], that QFS-domains (quasi-version of FS-domains) and QRB-domains are

the same class and that they can be characterised as being precisely the Lawson-

compact quasicontinuous domains, while, in the classical case, whether FS-domains

and RB-domains are the same is one of the oldest and best-known open problems in

domain theory.

However, unlike the category of FS-domains, that of QFS-domains is not cartesian

closed. This raises the question whether there are any new cartesian closed cate-

gories consisting of quasicontinuous domains at all. As a central contribution of

this thesis, we show that this is not the case. To be more precise, we show that all

cartesian closed categories of quasicontinuous domains actually consist of domains
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entirely [JJK+15]. This fact pulls us back into the classical setting when we con-

sider modelling a higher-order functional programming language with probabilistic

features and also motivates us to extend our search scope beyond quasicontinuity.

As a common generalisation of both continuous and quasicontinuous domains, we

consider core-compact and sober dcpos: dcpos which are core-compact and sober

in the Scott topology. This gentle extension keeps us from stepping too far from

the central theory. As a justification, core-compactness is the essential property of

locating exponentiable objects in the category of topological spaces, and sobriety,

meanwhile, is the key fact that links domains to their logical counterparts via the

Stone duality, along the lines of Abramsky’s Domain Theory in Logical Form. So

our new question asks whether there are any new cartesian closed categories of core-

compact and sober dcpos. We give a partial answer to this question by showing that

any cartesian closed full subcategory of pointed core-compact sober dcpos is con-

tained in that of stably compact dcpos or consists of L-dcpos entirely, [JJL16a]. This

implies that stable compactness is an indispensable condition that one should take

into account when interpreting a probabilistic higher-order programming language

in the category of core-compact sober dcpos.

We organise this thesis as follows:

In the following chapter, we collect preliminary results that we need for our further

discussion. Basically we try to explain that both continuous and quasicontinuous

domains are core-compact (equivalent to local compactness when sobriety is present)

and sober in the Scott topology. Most of the material is not original and can be found

in [GHK+03, AJ94, GL13]. In Section 2.6, however, we give a new well-filtered dcpo

which is not sober in the Scott topology, which seems to us simpler than the first

such example given by Kou in [Kou01]. Also, we give a direct proof of Theorem 2.5.7

which originally appears as [GHK+80, Theorem II-4.11] and is proved there by using
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the fact that core-compact spaces are exponentiable and that the Scott topology

equals the Isbell topology on continuous open-set lattices (viewed as function spaces

targeted to the Sierpiński space). At the end of this chapter, we explain the main

motivation to our research, the so-called Jung-Tix problem, and the works that are

meant to attack it.

Chapter 3 contains the central contribution of this thesis, where meet-continuity

on dcpos is investigated. We start with explaining how meet-continuity can be de-

fined on arbitrary dcpos, following which we deliver the result that meet-continuity

fills the gap between quasicontinuity and continuity over dcpos, a remarkable result

from [KLL03]. In Section 3.2, we study meet-continuity from a topological point of

view. Many characterisations of meet-continuous dcpos are given here. In particu-

lar, we show that meet-continuous dcpos are exactly those dcpos which are locally

compatible in the Scott topology. Section 3.3 contains our new order-theoretical

characterisation of meet-continuity. Roughly speaking, we show that a dcpo is meet-

continuous if and only if certain order structures are not occurring in the dcpo as a

retract. This is a quite useful characterisation of meet-continuity. As an application,

laid out in Section 3.4, it enables us to prove that any dcpo with a core-compact

function space must be meet-continuous, which in turn implies that any cartesian

closed full subcategory of quasicontinuous domains actually consists of continuous

domains entirely.

Since quasicontinuous domains as well as continuous domains are core-compact and

sober in the Scott topology, we wonder whether the above results can be generalised

to the category of core-compact and sober dcpos. That is, does every cartesian

closed full subcategory of core-compact sober dcpos consist of continuous domains

as well? In Chapter 4, we attempt to attack this question. We are not able to give

a full answer to it, but we find two subcategories, the category of stably compact
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dcpos and that of L-dcpos, such that any cartesian closed full subcategory of pointed

core-compact sober dcpos is entirely contained in one of them. This result is pre-

sented as Theorem 4.4.3, and we call it the Dichotomy Theorem for locally compact

sober dcpos. In order to prove our dichotomy result, we first investigate coherence

(Section 4.1) and bicompleteness (Section 4.2) in general. Coherence of a topological

space means that the intersection of any two compact saturated subsets is again

compact saturated. We prove that in well-filtered dcpos (in particular, in sober

dcpos), to establish coherence it suffices to show compactness of the intersection of

any two principal filters, [JJL16b]. This observation enables us to give a character-

isation of Lawson-compactness of arbitrary dcpos, presented in Theorem 4.1.7. Bi-

completeness is studied from an order-theoretical viewpoint. By considering typical

non-bicomplete dcpos we conclude that the dcpos in our interest must be bicomplete.

With this fact, sober L-dcpos can be understood easily via a forbidden structure. Fi-

nally, the equivalent descriptions of coherence and L-dcpos are sufficient ingredients

for us to prove the dichotomy result.

One should note that there is a quite versatile setting proposed by Alex Simp-

son [Sim03] to model higher-order functional programming languages with probabilis-

tic features: the category of topological domains and continuous functions. Indeed,

this is a cartesian closed category. In [BS06], Ingo Battenfeld and A. Simpson de-

fined two kinds of probabilistic powerdomain constructions on topological domains,

the free convex space construction and the observationally-induced powerdomains,

respectively. A remarkable result is that these two constructions are closed in the

category of topological domains and both coincide with the classical powerdomain

constructions on the category of ω-continuous pointed dcpos, while, in general, nei-

ther of them is Jones and Plotkin’s classical construction. Generally, the category of

topological domains is a nice category to work with and a lot of computational effects
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can be modelled in it, see [Bat08] for an overview. One less satisfactory fact may

be that topological domains are not closed under sobrification [GS06], thus one can

not expect a localic description of them via Stone duality or a logical interpretation

along the lines of Abramsky’s Domain Theory in Logical Form.





Chapter 2

Basic concepts and preliminary

results

In this chapter, we collect some basic definitions and well-known results which are

of central interests for our discussions in Chapter 3 and Chapter 4. They mainly

consist of the notions like directed-complete partial ordered set (dcpo for short), Scott-

continuous function, Scott topology, continuous domain and quasicontinuous domain.

We will focus on topological properties of both continuous domains and quasicontin-

uous domains with the Scott topology, and show that they both are locally compact

and sober spaces in the Scott topology. Following these results, as generalisations of

these order structures, we introduce core-compact dcpos and sober dcpos, over which

most of our research will be conducted. Properties of core-compact dcpos are listed

in this chapter. In particular, connections among core-compactness, sobriety, local

compactness and well-filteredness will be illustrated. At the end of this chapter, the

so-called Jung-Tix problem is introduced and explained, which is in fact at the heart

of the research motivation to this thesis. Most of the contents in this chapter are

9
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already in existing work. In Section 2.7, however, a novel example is given to explain

the difference between well-filtered dcpos and sober ones.

2.1 Directed-Complete Partial Ordered Sets

Definition 2.1.1. A set L with a binary relation ≤ on it is called a poset and denoted

by (L,≤) if for all x, y, z ∈ L:

1. x ≤ x (reflexivity);

2. x ≤ y, y ≤ z imply x ≤ z (transitivity);

3. x ≤ y, y ≤ x imply x = y (antisymmetry).

The terminology “poset” is short for partially ordered set and the relation ≤ is called

a partial order on L. The relation ≤ is called a preorder if it only satisfies conditions 1

and 2. Intuitively, x ≤ y can be read as x is smaller or less than y. For a partial

order ≤, we use x < y to mean that x is strictly smaller than y, that is, x ≤ y and

x ̸= y. If no ambiguity arises, we often omit the symbol ≤ and simply use L instead

of (L,≤).

We use “partial” here since the definition itself does not require every two elements

to be related via ≤ or ≥. Comparing to this, we have the following two extreme

situations:

1. If any two elements x, y in a non-empty poset (L,≤) are related via ≤, i.e.,

x ≤ y or y ≤ x for all x, y ∈ L, then L is called a totally ordered poset, or a

chain.
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L1 L2

L3

Figure 2.1: Examples of posets.

2. If no two different elements x, y in a non-empty poset (L,≤) are related via ≤,

then L is called an anti-chain. The order on an anti-chain is often called the

discrete order.

For the sake of intuition, any finite poset can be represented as a line diagram by

using dots to represent elements in the poset and interconnecting lines to indicate

the order relation. A detailed explanation can be found in [DP02, Chapter 1]. An

ordinary poset L1, a chain L2 and an anti-chain L3 are illustrated in Figure 2.1,

respectively. In this thesis, infinite posets will also be suggested diagrammatically

by showing their finite parts which indicate the building principle.

There are many ways through which we can construct new posets out of the given

ones. The following definition gives four general constructions.

Definition 2.1.2. 1. Given a poset (L,≤) and a subset A of L, we can equip A

with the induced order ≤A, defined as a ≤A b for a, b ∈ A if and only if a ≤ b

in L. Obviously, (A,≤A) is also a poset.

2. Given a poset (L,≤), we set Lop = L, and define a binary relation ≤opon Lop

by x ≤op y if and only if y ≤ x in L. One easily verifies that ≤op is a partial

order on Lop. The poset (Lop,≤op) is called the dual poset of (L,≤).
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3. Given a family of posets (Li,≤i), i ∈ I, we define a binary relation ≤ on the

cartesian product
∏

i∈I Li by (xi)i∈I ≤ (yi)i∈I if and only if xi ≤i yi in Li for

all i ∈ I. Again, one can verify that ≤ is a partial order on
∏

i∈I Li. We call

(
∏

i∈I Li,≤) the product of (Li,≤i), i ∈ I. For two posets L and M , we use

L×M to denote the product.

4. Given a family of posets (Li,≤i), i ∈ I, we define a binary relation ≤ on the

disjoint union
⨿

i∈I Li by (i, x) ≤ (j, y) if and only if i = j and x ≤i y in Li.

Then ≤ is a partial order on
⨿

i∈I Li, and (
⨿

i∈I Li,≤) is called the disjoint

sum of (Li,≤i), i ∈ I. For two posets L and M , we use L +M to denote the

disjoint sum.

Functions between posets considered in this thesis are alway preserving the order.

Definition 2.1.3. Let L and M be posets.

1. A function f : L→M is called monotone if f(x) ≤ f(y) in M whenever x ≤ y

in L, for any x, y ∈ L.

2. The identity function on L is denoted by idL. L and M are said to be isomor-

phic (in symbols, L ∼= M) if there exist monotone functions f : L → M and

g : M → L such that g ◦ f = idL and f ◦ g = idM .

We now define order structures of our interest, the so-called directed-complete partial

ordered sets (dcpo for short). Before this, let us first fix some terminology.

Given a poset L and any element x ∈ L, we set ↑x = {y ∈ L | x ≤ y}, ↓x = {y ∈ L |

y ≤ x} and call them principal filters and principal ideals, respectively. For a subset

A ⊆ L, define ↑A =
∪

x∈A ↑x and ↓A =
∪

x∈A ↓x. A is called an upper set (resp., a

lower set) if A = ↑A (resp., A = ↓A). An element a ∈ A is called the least element
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(resp., greatest element) of A if A ⊆ ↑a (resp., A ⊆ ↓a). A poset L is called pointed

if L has a least element; such an element is often called bottom and denoted by ⊥.

The greatest element of L is also called the top element and denoted by ⊤. From the

antisymmetry of partial orders, the least and greatest elements of a subset (if they

exist) are unique. An element x ∈ A is said to be maximal (resp., minimal) in A if

for all y ∈ A with x ≤ y (resp., y ≤ x), one has x = y. Unlike the greatest or least

elements, maximal or minimal elements are not necessarily unique. For instance, all

elements of L3 in Figure 2.1 are both maximal and minimal. A subset A ⊆ L is

called a finitely generated upper set if there exists a finite subset F ⊆ A such that

A = ↑F . For a poset L, if there exists a set ML of minimal elements of L such that

L = ↑ML, then we say L is grounded, and we say L is finitely grounded if ML is

finite. Obviously, a poset L is finitely grounded if and only if it is, as an upper set,

finitely generated.

For a subset A ⊆ L, an element x ∈ L is called an upper bound (resp., lower bound)

of A if A ⊆ ↓x (resp., A ⊆ ↑x). We use Au (resp., Al) to denote the set of all upper

(resp., lower) bounds of A. A is called bounded if Au is non-empty. If there exists a

least (resp., a greatest) element a in Au (resp., Al), then a is called the supremum

(resp., infimum) of A. We use
∨

A or supA (resp.,
∧
A or inf A) to denote the

supremum (resp., infimum) of A. For any two elements a, b ∈ L, a ∨ b (resp., a ∧ b)

is used to denote the supremum (resp., infimum) of a, b.

A lattice L is a poset in which
∨

A and
∧
A exist for any non-empty finite subset A.

If for arbitrary subsets A of L, both
∨

A and
∧
A exist, we call L a complete lattice.

If
∨
A exists for non-empty A, we call L is join-complete. Dually, L is called meet-

complete if
∧
A exists for non-empty A ⊆ L. L is called bounded-complete if

∨
A

exists for any bounded subset A ⊆ L. Note that a poset is meet-complete if and only

if it is bounded-complete.
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Definition 2.1.4. Let L be a poset.

1. A non-empty subset D of L is called directed (resp., filtered) if for any two

elements a, b ∈ D, there exists an element c ∈ D, such that a, b ≤ c (resp.,

c ≤ a, b). A lower directed subset of L is called an ideal, and an upper filtered

one is called a filter.

2. L is called a directed-complete partially ordered set (dcpo for short) if for any

directed subset D ⊆ L, the supremum
∨
D exists.

In general, for a dcpo L, the dual poset Lop may not be a dcpo. If, in addition,

Lop is a dcpo, we call L a bicomplete dcpo. Every finite poset is a bicomplete dcpo.

From the definition, a dcpo L is bicomplete if and only if
∧
A exists for any filtered

subset A of L.

Proposition 2.1.5. Given any two dcpos L and M , both the product L×M and the

disjoint sum L+M are again dcpos.

Proof. Let {(ai, bi)}i∈I be a directed subset of L×M . Then {ai}i∈I (resp., {bi}i∈I)

is directed in L (resp., in M). So
∨

i∈I ai and
∨

i∈I bi exist. It is easy to see that

(
∨

i∈I ai,
∨

i∈I bi) is the supremum of {(ai, bi)}i∈I in L×M .

L+M is directed-complete since any directed subset of L+M is entirely contained

in L or M .

Remark 2.1.6. The above proposition also holds for products and disjoint sums of

infinitely many dcpos, and the argument is similar.

To check that some poset L is a dcpo we need to compute the supremum of every

directed subset D of L, actually sometimes it is more convenient to compute the

supremum of a cofinal subset of D.
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Definition 2.1.7. A subset E of a directed set D is called cofinal in D if for any

d ∈ D there exists some e ∈ E such that d ≤ e.

The following fact about cofinal subsets is trivial.

Proposition 2.1.8. Let L be a poset and D a directed subset of L. If E is a cofinal

subset of D, then

1. E is directed;

2. supE exists if and only if supD exists, and they are equal.

The following lemma also supplies an easier way of verifying the directed-complete

structure. Since chains are directed, if a poset is directed-complete, then every chain

in it has a supremum. Surprisingly, the reverse statement also holds.

Lemma 2.1.9. A poset L is a dcpo if and only if every chain in L has a supremum.

This is a well-known result in order theory. The proof, which uses the Axiom of

Choice, goes back to a lemma of Iwamura [Iwa44], and can be found in [Mar76]. A

different proof from P.M. Cohn is also available in [Coh65].

2.2 Scott-continuous functions, topologies and the

specialisation order

2.2.1 Scott-continuous functions

Morphisms between dcpos considered in this thesis are supposed to preserve the dcpo

structure, i.e., the directed supremums. With this in mind, the following definition

is canonical.
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Definition 2.2.1. Let L and M be dcpos. A function f : L → M is called Scott-

continuous if for every directed subset D of L, f(
∨
D) =

∨
f(D).

Since every two comparable elements form a directed subset, every Scott-continuous

function is automatically monotone. The category of all dcpos with Scott-continuous

functions between them is denoted by DCPO.

Remark 2.2.2. 1. In this thesis, we always define categories with their morphisms

being Scott-continuous functions until stated otherwise.

2. For a subcategory C of dcpos, we use C⊥ to denote the full subcategory of C,

with its objects being pointed ones from C. For example, DCPO⊥ denotes the

category of all pointed dcpos and Scott-continuous functions between them.

Unlike continuous functions between topological spaces, the following property of

Scott-continuous functions between dcpos comes for free.

Proposition 2.2.3. [GHK+03, Lemma II-2.8] Let L,M and N be dcpos and f a

function from L ×M to N . Then f is Scott-continuous if and only if it is Scott-

continuous in each variable separately; that is,

• for all a ∈ L, the function x 7→ f(a, x) : M → N is Scott-continuous,

• for all b ∈M , the function x 7→ f(x, b) : L→ N is Scott-continuous.

Proof. We prove the non-trivial direction. Suppose that f is Scott-continuous in

each variable separately, then we know that f is monotone in each variable as well.

Now given (a, b) ≤ (c, d) in L×M , we have that f(a, b) ≤ f(a, d) ≤ f(c, d), so f is

monotone from L×M to N .

Let D be a directed subset of L × M . Since f is monotone, it is obvious that∨
f(D) ≤ f(

∨
D).
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For the reverse inequality, we write D = {(ai, bi)}i∈I . Then we know that
∨
D =

(
∨

i∈I ai,
∨

i∈I bi). So we have:

f(
∨

D) = f((
∨
i∈I

ai,
∨
i∈I

bi))

=
∨
i∈I

f((ai,
∨
i∈I

bi))

=
∨
i∈I

∨
j∈I

f((ai, bj))

and ∨
f(D) =

∨
i∈I

f((ai, bi)).

For any (ai, bj), i, j ∈ I, we can find some k ∈ I such that (ai, bi), (aj, bj) ≤ (ak, bk)

since D is directed. Hence (ai, bj) ≤ (ak, bk), and this together with the fact that

f is monotone imply that f((ai, bj)) ≤ f((ak, bk)) ≤
∨
f(D). So finally, we have

f(
∨

D) ≤
∨

f(D) and hence f(
∨
D) =

∨
f(D).

Remark 2.2.4. The above proposition can be read as: a function between dcpos is

jointly Scott-continuous if and only if it is separately Scott-continuous.

Given any two dcpos L and M , we can use Scott-continuous functions between them

to form a new dcpo [L→M ], called the function space from L to M .

Definition 2.2.5. For any two dcpos L and M , [L → M ] is defined to be the set

of all Scott-continuous functions from L to M with the pointwise order, that is, for

f, g ∈ [L→M ], f ≤ g if and only if f(x) ≤ g(x) for all x ∈ L.

Proposition 2.2.6. For any dcpos L and M , the function space [L→M ] is a dcpo

in the pointwise order, with suprema computed pointwise.

Proof. Let {fα}α∈A be a directed family of Scott-continuous functions from L to M .

We define a function f : L → M that maps x ∈ L to the directed supremum
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∨
α∈A fα(x), and claim that f is the supremum of fα, α ∈ A in [L → M ]. We

first prove that f is Scott-continuous. Indeed, for any directed subset D ⊆ L,

f(
∨

D) =
∨
α∈A

fα(
∨

D)

=
∨
α∈A

∨
d∈D

fα(d)

=
∨
d∈D

∨
α∈A

fα(d)

=
∨

f(D).

That f is the least upper bound of {fα}α∈A is trivial.

Proposition 2.2.7. Let L and M be dcpos. Then the evaluation mapping

eval : (f, x) 7→ f(x) : [L→M ]× L→M

is Scott-continuous.

Proof. From the previous proposition [L → M ] is a dcpo with directed supremums

calculated pointwise. By Proposition 2.2.3, we prove the Scott-continuity of eval by

checking that it is Scott-continuous in each variable.

First, we fix an element x ∈ L and let {fα}α∈A be a directed subset of [L → M ].

Then

eval(
∨
α∈A

fα, x) = (
∨
α∈A

fα)(x)

=
∨
α∈A

fα(x)

=
∨
α∈A

eval(fα, x).
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Now we fix f ∈ [L→M ] and let D be a directed subset of L. Then

eval(f,
∨

D) = f(
∨

D)

=
∨
d∈D

f(d)

=
∨
d∈D

eval(f, d).

So eval is indeed Scott-continuous by Proposition 2.2.3.

The function space construction of dcpos is of great importance. Actually, function

spaces are the exponential objects in the category DCPO.

Definition 2.2.8. Let C be a category with finite products. An object Y in C is

called exponentiable, if the functor −× Y : C→ C has a right adjoint −Y , that is, if

for all objects X and Z there is a natural bijection E : C(X×Y, Z)→ C(X,ZY ). In

this case, ZY is called an exponential object in C. If in addition, for all objects Y, Z

in C, the exponential object ZY exists, then we say that the category C is cartesian

closed.

The following lemma is essentially due to M. Smyth [Smy83a, Lemma 5]. We collect

here a more general version from A. Jung.

Lemma 2.2.9. [Jun89, Lemma 1.21] Let C be a cartesian closed full subcategory of

DCPO. Then the following holds for any two objects A,B ∈ C.

1. The terminal object T (the empty product) of C is isomorphic to the one-point

dcpo.

2. The categorical product of A and B is isomorphic to the cartesian product A×B

as defined in Definition 2.1.2.
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3. The exponential object AB is isomorphic to [B → A].

As explained in the Introduction, cartesian closedness is required when modelling

a higher-type programming language, [Str06]. This lemma states that in any full

subcategory of DCPO, exponential objects are precisely the function spaces between

dcpos; therefore, one only needs to focus on the function spaces when working with

cartesian closedness in DCPO. We take this observation as one of the justifications

of working within this category.

Corollary 2.2.10. The category DCPO is cartesian closed.

Proof. Straightforward from Proposition 2.1.5, Proposition 2.2.6 and Lemma 2.2.9.

2.2.2 Topologies on posets

In this section, several topologies are defined on posets, among which the Scott topol-

ogy is the most fundamental one. We will show in the sequel that those topologies are

useful in characterising order-theoretic properties of dcpos. Before we proceed, let us

fix some notions and notations for topological spaces first, adopting the conventions

of [GHK+03] and [GL13].

Definition 2.2.11. Let (X, τ) be a topological space.

1. The open sets of X form a complete lattice which we denote by O(X). For any

subset A ⊆ X, we use A and A◦ to denote the topological closure and interior

of A, respectively.

2. A subset A of X is called saturated if it is an intersection of open subsets

of X. For any subset B ⊆ X, the set
∩
{U ∈ O(X) | B ⊆ U} is the smallest
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saturated set containing B, which is called the saturation of B and denoted

by sat(B).

3. X is called coherent if the intersection of any two compact saturated subsets

is again compact.

4. X is said to be locally compact if for every open set U and x ∈ U , there exist

a compact set K and an open set V such that x ∈ V ⊆ K ⊆ U .

5. X is called well-filtered if for every filtered family {Ki | i ∈ I} of compact

saturated sets with the intersection
∩

i∈I Ki being a subset of an open set U ,

U contains Ki for some i ∈ I already.

6. A non-empty subset S ⊆ X is called irreducible if S ⊆ A∪B for closed subsets

A and B implies S ⊆ A or S ⊆ B.

7. X is called a sober space if X is a T0 space and every irreducible closed subset

of X is the closure of some singleton.

8. X is called stably compact if it is compact, locally compact, coherent and sober.

9. The patch topology on X arises by taking all closed sets together with all

compact saturated sets as a subbasis for the closed sets.

Definition 2.2.12. Let L be a dcpo. The Scott-open sets on L consist of those

subsets U that satisfy:

1. U is an upper set, that is, U = ↑U ;

2. for any directed subset D ⊆ L, supD ∈ U implies D ∩ U ̸= ∅.

All Scott-open sets on L form a topology on L called the Scott topology.
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Remark 2.2.13. The Scott topology can be also defined on arbitrary posets. In this

case, one only replaces the “directed subset” in the above definition by “directed

subset whose supremum exists”.

The space (L, σ(L)) is denoted by ΣL. While the set of all Scott-open subsets of L

is denoted by σ(L), that of all Scott-closed subsets of L is denoted by Γ(L). In this

thesis, when we discuss dcpos as topological spaces, we always mean them equipped

with the Scott topology unless stated otherwise. For example, we call a dcpo L a

sober dcpo if and only if L with the Scott topology is a sober topological space, and

for a subset A ⊆ L, A and A◦ denote the closure and interior of A with respect to

the Scott topology, respectively. Sometimes clσA and intσA are also used for A and

A◦, respectively, if we need to emphasise the Scott topology.

The following proposition is straightforward from the definition of the Scott topology.

Proposition 2.2.14. A subset A of a dcpo L is Scott-closed if and only if

1. A is a lower set, that is, A = ↓A;

2. A is closed under the formation of directed sups, that is, for any directed subset

D ⊆ A, supD ∈ A.

From this observation, Scott-open sets are also said to be inaccessible by the supre-

mums of directed subsets.

Proposition 2.2.15. Let L be a dcpo.

1. The principal ideal ↓x is Scott-closed for every x ∈ L, and ↓x = {x}.

2. In general, if D is a directed subset of L, D = ↓ supD.
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Proof. (1) That ↓x is Scott-closed for every x ∈ L is straightforward. Since ↓x is a

Scott-closed subset containing x, so {x} ⊆ ↓x. That ↓x ⊆ {x} is true since {x} is

Scott-closed hence a lower set and x ∈ {x}.

(2) Since D ⊆ ↓ supD and ↓ supD is Scott-closed, D ⊆ ↓ supD. For the converse

containment, D is a Scott-closed subset containing D, so it follows from Proposi-

tion 2.2.14 that supD ∈ D. So ↓ supD ⊆ D since D is a lower set.

Proposition 2.2.16. Let L be a dcpo.

1. ΣL is a T0 topological space.

2. ΣL is T1 if and only if L is an anti-chain.

Proof. (1) Let x, y be two different elements in L. Without loss of generality, we can

assume that x ̸≤ y. Then L \ ↓y is a Scott-open subset containing x but missing y.

(2) Recall that a topological space is T1 if and only if every singleton set is closed. In

our case, this means {x} = {x} = ↓x for every x ∈ L, which is equivalent to saying

that L is an anti-chain.

The following propositions give us a general impression of Scott-closed subsets and

compact subsets in dcpos, respectively. To prove them, we need the Hausdorff Max-

imality Principle.

Lemma 2.2.17 (Hausdorff Maximality Principle). In a poset, every chain is con-

tained in a maximal chain. Here maximality of chains is considered in the poset of

all chains ordered by set inclusion.

Proposition 2.2.18. Let A be a Scott-closed subset of a dcpo L. Then every element

x ∈ A is below some maximal element of A.
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Proof. We find a maximal chain C containing x in A by applying Lemma 2.2.17

to (A,≤A). Since A is Scott-closed, supC ∈ A. One easily sees that x ≤ supC. The

fact that supC is a maximal element of A comes from the maximality of C.

