
A bitopological point-free approach to

compactifications

by

Olaf Karl Klinke

A thesis submitted to the

University of Birmingham

for the degree of Doctor of

Philosophy

School of Computer