Proposition 2.2.19. Let K be a compact subset of a dcpo L. Then every element

x ∈ K is above some minimal element of K.

Proof. Assume that K is compact in L. For every x ∈ L, by the Hausdorff Max-

imality Principle, there exists a maximal chain C ⊆ K containing x. Since ↓c is

Scott-closed for c ∈ C and K is compact, the filtered intersection
∩
{↓c | c ∈ C}∩K

is non-empty. By the maximality of C, this non-empty intersection must be a sin-

gleton set that consists of a minimal element of K. Obviously, this minimal element

is below x.

In Definition 2.2.1, we have defined Scott-continuous functions between dcpos. Mean-

while, it is also natural to consider topologically continuous functions between dcpos

equipped with the Scott topology. The following proposition states that these

two kinds of morphisms actually coincide, which justifies the terminology of Scott-

continuity.

Proposition 2.2.20. Let f be a function from dcpo L to M . Then f is Scott-

continuous if and only if f is continuous from ΣL to ΣM .

Proof. Assume that f is Scott-continuous and U a Scott-open subset of M . Since f

is Scott-continuous, it is monotone. Thus f−1(U) is an upper set in L. Let D be any

directed subset of L with its supremum supD in f−1(U). We have f(supD) ∈ U .

It follows from the Scott-continuity of f that f(D) is directed and sup f(D) ∈ U .

Then f(d) ∈ U for some d ∈ D. Hence d ∈ f−1(U), and it implies that f−1(U) is

Scott-open.
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For the converse, let f be a continuous function from ΣL to ΣM and D a directed

subset of L. We first claim that f is monotone. Indeed, for every x, y ∈ L, x ≤ y

implies that x ∈ ↓y = {y}. Since f is continuous, we have that f(x) ∈ f({y}) ⊆

{f(y)} = ↓f(y), that is f(x) ≤ f(y). So indeed f is monotone. Now from the

monotonicity of f , f(D) is directed, sup f(D) exists in M and sup f(D) ≤ f(supD).

We proceed to proving f(supD) ≤ sup f(D). Assume this is not true, that is,

f(supD) ∈M \ ↓ sup f(D), i.e., supD ∈ f−1(M \ ↓ sup f(D)). Since f is continuous

and M \ ↓ sup f(D) is Scott-open, f−1(M \ ↓ sup f(D)) is Scott-open. Thus we have

some d ∈ D such that d is also in f−1(M \ ↓ sup f(D)). So f(d) ∈ M \ ↓ sup f(D),

and obviously this is impossible. So we have proved that f(supD) ≤ sup f(D) and

indeed f is Scott-continuous.

From Proposition 2.2.15, the ideal ↓x is alway Scott-closed for every x ∈ L. One

wonders whether all Scott-closed subsets can be generated by those principal ideals,

that is, whether ↓x, x ∈ L can form a subbasis of closed sets of the Scott topology.

However, this is not true. Consider the dcpo of natural numbers with the discrete

order: Every subset of it is Scott-closed, while ↓x, x ∈ L, only generate finite sub-

sets of natural numbers as closed sets. This observation leads us to the following

definition.

Definition 2.2.21. The upper topology on a poset L, denoted by ν(L), is the topol-

ogy generated by L \ ↓x for all x ∈ L as a subbasis.

Since L\↓x is always Scott-open for every x ∈ L, the upper topology is coarser than

the Scott topology.

Dually, we can define the lower topology.

Definition 2.2.22. The lower topology on a poset L, denoted by ω(L), is the topol-

ogy generated by L \ ↑x for all x ∈ L as a subbasis.
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A same argument as in Proposition 2.2.16 shows that neither upper topology or lower

topology on a poset L is T1 unless L is discrete. However, the following topology, as

a refinement of the Scott topology and the lower topology, is always T1 on any dcpo.

Definition 2.2.23. The Lawson topology on a dcpo L, denoted by λ(L), is defined

to be the common refinement of the Scott topology and the lower topology. The

space (L, λ(L)) is denoted by Λ(L).

A dcpo is called Lawson-compact if it is compact in the Lawson topology.

Proposition 2.2.24. The Lawson topology λ(L) on a dcpo L is T1.

Proof. Note that for any x ∈ L, ↓x, ↑x are closed in the Scott topology and lower

topology, respectively. Hence {x} = ↓x∩ ↑x is closed in the Lawson topology, which

implies that the Lawson topology is T1.

2.2.3 The specialisation order

We have seen that many topologies can be defined on posets; conversely, for any

topological space X, there is a natural way to define a preorder ≤s on X. We say

x ≤s y for x, y ∈ X if and only if for any open set U , y ∈ U whenever x ∈ U . One

easily verifies that ≤s is a preorder on X. The pair (X,≤s) is denoted by Ω(X) and

we call ≤s the specialisation preorder on X. For any x ∈ X, we set ↑sx = {y ∈

X | x ≤s y} and ↓sx = {y ∈ X | y ≤s x}. For A ⊆ X, set ↑sA =
∪

x∈A ↑sx and

↓sA =
∪

x∈A ↓sx. As in the partial order case, we also call A an upper set (resp.,

lower set) if A = ↑sA (resp., A = ↓sA).

Proposition 2.2.25. Let X be a topological space. Then

1. for all x, y ∈ X, y ≤s x if and only if y ∈ {x}, that is, ↓sx = {x} for any

x ∈ X;
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2. the space X is T0 if and only if ≤s is a partial order;

3. open sets (resp., closed sets ) in X are always upper sets (resp., lower sets)

in Ω(X);

4. for any subset A of X, A is saturated in X if and only if A is an upper set

in Ω(X).

Proof. The first three statements are obvious and we only prove the 4th one. Since

open sets are upper sets in Ω(X), every saturated set, as an intersection of open sets,

is also an upper set.

Conversely, assume A is an upper set in Ω(X). We claim that A =
∩
{U | A ⊆

U & U ∈ O(X)}. Indeed, for any x /∈ A, since A is an upper set in Ω(X), A ⊆

X \ ↓sx = X \ {x} ∈ O(X). So x /∈
∩
{U | A ⊆ U & U ∈ O(X)}. Hence∩

{U | A ⊆ U & U ∈ O(X)} ⊆ A. The reverse containment is obvious.

For a dcpo (L,≤), we can equip L with the Scott topology σ(L) and obtain a T0

topological space ΣL. Now the specialisation preorder ≤s can be defined on ΣL.

From the previous proposition, for any x ∈ L, we have ↓sx = clσ{x} = ↓x, so ≤s is

equal to the original order ≤ on L, and hence (L,≤) = Ω(ΣL).

Corollary 2.2.26. Let L be a dcpo and A ⊆ L.

1. The subset A is saturated in ΣL if and only if it is an upper set in L.

2. If A is compact and saturated, then A is of the form ↑M , where M is the set

of minimal elements in A.

Proof. (1) From Proposition 2.2.25 we know that A is saturated in ΣL if and only if

it is an upper set in Ω(ΣL), and we have seen that Ω(ΣL) = (L,≤).

(2) This is straightforward from the first statement and Proposition 2.2.19.
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For a T0 topological space, the poset Ω(X) is always a poset, but it need not be

a dcpo in general. We now define an interesting class of topological spaces whose

specialisation order is directed-complete:

Definition 2.2.27. A topological space X is called a monotone convergence space

if Ω(X) is a dcpo, and every directed subset converges to its supremum. In other

words, open sets in X are Scott-open in Ω(X), i.e., O(X) ⊆ σ(Ω(X)).

Proposition 2.2.28. Every sober space is a monotone convergence space.

Proof. Let X be a sober space. Since every sober space is T0, Ω(X) is a poset.

We prove that Ω(X) is a dcpo. First, we claim that every directed subset D ⊆ Ω(X)

is an irreducible set in X. To this end let A,B be closed sets such that D ⊆ A ∪B.

If D ̸⊆ A and D ̸⊆ B, then we could find some a, b ∈ D, such that a ̸∈ A and b /∈ B.

Since D is directed in Ω(X), we find an upper bound c ∈ D of a, b. This c cannot be

in A or B either; otherwise we would have that a ∈ A or b ∈ B. Hence we conclude

that D ̸⊆ A ∪ B. This contradiction implies that D is an irreducible subset, and

hence the closure D of D is also irreducible. Since X is sober, there exists a unique

s ∈ X such that D = {s}. By Proposition 2.2.25, s is an upper bound of D since

D ⊆ D = {s}. Actually, s is the least upper bound of D. Indeed, for any s′ such

that D ⊆ {s′}, we have s ∈ {s} = D ⊆ {s′}, which implies that s ≤s s
′. So s is the

supremum of D, and hence Ω(X) is a dcpo.

Now we prove that O(X) ⊆ σ(Ω(X)). Let U ∈ O(X) and D be a directed subset

of Ω(X) with supD ∈ U . Then from above we know that D ∩ U = supD ∩ U ̸= ∅,

and this implies that D ∩ U ̸= ∅. Hence U is Scott-open in Ω(X).

The converse of the previous proposition does not hold, that is, not every monotone

convergence space is sober. Actually, for any dcpo L, ΣL is a monotone convergence

space: The specialisation order is directed-complete because it agrees with the given
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order. That directed sets converge to their supremum is the defining property of

Scott-open sets. However, we will see in Chapter 2.5 that ΣL need not be sober in

general.

2.3 Continuous domains

In a theory of approximation, ideal elements are supposed to be completely deter-

mined by the behaviour of their approximants. In the language of dcpos, this is

interpreted as saying that a given element can be written as a supremum of a di-

rected subset, and elements in the directed subset are regarded as approximants of

the given element. Some approximants are found to be necessarily needed for the

approximation in the sense that no approximation can be made until the approxi-

mating sequence has passed those elements. This intuition can be encoded by the

so-called way-below relation on dcpos.

Definition 2.3.1. 1. Let L be a dcpo and a, b ∈ L. We say a is way-below b (in

symbols a≪ b) if and only if for all directed subsets D ⊆ L, b ≤ supD implies

a ≤ d for some d ∈ D.

2. An element x ∈ L is said to be compact if x ≪ x. The subset of all compact

elements in L is denoted by K(L).

3. For a ∈ L, we set ↓↓a = {x ∈ L | x ≪ a} and ↑↑a = {x ∈ L | a ≪ x}. For a

subset A ⊆ L, ↓↓A is defined as
∪
{↓↓x | x ∈ A}, and ↑↑A is defined dually, i.e.,∪

{↑↑x | x ∈ A}.

The following are some basic properties of the way-below relation and proofs are

omitted.
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Proposition 2.3.2. In a dcpo L the following statements hold for all a, b, c, d ∈ L.

1. a≪ b implies a ≤ b;

2. a ≤ b≪ c ≤ d implies a≪ d;

3. a≪ c and b≪ c imply a ∨ b≪ c whenever a ∨ b exists in L;

4. ⊥ ≪ a whenever L has a least element ⊥;

5. An element a is compact if and only if ↑a is Scott-open.

Continuous domains are those dcpos that are well-behaved regarding approximations.

Definition 2.3.3 (continuous domain, algebraic domain). 1. A dcpo L is called

continuous if for every x ∈ L, ↓↓x is directed and sup ↓↓x = x. Continuous dcpos

are also called continuous domains or simply domains. A continuous lattice is

a continuous domain that is simultaneously a complete lattice. The category

of all continuous domains is denoted by CONT.

2. A dcpo L is called algebraic if for every x ∈ L, ↓x ∩ K(L) is directed and

sup(↓x ∩ K(L)) = x. Algebraic dcpos are also called algebraic domains. An

algebraic domain L is called countably based if K(L) is a countable set. An al-

gebraic lattice is an algebraic domain that is simultaneously a complete lattice.

The category of all algebraic domains is denoted by ALG.

Example 2.3.4. 1. The unit interval [0, 1] is a continuous lattice in the usual

order, where a≪ b in [0, 1] iff a = b = 0 or a < b.

2. The set Z− of negative integers with the natural ordering is an algebraic do-

main. Every element in it is compact.
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Figure 2.2: A non-continuous dcpo A.

3. Every finite poset is an algebraic domain, with every element in it being com-

pact.

4. [GHK+03, Proposition I-1.4] For a locally compact topological space X, the

lattice O(X) of open sets of X, under the containment partial order, is a

continuous lattice. For any two open subsets U and V , U ≪ V in O(X) if and

only if there exists a compact saturated subset K such that U ⊆ K ⊆ V .

5. The dcpo A in Figure 2.2 is not continuous, since ↓↓x = ∅ for all x ∈ A.

The following proposition simplifies the verification of continuity.

Proposition 2.3.5. A dcpo L is continuous iff for every x ∈ L there exists a directed

subset A ⊆ ↓↓x such that supA = x.

Proof. We show the non-trivial direction. Fix x ∈ L and the corresponding directed

subset A ⊆ ↓↓x with supA = x; we prove that ↓↓x is directed. To this end, let a, b≪ x.

Since A is directed and supA = x, we have some c, d ∈ A such that a ≤ c and b ≤ d.

Again by the directedness of A, we can find some e ∈ A greater than both c and d.

Then we have a, b ≤ e ∈ A ⊆ ↓↓x. That is, e is an upper bound of a and b in ↓↓x.

Hence ↓↓x is directed.
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The following proposition shows an important property that every continuous domain

enjoys, which enables us to examine the Scott topology on continuous domains more

clearly.

Proposition 2.3.6 (Interpolation Property). Let L be a continuous domain. If

a≪ b in L, then there exists some element c ∈ L such that a≪ c≪ b.

Proof. We consider the set B := {x | ∃y : x ≪ y ≪ b}, and claim that B is a

directed subset of L and supB = b. Obviously B is not empty. For x1, x2 ∈ B, there

exist y1, y2 such that x1 ≪ y1 ≪ b and x2 ≪ y2 ≪ b. Since L is continuous, ↓↓b is

directed. We have some y3 ∈ ↓↓b such that y1, y2 ≤ y3. By Proposition 2.3.2, we have

x1, x2 ∈ ↓↓y3. Again from the directedness of ↓↓y3, there is some x3 ∈ ↓↓y3 above x1

and x2. So we have x3 ≪ y3 ≪ b, which implies x3 ∈ B and hence B is directed.

Now we prove that supB = b. First, supB is larger than every element y in ↓↓b since

↓↓y ⊆ B and that y = sup ↓↓y. So b = sup ↓↓b ≤ supB. Conversely, supB is obviously

less than b since B ⊆ ↓↓b ⊆ ↓b. Hence we have supB = b.

Since a ≪ b and supB = b, we have some x ∈ B such that a ≤ x. Since x ∈ B,

there exists some c such that x≪ c≪ b. So we have a ≤ x≪ c≪ b, which in light

of Proposition 2.3.2 implies that a≪ c≪ b.

As promised, with the Interpolation Property at hand, the Scott topology on con-

tinuous domains becomes more transparent.

Proposition 2.3.7. Let L be a dcpo. Then intσ↑x ⊆ ↑↑x for all x ∈ L. If in addition,

L is continuous, then ↑↑x is Scott-open and intσ↑x = ↑↑x.

Proof. Take a ∈ intσ↑x and assume that a ≤ supE for some directed subset E ⊆ L.

It follows from the Scott-openness of intσ↑x that supE ∈ intσ↑x and E∩ intσ↑x ̸= ∅.

This means e ∈ intσ↑x ⊆ ↑x for some e ∈ E, which implies x≪ a. So intσ↑x ⊆ ↑↑x.
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From Proposition 2.3.2 ↑↑x is obviously an upper set. For the Scott-openness of ↑↑x,

let D be a directed subset with supD ∈ ↑↑x, i.e., x ≪ supD. If L is continuous, we

employ the Interpolation Property to find some y ∈ L such that x ≪ y ≪ supD.

This implies that y ≤ d for some d ∈ D and x ≪ d for this d, i.e., D ∩ ↑↑x ̸= ∅.

So ↑↑x is Scott-open. Now the equality intσ↑x = ↑↑x follows from the fact that ↑↑x is

Scott-open and ↑↑x ⊆ ↑x.

Proposition 2.3.8. Every continuous domain L is locally compact in the Scott

topology. More precisely, for any Scott-open set U ⊆ L and x ∈ U , there exists some

y ∈ L such that x ∈ ↑↑y ⊆ ↑y ⊆ U . In particular, the sets ↑↑x, x ∈ L form a basis of

the Scott topology σ(L).

Proof. Let U be a Scott-open subset of L and x ∈ U . Since L is continuous, we

have that ↓↓x is directed and sup ↓↓x = x ∈ U . From the openness of U , some y ∈ ↓↓x

is already in U . So we have x ∈ ↑↑y ⊆ ↑y ⊆ U . Obviously, ↑y is compact in

the Scott topology. From the previous proposition, we have that ↑y is a compact

neighbourhood of x inside U .

Alternatively, for continuous domains we can find another basis of the Scott topology,

namely, the set of Scott-open filters, where a Scott-open filter is a Scott-open set

which is also a filter in the sense of Definition 2.1.4.

Proposition 2.3.9. Let L be a continuous domain and U a Scott-open subset of L.

For every x ∈ U , there exists a Scott-open filter F such that x ∈ F ⊆ U .

Proof. Given any Scott-open set U and x ∈ U . From Proposition 2.3.8 there exists

some y ∈ U such that x ∈ ↑↑y ⊆ ↑y ⊆ U . By the Interpolation Property, we can find

some y1 such that y ≪ y1 ≪ x. Doing this inductively, we end up with a sequence

yi, i ∈ N such that y ≪ ...≪ yn ≪ ...≪ y1 ≪ x. Let F =
∪

i∈N
↑↑yi. Obviously, F is
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Scott-open and x ∈ F ⊆ U . We verify that F is a filter. To this end, let a, b ∈ F .

Then there exist i, j ∈ N and a ∈ ↑↑yi, b ∈ ↑↑yj. Without loss of generality we assume

i ≤ j, then a, b ∈ ↑↑yj ⊆ ↑yj ⊆ ↑↑yj+1 ⊆ F . So we find inside F a lower bound yj of

both a and b. Thus F is a filter.

Proposition 2.3.10. Every continuous domain with the Scott topology is a sober

space.

Proof. Let L be a continuous domain and A an irreducible closed subset of ΣL. We

consider the set ↓↓A and show that it is directed. For any a, b ∈ ↓↓A, we have that ↑↑a

and ↑↑b are two Scott-open subsets intersecting A. Since A is irreducible, ↑↑a∩↑↑b∩A is

not empty, say c ∈ ↑↑a∩↑↑b∩A. Since L is continuous, ↓↓c is directed; therefore we can

find some d ∈ ↓↓c such that a, b ≤ d. Thus d ∈ ↑a∩↑b∩↓↓c ⊆ ↑a∩↑b∩↓↓A, and hence

↓↓A is a directed subset of L and sup ↓↓A exists. Again since L is continuous, every

element in A can be approximated by a directed subset of ↓↓A, So supA = sup ↓↓A.

Moreover, we have supA ∈ A since A is Scott-closed and ↓↓A is a directed subset of

it. Finally, we can conclude that A = ↓ supA. So ΣL is sober.

Notice that from Proposition 2.3.8 we can find for every x ∈ U a compact neigh-

bourhood ↑y inside U . The set ↑y is not only a compact saturated set, it is also a

principal filter and enjoys the fact that any Scott-open cover of ↑y has a member

covering ↑y already. This phenomenon can be abstracted in general.

Definition 2.3.11. Let X be a topological space. A subset A of X is called super-

compact if for any open cover U of A, i.e., A ⊆
∪
U , there exists a member U ∈ U

such that A ⊆ U . Equivalently, a subset A is supercompact if and only if for arbi-

trary family {Ci}i∈I of closed sets, A∩
∩

i∈I Ci ̸= ∅ whenever K∩Ci ̸= ∅ for all i ∈ I.

X is called a locally supercompact space if for any open set U and x ∈ U , there exists

a supercompact neighbourhood K of x inside U , that is, x ∈ K◦ ⊆ K ⊆ U .
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Every supercompact set is compact, and every locally supercompact space is locally

compact. Combining Propositions 2.3.8 and 2.3.10 gives us the following refined

result.

Theorem 2.3.12. Every continuous domain with the Scott topology is a locally

supercompact sober space.

Conversely, every locally supercompact and sober topological space actually arises

as a continuous domain equipped with the Scott topology. To prove this, let us first

rewrite supercompact subsets in the language of the specialisation preorder.

Proposition 2.3.13. Let X be a topological space. Then the supercompact saturated

subsets of X are exactly the sets of the form ↑sx with x ∈ X.

Proof. From Proposition 2.2.25 ↑sx is saturated for all x ∈ X. Moreover, any open

cover of ↑sx contains a member U with x ∈ U , then ↑sx ⊆ U since open sets are

upper sets. Hence ↑sx is supercompact.

Reversely, assume that K is a supercompact saturated subset of X. Then K ∩∩
c∈K {c} = K ∩

∩
c∈K ↓sc is not empty. Pick x in the intersection and we claim that

↑sx = K. Obviously, ↑sx ⊆ K since x ∈ K and K is saturated. Conversely, for any

c ∈ K, x ≤s c since x ∈
∩

c∈K ↓sc. So K ⊆ ↑sx.

Theorem 2.3.14. Let X be a topological space. Then the following statements are

equivalent:

1. X is a locally supercompact sober space;

2. X is a locally supercompact monotone convergence space;

3. Ω(X) is a continuous domain, and O(X) = σ(Ω(X)), i.e., X = ΣΩ(X).
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Proof. (1⇒ 2) This is straightforward from Proposition 2.2.28.

(2 ⇒ 3) Since X is a monotone convergence space, Ω(X) is a dcpo. We proceed

to show that Ω(X) is continuous. For any x ∈ X, consider the set Ax = {y ∈ X |

x ∈ (↑sy)◦}. Since X is locally supercompact, Ax is a directed subset. Moreover,

supAx = x. In fact if supAx < x, we know that x ∈ X \ ↓ssupAx which is open.

Thus we use local supercompactness to find some z such that x ∈ (↑sz)◦ ⊆ ↑sz ⊆

X \ ↓ssupAx. Hence we obtain that z ∈ Ax and z ̸≤ supAx at the same time,

which is a contradiction. Finally, since X is a monotone convergence space, the

sets (↑sy)◦, y ∈ Ax are Scott-open and therefore we have y ≪ x for all y ∈ Ax. Hence

Ω(X) is a continuous domain by Proposition 2.3.5. To prove O(X) = σ(Ω(X)), we

only need to prove σ(Ω(X)) ⊆ O(X) since the reverse containment is always true

for monotone convergence spaces. To this end let U be a Scott-open set in Ω(X).

For any x ∈ U , we know that x = supAx, so Ax ∩U ̸= ∅. Pick y ∈ Ax ∩U . Then we

have that x ∈ (↑sy)◦ ⊆ ↑sy ⊆ U . This implies that σ(Ω(X)) ⊆ O(X).

(3⇒ 1) This is straightforward from Theorem 2.3.12.

Corollary 2.3.15. L is a continuous domain if and only if ΣL is a locally super-

compact sober space.

Proof. Straightforward from Theorems 2.3.12, 2.3.14 and the fact that L = Ω(ΣL).

If we denote the category of all locally supercompact sober spaces and continuous

functions by LSS. Then from the discussion above and Proposition 2.2.20 we have

the following categorical isomorphism.

Corollary 2.3.16. The category CONT is isomorphic to LSS.
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2.4 Quasicontinuous domains

Quasicontinuity is a generalisation of the notion of continuity of dcpos, introduced

in the early 80s by Gierz, Lawson and Stralka [GLS83].

Instead of focusing on the way-below relation between points, in the “quasi” setting

we talk about the way-below relation between finite sets and points, that is to say, we

use finite sets to approximate a given point. In general, one says that a subset G of a

dcpo L is way-below a subset H if for every directed set D, supD ∈ ↑H implies d ∈ ↑G

for some d ∈ D. This generalises the usual way-below relation between elements

which justifies writing G ≪ H for it. If H consists of a single element x then one

writes G≪ x instead of G≪ {x}. For any subset F of L, set ⇑F = {x ∈ L | F ≪ x}

(Be aware that ⇑F is different from ↑↑F which was defined in Definition 2.3.1).

Consistent with this we define a preorder (called the Smyth preorder) between subsets

G,H by G ≤ H ⇔ ↑H ⊆ ↑G. This implies that a family F of subsets is directed if

the corresponding family {↑G | G ∈ F} is filtered in the inclusion order. Note that

the Smyth preorder becomes a partial order on any family consisting of upper sets

and is equal to reverse containment.

The following properties of the way-below relation between subsets are trivial.

Proposition 2.4.1. In a dcpo L the following statements hold for all subsets

A,B,C,D of L.

1. A≪ B implies A ≤ B, i.e., B ⊆ ↑A;

2. A ≤ B ≪ C ≤ D implies A≪ D;

3. A≪ B and C ≪ D imply A ∪ C ≪ B ∪D.
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Figure 2.3: A non-quasicontinuous dcpo.

Definition 2.4.2 (quasicontinuous domain). A dcpo L is called quasicontinuous (or

a quasicontinuous domain) if for each x ∈ L the family

fin(x) = {F | F is finite, F ≪ x}

is a directed family, and whenever x ≰ y, then there exists F ∈ fin(x) with y /∈ ↑F ,

i.e., ↑x =
∩
{↑F | F ∈ fin(x)}.

The category of quasicontinuous domains is denoted by qCONT.

Proposition 2.4.3. Every continuous domain is quasicontinuous.

Proof. Straightforward.

Example 2.4.4. Quasicontinuous domains strictly generalise continuous ones. The

dcpo A in Figure 2.2 is a quasicontinuous domain which is not continuous. Mean-

while, not every dcpo is quasicontinuous, a counterexample is the dcpo in Figure 2.3.

Concretely, this dcpo is obtained by taking infinitely many disjoint copies of the nat-

ural numbers (with the usual order) and gluing them together at∞. The verification

is easy and omitted here.
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Quasicontinuous domains share many properties with continuous domains. Espe-

cially we will see that every quasicontinuous domain is locally compact and sober

in the Scott topology, a property that every continuous domain enjoys (see Theo-

rem 2.3.12). Before we proceed, let us first recall Rudin’s lemma, which relies on

Axiom of Choice and is important for us to work with quasicontinuity.

Lemma 2.4.5 (Rudin’s Lemma). [GHK+03, Lemma III-3.3] Let F be a directed

family of non-empty finite subsets of a partially ordered set L. Then there exists a

directed set D ⊆
∪

F∈F F such that D ∩ F ̸= ∅ for all F ∈ F .

The following key fact is a consequence of Rudin’s Lemma:

Proposition 2.4.6. (cf. [HK13, Lemma 4.1]) Let L be a dcpo and G,H ⊆ L.

Then G≪ H if and only if for any directed family F of non-empty finite sets, that∩
{↑F | F ∈ F} ⊆ ↑H implies that F ⊆ ↑G for some F ∈ F .

Proof. The “if” direction is obvious. To prove the “only if” part, we assume that

F ̸⊆ ↑G for all F ∈ F . Then {F \↑G | F ∈ F} is also a directed family of non-empty

finite sets. By Rudin’s lemma, there exists a directed set D ⊆ (
∪

F∈F F ) \ ↑G such

that D ∩ (F \ ↑G) ̸= ∅ for all F ∈ F . So supD ∈ ↑F for all F , which implies

supD ∈
∩
{↑F | F ∈ F} ⊆ ↑H. One then obtains that ↑G ∩D ̸= ∅ since G ≪ H,

which is a contradiction to the fact that D ⊆ (
∪

F∈F F ) \ ↑G.

Remark 2.4.7. Roughly speaking, the previous proposition indicates that one could

define alternatively the way-below relation between finitely generated subsets by

considering the usual way-below relation between them, as defined in Definition 2.3.1,

in the poset of finitely generated upper sets with the reverse inclusion order. One

then can define quasicontinuity of a dcpo by stipulating that its finitely generated

subsets form a continuous poset. For a detailed investigation of this idea, one may

refer to [HK13, Section 4].
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We now use the previous proposition to prove a convenient criterion for quasiconti-

nuity, which can be regarded as a quasi-version of Proposition 2.3.5.

Proposition 2.4.8. A dcpo L is quasicontinuous if for every x ∈ L the family fin(x)

contains a directed subfamily G such that ↑x =
∩
{↑G | G ∈ G}.

Proof. We only need to prove that the family fin(x) is directed. For F,H ∈ fin(x),

since F,H ≪ x and
∩
{↑G | G ∈ G} = ↑x, by Proposition 2.4.6, there exist G1, G2 ∈

G such that G1 ⊆ ↑F and G2 ⊆ ↑H. Then some G ∈ G is included in ↑F ∩ ↑H since

G is directed.

Similar to Proposition 2.3.6, we also have a quasi-version of the Interpolation Prop-

erty for quasicontinuous domains.

Proposition 2.4.9. [GHK+03, Theorem III-3.5] Let L be a quasicontinuous domain

and H ⊆ L. If H ≪ x, then there exists a finite set F such that H ≪ F ≪ x.

Proof. For the given x we first consider the collection

G = {G : G ∈ fin(x) | ∃F ∈ fin(x), G≪ F ≪ x},

and prove that G is a directed family and
∩

G∈G ↑G = ↑x. Obviously, we have

↑x ⊆
∩

G∈G ↑G. For the reverse, if z ̸∈ ↑x, i.e., x ̸≤ z, from the quasicontinuity

there exists a finite F ⊆ L such that F ≪ x and z ̸∈ ↑F . For each a ∈ F , we have

a ̸≤ z, then similarly a finite subset Fa ⊆ L can be found satisfying that Fa ≪ a and

z ̸∈ ↑Fa. Set K =
∪

a∈F Fa. By Proposition 2.4.1 one easily sees that K ≪ F ≪ x,

hence K ∈ G. Moreover we have z ̸∈ ↑K, which implies that z ̸∈
∩

G∈G ↑G and

hence
∩

G∈G ↑G ⊆ ↑x. For directedness of G, suppose Gi ∈ G and Gi ≪ Fi ≪ x for

Fi finite and i = 1, 2. Since L is quasicontinuous, there exists F ∈ fin(x) such that
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F ⊆ ↑F1 ∩ ↑F2. Then Gi ≪ Fi ≤ F implies Gi ≪ F for i = 1, 2. It then follows that

Gi ≪ b for all b ∈ F and i = 1, 2. Again since L is quasicontinuous, fin(b) is directed

for every b ∈ F ; therefore, there exists a finite set Eb for every b ∈ F such that

Eb ≪ b and Eb ⊆ ↑G1∩↑G2. Set E =
∪

b∈F Eb. Then E is finite and E ⊆ ↑G1∩↑G2,

and again by Proposition 2.4.1 we have E ≪ F ≪ x. This means that E ∈ G and

hence G is directed.

Since H ≪ x and G is a directed family with
∩

G∈G ↑G = ↑x, from Proposition 2.4.6

we have that G ⊆ ↑H for some G ∈ G. Since G ≪ F ≪ x for some finite F , and

finally we conclude that H ≪ F ≪ x.

Proposition 2.4.10. [GHK+03, Proposition III-3.6] Let L be a quasicontinuous

domain.

1. A subset U of L is Scott-open iff for each x ∈ U there exists a finite F ≪ x

such that ↑F ⊆ U .

2. The sets ⇑F = {x | F ≪ x} for all finite F of L are Scott-open and they are

equal to intσ(↑F ), hence from 1, the family {⇑F | F ⊆fin L} forms a basis for

the Scott topology.

Proof. (1) Let U be a Scott-open subset and x ∈ U . From the definition of Scott-

open sets we know that U ≪ x. We employ Proposition 2.4.9 to find a finite subset F

such that U ≪ F ≪ x. Since U is an upper set, we have ↑F ⊆ U . Conversely, let

U be any subset satisfying the assumption. Then U must be an upper set, since

for any x ∈ U , there exists a finite F with F ≪ x and ↑F ⊆ U , this implies that

↑x ⊆ ↑F ⊆ U . Now assume that D is a directed subset with supD ∈ U . Again from

the assumption, there exists some finite G such that G ≪ supD and ↑G ⊆ U . So

some d ∈ D must be in ↑G hence in U from the definition of the way-below relation.

So U is Scott-open.
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(2) The Scott-openness of ⇑F follows from (1) since by Proposition 2.4.9 for each

x ∈ ⇑F there exists a finite set H such that F ≪ H ≪ x, i.e., H ≪ x and

↑H ⊆ ⇑F . Since ⇑F is Scott-open and ⇑F ⊆ ↑F , we have ⇑F ⊆ intσ(↑F ). The

reverse containment is obvious. Hence we have ⇑F = intσ(↑F ). Finally, that the

family {⇑F | F ⊆fin L} forms a basis for the Scott topology is a direct consequence

of the first statement.

We arrive at one of the main results of this section, which says that quasicontinuous

domains generalise continuous ones in the realm of locally compact sober dcpos.

Theorem 2.4.11. [GHK+03, Proposition III-3.7] Every quasicontinuous domain

with the Scott topology is a locally compact sober space.

Proof. Let L be a quasicontinuous domain and U a Scott-open set in L and x ∈ U .

By Proposition 2.4.10, there exists a finite set F such that F ≪ x and ↑F ⊆ U .

Thus we have x ∈ ⇑F ⊆ ↑F ⊆ U . Since ⇑F is Scott-open from Proposition 2.4.10,

and ↑F is obviously compact, it then follows that ↑F is a compact neighbourhood

of x inside U . Hence L is locally compact.

For sobriety, let A be a closed irreducible subset of L. Consider the collection F =

{F : F is finite | ⇑F ∩ A ̸= ∅}. We claim that F is a directed family of finite sets.

Obviously, F is not empty because of quasicontinuity. Given F1, F2 ∈ F , we have

that ⇑F1 ∩ A ̸= ∅ and ⇑F2 ∩ A ̸= ∅. From the previous proposition ⇑F1,⇑F2 are

Scott-open, it then follows that ⇑F1 ∩ ⇑F2 ∩A ̸= ∅ since A is irreducible. Pick some

a in the intersection; by the quasicontinuity of L, there exists some finite G ∈ fin(a)

such that G ⊆ ↑F1 ∩ ↑F2. This implies that G ∈ F and F is directed. Since A is a

closed set, the collection {F ∩A | F ∈ F} is also a directed family of finite non-empty

sets. We apply Rudin’s lemma to this collection and find a directed set D such that

D ⊆
∪

F∈F(F ∩ A) ⊆ A and D ∩ F ̸= ∅ for all F ∈ F . We proceed by showing that
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supD is the largest element of A. Since D ⊆ A and A is Scott-closed, supD ∈ A.

Assume that there exists t ∈ A such that t ̸≤ supD. Since L is quasicontinuous we

have some finite set E ∈ fin(t) such that supD /∈ ↑E. However, since t ∈ ⇑E ∩ A,

E is in F by definition and hence supD ∈ ↑E. This contradiction implies that

supD is the largest element in A. Hence A = ↓ supD and L is sober in the Scott

topology.

Quasicontinuous domains are special locally compact sober dcpos. As can be seen,

the compact neighbourhoods found in the above proof are of a special form: they are

finitely generated upper sets. We make this property into the following definition.

Definition 2.4.12. A topological space X is called locally finitary compact if for

any open set U and x ∈ U , there exists a finite set F ⊆ U such that x ∈ (sat(F ))◦ ⊆

sat(F ) ⊆ U .

Since sat(F ) is always compact saturated for any finite set F , every locally finitary

compact space is always locally compact.

The following statement is obvious from the proof of Theorem 2.4.11.

Proposition 2.4.13. Every quasicontinuous domain is locally finitary compact and

sober.

We know from Theorem 2.3.14 that locally supercompact sober spaces arise as con-

tinuous domains equipped with the Scott topology; locally finitary compact sober

spaces, meanwhile, are actually quasicontinuous domains equipped with the Scott

topology. To prove this, we need the following result first.

Proposition 2.4.14. Let L be a dcpo and {Fα}α∈A a directed family of non-empty

finite subsets of L. If the intersection
∩

α∈A ↑Fα is included in a Scott-open set U ,
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then some Fα is already contained in U . Moreover, the intersection
∩

α∈A ↑Fα is

compact.

Proof. Assume the statement is not true, that is, Fα \ U ̸= ∅ for all α ∈ A. Then

{Fα \U | α ∈ A} is a directed family of finite sets. By Rudin’s Lemma, there exists a

directed subset D ⊆
∪

α∈A(Fα\U) such that D∩(Fα\U) ̸= ∅ for all α ∈ A. The latter

inequality implies that supD ∈
∩

α∈A ↑Fα ⊆ U . Hence some d ∈ D is in U since U is

Scott-open. However, this is impossible since d ∈ D ⊆
∪

α∈A(Fα\U) = (
∪

α∈A Fα)\U .

Any Scott-open cover of the intersection
∩

α∈A ↑Fα actually covers some ↑Fα, and

consequently finitely many members suffice to cover ↑Fα since Fα is finite. Hence

the same finite members cover
∩

α∈A ↑Fα already.

Theorem 2.4.15 (cf. [Law85, Theorem 2]). Let X be a topological space. Then the

following statements are equivalent:

1. X is a locally finitary compact sober space;

2. X is a locally finitary compact monotone convergence space;

3. Ω(X) is a quasicontinuous domain, and O(X) = σ(Ω(X)), i.e., X = ΣΩ(X).

Proof. (1⇒ 2) This is from Proposition 2.2.28.

(2 ⇒ 3) Since X is a monotone convergence space, Ω(X) is a dcpo. We show that

Ω(X) is quasicontinuous. For any x ∈ Ω(X), consider the family

Ax = {F | F ⊆fin X & x ∈ (↑sF )◦}.

We know that Ax ⊆ fin(x) since X is a monotone convergence space. Also, since X

is locally finitary compact, Ax is directed and
∩

F∈Ax
↑sF = ↑sx. It then follows from

Proposition 2.4.8 that Ω(X) is quasicontinuous. To prove that O(X) = σ(Ω(X)),
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let U ∈ σ(Ω(X)) and x ∈ U . Then Ax defined above is a directed family of finite

sets and
∩

F∈Ax
↑sF = ↑sx ⊆ U , hence by Proposition 2.4.14 there exists some

F ∈ Ax such that F ⊆ U . This implies that x ∈ (↑sF )◦ ⊆ ↑sF ⊆ U . Thus we

have U ∈ O(X) and σ(Ω(X)) ⊆ O(X). The reverse containment holds since X is a

monotone convergence space.

(3⇒ 1) This is straightforward from Proposition 2.4.13.

If we denote the category of all locally finitary compact sober spaces and continuous

functions by LFS. Then analogously to Corollary 2.3.16 we have the following.

Corollary 2.4.16. The category qCONT is isomorphic to LFS.

2.5 Core-compactness and sobriety

In Sections 2.3 and 2.4 we have seen that both continuous domains and quasicon-

tinuous domains are locally compact sober dcpos. In this section, we take a closer

look at those two properties, i.e., local compactness and sobriety, and the interplay

between them. For a greater generality, we start from the following definition.

Definition 2.5.1 (core-compact space). A topological space X is called core-compact

if its open sets form a continuous lattice in the inclusion order. In particular, a dcpo L

is called a core-compact dcpo if σ(L) is a continuous lattice.

Remark 2.5.2. From Example 2.3.4 every locally compact topological space is core-

compact. In particular, every quasicontinuous domain is locally compact by Theo-

rem 2.4.11 and hence core-compact.

The following observation is a direct consequence of the definition of core-compact

spaces.
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Proposition 2.5.3. A topological space X is core-compact if and only if for any

open set U ∈ O(X) and x ∈ U , there exists an open set V such that x ∈ V ≪ U .

Proposition 2.5.4. (cf. [GL13, Exercise 5.2.7]) A topological space X is core-

compact if and only if the set (∋) := {(U, x) ∈ O(X) × X | x ∈ U} is open in

ΣO(X)×X, the topological product of ΣO(X) and X.

Proof. Assume that X is core-compact, that is, O(X) is a continuous lattice in the

inclusion order. For any (U, x) ∈ (∋), we know x ∈ U . Since O(X) is continuous, we

can find some V ∈ O(X) such that x ∈ V ≪ U . Again since O(X) is continuous,

↑↑V is Scott-open. So ↑↑V × V is an open set in ΣO(X)×X containing (U, x). Note

that ↑↑V × V is contained in (∋), so the set (∋) is open in ΣO(X)×X.

Conversely, let U be any open subset of X and x ∈ U . Then (U, x) ∈ (∋). By

assumption (∋) is open in ΣO(X) × X, we find a Scott-open subset H of O(X)

and an open set V ∈ O(X) such that (U, x) ∈ (H, V ) ⊆ (∋). Note that the fact

(H, V ) ⊆ (∋) implies that V ⊆
∩
H, so we have x ∈ V ⊆

∩
H ⊆ U . The Scott-

openness of H tells us that V is actually way-below U .

Core-compactness is an essential topological property in finding cartesian closed full

subcategories of topological spaces. The core-compact spaces are precisely the ex-

ponentiable objects in the category of topological spaces and continuous functions.

For a core-compact topological space Y and an arbitrary space Z, the exponential

object ZY is the topological space with the underlying set

C[Y, Z] = {f : Y → Z | f is continuous}

equipped with the Isbell topology which is generated, as a subbasis, by subsets of the

form:

N(H ← U) = {f ∈ C[Y, Z] | f−1(U) ∈ H},
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where H is a Scott-open set in O(Y ) and U an open set in Z.

Theorem 2.5.5. For a topological space X, the following statements are equivalent:

1. X is core-compact;

2. X is exponentiable in the category of topological spaces and continuous func-

tions.

A full development of this result can be found in [GHK+03, Section 2.4] and in [GL13,

Section 5.4]. An elementary treatment is accessible at [EH02], and the above theorem

appears as [EH02, Theorem 4.7].

For topological spaces C and Z, another common topology defined on C[Y, Z] is the

so-called compact-open topology, where opens in the subbasis of the topology are of

the from:

N(K → U) = {f ∈ C[Y, Z] | f(K) ⊆ U},

where K is a compact set in Y and U an open set in Z.

For dcpos L and M , the Isbell topology and the compact-open topology are defined on

the function space [L→M ] by viewing it as C[ΣL,ΣM ] in light of Proposition 2.2.20.

Proposition 2.5.6. 1. Let Y, Z be topological spaces. Then the compact-open

topology is coarser than the Isbell topology on C[Y, Z]. If Y is locally compact,

then the two topologies coincide.

2. Let L,M be dcpos. Then the Isbell topology is coarser than the Scott topology

on the function space [L→M ].

Proof. (1) The compact-open topology is always coarser than the Isbell topology.

Indeed, for any compact subset K of Y , let K = {V ∈ O(Y ) | K ⊆ V }. One easily
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verifies that K is a Scott-open set in O(Y ) and N(K ← U) = N(K → U) for any

open set U ∈ O(Z).

Now we assume that Y is locally compact. Let H be a Scott-open set in O(Y ) and U

an open set in Z. For any f ∈ N(H ← U), f−1(U) ∈ H. Since Y is locally compact,

f−1(U) =
∪
{K◦ | K ⊆ f−1(U) & K is compact}.

This is a directed union, so there exists a compact set K ⊆ f−1(U) such that K◦ ∈ H.

Then one has f(K) ⊆ U , i.e., f ∈ N(K → U). Moreover, for any g ∈ N(K → U),

K◦ ⊆ K ⊆ g−1(U), so g−1(U) ∈ H, i.e., g ∈ N(H ← U). To sum up, one has that

f ∈ N(K → U) ⊆ N(H ← U), and this implies that the Isbell topology is coarser

than the compact-open topology.

(2) Let H be a Scott-open set in σ(L) and U be a Scott-open set in M . We first

prove that N(H ← U) is an upper set. To this end let f ≤ g in [L → M ] and

f ∈ N(H ← U). For any x ∈ f−1(U), f(x) ∈ U hence g(x) ∈ U since f ≤ g. So we

have f−1(U) ⊆ g−1(U). Since f−1(U) ∈ H by assumption, we have that g−1(U) is in

the Scott-open set H, which is equivalent to saying that g ∈ N(H ← U); therefore

N(H ← U) is an upper set. Now take any directed family {fi}i∈I of Scott-continuous

functions and assume supi∈I fi ∈ N(H ← U). This means that (supi∈I fi)
−1(U) ∈ H.

Since fi, i ∈ I, are Scott-continuous and U is Scott-open, with a simple computation

we know that (supi∈I fi)
−1(U) =

∪
i∈I f

−1
i (U) ∈ H. Note that {f−1

i (U)}i∈I is a

directed family of open sets, then we have some i ∈ I such that f−1
i (U) ∈ H, and

hence fi ∈ N(H ← U). So N(H ← U) is Scott-open, and hence the Isbell topology

is coarser than the Scott topology.

We have seen that by Theorem 2.5.5 core-compact spaces can be characterised as

exponentiable objects in the category of topological spaces; core-compact dcpos,
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meanwhile, can be further described via products of the Scott topology.

Theorem 2.5.7. (cf. [GHK+03, Theorem II-4.13]) Let L be a dcpo. Then the

following statements are equivalent:

1. L is core-compact, i.e., σ(L) is a continuous lattice;

2. for every dcpo S one has Σ(S × L) = ΣS × ΣL1;

3. for every complete lattice S one has Σ(S × L) = ΣS × ΣL;

4. Σ(σ(L)× L) = Σ(σ(L))× ΣL.

This result originally appears as [GHK+80, Theorem II-4.11], we present a more

direct proof here.

Proof. (1 ⇒ 2) We prove that the topologies on both Σ(S × L) and ΣS × ΣL

coincide. It is easy to see that every open set in ΣS × ΣL is Scott-open in S × L,

we prove the inverse provided L is core-compact. To this end let O be a Scott-open

set in S × L and (a, b) ∈ O. We consider the set B = {y ∈ L | (a, y) ∈ O}.

Obviously B is a Scott-open set in L containing b. From core-compactness of L

there exists some Scott-open set V ∈ σ(L) such that b ∈ V ≪ B. Moreover, since

σ(L) is continuous, we employ the Interpolation Property to find a sequence {Vi}i∈N

of Scott-open sets in L such that b ∈ V ≪ ... ≪ Vn ≪ ... ≪ V1 ≪ B. For each

i ∈ N, we define Ui = {x ∈ S | {x} × Vi ⊆ O}, and let U =
∪

i∈N Ui. Since for each

i ∈ N, {a} × Vi ⊆ {a} × B ⊆ O, we have that a ∈ Ui for each i ∈ N, and hence

a ∈ U . Moreover, for any c ∈ U , there exists some j ∈ N such that c ∈ Uj, hence

{c} × Vj ⊆ O. Note that {c} × V ⊆ {c} × Vj ⊆ O, this implies that U × V ⊆ O.
1Note that these two products are taken in the category of dcpos and that of topological spaces,

respectively.
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To sum up, we have (a, b) ∈ U × V ⊆ O. Since V is Scott-open in L, we finish our

proof by showing that U is Scott-open in S. Indeed, the set U is obviously an upper

set since each Ui, i ∈ N is. Now let D be a directed subset of S and supD ∈ U .

For each d ∈ D, set Wd = {y ∈ L | (d, y) ∈ O}. It is easy to see that {Wd}d∈D

is a directed family of Scott-open sets in L. Since supD ∈ U , there exists some

n ∈ N such that supD ∈ Un, which means that {supD} × Vn ⊆ O. Then for each

y ∈ Vn, (supD, y) ∈ O; therefore, there exists some e ∈ D such that (e, y) ∈ O, i.e.,

y ∈ We. This implies that Vn ⊆
∪

d∈D Wd. Remember that Vn+1 ≪ Vn, it follows

that Vn+1 ⊆ Wd for some d ∈ D. Then for this d, by definition of Wd we know that

{d}×Vn+1 ⊆ O, and this means that d ∈ Un+1 ⊆ U . So U is indeed Scott-open in S.

(2⇒ 3) Obvious.

(3⇒ 4) Obvious.

(4⇒ 1) By Proposition 2.5.4, we prove that L is core-compact by showing that the

set (∋) = {(U, x) | x ∈ U ∈ σ(L)} is open in Σ(σ(L)) × ΣL. From the assumption,

we only need to prove that (∋) is Scott-open in σ(L) × L. This is obvious and we

omit it here.

The above theorem enables us to prove that certain dcpos are sober in the Scott

topology.

Theorem 2.5.8. Let L be a join-complete dcpo, that is, supA exists for all non-

empty A ⊆ L. If L is core-compact, then L is a sober dcpo.

Proof. We first note that the binary join operation ∨ : (a, b) 7→ a ∨ b : L × L →

L is Scott-continuous, which is straightforward from Proposition 2.2.3, and this is

equivalent to saying that ∨ is continuous from Σ(L × L) to ΣL. Since L is core-

compact, from Theorem 2.5.7 Σ(L×L) = ΣL×ΣL. We have that ∨ is also continuous

from ΣL× ΣL to ΣL.
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Figure 2.4: Johnstone’s non-sober dcpo J .

Now we assume that L is not sober in the Scott topology, that is, there exists

an irreducible closed set A ⊆ L such that A does not have a greatest element.

Since A is Scott-closed, we then have at least two different maximal elements in A,

say a and b. It is easy to see that a ∨ b ∈ L \ A. Since ∨ is continuous from

ΣL× ΣL to ΣL, we can find Scott-open sets U and V in L such that a ∈ U , b ∈ V

and U ∨ V = {u ∨ v | u ∈ U & v ∈ V } ⊆ L \ A. Since U and V are upper

sets, U ∨ V = U ∩ V . This implies that U ∩ V ⊆ L \ A, which is equivalent to

A ⊆ (L \ U) ∪ (L \ V ). Remembering that A is an irreducible closed set, we have

either A ⊆ L \ U or A ⊆ L \ V . However, neither case is possible since a ∈ A ∩ U

and b ∈ A ∩ V . This contradiction implies that L is actually sober.

Not every dcpo is sober in the Scott topology. In fact, this question was not clear

until Johnstone [Joh81] gave a non-sober dcpo in 1981. His example is depicted in

Figure 2.4.

Example 2.5.9 (Johnstone’s non-sober dcpo J ). Let N be the set of natural num-

bers and J = N× (N ∪ {∞}) with the partial order defined by (m,n) ≤ (m′, n′) iff

either m = m′ and n ≤ n′ ≤ ∞ or n′ =∞ and n ≤ m′.
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It is easy to see from the figure that J is a dcpo. We now claim that J itself is

a Scott-closed irreducible set. In fact, for any two non-empty Scott-open subsets U

and V , we have some (i,∞) ∈ U and (j,∞) ∈ V . Since U, V are Scott-open and

(i,∞) =
∨

k∈N(i, k), (j,∞) =
∨

k∈N(j, k), we have some ki and kj such that (i, ki) ∈ U

and (j, kj) ∈ V . Without loss of generality we assume that ki ≤ kj. Then from the

order, we know that (i, ki), (j, kj) ≤ (kj,∞). This implies that (kj,∞) ∈ U ∩ V . So

J is indeed an irreducible set. However, Since (n,∞) is maximal in J for all n ∈ N,

J cannot be written as a Scott closure of some singleton. We conclude that J is not

sober.

In general, to verify that a space is sober is quite complicated. The following theo-

rem, called the Hofmann-Mislove Theorem, supplies an important characterisation of

sober spaces via a correspondence between compact saturated subsets and Scott-open

filters of opens.

Before we proceed, let us fix some notations first. For a topological spaces X, we

set Q(X) to be the set of all compact saturated subsets (including the empty set)

of X. For a dcpo L, we use OFilt(L) to denote the set of all Scott-open filters in L. We

equip Q(X) with the reverse inclusion order and OFilt(L) with the inclusion order.

The Hofmann-Mislove Theorem states that Q(X) and OFilt(O(X)) are isomorphic

for any sober space X.

Theorem 2.5.10 (Hofmann-Mislove Theorem). Let X be a sober space. Then the

mapping

Φ : Q(X)→ OFilt(O(X)),Φ(K) = {U ∈ O(X) | K ⊆ U}

which assigns to a compact saturated subset K of X the open filter of all open sets

containing K is an order isomorphism between Q(X) (ordered by reverse inclusion)
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and OFilt(O(X)). The inverse sends an open filter of open sets to its intersection:

Ψ : OFilt(O(X))→ Q(X),Ψ(F) =
∩
F =

∩
{U | U ∈ F}.

Moreover, for any T0 space X, if either the function Φ or Ψ defined above is an

isomorphism, then X is sober.

This theorem originates from [HM81], where the proof was given by K. Hofmann

and M. Mislove via spectral theory. A direct and more accessible proof was for-

malised by K. Keimel and J. Paseka in [KP94]. The second part of this theorem is

a straightforward consequence of [GHK+03, Theorem II-1.21].

Proposition 2.5.11. Every sober space is well-filtered.

Proof. Let X be a sober space, and assume that {Kα}α∈A is a filtered family of

compact saturated subsets with its intersection
∩

α∈A Kα contained in an open subset

U of X. We consider the family F = {V ∈ O(X) | Kα ⊆ V for some α ∈ A} of

open sets. One can easily check that this family is a Scott-open filter in O(X) and∩
F =

∩
α∈A Kα. By the Hofmann-Mislove Theorem, any open set containing

∩
F

is actually in F . In particular, we have that U is in F , and by the definition we

know that some Kα is contained in U .

Proposition 2.5.12. Let X be a well-filtered space and {Kα}α∈A a filtered family of

compact saturated subsets of X. Then
∩

α∈A Kα is compact.

Proof. Let U be a family of open sets covering
∩

α∈AKα, that is,
∩

α∈AKα ⊆
∪
U .

Since X is well-filtered, we have some α ∈ A such that Kα ⊆
∪
U . Since Kα is

compact, finitely many open sets in U cover Kα, and these finite open sets cover the

intersection
∩

α∈AKα as well.
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Example 2.5.13. Johnstone’s dcpo J offers a non-sober dcpo; J is also a non-well-

filtered dcpo. In fact, from Example 2.5.9 we easily see that the induced topology

on the set of maximal elements of J is equal to the co-finite topology. This implies

that any subset of maximal elements of J is actually compact and saturated. If we

denote the set {(i,∞) ∈ J | i ≥ n} by Mn, then {Mn | n ∈ N} is a filtered family of

compact saturated subsets of J with an empty intersection. However, none of such

Mn, n ∈ N is empty. So J is not well-filtered.

One sees from the definition of well-filteredness, as a contrapositive statement, that

a space X is well-filtered if and only if, for every closed subset C ⊆ X, and for every

filtered family {Kα}α∈A of compact saturated sets such that Kα intersects C for all

α ∈ A, the intersection
∩

α∈AKα also intersects C. Moreover, we have the following

stronger statement.

Proposition 2.5.14. A space X is well-filtered if and only if, for every filtered

family {Cβ}β∈B of closed subsets, and for every filtered family {Kα}α∈A of compact

saturated sets such that Kα intersects Cβ for each α ∈ A, β ∈ B, the intersection∩
α∈A Kα ∩

∩
β∈B Cβ is not empty.

Proof. For any fixed α ∈ A, we know that Kα ∩ Cβ ̸= ∅ for all β ∈ B. Since Kα is

compact and {Cβ}β∈B is filtered, we have that
∩

β∈B Cβ∩Kα ̸= ∅. Note this holds for

all α ∈ A, so from the contrapositive statement above,
∩

α∈AKα ∩
∩

β∈B Cβ ̸= ∅.

Sobriety and well-filteredness are two different notions for T0 topological spaces. One

can easily find well-filtered spaces which are not sober. For instance, the space of

real numbers with the co-countable topology, i.e., open sets consist of the emptyset

and those subsets with countable complements. In this space, compact subsets are

precisely the finite subsets, hence the space is well-filtered, while it is not sober since

the whole space itself is irreducible.
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However, whether sobriety and well-filteredness coincide on dcpos was unknown for a

long time. In fact, R. Heckmann asked this question in [Hec92] as an open problem.

After 9 years, H. Kou [Kou01] answered it in the negative by giving a non-sober

well-filtered dcpo. Moreover, he proved that these two notions coincide over locally

compact dcpos [Kou01, Theorem 2.2]. In general, this also holds for T0 topological

spaces.

Proposition 2.5.15. [Kou01, Theorem 2.3] Let X be a locally compact T0 space.

Then X is sober if and only if it is well-filtered.

Proof. From Proposition 2.5.11 we know sober spaces are well-filtered. We prove

that well-filteredness and local compactness imply sobriety. To this end, let A be

a closed irreducible subset of X. Consider the family K = {K ∈ Q(X) | A ∩

K◦ ̸= ∅} of compact saturated subsets K with their interior K◦ intersecting A.

Since A is irreducible and X is locally compact, K is a filtered family of compact

saturated subsets. By Proposition 2.5.14,
∩
K intersects A. Pick a ∈

∩
K ∩A. The

closure of {a} is obviously contained in A. Conversely, for any x ∈ A and open

set U containing x, since X is locally compact, we find some compact saturated

neighbourhood Q of x inside U . Then we have that Q ∈ K and this implies that

a ∈ Q ⊆ U ; therefore, x is in the closure of {a}. Hence A ⊆ {a}. To sum up, the

closed irreducible subset A can be written as the closure of the point a. Since X is

T0, we conclude that X is sober.

In light of the Hofmann-Mislove Theorem, the proof of the following result, which

is borrowed from [GL13, Theorem 8.3.10], is more topological in nature than the

original one appearing in [HL78].

Theorem 2.5.16. Let X be a sober space. Then X is core-compact if and only if X

is locally compact.
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Proof. We prove the non-trivial direction. Assume that X is core-compact and U ⊆

X is an open set containing x. Since X is core-compact, O(X) is continuous. We

find an open set V such that x ∈ V ≪ U . Since O(X) is continuous, ↑↑V is Scott-

open in O(X) by Proposition 2.3.7 and U ∈ ↑↑V . By Proposition 2.3.9, we find

a Scott-open filter F ⊆ O(X) such that U ∈ F ⊆ ↑↑V . Now the Hofmann-Mislove

Theorem tells us that
∩
F , the intersection of all open sets in F , is actually compact.

Moreover, since U ∈ F ⊆ ↑↑V , we know x ∈ V ⊆
∩
F ⊆ U . Hence

∩
F is a compact

neighbourhood of x inside U . So X is locally compact.

The following result is now a corollary to Theorem 2.5.8 and Theorem 2.5.16.

Corollary 2.5.17. For a join-complete poset L, L is a locally compact dcpo if and

only it is core-compact.

We end this section with the following observation which comes from a combination

of Proposition 2.5.15 and Theorem 2.5.16.

Theorem 2.5.18. For a T0 space X, the following statements are equivalent:

1. X is locally compact and sober;

2. X is locally compact and well-filtered;

3. X is core-compact and sober.

Question 2.5.19. What can we say about core-compact and well-filtered T0 spaces?

In particular, are these spaces sober?
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Figure 2.5: A non-sober well-filtered dcpo L.

2.6 A simple non-sober well-filtered dcpo

We have mentioned in the last section that Kou [Kou01] gave a non-sober well-filtered

dcpo for answering a question posed by Heckmann [Hec92]. In this section, we give

another well-filtered dcpo which is not sober in the Scott topology. This dcpo seems

to us simpler than Kou’s.

Example 2.6.1. Let L = N×N× (N∪{∞}), where N is the set of natural numbers.

We define an order ≤ on L as follows:

(i1, j1, k1) ≤ (i2, j2, k2) if and only if:

• i1 = i2, j1 = j2, k1 ≤ k2 ≤ ∞;

• or i2 = i1 + 1, k1 ≤ j2, k2 =∞.

L can be easily depicted as in Figure 2.5. It is obvious that L is a dcpo, since

any infinite directed subset of L is contained in ↓(i, j,∞) for some i, j ∈ N with its

supremum being (i, j,∞).
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Claim 2.6.2. L is not sober in the Scott topology.

Proof. Since (i, j,∞) is maximal in L for any i, j ∈ N, we prove that L is not

sober by showing that L itself is an irreducible set. To this end, take any two non-

empty Scott-open sets U and V . Then we know (i1, j1,∞) ∈ U and (i2, j2,∞) ∈ V

for some i1, j1, i2, j2 ∈ N. Without loss of generality, we assume i1 ≤ i2. Since∨
k∈N(i1, j1, k) = (i1, j1,∞) ∈ U , we have some k1 ∈ N such that (i1, j1, k1) ∈ U .

So (i1 + 1, k1,∞) ∈ U since (i1, j1, k1) ≤ (i1 + 1, k1,∞) and U is an upper set. By

Scott-openness of U , we have (i1 +1, k1, k2) ∈ U for some k2 ∈ N. Now by induction

we can reach some n such that (i2, kn, kn+1) ∈ U . Note that (i2, j2,∞) ∈ V , so

(i2, j2,m) ∈ V for large enough m. Take n = max{kn+1,m}. Then (i2 + 1, n,∞) is

greater than both (i2, kn, kn+1) and (i2, j2,m). Thus (i2 + 1, n,∞) ∈ U ∩ V , which

implies that any two non-empty Scott-open sets in L intersect. So L is an irreducible

set.

To prove that L is not well-filtered, we first investigate what compact saturated sub-

sets look like in L. For any compact saturated subset K ⊆ L, from Corollary 2.2.26

we could write K as ↑MK , where MK is the set of minimal elements of K. So we

locate K by looking at the set MK .

We use L∞ to denote the set of all maximal elements of L, i.e., L∞ = {(i, j,∞) |

i, j ∈ N}, and we denote the set L \ L∞ by L<∞. For any (i0, j0,∞) ∈ L∞, we

define l(i0,j0,∞) = {(i0, j,∞) | j0 ≤ j} ∪ {(i, j,∞) | i < i0}. As can be seen from

Figure 2.5, l(i0,j0,∞) actually denotes the set of all maximal elements in L which are

on the left side of (i0, j0,∞), containing (i0, j0,∞) itself. Moreover, one sees that for

any (i0, j0,∞) ∈ L∞, ↓l(i0,j0,∞) is Scott-closed.

Claim 2.6.3. Given a non-empty saturated subset K ⊆ L, then K is compact in the

Scott topology if and only if:
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1. MK ∩ L<∞ is finite;

2. there exist i0, j0 ∈ N, such that l(i0,j0,∞) ∩K = {(i0, j0,∞)}, and

3. for all (i, j,∞) ∈ K ∩ L∞, i ranges over some finite subset of N.

Proof. Let K be any saturated subset satisfying those three conditions and U be a

Scott-open cover of K. We prove that finitely many Scott-open sets in U suffice to

cover MK , hence K itself. Obviously, MK ∩ L<∞ will be covered by finitely many

members of U since it is finite from Condition 1. For K ∩ L∞, from Condition 2,

there exist i0, j0 ∈ N, such that l(i0,j0,∞) ∩ K = {(i0, j0,∞)}, hence some open set

U ∈ U covers (i0, j0,∞). Note that (i0, j0,∞) =
∨

k∈N(i0, j0, k). So there exists some

k0 ∈ N such that (i0, j0, k0) ∈ U . Hence (i0 + 1, j,∞) ∈ U for all j ≥ k0. In other

words, there are only finitely many j’s with (i0 + 1, j,∞) not in U . Inductively,

for any i ≥ i0 there are only finitely many ji’s such that (i, ji,∞) are not in U .

Hence from 3 we know that only finitely many elements in K ∩ L∞ are not in U .

So K ∩ L∞ must be covered by finitely many members from U . Finally note that

MK ⊆ (MK ∩L<∞)∪ (K ∩L∞), this implies that finitely many members of U would

cover MK hence K.

Conversely, for any non-empty compact saturated subset K, the set MK ∩ L<∞

cannot be infinite. Otherwise the family {L \ ↓(MK ∩ L<∞ \ {x}) | x ∈MK ∩ L<∞}

is a Scott-open cover of K, but any finitely many members of it fail to cover K. The

second condition is true since {↓l(i,j,∞) | (i, j,∞) ∈ K} is a filtered family of Scott-

closed subsets, with all of its members intersecting with K. By the compactness of K,

the intersection
∩
{↓l(i,j,∞) | (i, j,∞) ∈ K} ∩ K is not empty. If some (i0, j0,∞) is

in this intersection, then l(i0,j0,∞) ∩ K = {(i0, j0,∞)}. If we find some (i, j, k) in

this intersection, then obviously, l(i,j,∞) ∩K = {(i, j,∞)}. Finally, for all (i, j,∞) ∈

K ∩ L∞, if i varies within an infinite subset G of N, then we pick one ji for every
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i ∈ G such that (i, ji,∞) ∈ K ∩ L∞. Then {↓{(i, ji,∞) | i ∈ G \ F} | F ⊆fin G}

is a filtered family of Scott-closed subsets, with each member of it intersecting K.

However, the intersection of this family is empty, which contradicts the compactness

of K.

Now we have enough ingredients to prove that L is well-filtered.

Claim 2.6.4. L is well-filtered in the Scott topology.

Proof. Assume that {Kα}α∈A is a filtered family of non-empty compact saturated

subsets in L, with its intersection
∩

α∈AKα contained in some Scott-open set U . Then

{↑(MKα ∩ L<∞) | α ∈ A} is also a filtered family and
∩

α∈A ↑(MKα ∩ L<∞) ⊆ U .

From the previous claim, MKα∩L<∞ is finite for all α ∈ A. So by Proposition 2.4.14,

we have some α0 such that ↑(MKα0
∩ L<∞) ⊆ U .

Now we consider Kα ∩ L∞, α ∈ A. They also form a filtered family in the inclusion

order. We apply Claim 2.6.3 to find for each Kα the element (iα, jα,∞) such that

l(iα,jα,∞) ∩ Kα = {(iα, jα,∞)}. Fix some α1 ∈ A, since {Kα}α∈A is filtered, again

from Claim 2.6.3, iα ranges over some finite set F ⊆ N for all α ≥ α1. Let i =

max{iα | α ≥ α1}, then the set {jα | iα = i & α ≥ α1} is actually finite since when

iα = iβ, Kα ⊆ Kβ implies jα ≤ jβ. This implies that there exists some point (i, j,∞)

being in all Kα, hence this point (i, j,∞) is also in U . From the openness of U , for

those α with iα = i at most finitely many elements of Kα ∩ L∞ are not in U . Since∩
α∈A Kα is contained in U , for some big enough α2, we have Kα2 ∩ L∞ ⊆ U . Now

we can conclude that Kα ⊆ U for α > α0, α2, and hence L is well-filtered.

Recently, X. Xi and J. Lawson [XL17] proved that every complete lattice is well-

filtered in the Scott topology. Hence Isbell’s non-sober complete lattice [Isb82] serves

as another dcpo which is not sober but well-filtered. We also want to mention that
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X. Xi and D. Zhao [XZ15] gave a uniform construction of dcpo models of T1 topo-

logical spaces, and proved this construction preserves sobriety and well-filteredness.

Thus, one can obtain non-sober well-filtered dcpos by constructing the dcpo model

of non-sober well-filtered topological spaces. The construction, however, is out of the

scope of this thesis and can be found in [XZ15]. We would like to end this section

with advertising the simplicity of our example L of which the order structure, as

shown in Figure 2.5, is quite transparent.

2.7 Scott-continuous retractions

We have introduced Scott-continuous functions between dcpos and seen that they

work well with the Scott topology (see for example Proposition 2.2.20). However,

this is not the case for continuity or quasicontinuity of dcpos. More precisely, neither

continuity nor quasicontinuity of dcpos are preserved by Scott-continuous functions.

Consider the following example:

Example 2.7.1. Let L be any non-continuous dcpo, and M be the dcpo consisting

of the same elements of L but with the discrete order. Then the function that sends

x ∈ M to the same element x ∈ L is Scott-continuous. However, M as a dcpo is

continuous since every element of it is compact.

This leads us to a new class of functions between dcpos which do preserve continuity.

Definition 2.7.2. In general, for topological spaces X and Y , a continuous function

f : X → Y is called a retraction if there exists a continuous map g : Y → X such

that f ◦ g = idY . The function g is called a section of f , and Y is called a retract

of X.
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For dcpos L and M , L is called a retract of M if ΣL is a retract of ΣM . From Propo-

sition 2.2.20, retractions and sections between dcpos are always Scott-continuous.

Example 2.7.3. Let L be a dcpo. For each element a ∈ L, the principal ideal ↓a in

the induced order is a retract of L under the retraction ra from L to ↓a, defined as:

ra(x) =


x, x ∈ ↓a;

a otherwise.

The corresponding section is the inclusion map.

Example 2.7.4. Let L be a dcpo. For each compact element a ∈ L, the principal

filter ↑a in the induced order is a retract of L under the retraction fa from L to ↑a,

defined as:

fa(x) =


x, x ∈ ↑a;

a otherwise.

The corresponding section is the inclusion map.

The images of continuous domains under retractions are indeed continuous again.

Proposition 2.7.5. Let f be a retraction from a continuous domain L to a dcpo M .

Then M is continuous.

Proof. Let g : M → L be a Scott-continuous function such that f ◦ g = idM . For

given a ∈M , we claim f(x)≪ a for every x≪ g(a) in L. To this end, let D ⊆M be

a directed subset and a ≤ supD. It follows that g(a) ≤ g(supD) = sup g(D) since g

is Scott-continuous. So x ≤ g(d) for some d ∈ D, which implies f(x) ≤ f(g(d)) = d.

Thus f(x) ≪ a for every x ≪ g(a), that is {f(x) | x ≪ g(a)} ⊆ ↓↓a. We now prove

that sup ↓↓a = a and ↓↓a is directed.
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Since L is continuous, ↓↓g(a) is directed. We have the following equations from the

Scott-continuity of f .

sup{f(x) | x≪ g(a)} = sup f(↓↓g(a)) = f(sup ↓↓g(a)) = f(g(a)) = a.

Since {f(x) | x≪ g(a)} ⊆ ↓↓a, this implies sup ↓↓a = a. The directedness of ↓↓a follows

from Proposition 2.3.5 by noticing that {f(x) | x≪ g(a)} is directed.

Proposition 2.7.6. Every continuous domain L arises as the retract of an algebraic

domain.

Proof. We give a sketch of the proof and details can be found at [GHK+03, Theorem

I-4.17].

Take all the ideals of L and order them by the set inclusion. One can verify that this

is an algebraic domain in which principal ideals are compact elements. The function

that sends each ideal I of L to its supremum sup I is the wanted retraction, and the

corresponding section sends each x ∈ L to the ideal ↓↓x.

Corollary 2.7.7. Let L be a core-compact dcpo and U be a Scott-open subset of L.

Then U is also a core-compact dcpo in the induced order.

Proof. Obviously, U with the induced order is a dcpo and the Scott topology on U is

the induced Scott-topology from L. Now the restriction map that sends any Scott-

open set V ∈ σ(L) to U ∩ V is a retraction from σ(L) to σ(U). It then follows

from Proposition 2.7.5 that σ(U) is continuous.

Similar to continuity, quasicontinuity is also preserved by retractions:

Proposition 2.7.8. Let f be a retraction from a quasicontinuous domain L to a

dcpo M . Then M is quasicontinuous.
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Proof. Since f is a retraction, then by definition there exists a Scott-continuous

function g from M to L such that f ◦ g = idM . For every x ∈ M and finite set

F ≪ g(x), we claim that f(F ) ≪ x. Indeed, let D be a directed set of M with

x ≤ supD; then g(x) ≤ g(supD) = sup g(D) and we obtain an element d ∈ D such

that g(d) ∈ ↑F because F ≪ g(x). So we get d = f(g(d)) ∈ f(↑F ) ⊆ ↑f(F ), and

the claim is true.

Given x, y ∈ M with x ≰ y, then x = f(g(x)) ∈ M \ ↓y and we get g(x) ∈

f−1(M \ ↓y). Since L is quasicontinuous and f−1(M \ ↓y) is Scott-open, we get

from Proposition 2.4.10 that there exists G ∈ fin(g(x)) such that G ⊆ f−1(M \ ↓y).

This means that f(G) ⊆ M \ ↓y or equivalently y /∈ ↑f(G). By the claim above

we know that f(G) ≪ x, that is, f(G) ∈ fin(x). So for every x ∈ M , we have

↑x =
∩
{↑f(G) | G ∈ fin(g(x))}.

Finally, we note that the family {f(G) | G ∈ fin(g(x))} is directed because fin(g(x))

is and f preserves the order. Proposition 2.4.8 now allows us to conclude that M is

quasicontinuous.

A function that preserves quasicontinuity need not be a retraction. Actually,

J. Goubault-Larrecq [GL12] proposed the so-called quasi-retractions between topo-

logical spaces as generalisations of retractions, and proved that quasi-retractions also

preserve quasicontinuity of dcpos equipped with the Scott topology. Moreover, these

maps preserve nearly all topological properties that we have encountered so far. In

this thesis, however, we only need retractions between dcpos, and they are already

powerful enough for our purpose.

Proposition 2.7.9. Let L,M be dcpos and f : L → M a retraction. Then M

is compact, locally compact, core-compact, coherent, well-filtered, sober, respectively,

whenever L is, respectively. In particular, M is stably compact if L is stably compact.
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Proof. We prove the proposition for sobriety and core-compactness. One may consult

in [Jun04, Proposition 2.17] for detailed proofs.

Let g be a section of f , and assume that L is sober. For A an arbitrary closed

irreducible subset of M , one has g(A) is an irreducible subset of L. Indeed, if

g(A) ⊆ B∪C for closed sets B and C, then A ⊆ g−1(B)∪g−1(C). Hence A ⊆ g−1(B)

or A ⊆ g−1(C) since A is irreducible, which implies that g(A) ⊆ B or g(A) ⊆ C.

One easily verifies that the Scott closure g(A) of g(A) is also irreducible and from

the sobriety of L, g(A) = ↓a for some a ∈ L. Now we do the following calculations:

A = A = f(g(A)) ⊆ f(g(A)) = f(↓a) ⊆ ↓f(a), f(a) ∈ f(g(A)) ⊆ f(g(A)) = A.

It follows that A = ↓f(a). Hence M is sober.

Now we assume that L is core-compact, i.e., σ(L) is continuous. Since f, g are

Scott-continuous, both f−1 : σ(M) → σ(L) and g−1 : σ(L) → σ(M) are well-

defined and Scott-continuous. Since f ◦ g = idM , for any open set U ∈ σ(M),

one has g−1 ◦ f−1(U) = (f ◦ g)−1(U) = U . This implies that g−1 and f−1 form a

pair of retraction and section between σ(L) and σ(M). Since σ(L) is continuous,

and continuity is preserved by retractions from Proposition 2.7.5, σ(M) is also a

continuous lattice. We conclude that M is core-compact.

Retractions between dcpos are also reconciled with the function space construction.

Proposition 2.7.10. Let L,L′ be dcpos and M,M ′ are retracts of them, respectively.

Then [M →M ′] is a retract of [L→ L′].

Proof. Let f ∈ [L→M ], f ′ ∈ [L′ →M ′] be the retractions with their corresponding

sections g and g′. We define a function from [L→ L′] to [M →M ′] by sending each

Scott-continuous function h ∈ [L → L′] to f ′ ◦ h ◦ g ∈ [M → M ′]. One can easily
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see this function is well-defined and Scott-continuous, and moreover, it has a section

which maps l ∈ [M →M ′] to g′ ◦ l ◦ f ∈ [L→ L′].

Corollary 2.7.11. For any non-empty dcpo L, L is a retract of [L→ L].

Proof. Fix any element a in L. Then the constant map ca that maps L onto {a} is a

retraction from L to {a}. Hence from Proposition 2.7.10 we know that [{a} → L] is

a retract of [L→ L]. The statement holds since L is isomorphic to [{a} → L].

2.8 The Jung-Tix Problem

In this section, we introduce the Jung-Tix problem2 which actually motivates the

research in this thesis, and sum up the work that are meant to attack it.

Basically, in domain theory the Jung-Tix Problem relates to modelling higher-order

functional programming languages with probabilistic features, and technically boils

down to finding a cartesian closed full subcategory of continuous domains that is si-

multaneously closed under Jones and Plotkin’s probabilistic powerdomain construc-

tion.

2.8.1 Jones and Plotkin’s probabilistic powerdomain con-

struction

In domain theory, a common method for modelling probabilistic features of functional

programming languages is Jones and Plotkin’s probabilistic powerdomain monad over

dcpos [JP89, Jon90].
2The problem was named by J. Goubault-Larrecq in [GL12].
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Jones and Plotkin’s idea dates back to a general framework for semantics proposed

by M. Smyth [Smy83b, Smy92]. In Smyth’s dictionary, one compares computational

concepts with topological spaces. A datatype τ is modelled by some topological

space Xτ , and the set of semi-decidable properties (or observable properties in the

sense of S. Abramsky [Abr91]), which is closed under unions and finite intersections,

is simulated by a topology on Xτ . Moreover, a program of type τ → τ ′ is translated

into a continuous function from Xτ to Xτ ′ . In this framework, a random compu-

tation is modelled as something which has a probability of being in each open set.

Mathematically, this can be achieved by giving, for each open set, a value between 0

and 1, which indicates the probability that the computation result lies in that open

set. This idea is formalised by the so-called valuations on open sets.

Definition 2.8.1 (valuation). For a topological space X, a probability valuation on

O(X), the set of open sets of X, is a function µ : O(X)→ [0, 1] that is:

1. strict: µ(∅) = 0;

2. monotone: V ⊆ U implies µ(V ) ≤ µ(U);

3. modular: µ(U) + µ(V ) = µ(U ∪ V ) + µ(U ∩ V ).

Definition 2.8.2. For a topological space X, a probability valuation µ : O(X) →

[0, 1] is continuous if for any directed family D of open sets with union U =
∪
D, we

have µ(U) = sup{µ(V ) : V ∈ D}.

Definition 2.8.3. (cf. [GHK+03, Definition IV-9.7]) For a topological space X,

the probabilistic powerdomain P(X) of X is the set of all continuous probability

valuations on O(X) with the pointwise order, sometimes called the stochastic order:

µ ≤ ν iff µ(U) ≤ ν(U) for all open sets U . (P(X) is called the subprobabilistic

powerdomain of X by some authors, e.g., [GL12].)
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With the above definitions, a program p : ι → τ with probabilistic features can be

modelled by a function fp : JιK → P(JτK), where JιK and JτK are topological spaces

which are modelling the input type ι and output type τ , respectively. Given an input

x of type ι, we find the denotation JxK in JιK, then the behaviour of p(x) is modelled

by fp(JxK), a probability valuation on O(JτK). For any open set U ∈ O(JτK) this

probability valuation gives us the probability fp(JxK)(U) that the denotation of the

output lies in U .

It is straightforward to verify that for a directed family of continuous probability

valuations, the pointwise supremum is another such, so the probabilistic powerdo-

main is a dcpo on any topological space. Moreover, Jones [Jon90] showed the highly

non-trivial result that the probabilistic powerdomain of a continuous domain is again

continuous.

Theorem 2.8.4 (cf. [GHK+03, Corollary IV-9.17]). For a continuous domain L the

probabilistic powerdomain P(L) on the topological space ΣL is again a continuous

domain.

Theorem 2.8.4 states that the category CONT of continuous domains is closed

under the probabilistic powerdomain construction. So one can interpret probabilistic

computation in CONT. However, we will see in the next subsection that CONT

is not cartesian closed. Thus CONT is not appropriate for modelling probabilistic

computation rooted in a higher-order programming language. Due to this fact, one

wants to find cartesian closed full subcategories of CONT, and G. Plotkin [Plo76],

M. Smyth [Smy83a], and A. Jung [Jun89, Jun90b] have made essential contributions

to this part.
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2.8.2 Cartesian closed full subcategories of CONT

As hinted in the last subsection, the category CONT is not cartesian closed. In

light of Lemma 2.2.9, this can be checked by investigating function spaces of certain

continuous domains. For example, take the set Z− of negative integers with their

natural ordering, then the function space [Z− → Z−] is not continuous. Indeed, for

any Scott-continuous functions f, g ∈ [Z− → Z−] with g ≤ f , we define a function fn

for each n ∈ N by:

fn(x) =


f(x), x ≥ −n,

g(x)− 1, otherwise.

Then the fn, n ∈ N, form a sequence of Scott-continuous functions with supre-

mum f but none of them dominates g, so g is not way-below f . Thus any two

Scott-continuous functions are not in the way-below relation (This example is taken

from [Jun89, Page 30]). Since Z− is algebraic, by this example we also assert that

the category ALG of algebraic domains is not cartesian closed either.

In general, we have the following useful criterion to exclude dcpos with a non-

continuous function space.

Lemma 2.8.5. [Jun89, Theorem 1.37] A dcpo with continuous function space is

bicomplete.

Historically, in order to accommodate non-deterministic computation, Plotkin [Plo76]

used the idea of bilimits and proposed the notion of SFP-domains (where SFP stands

for sequence of finite posets). He proved that the category SFP of SFP-domains is

a cartesian closed full subcategory of countably based algebraic domains and closed

under the so-called Plotkin powerdomain construction. One possible definition of

SFP-domains is as follows:
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Definition 2.8.6 (SFP-domain). A dcpo L is an SFP-domain if it carries an as-

cending sequence of Scott-continuous endofunctions fn : L → L such that for all

n ∈ N,

1. supn∈N fn = idL;

2. the image of fn is finite;

3. fn ◦ fn = fn.

Theorem 2.8.7. [Plo76] SFP is cartesian closed.

It was conjectured by Plotkin that the category SFP⊥ is actually the largest cartesian

closed full subcategory of the category ωALG⊥ of countably based pointed algebraic

dcpos. In 1983, Smyth proved this conjecture [Smy83a] by showing the following

result.

Theorem 2.8.8. [Smy83a, Theorem 1] If L and [L → L] are countably algebraic,

then L is strongly algebraic (i.e. SFP-domain).

As a consequence of Lemma 2.2.9, Theorem 2.8.7 and Theorem 2.8.8, we have the

following.

Theorem 2.8.9. [Smy83a] SFP⊥ is the largest cartesian closed full subcategory

of ωALG⊥.

The classification of general algebraic domains (not necessarily countably based) was

given by Jung [Jun90a], making use of the notions of L-domains and bifinite domains

which generalise Plotkin’s SFP-domains.

Definition 2.8.10 (bifinite domain). A dcpo L is a bifinite domain if it carries a

directed set of Scott-continuous endofunctions fa : L→ L such that for all a ∈ A,
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1. supa∈A fa = idL;

2. the image of fa is finite;

3. fa ◦ fa = fa.

The category of bifinite domains is denoted by BF.

Definition 2.8.11 (L-dcpo). A dcpo in which every principal ideal ↓x is a complete

lattice (in its induced order) is called an L-dcpo. An L-domain (algebraic L-domain)

is an L-dcpo which is also continuous (algebraic). The category of L-dcpos is denoted

by L, the category of L-domains is denoted by cL and that of algebraic L-domains

is denoted by aL.

Theorem 2.8.12. [Jun90a, Corollary 3.8] The category ALG⊥ of pointed algebraic

domains contains exactly two maximal full subcategories which are cartesian closed:

aL⊥ and BF⊥.

Since the categories BF⊥ and aL⊥ are exactly the two maximal cartesian closed

categories in the pointed algebraic case, searching in light of Proposition 2.7.6, people

were conjecturing that the category RB⊥ of retracts of pointed bifinite domains and

the category cL⊥ would be the two maximal cartesian closed full subcategories in

the pointed continuous setting.

An equivalent description of retracts of bifinite domains is the so-called RB-domain.

Definition 2.8.13 (RB-domain). A dcpo L is an RB-domain if it carries a directed

set of Scott-continuous endofunctions fa : L→ L such that for all a ∈ A,

1. supa∈A fa = idL;

2. the image of fa is finite.
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And indeed we have:

Theorem 2.8.14. [Jun89, Theorem 2.11, Theorem 2.13]

1. The category RB⊥ of pointed RB-domains is cartesian closed.

2. The category cL⊥ of pointed L-domains is cartesian closed.

However, to prove that RB⊥ and cL⊥ are maximal among cartesian closed full

subcategories of CONT⊥ turned out to be hopeless. In 1990, by introducing a new

notion called FS-domain, Jung was able to fully classify the maximal cartesian closed

full subcategories of CONT⊥ [Jun89, Jun90b].

Definition 2.8.15 (FS-domain). A Scott-continuous function δ : L→ L on a dcpo L

is finitely separating if there exists a finite set Fδ such that for each x ∈ L, there

exists y ∈ Fδ such that δ(x) ≤ y ≤ x. A dcpo L is an FS-domain if it carries a

directed set of Scott-continuous endofunctions fa : L→ L, a ∈ A, such that

1. supa∈A fa = idL;

2. fa is finitely separating for all a ∈ A.

The category of all FS-domains and Scott-continuous functions between them is

denoted by FS.

Theorem 2.8.16. [Jun90b, Theorem 3] The category FS⊥ is cartesian closed.

Jung’s classification theorem relies on the following lemma.

Lemma 2.8.17. [Jun89, Lemma 4.23] Let D and E be pointed bicomplete continuous

dcpos. If E is not an L-domain and if D is not Lawson-compact then [D → E] is

not continuous.
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Since cL⊥ is cartesian closed, it follows from the previous lemma that cL⊥ is one of

the maximal cartesian closed full subcategories of continuous domains. The category

FS is located via the following theorem which deals with continuous domains with

a Lawson-compact function space.

Theorem 2.8.18. [Jun90b, Theorem 8] If L and [L → L] are pointed continuous

domains and Lawson-compact, then L is an FS-domain.

Now the following classification theorem is just a corollary to Theorem 2.8.14, The-

orem 2.8.16, Lemma 2.8.17 and Theorem 2.8.18.

Theorem 2.8.19. [Jun90b, Corollary 10] Every cartesian closed full subcategory of

CONT⊥ is contained in cL⊥ or in FS⊥.

We end this subsection with the following remarks.

Remark 2.8.20. While for the purpose of modelling computation, a least element

of dcpos is needed to model non-termination, it is possible to extend the previous

results to the case of dcpos without a least element. One gets four maximal cartesian

closed full subcategories of ALG. The same technique also works for CONT. See

[Jun89, Chapter 3] for details.

Remark 2.8.21. One easily sees that from the definition every RB-domain is an

FS-domain. However, the reverse becomes one of the oldest and best-known open

problems in domain theory, more precisely:

Open: Is every FS-domain an RB-domain?
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2.8.3 The conflict between cartesian closedness and P

Now consider modelling a probabilistic higher-order functional programming lan-

guage. We have cartesian closed categories SFP⊥,BF⊥,AL⊥,RB⊥,FS⊥ and cL⊥

for potential semantic domains since the cartesian closedness could accommodate

higher-order function types. Moreover, for modelling the probabilistic computation,

the probabilistic powerdomain construction needs to be restricted to the wanted se-

mantic category. This requirement rules out categories SFP⊥,BF⊥,AL⊥, since for

a dcpo L the powerdomain P(L) would never be algebraic. This is because probabil-

ity valuations are defined as functions into real numbers. So categories RB⊥,FS⊥

and cL⊥ remain in our sight. In Jones’ thesis [Jon90], she showed that the proba-

bilistic powerdomain of L-domains need not be L-domains again, and in general any

lattice structure would be destroyed by this powerdomain construction. Hence cL⊥

was ruled out from the candidates. By Theorem 2.8.19, this means any potential

candidate category will be entirely contained in FS⊥. So naturally one asks the

following question:

Open: Is the category FS⊥ closed under Jones and Plotkin’s probabilistic power-

domain construction?

This question, however, turns out to be extremely difficult, and is the so-called Jung-

Tix problem. In the following, we list what we know so far about the probabilistic

powerdomain construction P .

We know that CONT⊥ is closed under P . In the remarkable paper [JT98], Jung

and Tix showed that P can be restricted to the category LawC⊥ of pointed Lawson-

compact continuous domains.
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⊤

⊥

a b

c d

Figure 2.6: Plotkin’s ladder.

Theorem 2.8.22. [JT98, Theorem 4.2] Let D be a Lawson-compact, continuous

domain with bottom element. Then the probabilistic powerdomain is also Lawson-

compact.

Naturally, we wonder whether the category LawC⊥ is cartesian closed. The answer,

disappointingly, is no.

Example 2.8.23. Consider the dcpo L in Figure 2.6, which is called Plotkin’s ladder.

L can be easily verified as a Lawson-compact algebraic domain. The function space

of L, however, is not continuous. Suppose that [L→ L] is continuous. In particular,

there exists a directed family {fα | α ∈ A} such that fα ≪ idL for every α ∈ A and∨
α∈A fα = idL. So we have

∨
α∈A fα(a) = a. Since a is a compact element in L, we

have some α ∈ A such that fα(a) = a. Similarly, we have some β ∈ A with fβ(b) = b.

We then find an upper bound f of both fα and fβ in the directed family {fα | α ∈ A}.

Since f ≤ idL and f is monotone, this f will fix a and b, hence every element in L.

This means that f = idL and hence idL ≪ idL. However, this is impossible, since
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{rx | x ∈ L} (see Example 2.7.3) is a directed family of Scott-continuous functions

with its supremum bigger than idL, while none of them is above idL. So [L→ L] is

not continuous.

Lawson-compactness can be characterised via the Scott topology. The following

theorem which works for quasicontinuous domains will be generalised to arbitrary

dcpos in Chapter 4 (see Theorem 4.1.7); we list it here for an ad hoc purpose.

Theorem 2.8.24. Let L be a quasicontinuous dcpo. Then the following statements

are equivalent:

1. L is compact in the Lawson topology;

2. L is coherent and compact in the Scott topology;

3. L is is stably compact in the Scott topology.

Proof. The equivalence between (1) and (2) can be found at [GHK+03, Theorem III-

5.8], and that (2) is equivalent to (3) is obvious since every quasicontinuous domain

is locally compact and sober in the Scott topology.

Note that by the previous theorem Lawson-compact continuous domains are precisely

stably compact continuous domains, so Theorem 2.8.22 can also be read as:

Theorem 2.8.25. Let D be a stably compact continuous domain with bottom element.

Then the probabilistic powerdomain of D is also stably compact in the Scott topology.

Skipping out of the scope of dcpos,

Jung was able to generalise the above theorem to a space-like version. However, the

topology on the powerdomain may not be the Scott topology again.
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Theorem 2.8.26. [Jun04, Theorem 3.2, Theorem 3.3] P(X) on a stably compact

space X is stably compact when equipped with the so-called weak topology.

Stably compact spaces (see Definition 2.2.11), which are T0-analogues of compact

Hausdorff spaces, have a very nice duality with compact pospaces. The work dates

back to [Nac65], and also can be found in [GHK+03, Chapter VI] or in [Jun04].

Another essential benefit of stably compact spaces is that they admit a logical

counterpart, the so-called strong proximity lattices, along the lines of Abramsky’s

Domain Theory in Logical Form [Abr91]. For this work, see e.g., [JS96]. It was

proved in [JKM01] that the category of stably compact spaces with closed relations is

monoidal closed, however, neither the category of stably compact spaces with closed

relations nor that of stably compact spaces with continuous functions is cartesian

closed, hence the stably compact framework does not present an intrinsic function

type construction.

In 2012, Jean Goubault-Larrecq proposed to study the Jung-Tix problem in the

quasicontinuous setting. Analogously to RB-domains, Goubault-Larrecq introduced

QRB-domains in a flavour of quasicontinuity, and proved that the powerdomain

construction P can be restricted to the category QRB of QRB-domains [GL12,

GLJ14].

Definition 2.8.27 (QRB-domain). For a poset L we use Fin(L) to denote the set

{↑F | F ⊆fin L} and equip it with the Smyth order, i.e., the reverse inclusion.

A quasi-deflation on a poset L is a continuous map φ : ΣL → ΣFin(L) such that

x ∈ φ(x) for every x ∈ L, and {φ(x) | x ∈ L}, the image of φ, is finite.

A dcpo L is called a QRB-domain if it carries a directed family of quasi-deflations

{φi | i ∈ I} such that ↑x =
∩

i∈I φi(x) for each x ∈ L.

The category of all QRB-domains is denoted by QRB.
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Theorem 2.8.28. [GLJ14, Theorem 6.2] For every QRB-domain L, P(L) is again

a QRB-domain.

By imitating FS-domains, Li and Xu [LX13] introduced the QFS-domains.

Definition 2.8.29 (QFS-domain). For a poset L, a continuous map φ : ΣL →

ΣFin(L) is called quasi-finitely separated on L if there exists a finite set M ⊆fin L

such that for every x ∈ L there is m ∈M such that x ∈ ↑m ⊆ φ(x).

A dcpo L is called a QFS-domain if it carries a directed family of quasi-finitely

separated functions {φi | i ∈ I} such that ↑x =
∩

i∈I φi(x) for each x ∈ L.

Surprisingly, it was independently proved by J. Goubault-Larrecq, A. Jung [GLJ14]

and J. Lawson, X. Xi [LX14] that QFS-domains and QRB-domains are the same

and are equivalent to Lawson-compact quasicontinuous domains. While, as we see

from Remark 2.8.21, in the continuous setting whether RB-domains and FS-domains

coincide has been open for decades.

Theorem 2.8.30. [GLJ14, Theorem 5.7],[LX14, Theorem 4.8] For a dcpo L, the

following are equivalent.

1. L is a QRB-domain;

2. L is a QFS-domain;

3. L is a Lawson-compact quasicontinuous domain;

4. L is a stably compact quasicontinuous domain.

With the above result, Theorem 2.8.28 can be rewritten as:

Theorem 2.8.31. Let L be a stably compact quasicontinuous domain. Then the

probabilistic powerdomain P(L) is again stably compact in the Scott topology.
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sober cartesian closed closed under P
SFP⊥ ✓ ✓ 5

BF⊥ ✓ ✓ 5

AL⊥ ✓ ✓ 5

cL⊥ ✓ ✓ 5

RB⊥ ✓ ✓ ??
FS⊥ ✓ ✓ The Jung-Tix problem

LawC⊥ ✓ 5 ✓
CONT⊥ ✓ 5 ✓
QRB⊥ ✓ 5 ✓
SCSa ✓ 5 ✓

DCPO⊥ 5 ✓ ✓
athe category of stably compact spaces and continuous func-

tions

Table 2.1: The conflict between cartesian closedness and P.

Unfortunately, although it is closed under P , the category QRB is not cartesian

closed. It is shown in [GL12] that the function space of Plotkin’s ladder (L in

Figure 2.6) is not a QRB-domain. Since QRB is not cartesian closed, a natural

question is: what can one say about cartesian closed full subcategories of QRB? Or

in general, can we find a cartesian closed full subcategory of quasicontinuous domains

that is simultaneously closed under P? In the next chapter, we give an answer to

these questions.

We end this chapter with summarising the results so far in Table 2.1.





Chapter 3

Meet-continuous dcpos

In the last chapter we have seen that the category QRB⊥ is closed under the prob-

abilistic powerdomain P . Since QRB⊥ is not cartesian closed, a natural question

arises as: are there any new cartesian closed full subcategories in QRB⊥, or in gen-

eral, in the category of quasicontinuous domains? We give a negative answer to this

question in this chapter. This will imply that in the quasicontinuous setting any

candidate category for the Jung-Tix Problem will actually lie in the category FS.

The crucial notion that we make use of in answering this question is the so-called

meet-continuity over dcpos, which was initially introduced by H. Kou, Y. Liu and

M. Luo in [KLL03] as a bridge between quasicontinuity and continuity of dcpos.

We organise this chapter as follows. First, we give the definition of meet-continuity

of dcpos in Section 3.1, and clarify the interplays among meet-continuity, quasicon-

tinuity and continuity of dcpos. In Section 3.2, we investigate topological properties

of meet-continuous dcpos and give their topological characterisation. Section 3.3

displays the central work of this chapter. In this section, we give an order-theoretic

81
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characterisation of meet-continuous dcpos via forbidden substructures. This charac-

terisation enables us to give a necessary condition for dcpos having a core-compact

function space. Precisely, we prove that a dcpo with a core-compact function space

must be meet-continuous. This work is laid out in Section 3.4. Finally, as an ap-

plication of this result, we conclude this chapter with the result that any cartesian

closed full subcategory of quasicontinuous domains consists of continuous domains

entirely. That is to say, similar to the case of the continuous setting, FS-domains

and L-domains also form the only two maximal cartesian closed full subcategories of

pointed quasicontinuous domains.

3.1 Connecting quasicontinuity to continuity

In this section, we introduce meet-continuous dcpos, and show that any quasicon-

tinuous domain is continuous if and only if it is meet-continuous. For the sake of

intuition, we first introduce meet-continuity on dcpos that have binary infima.

Definition 3.1.1. For a dcpo L which has binary infima, that is, x ∧ y exists for

all x, y ∈ L, L is said to be meet-continuous if for each a ∈ L, the function a∧ :

x 7→ a ∧ x : L → L is Scott-continuous, i.e., for any directed subset D ⊆ L,

a ∧ (
∨

D) =
∨

d∈D(a ∧ d).

Roughly speaking, a dcpo that has binary infima is called meet-continuous if the meet

operation is continuous with respect to the Scott topology. The following proposition

provides an easier approach to checking meet-continuity.

Proposition 3.1.2. For a dcpo L which has binary infima, L is meet-continuous if

and only if for any x ∈ L and directed subset D ⊆ L with x ≤
∨
D, x ∧ (

∨
D) =∨

d∈D(x ∧ d).
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Proof. We prove the “if” direction. Let a ∈ L and G an arbitrary directed subset

of L. We compute a ∧ (
∨

G). Since a ∧ (
∨

G) ≤
∨
G, by the assumption, we have

a ∧ (
∨

G) = a ∧ (
∨

G) ∧ (
∨

G)

=
∨
g∈G

(a ∧ (
∨

G) ∧ g)

=
∨
g∈G

(a ∧ g).

Hence L is meet-continuous.

We now try to define meet-continuity on arbitrary dcpos. Note that for a dcpo L

which has binary infima, if we embed L into Γ(L), the set of Scott-closed subets of L,

by the function e : x 7→ ↓x : L→ Γ(L), then x∧y is mapped to ↓(x∧y) = ↓x∩↓y for

x, y ∈ L. One easily verifies that the embedding function e is Scott-continuous, and

moreover it is a topological embedding from ΣL to Σ(Γ(L)). If L is meet-continuous,

for any a ∈ L the composite e ◦ a∧ : x 7→ ↓(a ∧ x) = ↓a ∩ ↓x : L → Γ(L) is then

Scott-continuous. Conversely, since e is a topological embedding, for any function f :

L→ L, e◦f is Scott-continuous if and only if f is Scott-continuous. So we have that

L is meet-continuous if and only if the function e ◦ a∧ : x 7→ ↓a ∩ ↓x : L → Γ(L) is

Scott-continuous for all a ∈ L. Moreover, similar to Proposition 3.1.2, we have that

e◦a∧ is Scott-continuous for all a ∈ L iff for all a ∈ L, e◦a∧ preserves the supremum

of all directed subsets D with a ≤ supD. Indeed, for any directed subset E,

e ◦ a∧(supE) = ↓a ∩ ↓ supE
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and

sup e ◦ a∧(E) = sup
e∈E

(↓a ∩ ↓e)

=
∪
e∈E

(↓a ∩ ↓e)

= ↓a ∩
∪
e∈E

↓e

= ↓a ∩ ↓E.

One easily sees that sup e◦a∧(E) ⊆ e◦a∧(supE). Reversely, for any x ∈ e◦a∧(supE),

that is x ∈ ↓a∩↓ supE, we have that x ≤ supE. Hence from the assumption we know

that sup e◦x∧(E) = e◦x∧(supE), and this means that ↓x = ↓x∩↓ supE = ↓x ∩ ↓E.

Remember that x ∈ ↓a, so finally we have

x ∈ ↓x = ↓x ∩ ↓E ⊆ ↓a ∩ ↓E = sup e ◦ a∧(E).

So e ◦ a∧ preserves the supremum of any directed subset E.

Note that the definition of the function e ◦ a∧ : x 7→ ↓a ∩ ↓x : L → Γ(L) no longer

involves binary infima. Now we can define meet-continuity of an arbitrary dcpo L

by stipulating the Scott-continuity of e ◦ a∧ for all a ∈ L, which, as argued above,

is equal to saying that for all a ∈ L, e ◦ a∧ : x 7→ ↓a ∩ ↓x : L → Γ(L) preserves the

supremum of all directed subsets D ⊆ L with a ≤ supD.

Note that for a ≤ supD:

e ◦ a∧(supD) = ↓a ∩ ↓ supD = ↓a,
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and

sup e ◦ a∧(D) = ↓a ∩ ↓D.

Obviously, the equation e ◦ a∧(supD) = sup e ◦ a∧(D) holds for directed D with

a ≤ supD if and only if a ∈ ↓a ∩ ↓D. This computation enables us to define meet-

continuity on arbitrary dcpos as follows.

Definition 3.1.3. [KLL03, Definition 2.2] A dcpo L is called a meet-continuous dcpo

if for all x ∈ L and directed subsets D ⊆ L with x ≤ supD, one has x ∈ ↓x ∩ ↓D.

Remark 3.1.4. As can be seen from above, the two definitions of meet-continuity in

Definitions 3.1.1 and 3.1.3 coincide on dcpos that have binary infima.

The following proposition is straightforward from the above.

Proposition 3.1.5. Let L be a dcpo. Then L is meet-continuous if and only if for

any a ∈ L, the mapping x 7→ ↓a ∩ ↓x is Scott-continuous from L to Γ(L).

Proposition 3.1.6. Every continuous domain is meet-continuous.

Proof. Let L be a continuous domain and x ∈ L with x ≤ supD for D directed. For

any element a ∈ ↓↓x, by definition there exists some d ∈ D such that a ≤ d, that is,

a ∈ ↓D. So we have a ∈ ↓x ∩ ↓D, and hence ↓↓x ⊆ ↓x ∩ ↓D ⊆ ↓x ∩ ↓D. Since ↓↓x is

directed, its supremum x is in the Scott-closed set ↓x ∩ ↓D.

Meet-continuity is preserved by retractions between dcpos.

Proposition 3.1.7. Let f be a retraction from a meet-continuous dcpo L to a

dcpo M . Then M is meet-continuous.
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Proof. Let g : M → L be a Scott-continuous function such that f ◦ g = idM . Let D

be a directed subset in M and x ≤ supD. Then we have that g(x) ≤ g(supD) =

sup g(D). Since L is meet-continuous, g(x) ∈ ↓g(x) ∩ ↓g(D). We then have

x = f(g(x))

∈ f(↓g(x) ∩ ↓g(D))

⊆ f(↓g(x) ∩ ↓g(D))

⊆ ↓f(g(x)) ∩ ↓f(g(D))

= ↓x ∩ ↓D.

So M is meet-continuous.

From Example 2.7.3 we have seen that for each element a in a dcpo L, ↓a is a retract

of L. Together with the previous proposition, it follows that each principal ideal is

meet-continuous in a meet-continuous dcpo. Moreover, we see the converse holds as

well.

Proposition 3.1.8. Let L be a dcpo. Then L is meet-continuous if and only if ↓a

with the induced order is meet-continuous for all a ∈ L.

Proof. As explained above, we only need to prove the “if” direction. Let D ⊆ L

be a directed subset of L, and x ≤ supD for x ∈ L. Set supD = k. From the

assumption we know that ↓k is meet-continuous. Thus, we have x ∈ ↓x ∩ ↓D↓k,

where ↓x ∩ ↓D↓k means that we take the closure of ↓x∩↓D with respect to the Scott

topology on ↓k. However, since ↓k is Scott-closed in L, ↓x ∩ ↓D↓k = ↓x ∩ ↓D. So

we have x ∈ ↓x ∩ ↓D. Hence L is meet-continuous.
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We now proceed to the main result of this section. Before that, we need the following

lemma.

Lemma 3.1.9. [GHK+03, Lemma III-2.10] If F is a finite set in a meet-continuous

dcpo, then we have

intσ(↑F ) ⊆ ↑↑F.

Proof. We assume that intσ(↑F ) ̸⊆
∪
{↑↑x | x ∈ F}, that is, there exists an element

a1 ∈ intσ(↑F ) such that x ̸≪ a1 for any x ∈ F . We set the finite F as {x1, ..., xn}.

Since x1 ̸≪ a1, by definition there exists a directed set D1 such that a1 ≤ supD1

but x1 ̸∈ ↓D1. Remember that the dcpo is meet-continuous, so a1 ≤ supD1 implies

a1 ∈ ↓a1 ∩ ↓D1. So we have a1 ∈ intσ(↑F ) ∩ ↓a1 ∩ ↓D1. Since intσ(↑F ) is Scott-

open, we know ↓a1 ∩ ↓D1 ∩ intσ(↑F ) ̸= ∅. Choose a2 ∈ ↓a1 ∩ ↓D1 ∩ intσ(↑F ).

Since a2 ≤ a1 and x2 ̸≪ a1, we have x2 ̸≪ a2. Again, by definition we find a

directed set D2 with a2 ≤ supD2 but x2 ̸∈ ↓D2. Moreover, from meet-continuity,

we have a2 ∈ ↓a2 ∩ ↓D2 ⊆ ↓a1 ∩ ↓D1 ∩ ↓D2. By induction, we can find directed

sets Di such that xi ̸∈ ↓Di for i = 1, ..., n and an element an ∈ intσ(↑F ) with

an ∈ ↓a1 ∩
∩n

i=1 ↓Di. So we have an ∈ intσ(↑F ) ∩ ↓a1 ∩
∩n

i=1 ↓Di, and this implies

that intσ(↑F ) ∩ ↓a1 ∩
∩n

i=1 ↓Di ̸= ∅, hence ↑F ∩
∩n

i=1 ↓Di ̸= ∅. However, this is

impossible, since xi ̸∈ ↓Di for i = 1, ..., n, one has xi ̸∈
∩n

i=1 ↓Di for any i = 1, ..., n.

This contradiction shows that our assumption must have been wrong.

Remark 3.1.10. Note that the reverse of the above lemma does not hold. Consider

the dcpo in Figure 2.3. For any finite set F in this dcpo, one easily sees that

intσ(↑F ) = ∅. However, the dcpo itself is not meet-continuous.

Corollary 3.1.11. Let L be a dcpo. If L is quasicontinuous and meet-continuous,

then for any finite subset F , one has ⇑F = ↑↑F .
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Proof. Obviously, that ↑↑F ⊆ ⇑F holds in arbitrary dcpos. We show the converse

containment.

Since L is meet-continuous, from Lemma 3.1.9 we know that intσ(↑F ) ⊆ ↑↑F . Re-

member L is also quasicontinuous, we have intσ(↑F ) = ⇑F from Proposition 2.4.10.

Hence ⇑F ⊆ ↑↑F .

The following theorem, which initially appears as [KLL03, Theorem 2.5], is the cen-

tral result of this section. It states that meet-continuity is exactly what we need to

bridge the gap between quasicontinuity and continuity.

Theorem 3.1.12. A dcpo L is continuous if and only if it is quasicontinuous and

meet-continuous.

Proof. Obviously, every continuous dcpo is quasicontinuous, and it is meet-

continuous from Proposition 3.1.6. Conversely, assume that L is quasicontinuous

and meet-continuous. For each a ∈ L, from the quasicontinuity, we know that

fin(a) = {F ⊆fin L | F ≪ a} is a directed family of non-empty finite sets and∩
F∈fin(a) ↑F = ↑a. Moreover, from the corollary above we have that ↑↑F = ⇑F . This

implies that ↓↓a ∩ F ̸= ∅ for each F ∈ fin(a). Hence the family {↓↓a ∩ F | F ∈ fin(a)}

is also a directed set of non-empty finite sets. We now apply Rudin’s lemma to find

a directed subset D ⊆
∪
{↓↓a ∩ F | F ∈ fin(a)} ⊆ ↓↓a such that D ∩ ↓↓a ∩ F is not

empty for all F ∈ fin(a). So we have supD ∈
∩

F∈fin(a) ↑F = ↑a. Moreover, since

D ⊆ ↓↓a, we conclude that supD = a. Now we easily see that L is continuous with

the help of Proposition 2.3.5.

Remark 3.1.13. A different proof of Theorem 3.1.12 can be found in [HJ16], where

Stone duality was employed as a central technique.
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3.2 Topological characterisations of meet-

continuous dcpos

In this section, we examine topological properties of meet-continuous dcpos with the

Scott topology. To begin with, we have the following characterisation which is a

refinement of [GHK+03, Proposition III-2.3].

Lemma 3.2.1. Let L be a dcpo. Then the following statements are equivalent:

1. L is meet-continuous;

2. for any x ∈ L, if a subset A ⊆ ↓x is Scott-open in ↓x, then ↑A is Scott-open

in L;

3. for any Scott-open set U and any x ∈ L, ↑(U ∩ ↓x) is Scott-open.

Proof. (1 ⇒ 2) Assume that D is a directed subset of L and supD ∈ ↑A. So there

exists some y ∈ A such that y ≤ supD. Then it follows from the meet-continuity

that y ∈ ↓y ∩ ↓D. Since y ∈ A ⊆ ↓x, ↓y ∩ ↓D is also the Scott closure of ↓y ∩ ↓D

in ↓x. Now the fact that A is a Scott-open neighbourhood of y in ↓x implies that

A∩↓y∩↓D ̸= ∅. It then follows that ↑A∩D ̸= ∅, thus ↑A is indeed Scott-open in L.

(2⇒ 3) This is obvious since for any Scott-open set U in L, the set U ∩ ↓x is Scott-

open in ↓x.

(3 ⇒ 1) Let D be a directed set and x ≤ supD. For any Scott-open set U with

x ∈ U , we know from the assumption that ↑(U ∩ ↓x) is a Scott-open set, and

x ∈ ↑(U ∩ ↓x) ⊆ U . Since x ≤ supD, we have supD ∈ ↑(U ∩ ↓x), and hence

D∩↑(U ∩↓x) ̸= ∅. So there exist d ∈ D, a ∈ U ∩↓x such that a ≤ d, and this implies

that a ∈ U ∩ ↓x ∩ ↓D. So any Scott-open set U containing x actually intersects

↓x ∩ ↓D, hence x ∈ ↓x ∩ ↓D. So L is meet-continuous.
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Meet-continuity simplifies the verification of compact elements. In meet-continuous

dcpos, compactness of an element can be checked by only looking at directed subsets

below this element.

Corollary 3.2.2. Let L be a meet-continuous dcpo and x, y ∈ L. Then

1. the element x is compact if and only if for any directed subset D with x = supD,

we have that x ∈ D;

2. if, in addition, L has binary infima, x ≪ y if and only if x ∈ ↓D for every

directed subset D with supD = y.

Proof. (1) The interesting part is the “if” direction. Assume x ∈ D for any directed

subset D with x = supD. This means that {x} is Scott-open in ↓x. By Lemma 3.2.1

it follows that ↑x is Scott-open in L, which is equivalent to saying that x is a compact

element in L.

(2) We also check the “if” direction. Assume that E is an arbitrary directed subset

of L and y ≤ supE. Since L is meet-continuous, we know that y = y ∧ supE =

supe∈E(y∧ e). Since the set {y∧ e | e ∈ E} is directed, from the assumption we have

that x ∈ ↓{y ∧ e | e ∈ E} ⊆ ↓E. So x≪ y holds.

Question 3.2.3. We do not know whether the statement in Corollary 3.2.2(2) holds

for arbitrary meet-continuous dcpos.

Corollary 3.2.4. Every minimal element in a meet-continuous dcpo is compact.

Proof. Let L be a meet-continuous dcpo and x ∈ L a minimal element. From

Corollary 3.2.2, we only need to prove that x ∈ D for any directed subset D with

supD = x. However, since x is minimal in L, {x} is the only directed subset with x

as its supremum.
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Corollary 3.2.5. Let L be a meet-continuous dcpo and A be a finite subset of L. If

every element in A is compact, then every minimal upper bound of A is also compact.

Proof. Assume that x is a minimal upper bound of A. Since A is a finite set of

compact elements,
∩

a∈A ↑a is Scott-open in L. Thus, ↓x ∩
∩

a∈A ↑a = {x} is Scott-

open in ↓x. Since L is meet-continuous, by Lemma 3.2.1 we have ↑x is Scott-open

in L, so x is compact.

In a meet-continuous dcpo L, for any Scott-open set U and x ∈ U , from Theo-

rem 3.2.1, we know that ↑(U ∩ ↓x) is a Scott-open neighbourhood of x inside U .

Moreover, the set ↑(U ∩ ↓x) has the property that it contains at least one lower

bound of x and y, for any element y ∈ ↑(U ∩ ↓x). In general, we give the following

definition to capture this property.

Definition 3.2.6. 1. Let X be a topological space. An open neighbourhood V

of x is called a compatible neighbourhood of x if for any y ∈ V , there exists

some z ∈ V , such that z ≤s x, y, where ≤s is the specialisation preorder.

2. X is called a locally compatible space if for every open set U and x ∈ U , there

exists a compatible open neighbourhood V of x, such that x ∈ V ⊆ U .

Theorem 3.2.7. Let L be a dcpo. Then the following statements are equivalent:

1. L is meet-continuous;

2. ΣL is a locally compatible space.

Proof. (1 ⇒ 2) Let U be a Scott-open subset of L and x ∈ U . Then ↑(U ∩ ↓x)

is Scott-open from Lemma 3.2.1 and x ∈ ↑(U ∩ ↓x) ⊆ U . It is easy to check that

↑(U ∩ ↓x) is a compatible open neighbourhood of x.
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(2⇒ 1) Let D be a directed subset and x ≤ supD. We prove that x ∈ ↓x ∩ ↓D. To

this end, let U be any Scott-open set and x ∈ U . Since L is locally compatible in

the Scott topology, there exists a compatible open neighbourhood V of x such that

x ∈ V ⊆ U . Since x ≤ supD and V is Scott-open, we have some d ∈ D such that

d ∈ V . Note that V is a compatible neighbourhood of x, we can find in V an element

z such that z ≤ d, x. So z ∈ V ∩ ↓x ∩ ↓d ⊆ U ∩ ↓x ∩ ↓D. Thus, every Scott-open

set U containing x intersects ↓x ∩ ↓D. Hence x ∈ ↓x ∩ ↓D.

Remark 3.2.8. In a dcpo L, every open filter U is a compatible open neighbourhood

of x for every x ∈ U . If L is continuous, it follows from Proposition 2.3.9 that ΣL

is a locally compatible space, hence L is meet-continuous from the above theorem.

This offers a topological viewpoint for Proposition 3.1.6.

One sees that both Lemma 3.2.1 and Theorem 3.2.7 give local characterisations for

meet-continuity. The following theorem, which is essentially from [KLL03, Theorem

2.4], in a flavour of Stone duality, gives an equivalent description of meet-continuity

via a global viewpoint from the Scott-closed sets.

Theorem 3.2.9. Let L be a dcpo. Then the following statements are equivalent:

1. L is a meet-continuous dcpo;

2. The set Γ(L) of Scott-closed sets of L, under the inclusion order, is a meet-

continuous dcpo.

Proof. (1⇒ 2) Since Γ(L) is a complete lattice under the inclusion order, we prove

the equation A∩
∪

i∈I Bi =
∪

i∈I A ∩Bi holds for arbitrary closed set A and directed

collection {Bi}i∈I of closed sets. To this end, let x ∈ A ∩
∪

i∈I Bi and U be a Scott-

open set containing x. Since L is meet-continuous, from Lemma 3.2.1 ↑(↓x∩U) is also

a Scott-open set containing x. Since x ∈
∪

i∈I Bi, we know that ↑(↓x∩U)∩ (
∪

i∈I Bi)
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is not empty. This means that there exist b ∈ Bi for some i ∈ I and a ∈ ↓x ∩ U

such that a ≤ b. Then we have a ∈ ↓x ∩ ↓b ∩ U ⊆ A ∩Bi ∩ U , which implies that U

intersects
∪

i∈I A ∩ Bi. Hence x ∈
∪

i∈I A ∩Bi and A ∩
∪

i∈I Bi ⊆
∪

i∈I A ∩Bi. The

converse containment is trivial.

(2 ⇒ 1) Let D be a directed subset of L and x ≤ supD. Then one has that

↓x ⊆ ↓ supD =
∪

d∈D ↓d. Since Γ(L) is meet-continuous, we know that x ∈ ↓x =

↓x ∩
∪

d∈D ↓d =
∪

d∈D(↓x ∩ ↓d) = ↓x ∩ ↓D. So L is meet-continuous.

3.3 A simpler definition and forbidden substruc-

tures of meet-continuous dcpos

In the last section, we have given many characterisations for meet-continuous dcpos.

In this section, we investigate the reason why a dcpo may fail to be meet-continuous.

To start with, we consider a general construction of non-meet-continuous dcpos of a

special form.

Recall that a chain C is said to be well-ordered if every non-empty subset A ⊆ C

has a least element. For any c ∈ C, we use c + 1 to denote the least element of

{x ∈ C | c < x}, provided this set is not empty. We say a chain C is downward

well-ordered if its order dual Cop is well-ordered.

Definition 3.3.1. For every well-ordered chain C without a top element, we define

the posetM(C) = C ∪ {⊤, a}, where a and ⊤ are not in C and the order onM(C)

is: x ≤ y iff x = y = a or y = ⊤ or x, y ∈ C, x ≤ y in C. Define M(C)⊥ to be the

lifting of M(C) by adding a least element ⊥. Figure 3.1 shows M(N)⊥ (where N is

the ordered chain of natural numbers).
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a

⊤

⊥

Figure 3.1: A non-meet-continuous dcpo M(N)⊥.

For every well-ordered chain C without a top element, neitherM(C) norM(C)⊥ is

meet-continuous. We examine this for M(C). Indeed, from the definition we have

a ≤ ⊤ = supC. However, by definition ↓a ∩ ↓C = ∅, so a is not in the Scott closure

of ↓a ∩ ↓C.

Actually, we will now show that any non-meet-continuous dcpo contains M(C)

or M(C)⊥ for some well-ordered chain C, as a retract inside it. As can be seen

easily, any nontrivial directed subsets in M(C) and M(C)⊥ are actually chains.

Meanwhile, the definition of meet-continuity involves arbitrary directed subsets. In

order to eliminate this disharmony, we first try to replace “directed subset” in the

definition of meet-continuity by “well-ordered chain”. To this end, we recall some

facts about well-ordered chains first.

Proposition 3.3.2. 1. Every well-ordered chain C with a top element ⊤ is an

algebraic lattice, and the set of compact elements in C is equal to {⊥}∪{c+1 |

c ∈ C \ {⊤}}, where ⊥ is the least element in C.

2. Every downward well-ordered chain E is an algebraic domain, with every ele-

ment in it being compact.



Chapter 3 Meet-continuous dcpos 95

Proof. (1) Let C be a well-ordered chain with top element ⊤ and least element ⊥.

By well-orderedness, C has infima for non-empty subsets and since we assume a top

element, it follows that C is a complete lattice. Let c ∈ C \ {⊤}. Then we know

that C \ ↓c is a non-empty Scott-open set and C \ ↓c = {x ∈ C | c < x} = ↑(c+ 1).

It then follows from Proposition 2.3.2 that c+1 is compact. For every non-compact

element a one has a = sup{x ∈ C | x < a} ≤ sup{x + 1 | x ∈ C, x < a} ≤ a. The

first equality follows from the fact that {x ∈ C | x < a} = C \ ↑a is not Scott-closed.

So every element in C is the supremum of compact elements below it. Thus, C is

an algebraic lattice. If k ∈ C \ {⊥} is compact, then the set {x ∈ C | x < k} is

non-empty and its supremum s is strictly smaller than k. It is now easy to verify

that k = s+ 1.

(2) Let D be a non-empty subset of E. Then D has a greatest element since it has

a least element in Eop, so E is a dcpo. Let x ∈ E, we find x+ 1 in Eop. Then in E

we easily see that ↑x = E \ ↓(x+ 1). The element x is compact since E \ ↓(x+ 1) is

Scott-open. Since every element is compact, E is an algebraic domain.

We are interested in well-ordered chains which are subsets of dcpos and compatible

with the dcpo structure.

Definition 3.3.3. We say a chain C is limit embedded in the dcpo L, if whenever

x = supD in C, for D a non-empty subset of C, then x is also the supremum of D

considered as a subset of L. Equivalently, C is limit embedded in L if the embedding

of C into L preserves existing directed suprema.

Proposition 3.3.4. 1. The image of a well-ordered set under a monotone func-

tion is well-ordered.

2. Let C be a bounded-complete chain and f : C → L a Scott-continuous function

into a dcpo L. Then the image of f is limit embedded in L.



96 3.3 A simpler definition and forbidden substructures of meet-continuous dcpos

Proof. (1) Assume that f is a monotone function from a well-ordered set C to a

poset Q and A is a non-empty subset of f(C). Then f−1(A) is a non-empty subset

of C and hence contains a least element a. It is now easy to see that f(a) is the least

element of A.

(2) Let D be a non-empty subset in the image of the Scott-continuous function

f : C → L. If f−1(D) is bounded in C then it has a supremum c there. Since

f−1(D) is automatically directed we can use Scott-continuity of f to conclude that

f(c) = supD which shows that the supremum of D lies in the image of f .

If f−1(D) is unbounded in C then because C is a chain this means that f−1(D) is

cofinal in C. This implies that D is cofinal in f(C) and therefore if it has a supremum

in f(C) then that is the largest element of f(C) and clearly also the supremum of D

in L.

Definition 3.3.5. A dcpo L is meet∗-continuous if for any x ∈ L and any well-

ordered chain C limit embedded in L, x ≤ supC implies that x is in the Scott

closure of ↓x ∩ ↓C.

Although seemingly weaker than meet-continuity, we now show that meet∗-continuity

is in fact sufficient to establish the former. To this end we recall Iwamura’s decom-

position of directed sets, [Iwa44], as presented by Markowsky:

Theorem 3.3.6. [Mar76, Theorem 1] If D is an infinite directed set, then there exists

a transfinite sequence Dα, α < |D|, of directed subsets of D having the following

properties:

1. for each α, if α is finite, so is Dα, while if α is infinite |Dα| = |α| (thus for all

α, |Dα| < |D|);

2. if α < β < |D|, Dα ⊂ Dβ;
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3. if β < |D| is a limit ordinal, then Dβ =
∪
{Dα | α < β}1;

4. D =
∪
{Dα | α < |D|}.

Remark 3.3.7. Parts (2) and (3) imply that the mapping |D| → PD, α 7→ Dα

preserves existing suprema (where we consider the powerset PD as a poset ordered

by subset inclusion). Thus the assumptions of Proposition 3.3.4(2) are satisfied and

we may conclude that the chain {Dα | α < |D|} is well-ordered and limit embedded

in PD.

Theorem 3.3.8. A dcpo L is meet-continuous if and only if it is meet∗-continuous.

Proof. It is trivial that meet-continuity implies meet∗-continuity. Conversely, if L

is meet∗-continuous, we use transfinite induction on the cardinality of the directed

set D in the definition of meet-continuity.

If D is finite, and x ≤ supD, then D has a greatest element and the fact that

x ∈ ↓x ∩ ↓D is obvious.

Now suppose D is infinite and that y is in the Scott closure of ↓y ∩ ↓G for any

y ∈ L and any directed set G with cardinality smaller than |D| and y ≤ supG. By

Theorem 3.3.6 D is the union of a chain C = (Dα)α<|D| of directed subsets of D,

each of which has smaller cardinality than D. The chain (supDα)α<|D| of elements

of L is well-ordered because it is a monotone image of the cardinal |D|. It is also

limit embedded because of Remark 3.3.7 above and the fact that the supremum

operation (from the set of directed subsets of D, ordered by inclusion, to L) is Scott-

continuous. Now, if x ≤ supD = sup{supDα | α < |D|}, then x is in the Scott

closure of ↓x ∩ ↓{supDα | α < |D|} since L is meet∗-continuous. For every Scott-

open set U , if x ∈ U , then U ∩↓x∩↓{supDα | α < |D|} ̸= ∅, which means that there

exists y ∈ U such that y ≤ x and y ≤ supDα for some α < |D|. By the induction
1This is not stated in [Mar76, Theorem 1] but appears in the proof.
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hypothesis, y ∈ ↓y ∩ ↓Dα, whence U ∩ ↓y ∩ ↓Dα ̸= ∅ and therefore U ∩ ↓x∩ ↓D ̸= ∅,

so x is indeed in the Scott closure of ↓x ∩ ↓D.

Note that we actually have also proved the following result which is a refinement of

Lemma 2.1.9.

Lemma 3.3.9. A poset L is a dcpo if and only if supC exists for any well-ordered

chain C limit embedded in L.

Corollary 3.3.10. For a dcpo L which has binary infima, the following statements

are equivalent:

1. L is meet-continuous (in the sense of Definition 3.1.3);

2. for every x ∈ L and every directed subset D of L, x ∧ sup{d | d ∈ D} =

sup{x ∧ d | d ∈ D};

3. for every x ∈ L and every well-ordered chain C limit embedded in L, x∧sup{c |

c ∈ C} = sup{x ∧ c | c ∈ C}.

Proof. The equivalence between (1) and (2) was addressed in Remark 3.1.4. The fact

that (2) implies (3) is trivial. To prove (3) implies (1), from Theorem 3.3.8 one only

needs to show that L is meet∗-continuous. So suppose x ∈ L, C is a well-ordered

chain limit embedded in L and x ≤ supC. From (3) one has sup{x ∧ c | c ∈ C} =

x ∧ sup{c | c ∈ C} = x which shows that x is in the Scott closure of {x ∧ c | c ∈ C}.

To conclude the proof it suffices to note that {x ∧ c | c ∈ C} ⊆ ↓x ∩ ↓C.

We come to the main result of this section: a new characterisation of meet-continuous

dcpos:

Theorem 3.3.11. Let L be a dcpo. Then the following statements are equivalent:
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1. L is not meet-continuous;

2. L has some M(C) or M(C)⊥ (as defined in 3.3.1) as a retract, where C is a

well-ordered chain without a top element.

Proof. (2 ⇒ 1) The dcpo L cannot be meet-continuous, since otherwise its retracts

M(C) or M(C)⊥ must be meet-continuous by Proposition 3.1.7, which is absurd.

(1 ⇒ 2) Let L be a dcpo which is not meet-continuous. By Theorem 3.3.8 this

means that it is not meet∗-continuous either, and so there exist an element a and a

well-ordered chain C ′ (limit embedded into L) such that a ≤ supC ′, but a is not in

↓a ∩ ↓C ′. Obviously, a is strictly smaller than supC ′ since a = supC ′ implies that

a ∈ ↓a = ↓a ∩ ↓C ′; moreover for every c ∈ C ′, a ≰ c and therefore C ′ does not have

a top element. Finally, we can make every c ∈ C ′ incomparable to a by throwing

away those elements of C ′ that are below a.

We now distinguish two cases:

Case 1, ↓a ∩ ↓C ′ ̸= ∅: Then there exist b ∈ L and c ∈ C ′ such that b ∈ ↓a ∩ ↓c. Let

C be the set C ′ \ ↓c and denote the set C ∪ {supC ′, a, b} by M and order it by the

induced order from L. Obviously, supC ′ = supC and M is isomorphic to M(C)⊥.

Define a function f from L to M :

f(x) =



b, x ∈ ↓a ∩ ↓C

a, x ∈ ↓a \ ↓a ∩ ↓C∧
{c | x ≤ c, c ∈ C}, x ∈ ↓C \ ↓a

supC, x /∈ ↓C & x /∈ ↓a

Since C is well-ordered, f is well-defined. We first prove that f is monotone, so let

x, y ∈ L with x ≤ y.
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In case y ∈ ↓a ∩ ↓C, x is in ↓a ∩ ↓C since ↓a ∩ ↓C is a lower set, and we see that

f(x) = f(y) = b.

In case y ∈ ↓a \ ↓a ∩ ↓C, since x ≤ y, x must be in ↓a \ ↓a ∩ ↓C or in ↓a ∩ ↓C, and

in both cases f(x) ≤ f(y).

In case y /∈ ↓a, if {c | y ≤ c, c ∈ C} = ∅, then f(y) = supC ≥ f(x). For

{c | y ≤ c, c ∈ C} ̸= ∅, if x ∈ ↓a, then x ∈ ↓a ∩ ↓y ⊆ ↓a ∩ ↓C, and f(x) = b ≤ f(y).

Otherwise x /∈ ↓a and f(x) ≤ f(y) follows immediately from the fact that {c | y ≤

c, c ∈ C} ⊆ {c | x ≤ c, c ∈ C}.

This covers all possible cases and we have established that f is monotone. Now we

show Scott-continuity. To this end let D be a directed set in L.

In case f(supD) = b, for every x ∈ D, b ≤ f(x) ≤ f(supD) = b since f is monotone,

so f(supD) = sup f(D) = b.

In case f(supD) = a, then supD ≤ a and supD /∈ ↓a ∩ ↓C. Since ↓a ∩ ↓C is Scott-

closed and D is directed, there exists some x ∈ D such that x ∈ ↓a \ ↓a ∩ ↓C, so

a = f(x) ≤ sup f(D) ≤ f(supD) = a.

In case f(supD) ∈ C, this means that supD ∈ ↓C \ ↓a. Without loss of generality,

we assume d ∈ ↓C \ ↓a for all d ∈ D. It then follows that f(d) ∈ C and hence

f(supD) is an upper bound of f(D) in C. Now let k be any element in C above

f(d) for all d ∈ D. From the definition of function f , we have that d ≤ f(d) ≤ k for

all d ∈ D, so supD ≤ k. Note that k ∈ C, one has f(supD) ≤ k. This implies that

f(supD) is the supremum of f(D) in C. Since C is limit embedded in L, f(supD)

is also the supremum of f(D) in L. Thus, f(supD) = sup f(D).

In case f(supD) = supC we have that supD ≰ a and for every c ∈ C, supD ≰ c.

So given c ∈ C there exist x1, x2 ∈ D such that x1 ≰ a and x2 ≰ c, and by the

directness of D there is some x ∈ D greater than x1, x2. For this element it holds

that x ≰ a, x ≰ c, and hence f(x) > c. So for every c ∈ C there is some x ∈ D such

that f(x) > c. This shows that sup f(D) must equal supC.
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This covers all cases to be considered and we conclude that f is a Scott-continuous

function from L to L. Inspecting the definition we see that the elements of M are

fixed under f . Hence M is a retract of L.

Case 2, ↓a ∩ ↓C ′ = ∅: In this case let C = C ′ and N be the set C ∪ {supC, a} with

its order inherited from L. Obviously, N is isomorphic to M(C). Define a function

g from L to N :

g(x) =


a, x ∈ ↓a∧
{c | x ≤ c, c ∈ C}, x ∈ ↓C \ ↓a

supC, x /∈ ↓C & x /∈ ↓a

The same deduction as in Case 1 shows that g is a retraction from L to N .

3.4 Dcpos with a core-compact function space and

cartesian closed full subcategories of quasicon-

tinuous domains

We have given several characterisations of meet-continuity of dcpos in previ-

ous sections. Concretely, these characterisations are listed as Proposition 3.1.5,

Lemma 3.2.1, Theorem 3.2.7, Theorem 3.2.9, Theorem 3.3.8 and Theorem 3.3.11,

to name a few. Especially, Theorem 3.3.11 offers us an order-theoretic viewpoint

of meet-continuity. In this section, we make use of this characterisation to derive

meet-continuity of a dcpo from the core-compactness of its function space. This re-

sult illustrates a deep interplay between topological and order-theoretical properties

of dcpos.
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Proposition 3.4.1. For any well-ordered chain C without a top element, neither

the function space [M(C)⊥→M(C)⊥] nor [M(C)→M(C)] is core-compact.

Proof. Let C be any well-ordered chain without a top element and c0 its bottom

element. We begin with D⊥ := [M(C)⊥→M(C)⊥] and assume for the sake of a

contradiction that it is core-compact. First, one easily sees that D⊥ is a complete

lattice since M(C)⊥ is. It then follows from Theorem 2.5.8 that D⊥ is sober, hence

locally compact by Theorem 2.5.16.

Consider the function a⇒⊥ that maps the element a to ⊥ and keeps everything

else fixed. It is clearly Scott-continuous and strictly less than the identity func-

tion on M(C)⊥. By local compactness this implies that we should have a compact

saturated neighbourhood K in D⊥ such that idM(C)⊥ is in the interior of K and

a⇒⊥ ̸∈ K. Let K ′ := {f ∈ K | f ≤ idM(C)⊥}. Clearly, K ′ is not empty (since

idM(C)⊥ ∈ K), and for each f ∈ K ′ we must have f(a) = a as otherwise we would

have f ≤ a⇒⊥ and a⇒⊥ ∈ K. Now ⊤ can only be mapped to a or to itself by

such an f . In the former case, some c ∈ C would also have to be mapped to a to

ensure continuity but this would violate the condition f ≤ idM(C)⊥ ; so f(⊤) = ⊤ is

the only possibility that remains. In other words, each such f continuously maps

the infinite well-ordered chain C ∪ {⊥,⊤} into itself, keeping both ⊥ and ⊤ fixed.

Note that K ′ is compact since it is the intersection of the compact set K and the

closed set ↓idM(C)⊥ . We now show that K ′ does not “isolate” idM(C)⊥ against di-

rected suprema from below. (For the argument that follows it may be useful to keep

Figure 3.2 in mind.)

Consider the function g :M(C)⊥ →M(C)⊥ defined by g(x) = min{f(x) | f ∈ K ′}.

As argued above, {f(x) | f ∈ K ′} = {a} when x = a, and {f(x) | f ∈ K ′} ⊆

C ∪ {⊥,⊤} otherwise. It follows that g is well-defined and monotone. We now

show that it is in fact Scott-continuous. Note that a is fixed by g. We proceed
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Figure 3.2: The situation in the proof of Theorem 3.4.2.

by showing that g continuously maps C ∪ {⊥,⊤} into C ∪ {⊥,⊤}. To this end,

let x0 ∈ C ∪ {⊥,⊤} and choose a basic Scott-open neighbourhood of g(x0) of

the form ↑c, where c ∈ C ∪ {⊥}. For every f ∈ K ′, f(x0) ∈ ↑c. Then there is

an open neighbourhood Uf of x0 and an open neighbourhood Vf of f such that

f(x) ∈ ↑c for all (f, x) ∈ Vf × Uf . This is because M(C)⊥ is core-compact, hence

Σ([M(C)⊥ → M(C)⊥] ×M(C)⊥) = Σ([M(C)⊥ → M(C)⊥]) × Σ(M(C)⊥) from

Theorem 2.5.7, and by Proposition 2.2.7 the evaluation mapping eval : (f, x) 7→

f(x) : [M(C)⊥ →M(C)⊥] ×M(C)⊥ →M(C)⊥ is Scott-continuous. By compact-

ness of K ′, a finite number of the Vf are covering K ′. Let U be the intersection of the

corresponding finitely many Uf . Then U is a neighbourhood of x0 such that f(x) ∈ ↑c

for all f ∈ K ′ and x ∈ U . Hence, g(x) ∈ ↑c for all x ∈ U . So we have proved that g

is Scott-continuous. (This technique is from K. Keimel’s remarks [Kei84].)

Now we present a directed set of functions with supremum idM(C)⊥ but none of them

is in K. This will be a contradiction to the assumption that K is a neighbourhood

of idM(C)⊥ . To this end, consider the Scott-continuous function h :M(C)→M(C)
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defined on a and the compact elements of C ∪ {⊤} by

h(x) =



⊥, x = ⊥;

a, x = a;

c0, x = c0;

g(c), x = c+ 1.

It follows that g and h agree for limit ordinals and h(⊤) = g(⊤) = ⊤, but there

are also infinitely many inputs where h is strictly less than g; more precisely, for

any e ∈ C, there exists a d ∈ C, d ≥ e such that h(d + 1) < g(d + 1). Indeed,

suppose there exists some e ∈ C such that h(d+1) = g(d+1) for all d ≥ e. Because

h(d + 1) = g(d), it then follows that g(d) = g(d + 1) when d ≥ e. Using transfinite

induction and the fact that g is Scott-continuous, we get that g(x) = g(y) for all

x, y ≥ e. In particular, we obtain g(e) = g(⊤) = ⊤. However, g is below idM(C)⊥

and this implies ⊤ = g(e) ≤ e, which is not possible since C does not have a top

element.

From h(⊤) = ⊤ and Scott-continuity we get that for any c ∈ C, there exists m > c

such that h(m) > c. Define m(c) to be the least element of {m ∈ C | h(m) > c}.

We use this to define a family K of functions kc :M(C)⊥ →M(C)⊥ indexed by the

elements of C and defined by

kc(x) =


x, x ≤ c;

c, c < x ≤ m(c);

h(x), otherwise.

It is clear that each kc is Scott-continuous as it is pieced together from Scott-

continuous functions on Scott-closed subsets. It is also clear that the supremum
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of K is the identity on M(C)⊥, but unfortunately, K may not be directed. This

is only a small hindrance, however, because D⊥ is complete and we can enrich K

with all finite suprema. Notice that for any non-empty finite subset F ⊆fin C, the

supremum supc∈F kc is equal to h on ↑max{m(c) + 1 | c ∈ F}, hence from the last

paragraph, supc∈F kc cannot be greater than g. This, then, yields a directed set

with supremum idM(C)⊥ no member of which is above g and therefore not above an

element of K ′. Since all of this takes place in ↓idM(C)⊥ , none of them exceeds any of

the other members of K either. Thus we have given a counterexample to the claim

that K is a Scott neighbourhood of idM(C)⊥ and this contradiction shows that the

assumption that the function space D⊥ is core-compact must have been wrong.

The argument for D := [M(C) → M(C)] is similar but easier because any order-

preserving function below idM(C) must map a to a and ⊤ to ⊤. Since M(C) is

join-complete, D is then join-complete as well. Theorem 2.5.8 suffices to bridge the

gap between core-compactness and local compactness in this case.

Theorem 3.4.2. Given a dcpo L, if the function space [L → L] is core-compact,

then L must be meet-continuous.

Proof. Assume that L is not meet-continuous, then by Theorem 3.3.11, L has some

M(C) or M(C)⊥ as a retract, where C is a well-ordered chain without a top el-

ement. So [M(C) → M(C)] or [M(C)⊥ → M(C)⊥] is a retract of [L → L]

from Proposition 2.7.10. Since core-compactness is preserved by retractions from

Proposition 2.7.9, we know that either [M(C) →M(C)] or [M(C)⊥ →M(C)⊥] is

core-compact. However, from Proposition 3.4.1 this is impossible.

As an application of the previous theorem, we arrive at the main result of this section,

which states that any cartesian closed full subcategory of quasicontinuous domains

actually consists of continuous ones entirely.
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Theorem 3.4.3. Let C be a cartesian closed full subcategory of qCONT, the cat-

egory of quasicontinuous domains with Scott-continuous functions as morphisms.

Then every object in C is continuous.

Proof. Assume L is a quasicontinuous domain in C which is not continuous. By

Theorem 3.1.12, L is not meet-continuous, so by the preceding theorem its function

space is not core-compact hence not quasicontinuous by Remark 2.5.2, so can’t be

an object of C. However, it follows from Lemma 2.2.9 that the function space is

the exponential object in any cartesian closed full subcategory of DCPO. This

contradiction shows that L must be continuous.

As introduced in Section 2.8.2, the maximal cartesian closed full subcategories of the

category CONT of continuous domains were fully classified by A. Jung in [Jun89,

Jun90b]. In the pointed case, they consist of continuous L-domains or FS-domains

(see Theorem 2.8.19). The preceding theorem can be read as saying that these are

also the maximal cartesian closed full subcategories of qCONT⊥. As a consequence

of this result, if we consider the Jung-Tix problem in the category qCONT⊥, then

the possible candidates are actually again RB⊥ and FS⊥, same as in the continuous

setting.



Chapter 4

The dichotomy theorem for locally

compact sober dcpos

We have seen from the last chapter that any cartesian closed full subcategory of

quasicontinuous domains consists of continuous ones entirely, and this result destroys

our hope of finding an answer to the Jung-Tix problem in the category qCONT

beyond the scope of FS.

In this chapter, we aim to extend this result to a even larger category. In particular,

since quasicontinuous domains are locally compact sober dcpos (see Theorem 2.4.11),

we ask ourself whether any cartesian closed full subcategory of locally compact sober

dcpos consists of continuous domains as well. We are not able to answer this ques-

tion in this chapter, however, we prove a similar but generalised version of Jung’s

dichotomy lemma (Lemma 2.8.17) in the setting of locally compact sober dcpos.

In the pointed case, we show that any cartesian closed full subcategory of locally

compact sober dcpos consists of stably compact dcpos entirely or every object in

it has complete principal ideals. Since Jones and Plotkin’s powerdomain P ruins

107
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lattice-like structure, this dichotomy result shows that any potential answer to the

Jung-Tix problem in the category of locally compact sober dcpos must be some full

subcategory consisting of stably compact dcpos entirely.

In order to prove our generalised dichotomy theorem, we first investigate coherence of

dcpos in the realm of local compactness and sobriety. Two characterisation theorems

of coherent dcpos are given. One of them is valid for all well-filtered dcpos. To be

more specific, we show that one can check coherence of well-filtered dcpos by showing

the compactness of the intersections of any two principal filters.

Following this work, we prove that those dcpos that are of our interest are actually

bicomplete. This is achieved by characterising bicompleteness (Theorem 4.2.11) and

proving that with meet-continuity the function space of any non-bicomplete dcpo

fails to be core-compact.

Recall that by Theorem 3.4.2 any dcpo with a core-compact function space is actually

meet-continuous. We prove our dichotomy theorem by showing that a function space

in the category of locally compact sober dcpos is meet-continuous only if either its

input dcpo is coherent or its output dcpo has complete principal ideals.

4.1 Coherence and Lawson-compact dcpos

Coherence of topological spaces, as defined in Definition 2.2.11, means that the in-

tersection of any two compact saturated compact subsets is again compact. As can

be seen from Theorems 2.8.25, 2.8.26 and 2.8.31 the probabilistic powerdomain P

lives well with coherence in different settings. In this section, we take a closer look

at coherence of dcpos. In particular, we prove that a well-filtered dcpo is coherent if

and only if the intersection of any two principal filters is compact.
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For a topological space X, in Section 2.5 we have denoted the set of all compact sat-

urated sets of X by Q(X). Furthermore, for the argument that follows, we consider

a topology, the so-called upper Vietoris topology v, on Q(X) generated by the sets

□U = {K ∈ Q(X) | K ⊆ U},

where U ranges over the open subsets of X. We use Qv(X) to denote the resulting

topological space. For a dcpo L, we use Qv(L) to denote Qv((L, σ(L))).

Lemma 4.1.1. Let L be a well-filtered dcpo. Then L is coherent if and only if ↑x∩↑y

is compact for all x, y ∈ L.

Proof. If L is coherent, it is obvious that ↑x ∩ ↑y is compact for all x, y ∈ L, since

↑x, ↑y are compact saturated.

For the reverse, suppose ↑x∩↑y is compact for all x, y ∈ L. We proceed to prove that

for any compact saturated sets A,B ⊆ L, A ∩ B is compact in L. To this end, fix

some element a ∈ L; we define a function f from L to Qv(L) by sending an element x

to the compact saturated set ↑x ∩ ↑a. We claim that f is continuous. Indeed, for

every Scott-open subset U ⊆ L, f−1(□U) = {x | ↑x ∩ ↑a ⊆ U} is obviously an

upper set. Let D ⊆ L be a directed subset with supD ∈ f−1(□U), then one has

↑(supD) ∩ ↑a ⊆ U , that is,
∩

d∈D(↑d ∩ ↑a) ⊆ U . Note that L is well-filtered and

{↑d∩↑a | d ∈ D} is a filtered family of compact saturated sets by assumption, so we

have some d ∈ D such that ↑d ∩ ↑a ⊆ U , i. e., d ∈ f−1(□U). Hence f is continuous.

Since f is continuous, for the given compact saturated subset A ⊆ L, f(A) = {↑x ∩

↑a | x ∈ A} is a compact subset of Qv(L). We now claim that the union of f(A),

which is just A ∩ ↑a, is compact in L. Indeed, for any compact subset C of Qv(L),

let {Uα} be a directed family of open sets of L covering
∪
C. By compactness,

every element K of C is already covered by one Uα; in other words, K ∈ □Uα. It
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Figure 4.1: Figure in Example 4.1.2.

follows that {□Uα} is a directed family covering C, and now the compactness of C

tells us that C ⊆ □Uα for some α. Hence
∪
C ⊆ Uα for this α. (This argument is

similar to the one employed by Andrea Schalk in [Sch93, Chapter 7] for showing that∪
: Qv(Qv(X))→ Qv(X) is well-defined.)

Now for such A the above argument enables us to define another function g from L

to Qv(L) as: g(x) = ↑x ∩ A for every x ∈ L. A similar deduction shows that g is

continuous. So for the compact saturated subset B of L, g(B) is compact in Qv(L),

and again the union of g(B), which is A∩B, is compact in L. So L is coherent.

We would like to remark that this result does not hold in general.

Example 4.1.2. Recall Johnstone’s non-sober dcpo J = N×(N∪{∞}). The partial

order on J is defined by (m,n) ≤ (m′, n′) iff either m = m′ and n ≤ n′ ≤ ∞ or

n′ =∞ and n ≤ m′. Let B = {bi | i ∈ N}, where bi, i ∈ N are pairwise distinct, and

let W be the disjoint union of J and B. We define a partial order on W as follows:
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• (m,n) ≤ (m′, n′) in W iff (m,n) ≤ (m′, n′) in J ;

• (m,n) ≤ bi iff n ≤ i.

For simplicity, we write (i,∞) in J as ai for all i ∈ N. The poset W is depicted in

Figure 4.1.

As can be easily seen from the figure that W is a dcpo. We show that W is a

non-coherent dcpo. Take K1 = {ai | i is odd} ∪ B and K2 = {ai | i is even} ∪ B.

Obviously, K1, K2 are saturated. Moreover, both K1 and K2 are compact. Indeed,

take any Scott-open cover U of K1, that is, K1 ⊆
∪
U . Then some Scott-open set

in U , say U , covers a1. Since a1 =
∨

j∈N(1, j), there exists some big enough natural

number j0 such that (1, j0) ∈ U . Then we know that ai, bi ∈ U for all i larger than j0.

So U covers all but finite elements of K1, and it follows that K1 is compact. The

same argument shows that K2 is compact. Now we consider the intersection of K1

and K2, which is equal to B, and we see that B is not a compact subset since each

bi ∈ B is a compact element. The compactness of each bi, for i ∈ N, comes from the

fact that it is a maximal element and that no infinite chain is below bi. So W is not

coherent. The intersection of any two principal filters in W , however, is compact.

This is because either the intersection is empty, or a principal filter, or contains some

maximal element ai and is contained in the top layer.

So we obtain a dcpo W in which the intersection of any two principal filters is

compact, whereas W itself is not coherent. As a by-product, by Lemma 4.1.1, W

cannot be well-filtered.

The following fact about core-compact complete lattices is essentially due to G. Gierz

and K.H. Hofmann [GH77]; we collect it here as a corollary to Lemma 4.1.1.

Corollary 4.1.3. For a complete lattice L, the following statements are equivalent:
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1. L is core-compact, i. e., σ(L) is a continuous lattice;

2. (L, σ(L)) is stably compact.

Proof. The only interesting part is that 1 implies 2. Suppose that L is a complete

lattice and σ(L) is continuous, then (L, σ(L)) is a sober space by Theorem 2.5.8 and

hence locally compact from Theorem 2.5.16. Since sober spaces are well-filtered from

Proposition 2.5.11, and for any x, y ∈ L, ↑x∩↑y = ↑(x∨y) is compact, L is coherent

by Lemma 4.1.1. Finally, L is obviously compact in the Scott topology since it has

a least element.

Lemma 4.1.1 also affords us a better understanding of Lawson-compact dcpos. Since

the Lawson topology is finer than the Scott topology, every Lawson-compact dcpo is

compact in the Scott topology. We first give a straightforward description of dcpos

which are compact in the Scott topology.

Proposition 4.1.4. Let L be a dcpo. Then Σ(L) is compact if and only if L is

finitely grounded, that is, there exists a finite subset F ⊆ L such that L = ↑F .

Proof. We prove the “only if” direction. Assume that L is compact in the Scott

topology. By Proposition 2.2.19 we know that L can be written as ↑M , where M

is the set of all minimal elements of L. Moreover, M must be finite; otherwise, the

family {M \ F | F ⊆fin M} is a filtered set of non-empty Scott-closed sets with an

empty intersection, which contradicts compactness.

Recall that the patch topology on L arises by taking all Scott-closed sets together

with all compact saturated sets as a subbasis for the closed sets. The following

theorem characterising Lawson-compactness is a generalisation of Theorem 2.8.24

which is stated for quasicontinuous domains.



Chapter 4 The dichotomy theorem for locally compact sober dcpos 113

Theorem 4.1.5. Let L be a well-filtered dcpo. Then the following statements are

equivalent:

1. L is patch-compact, i. e., L is compact in the patch topology;

2. L is Lawson-compact;

3. L is compact and ↑x ∩ ↑y is compact for every x, y ∈ L;

4. L is finitely grounded and ↑x ∩ ↑y is compact for every x, y ∈ L;

5. L is compact and coherent.

Proof. (1⇒ 2) That 1 implies 2 is true for all dcpos since the patch topology is finer

than the Lawson topology.

(2⇒ 3) It is obvious that L is compact since the Lawson topology is finer than the

Scott topology. For every x, y ∈ L, ↑x ∩ ↑y is Lawson closed therefore it is Lawson-

compact, thus Scott compact.

(3⇒ 4) This is from Proposition 4.1.4.

(4⇒ 5) This is from Proposition 4.1.4 and Lemma 4.1.1.

(5 ⇒ 1) We use the Alexander Lemma for compactness. Let {Kα}α∈A be a fam-

ily of compact saturated subsets and {Cβ}β∈B a family of closed subsets, and we

assume that their union {Kα}α∈A ∪ {Cβ}β∈B has the finite intersection property,

that is,
∩

α∈F⊆AKα ∩
∩

β∈G⊆B Cβ ̸= ∅ for all finite F and G. We now prove that∩
α∈A Kα ∩

∩
β∈B Cβ ̸= ∅. To this end, we enrich {Kα}α∈A and {Cβ}β∈B with all

finite intersections of their members, respectively, and denote the resulting families

by K and C, respectively. We can also assume that K and C are not empty by adding

L to each of them. Now we know that C is a filtered family of closed sets. Since L is

coherent, K is a non-empty filtered family of compact saturated sets. Moreover, by

assumption, K ∩ C ̸= ∅ for all K ∈ K and C ∈ C. By Proposition 2.5.14, we know
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that
∩
K ∩

∩
C ̸= ∅. Hence the intersection

∩
α∈AKα ∩

∩
β∈B Cβ, which is equal to∩

K ∩
∩
C, is not empty.

Recently, X. Xi and J. Lawson [XL17] proved that all Lawson-compact dcpos are

actually well-filtered in the Scott topology.

Theorem 4.1.6. [XL17, Corollary 3.2] Let L be a complete lattice or a bounded-

complete dcpo. Then L equipped with the Scott topology is well-filtered. More gener-

ally, any dcpo P with compact Lawson topology has a well-filtered Scott topology.

With the aid of the previous theorem, Theorem 4.1.5 holds without assuming that

L is well-filtered.

Theorem 4.1.7. [XL17, Theorem 4.2] Let L be a dcpo. Then the following state-

ments are equivalent:

1. L is patch-compact, i. e., L is compact in the patch topology;

2. L is Lawson-compact;

3. L is well-filtered, compact and ↑x ∩ ↑y is compact for every x, y ∈ L;

4. L is well-filtered, finitely grounded and ↑x ∩ ↑y is compact for every x, y ∈ L;

5. L is well-filtered, compact and coherent.

Corollary 4.1.8. Every bounded-complete lattice L is coherent.

Proof. By Theorem 4.1.6, we know that L is well-filtered. For every x, y ∈ L the

intersection of ↑x and ↑y, which is ↑(x ∨ y) or empty, is always compact, so the

statement follows from Lemma 4.1.1.
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For locally compact sober spaces, we have the following characterisation for coherence

via the notion of relative compactness.

Definition 4.1.9. Let X be a topological space. Given subsets A and B with

A ⊆ B, A is said to be relatively compact in B if every open cover of B admits a

finite subcover of A.

For two open subsets U, V of X, one easily sees that U is relatively compact in V if

and only if U ≪ V in O(X).

Lemma 4.1.10. Let X be a locally compact sober space. Then the following state-

ments are equivalent:

1. L is coherent;

2. for any compact saturated subsets A,B and Scott-open sets U, V with A ⊆

U,B ⊆ V , A ∩B is relatively compact in U ∩ V ;

3. for U, V,W ∈ O(X), if U ≪ V and U ≪ W , then U ≪ V ∩W .

The equivalence between 1 and 3 can also be found as Lemma 5.2.24 and

Lemma 8.3.32 in [GL13].

Proof. (1⇒ 2) This is obvious since by coherence A ∩B is compact.

(2 ⇒ 3) Let U, V,W be open subsets of X and U ≪ V,W . Since L is locally

compact, there exist compact saturated subsets C and K such that U ⊆ C ⊆ V and

U ⊆ K ⊆ W . Hence we have that U ⊆ C ∩K ⊆ V ∩W and that C ∩K is relatively

compact in V ∩W . Then it is easy to see that U is also relatively compact in V ∩W

and hence U ≪ V ∩W .

(3⇒ 1) For compact saturated subsets A and B, consider the family F := {U ∩ V |
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A ⊆ U & B ⊆ V, U, V ∈ O(X)} of open sets. We claim that F is a Scott-open

filter of O(X). Obviously, F is a filter of open sets. Let {Ui | i ∈ I} be a directed

family of open sets of X and
∪

i∈I Ui ∈ F . This means that we have some open sets

U, V with A ⊆ U,B ⊆ V , and U ∩ V ⊆
∪

i∈I Ui. Since X is locally compact, O(X)

is a continuous lattice. We can find open sets U ′, V ′ such that A ⊆ U ′ ≪ U and

B ⊆ V ′ ≪ V . From the assumption, we know that U ′ ∩ V ′ ≪ U ∩ V . Remember

that U ∩ V ⊆
∪

i∈I Ui, so we have some i ∈ I such that U ′ ∩ V ′ ⊆ Ui. This means

that Ui ∈ F and hence F is a Scott-open filter of opens. Now the sobriety of X

and the Hofmann-Mislove Theorem tell us that the intersection of F , which equals

A ∩B, is compact.

In continuous domains, property M is introduced as a characterisation of Lawson-

compactness. A continuous domain L is said to satisfy property M if for any

x1, y1, x2, y2 ∈ L with y1 ≪ x1 and y2 ≪ x2, there exists a finite set F ⊆ L such

that ↑x1 ∩ ↑x2 ⊆ ↑F ⊆ ↑y1 ∩ ↑y2. Such a property is useful in proving that cer-

tain domains are Lawson-compact, for example, FS-domains, bi-finite domains (see

[GHK+03, Proposition III-5.14]), and also useful in constructing functions on do-

mains at the element-level (e.g., [Jun89, Lemma 4.23]). The following observation is

similar to Lemma 4.1.10 and we record it here as a rephrasing of property M.

Proposition 4.1.11. Let L be a continuous domain. Then the following statements

are equivalent:

1. L satisfies property M;

2. for any x, y ∈ L and any Scott-open sets U, V with x ∈ U, y ∈ V , ↑x ∩ ↑y is

relatively compact in U ∩ V ;

3. for any x, y ∈ L, ↑x ∩ ↑y is compact;
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4. L is coherent.

The equivalence between 1 and 4 is Jung’s order-theoretic characterisation of coher-

ence and it can be found at [Jun89, Lemma 4.18 ] or at [GL13, Exercise 8.3.33].

Proof. (1⇒ 2) Assume that L satisfies property M. Since L is continuous, we could

find x′ ∈ U and y′ ∈ V such that x′ ≪ x and y′ ≪ y. By property M, there exists a

finite set F such that ↑x∩ ↑y ⊆ ↑F ⊆ ↑x′ ∩ ↑y′ ⊆ U ∩ V . Then obviously, ↑x∩ ↑y is

relatively compact in U ∩ V .

(2⇒ 3) This follows from a similar argument as in Lemma 4.1.10 by using the fact

that every continuous domain is locally supercompact and sober (Theorem 2.3.14).

(3 ⇒ 4) This is from Lemma 4.1.1 since every continuous domain is sober, hence

well-filtered.

(4⇒ 1) Given x1, y1, x2, y2 ∈ L with y1 ≪ x1 and y2 ≪ x2. Since L is continuous, ↑↑y1

and ↑↑y2 are Scott-open; and by Proposition 2.3.8 ↑↑y1∩↑↑y2 =
∪
{↑↑x | ↑x ⊆ ↑↑y1∩↑↑y2}.

From the assumption we have that ↑x1 ∩ ↑x2 is a compact subset in ↑↑y1 ∩ ↑↑y2, hence

there exists some finite subset F of ↑↑y1 ∩ ↑↑y2 such that ↑x1 ∩ ↑x2 ⊆ ↑↑F . Hence

↑x1 ∩ ↑x2 ⊆ ↑↑F ⊆ ↑F ⊆ ↑↑y1 ∩ ↑↑y2 ⊆ ↑y1 ∩ ↑y2.

4.2 Bicompleteness of sober dcpos

Recall that a dcpo L is said to be bicomplete if its order dual Lop is also a dcpo.

As can be seen easily, an alternative description of L being bicomplete is that every

filtered subset in L has an infimum.

Proposition 4.2.1. Every bicomplete dcpo is grounded. Moreover, if L is a bicom-

plete dcpo, then for every subset A ⊆ L and x an upper bound of A, i.e., x ∈ Au,

there exists a minimal upper bound of A such that m ≤ x.
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Proof. This is just Proposition 2.2.18 on Lop by noticing that Au =
∩

x∈A ↑x is Scott-

closed in Lop.

Definition 4.2.2. Let L be a poset. We say that L has property m if for each non-

empty finite set A ⊆ L, for any x ∈ Au there is a minimal upper bound y of A which

lies below x.

Corollary 4.2.3. Every bicomplete dcpo has property m.

Proof. This is obvious from Proposition 4.2.1.

Proposition 4.2.4. Every coherent dcpo has property m.

Proof. Let L be a coherent dcpo and A be a non-empty finite subset of L with an

upper bound. Then the set Au of upper bounds of A is compact since Au =
∩

x∈A ↑x

and L is coherent. Then from Proposition 2.2.19 we know that L has property m.

Proposition 4.2.5. Every compact and coherent dcpo is bicomplete.

Proof. Let L be a compact and coherent dcpo and G a filtered subset of it. Since L

is compact, we know that the set A =
∩

x∈G ↓x of lower bounds of G is not empty,

and obviously A is Scott-closed. If A does not have a greatest element, then there

exist at least two maximal elements in A, say a and b. By coherence of L we know

that ↑a∩ ↑b is compact and G ⊆ ↑a∩ ↑b. Since ↑a∩ ↑b∩ ↓x ̸= ∅ for every x ∈ G, by

compactness of ↑a∩ ↑b we then have that A∩ ↑a∩ ↑b is not empty. However, this is

absurd. So A has a greatest element, and this element is the infimum of G.

Corollary 4.2.6. Every coherent pointed dcpo is bicomplete.

Bicompleteness is preserved by retractions.
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Proposition 4.2.7. Let L be a bicomplete dcpo and M is a retract of L. Then M

is bicomplete.

Proof. Let f and g be the corresponding retraction and section. Assume that C is a

filtered set in M , then g(C) is a filtered subset of L. Since L is bicomplete, inf g(C)

exists. One easily sees that f(inf g(C)) is the infimum of C in M .

In the sequel, bicompleteness will be considered over sober dcpos. In particular, we

give our characterisation theorem of bicompleteness for meet-continuous sober dcpos

which, from Theorem 3.4.2, are in our interest.

Example 4.2.8. The following examples are not bicomplete.

• Let N be the poset of natural numbers with the usual numbering order and

Nop its dual poset. Then Nop is a non-bicomplete dcpo.

• Let K(Nop) be the dcpo obtained by adding two incomparable elements a, b

below the chain Nop. Then K(Nop) is a grounded dcpo which is not bicomplete.

• Let K(Nop)⊥ be the dcpo obtained by adding a least element ⊥ to K(Nop).

Then K(Nop)⊥ is a pointed dcpo which is not bicomplete.

Inspired by these three examples, we give more general constructions of non-

bicomplete dcpos.

Definition 4.2.9. For every downward well-ordered chain C without a bottom el-

ement, we define the poset K(C) = C ∪ {a, b}, where a and b are not in C and the

order on K(C) is: x ≤ y iff x = y = a; x = y = b; x ∈ {a, b}, y ∈ C; or x, y ∈ C,

x ≤ y in C. Define K(C)⊥ to be the lifting of K(C) by adding a least element ⊥.
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a b

⊥

Figure 4.2: K(Nop)⊥ in Example 4.2.8.

The following proposition is obvious.

Proposition 4.2.10. Let C be a downward well-ordered chain without a bottom

element. Then C, K(C) and K(C)⊥ are algebraic domains, and none of them is

bicomplete.

We now give our characterisation theorem of bicompleteness.

Lemma 4.2.11. Let L be a sober dcpo. If every minimal element in L is compact,

then the following statements are equivalent:

1. L is not bicomplete;

2. L has some C, K(C) or K(C)⊥ as a retract, where C is a downward well-ordered

chain without a bottom element.

Proof. That 2 implies 1 follows from Proposition 4.2.7.

The interesting part is that 1 implies 2. Assume that L is not bicomplete, then we

can find some chain C in L such that C does not have an infimum in L. Moreover,
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from Lemma 3.3.9 this C can be chosen in such a way that it is downward well-

ordered in the induced order from L.

Let A be the set of lower bounds of C in L. Then A =
∩

x∈C ↓x is obviously a

Scott-closed subset of L. Equip C ∪ A with the induced order from L and define a

function r : L→ C ∪ A by

r(x) =


x, x ∈ A;∧
{c ∈ C | x ≤ c}, otherwise.

Since C is downward well-ordered, the function r is well-defined and monotone.

Moreover, r is Scott-continuous. Indeed, for any directed subset D of L, sup r(D) ≤

r(supD) since r is monotone. For the reverse, the non-trivial case is that sup r(D) ∈

C. Without loss of generality, we assume that r(D) ⊆ C. Since C is downward well-

ordered, r(D) has a greatest element, say r(d) for some d ∈ D. Then r(d) = r(x) ≥ x

for all x ∈ ↑d ∩D. Hence supD ≤ r(d); therefore, r(supD) ≤ r(d) since r(d) ∈ C.

So we have proved that r is Scott-continuous. It then follows that r is a retraction

from L to C ∪ A with the corresponding section being the inclusion map of C ∪ A

into L.

We now distinguish two cases:

Case 1: A is empty. Then clearly C is a retract of L.

Case 2: A is not empty. In this case we can assume that every element of A is above

some minimal element in A since otherwise, we can find some descending chain in A

without any lower bounds. Since every chain has a well-ordered cofinal subset, this

enables us to find in A a downward well-ordered chain without any lower bounds as

well, and this will lead us to Case 1.

Since A, the set of lower bounds of C, is a Scott-closed non-empty subset, and since

C does not have an infimum, we have that A has at least two maximal elements, say



122 4.2 Bicompleteness of sober dcpos

a and b. We further consider two subcases:

Subcase 2.1: Every minimal element of A is below exactly one maximal element in A.

In this subcase, we define a function g on C ∪ A as:

g(x) =


x, x ∈ C;

a, x ∈ ↓a;

b, otherwise.

It is easy to check that g is a Scott-continuous retraction on C ∪ A with image

{a, b} ∪ C, which is isomorphic to K(C). Then g ◦ r is the desired Scott-continuous

retraction showing that {a, b} ∪ C is a retract of L.

Subcase 2.2: There exists some minimal element m ∈ A such that more than one

maximal element of A is above it.

Then we consider set ↑m ∩ A, the Scott closure of ↑m ∩ A in L. Because ↑m ∩ A

has more than one maximal element, it is not irreducible in the sober dcpo L. This

implies that we have two Scott-open subsets U, V of L such that they intersect with

↑m ∩ A respectively, but U ∩ V ∩ ↑m ∩ A = ∅ 1. Since U, V are Scott-open and

they intersect with ↑m ∩ A, then they also intersect with ↑m ∩ A. Fix some points

c ∈ U∩↑m∩A and d ∈ V ∩↑m∩A (see Figure 4.3). Now we can see that {C, c, d,m}

is a copy of K(C)⊥ inside L. Moreover, we show it is a retract of C ∪ A. Indeed,

consider the function h defined on C ∪ A as follows:

h(x) =



x, x ∈ C;

c, x ∈ U ∩ ↑m ∩ A;

d, x ∈ V ∩ ↑m ∩ A;

m, otherwise.

1Note that U and V may intersect in A.
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C

A
m

UV V

c d

Figure 4.3: The situation in the proof of Lemma 4.2.11.

Since in our assumption, the minimal element m is compact, ↑m is Scott-open. Now

to check that h is a retraction is just routine, and in this case, L has K(C)⊥ as a

retract witnessed by h ◦ r.

The following theorems are straightforward consequences of the previous lemma.

Theorem 4.2.12. Let L be a meet-continuous sober dcpo. If L is not bicomplete,

then L has C, K(C) or K(C)⊥ as a Scott-continuous retract, where C is a downward

well-ordered chain without a bottom element.

Proof. From Corollary 3.2.4, in a meet-continuous dcpo, every minimal element (if

they exist) is compact. Then the statement follows from the previous lemma.

Theorem 4.2.13. Let L be a pointed sober dcpo. If L is not bicomplete, then L

has K(C)⊥ as a Scott-continuous retract, where C is a downward well-ordered chain

without a bottom element.

Proof. This is Subcase 2.2 in the proof of Lemma 4.2.11.
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4.3 Sober dcpos with a core-compact function

space

Proposition 4.3.1. For any downward well-ordered chain C without a bottom ele-

ment, none of the function spaces [C → C], [K(C)→ K(C)], or [K(C)⊥ → K(C)⊥]

is core-compact.

Proof. We first show that [C → C] is not core-compact. Since this function space

is join-complete, by Corollary 2.5.17, we only need to show that it is not locally

compact. More precisely, we prove that the identity map idC does not have any

compact neighbourhoods. By way of contradiction, suppose that W is a compact

neighbourhood of idC . Then for each x ∈ C, the set {g(x) | g ∈ W} is compact since

the evaluation function eval : [C → C] × C → C is continuous and {g(x) | g ∈ W}

is the continuous image of the set W ×{x} which is compact in Σ([C → C]×C) by

Theorem 2.5.7 and Proposition 3.3.2. Moreover, {g(x) | g ∈ W} has a least element

since it is compact and C is a chain.

Consider the function f : C → C defined by f(x) = min{g(x) | g ∈ W}. As argued

above, f is well-defined. Obviously, f is monotone, and Scott-continuous since every

element in C is compact. Since W is a Scott neighbourhood of idC and W ⊆ ↑f , we

have f ≪ idC from Proposition 2.3.7.

We proceed by showing that f cannot be way-below idC . Consider the successor

function τ on C, defined by τ(c) = c + 1. Remember that C is downward well-

ordered, so c+ 1 < c. The functions

gc(x) =


τ ◦ f(x), x ≤ c;

x, otherwise.
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approximate idC but none of them dominates f .

This contradiction shows that W is not a Scott neighbourhood of idC . So [C → C]

is not core-compact.

Note that all of the above also holds in ↓idC , so ↓idC as a dcpo is not core-compact.

Hence [K(C)→ K(C)] is not core-compact since its retract ↓idK(C), which is isomor-

phic to ↓idC , is not core-compact.

Finally, we prove [K(C)⊥ → K(C)⊥] is not core-compact by showing that its prin-

cipal ideal ↓idK(C)⊥ is not core-compact. To this end, consider the set A := {f ∈

↓idK(C)⊥ | f(a) = a & f(b) = b}. One easily sees that A is Scott-open in ↓idK(C)⊥

and A is isomorphic to ↓idC . So A is not core-compact. Hence ↓idK(C)⊥ is not core-

compact, since in a core-compact dcpo every Scott-open set is a core-compact dcpo

in the induced order by Corollary 2.7.7.

We arrive at our main result in this section.

Theorem 4.3.2. Let L be a sober dcpo with a core-compact function space [L→ L].

Then L is bicomplete.

Proof. Suppose that L is not bicomplete. Since [L→ L] is core-compact, L must be

meet-continuous by Lemma 3.4.2. By Theorem 4.2.12, L has C, K(C) or K(C)⊥ as

a retract, where C is some downward well-ordered chain without a bottom element.

Hence either [C → C], [K(C)→ K(C)] or [K(C)⊥ → K(C)⊥] is a retract of [L→ L].

This implies that one of these function spaces must be core-compact. However, this

cannot be true as we saw in Proposition 4.3.1 that none of them is core-compact.
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Figure 4.4: A typical non-L-dcpo X⊤
⊥.

4.4 The dichotomy theorem

In this section, we give the main result of this chapter: a dichotomy theorem about

locating cartesian closed full subcategories of locally compact sober dcpos. The

result states that any cartesian closed full subcategory of pointed locally compact

sober dcpos consists entirely of coherent dcpos or of L-dcpos. In Section 4.1 we have

given equivalent descriptions of coherence (Lemma 4.1.10) in the setting of locally

compact sober dcpos. To obtain our dichotomy result, we need more information

of L-dcpos. Recall that an L-dcpo is a dcpo within which every principal ideal is

a complete lattice in the induced order. A typical non-L-dcpo X⊤
⊥ is depicted in

Figure 4.4. From Theorem 4.3.2 we know that our dcpos of interest are actually

bicomplete; therefore we start with an equivalent description of bicomplete L-dcpos.

Theorem 4.4.1. Let L be a pointed sober dcpo which is bicomplete. Then L is not

an L-dcpo if and only if L has X⊤
⊥ (defined in Figure 4.4) as a retract.

Proof. The “if” direction is obvious. We prove the non-trivial part.

Let L be a bicomplete sober dcpo with a least element ⊥. If L is not an L-dcpo,
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then we have some e ∈ L such that ↓e is not complete. Since L is bicomplete,

filtered infima exist in ↓e. This means that there exist elements a, b ∈ ↓e such

that a, b have no infimum in ↓e, since otherwise ↓e would be complete. Consider

the closed set ↓a ∩ ↓b. It is not empty since ⊥ ∈ ↓a ∩ ↓b, then it has at least two

maximal elements. The sobriety of L now tells us that ↓a ∩ ↓b is not irreducible,

so there exist two Scott-open sets U and V intersecting ↓a ∩ ↓b, respectively, with

U ∩V ∩↓a∩↓b = ∅. Choose some element c in U ∩↓a∩↓b and some d in V ∩↓a∩↓b,

respectively. We define a function r : L→ L as follows:

r(x) =



e, x /∈ ↓a ∪ ↓b;

a, x ∈ ↓a \ ↓b;

b, x ∈ ↓b \ ↓a;

c, x ∈ U ∩ ↓a ∩ ↓b;

d, x ∈ V ∩ ↓a ∩ ↓b;

⊥, otherwise.

It is clear that r is a retraction on L with image {a, b, c, d, e,⊥} which is a copy of X⊤
⊥

inside L.

We now come to a theorem which generalises Lemma 2.8.17.

Theorem 4.4.2. Let D be a locally compact sober dcpo and E a pointed bicomplete

sober dcpo. If D is not coherent and E is not an L-dcpo, then the function space

[D → E] is not meet-continuous.

Proof. Assume that [D → E] is meet-continuous although neither E is an L-dcpo

nor D is coherent. From Theorem 4.4.1 we know that [D → X⊤
⊥] (see Figure 4.4 for

X⊤
⊥) is also meet-continuous since it is a retract of [D → E].
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Since D is not coherent, Lemma 4.1.10 implies that there are compact saturated

subsets A,B and Scott-open sets U, V of D such that A ⊆ U,B ⊆ V , but A ∩ B is

not relatively compact in U ∩ V . Thus, there exists a directed family {Ui | i ∈ I}

of open sets such that U ∩ V =
∪

i∈I Ui, but Ui fails to cover A ∩ B for every i ∈ I.

Define a function f from D to X⊤
⊥ as follows:

f(x) =



c, x ∈ U \ V ;

d, x ∈ V \ U ;

b, x ∈ U ∩ V ;

⊥, otherwise.

Moreover, for every Ui, i ∈ I, we define a function gi as follows:

gi(x) =



c, x ∈ U \ V ;

d, x ∈ V \ U ;

e, x ∈ Ui;

a, (U ∩ V ) \ Ui;

⊥, otherwise.

It is easy to verify that f and gi, i ∈ I, are Scott-continuous, and the set G = {gi |

i ∈ I} is directed with its supremum above f . Note that

f ∈ N(A→ ↑c) ∩N(B → ↑d)

and

N(A→ ↑c) ∩N(B → ↑d) ∩ ↓f ⊆ {h ∈ [D → X⊤
⊥] | h(A ∩B) = {b}}.
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Since c, d are compact in X⊤
⊥, from Proposition 2.5.6 N(A→ ↑c) ∩N(B → ↑d) is a

Scott-open neighbourhood of f . Moreover, for each i ∈ I, (A ∩B) \ Ui ̸= ∅, there is

some x ∈ (A ∩B) \ Ui. Then gi(x) = a, and therefore we have

N(A→ ↑c) ∩N(B → ↑d) ∩ ↓f ∩ ↓G = ∅.

Hence f is not in ↓f ∩ ↓G, the Scott closure of ↓f ∩ ↓G. This implies that the

function space [D → X⊤
⊥] is not meet-continuous. A contradiction.

Let LcS be the category of locally compact sober dcpos and SCD be the category

of stably compact dcpos. Then our dichotomy theorem for locally compact sober

dcpos reads as follows.

Theorem 4.4.3. Let C be a cartesian closed full subcategory in LcS⊥. Then either

C is included in SCD⊥, or every object in C is an L-dcpo.

Proof. Let L be any dcpo in C. Then the function space [L → L] is in C from the

cartesian closedness of C. It is obvious that both L and [L→ L] are compact, locally

compact and sober in the Scott topology. By Theorem 3.4.2 and Theorem 4.3.2 they

are also meet-continuous and bicomplete.

If we assume that L is neither coherent nor has complete principal ideals, then from

Theorem 4.4.2 the function space [L→ L] is not meet-continuous. This contradiction

implies that C is contained in SCD⊥∪L⊥. Moreover, C should be entirely contained

in one of them, since otherwise we could find in C a non-coherent dcpo M and a

dcpo N which is not an L-dcpo, and apply Theorem 4.4.2 again to conclude that

[M → N ] is not meet-continuous.

In the category of pointed continuous domains, the category of pointed L-domains is

cartesian closed. Moreover, A. Jung proved that a pointed continuous domain with
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a stably compact function space must be an FS-domain (see Theorem 2.8.18 and

Theorem 4.1.7). Hence one gets a full classification of continuous domains: there

exist exactly two maximal cartesian closed full subcategories of pointed continuous

domains: FS⊥ and cL⊥.

In our case, however, we do not know whether a similar result can be obtained. Since

every dcpo in our interest is meet-continuous and bicomplete (see Theorems 3.4.2,

4.3.2), specifically, we ask the following:

Question 4.4.4. Is the category of locally compact sober and meet-continuous L-

dcpos cartesian closed?

What we do know is the following fact:

Fact 4.4.5. The category of stably compact and meet-continuous dcpos is not carte-

sian closed.

Consider the function space [L → L] of Plotkin’s ladder L in Figure 2.6. L is a

Lawson-compact algebraic domain, hence it is stably compact and meet-continuous.

In Example 2.8.23 we have seen that [L → L] is not continuous. We claim that

[L → L] is not even meet-continuous. Actually, we can show that for any coherent

dcpo D, if [D → D] is meet-continuous, then K(D), the set of compact elements

of D, does not contain a copy of M , where M is the set of compact elements in

Plotkin’s ladder L, i.e., M = L \ {⊤}. To formalise this idea, we start from the

following definition.

Definition 4.4.6. Given a poset L and A ⊆ L, we define:

• U0(A) = A,
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• Un+1(A) = {x ∈ L | x is a minimal upper bound for some finite subset

of Un(A)},

• U∞(A) =
∪

n∈N U
n(A).

L is said to have property U∞ if for any finite subset A of K(L), U∞(A) is finite.

Proposition 4.4.7. Let L be a coherent dcpo. If the function space [L → L] is

meet-continuous, then L has property U∞.

Proof. By way of contradiction, we assume that the property U∞ in L does not hold,

this is, there exists a finite subset A ⊆ L of compact elements such that U∞(A) is

infinite. Let Bn = Un+1(A) \ Un(A). We distinguish two cases.

Case 1: Some Un+1(A) is infinite while Un(A) is finite. This means there exists a finite

subset F of Un(A) such that F has infinitely many minimal upper bounds. Notice

that L is meet-continuous by Corollary 2.7.11 and Proposition 3.1.7. It follows from

Corollary 3.2.5 and by induction that those minimal upper bounds must be compact

elements; thus the principal filters generated by these compact elements form an

open cover of the set
∩
{↑x | x ∈ F}. However, finitely many of them fail to cover∩

{↑x | x ∈ F}. This is a contradiction to the coherence of L.

Case 2: Bn is finite and non-empty for every n. Note that Bn+1 ⊆ ↑Bn, so {Bn}n∈N

is a directed family of finite sets in the Smyth preorder. We apply Rudin’s Lemma to

find a directed subset D of U∞(A) such that D∩Bn ̸= ∅ for every n and D is infinite

since Bi ∩ Bj = ∅ for any distinct i, j ∈ N. Let supD = t. Define a function f as

follows:

f(x) =


t, x /∈ ↓t;

x, x ∈ ↓t.
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Furthermore, for every element d ∈ D, define a function gd:

gd(x) =


t, x /∈ ↓t;

d, x ∈ ↓t.

It is trivial to check that f and gd, d ∈ D, are Scott-continuous and f ≤ supd∈D gd.

We proceed by showing that f is not in the Scott closure of ↓f ∩ ↓{gd | d ∈ D},

which will lead to a contradiction to the meet-continuity of [L → L]. To this end,

consider the Scott-open set
∩

c∈C N(↑c → ↑c), where C = ↓t ∩ A. Notice that

f ∈
∩

c∈C N(↑c → ↑c), by induction we know that every x ∈ U∞(C) hence every

d ∈ D is fixed by every Scott-continuous function in ↓f ∩
∩

c∈C N(↑c→ ↑c). This is

because D ⊆ U∞(C). Remember that D is infinite, so any function below gd, d ∈ D

cannot keep the whole of D intact. Hence we have

↓f ∩ ↓{gd | d ∈ D} ∩
∩
c∈C

N(↑c→ ↑c) = ∅.

This entails that f /∈ ↓f ∩ ↓{gd | d ∈ D}.

Now both cases lead to contradictions, so L must have property U∞.

We update our knowledge and ask the following question.

Question 4.4.8. Let C be a full subcategory of DCPO with every object L in C

satisfying:

• L is stably compact;

• L is meet-continuous;

• L has property U∞.
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Is the category C cartesian closed? If it is not, what can we say about cartesian

closed full subcategories of C?

4.5 Dcpos without a bottom

In this section, we consider cartesian closed full subcategories of general locally com-

pact sober dcpos. Similar to the work in [Jun89, Chapter 3], we can get four full

subcategories such that any cartesian closed subcategory is contained in one of them

entirely.

The following lemma is an essential observation for our discussion.

Lemma 4.5.1. Let L,N be grounded dcpos and ML,MN the sets of minimal elements

of L and N , respectively. If both L and the function space [L → N ] are meet-

continuous, then either L is finitely grounded, that is, ML is finite; or for any

m,n ∈MN , ↑m ∩ ↑n = ∅, i.e., N is a disjoint sum of pointed dcpos.

Proof. We prove this by contradiction. Assume that ML is infinite and there exist

m,n ∈MN , d ∈ N such that d ∈ ↑m∩ ↑n. Let cm, cd be the constant functions from

L to N with images m and d, respectively. Then one easily sees that cm ≤ cd and that

cm is a minimal element in [L → N ]. Since the function space is meet-continuous,

from Corollary 3.2.4 cm is a compact element of [L→ N ]. We show the contradiction

by proving that cm cannot be compact. To this end for any finite subset F ⊆fin ML

we define a function fF : L→ N as:

fF (x) =


d, x ∈ ↑F ;

n, otherwise.
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Remember that L is meet-continuous, so every element in ML is compact, hence

↑F is Scott-open for all F ⊆fin ML. This implies that fF is Scott-continuous for

any F ⊆fin ML. Moreover, we see that the set {fF | F ⊆fin ML} is directed in the

function space and
∨
{fF | F ⊆fin ML} = cd, hence cm ≤ cd =

∨
{fF | F ⊆fin ML}.

However, one sees that no such fF is above cm, and this violates the compactness

of cm.

We now investigate dcpos whose function spaces are finitely grounded. Obviously,

these dcpos must be finitely grounded themselves, i.e., they have finitely many min-

imal elements. Moreover, we will see that the set of points “generated” by these

finitely many minimal elements is also finite.

Definition 4.5.2. For a poset L, we define the root of L, written rt(L), to be the

set U∞(∅). We call L well-rooted if U∞(∅) is finite, consists of compact elements and

for every x ∈ L, the set ↓x ∩ U∞(∅) has a largest element.

Lemma 4.5.3. Let L be a meet-continuous dcpo with property m. If the function

space [L→ L] is finitely grounded, then L is well-rooted.

Proof. Obviously L itself is finitely grounded. Since L is meet-continuous, ML is

a set of compact elements by Corollary 3.2.4 and every element in U∞(∅) is also

compact by Corollary 3.2.5.

We now prove that U∞(∅) is finite. To this end, we consider for each x ∈ U∞(∅)

the function rx : L → L defined in Example 2.7.3. Since rx = idL on ↓x, any Scott-

continuous function f below rx keeps every minimal element in ↓x ∩ U∞(∅) fixed.

Then by induction every element in ↓x ∩ U∞(∅), and hence x itself, is fixed by f .

Note that [L → L] is finitely grounded, we find for each x ∈ U∞(∅) a minimal

function gx below rx, and hence gx(x) = x. Now for different elements a, b ∈ U∞(∅),

we have minimal functions ga, gb below ra, rb, respectively. Without loss of generality
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we assume b ̸≤ a. Then we have ga(b) ≤ ra(b) = a ̸≤ b = gb(b), which implies that

ga ̸= gb. Thus U∞(∅) must be finite; otherwise by this method we could find infinitely

many minimal functions in [L→ L], which contradicts finite groundedness.

Finally, since L has property m, for any x ∈ L, the set ↓x ∩ U∞(∅) is directed.

Remember that U∞(∅) is finite, hence the finite directed set ↓x∩U∞(∅) has a largest

element.

Proposition 4.5.4. Let L be a dcpo. If the second-order function space
[
[L→ L]→

[L → L]
]

is bicomplete and meet-continuous, then either L is well-rooted or L is a

disjoint sum of pointed dcpos.

Proof. Obviously, both L and [L → L] are meet-continuous and bicomplete. In

particular [L→ L] is grounded and L has property m.

Assume for sake of a contradiction that neither L is a disjoint sum of pointed dcpos

nor well-rooted. It follows easily that [L → L] is not a disjoint sum of pointed

dcpos either. Moreover, from Lemma 4.5.3 we know that [L→ L] cannot be finitely

grounded. Then by Lemma 4.5.1 we know the second-order function space
[
[L →

L]→ [L→ L]
]

is not meet-continuous. A contradiction.

Proposition 4.5.5. Let L be a sober dcpo with its function space [L → L] core-

compact and meet-continuous. Then either ↑a is coherent for all compact a ∈ L, or

↑a is an L-dcpo for all compact a ∈ L.

Proof. First, since L is a retract of [L → L] by Corollary 2.7.11, L is core-compact

by Proposition 2.7.9 hence locally compact by Theorem 2.5.16. L is also bicomplete

by Theorem 4.3.2. From Example 2.7.4, we know that for any compact elements a

and b, the principal filters ↑a, ↑b are retracts of L, hence ↑a, ↑b are also locally com-

pact, sober and bicomplete.
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Moreover, by Proposition 2.7.10 and Proposition 3.1.7, we know that both the func-

tion spaces [↑a → ↑b] and [↑b → ↑a] are meet-continuous. Note that ↑a, ↑b are

pointed as dcpos, and so the contrapositive statement of Theorem 4.4.2 gives us the

desired conclusion.

The following result, which is the main theorem of this section, is a combination of

the previous ones.

Theorem 4.5.6. Let C be a cartesian closed subcategory of locally compact sober

dcpos. If L is an object in C, then L satisfies at least one of the following properties:

1. L is a disjoint sum of pointed L-dcpos;

2. L is a disjoint sum of pointed stably compact dcpos;

3. L is well-rooted and ↑a is coherent for any compact element a ∈ L;

4. L is well-rooted and ↑a is an L-dcpo for any compact element a ∈ L.

Proof. It follows from Lemma 2.2.9 that function spaces are exponentiable objects

in C, hence for any object M in C, [M →M ] is also locally compact and sober. By

Theorem 3.4.2 we have that M is meet-continuous, and by Theorem 4.3.2 that M is

bicomplete.

For the dcpo L in C, from cartesian closedness we know that both [L → L] and[
[L → L] → [L → L]

]
are in C, hence both of them are meet-continuous and

bicomplete. Now we apply Proposition 4.5.4 to obtain that either L is well-rooted or

L is a disjoint sum of pointed dcpos. We apply Proposition 4.5.5 to get that either all

↑a are coherent, or all ↑a are L-dcpos (for a compact in L). Finally we combine these

results and hence obtain four possibilities. Note that in a disjoint sum of pointed

dcpos, minimal elements are compact, and we finish the proof.
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Within the category of locally compact, sober, bicomplete and meet-continuous dcpos

with Scott-continuous functions as morphisms, we further define the following full

subcategories:

• dL: the category of disjoint sum of pointed L-dcpos;

• wL: the category of well-rooted dcpos with principal open filters being L-dcpos;

• dSCD: the category of disjoint sum of pointed stably compact dcpos;

• wSCD: the category of well-rooted dcpos with principal open filters being

coherent.

The examples in Figure 4.5, which are from [Jun89, Chapter 3], show that none of

these four categories is contained in the union of the other three. Theorem 4.5.6

reads as, every cartesian closed full subcategory C in LcS is contained in the union

of dL, wL, dSCD and wSCD. Moreover, we will see in the next statement that C

is entirely contained in one of these four categories.

Theorem 4.5.7. Let C be a cartesian closed full subcategory of LcS. Then C is

contained in one the four categories: dL, wL, dSCD and wSCD.

Proof. By Theorem 4.5.6 we know that C is contained in dL∪wL∪dSCD∪wSCD.

For any two dcpos L,M in C, both [L → M ] and [M → L] are in C. Then by

Lemma 4.5.1 and Lemma 4.5.3 they are both in dL ∪ dSCD or in wL ∪ wSCD,

which implies that C is entirely contained in dL∪dSCD or in wL∪wSCD. Similarly,

by Theorem 4.4.2, Proposition 4.5.5 and Proposition 2.7.10, C is entirely contained

in dSCD ∪wSCD or in dL ∪wL. Combining these two situations, we obtain that

C is entirely contained in one of these categories.
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Figure 4.5: Locally compact sober dcpos which are contained in exactly one of
the categories dL, wL, dSCD and wSCD.

We end this section by asking the following question:

Question 4.5.8. In order to extend our theory to a more general setting, the cat-

egory of core-compact dcpos, we ask whether over dcpos we could obtain sobriety
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from core-compactness. Since all properties we considered should be reconciled with

the function space construction, this means we can assume meet-continuity as well

by Theorem 3.4.2. Our question is then asked as follows:

Let L be a core-compact and meet-continuous dcpo. Is L sober? If [L → L] is

core-compact and meet-continuous, is L a sober dcpo?
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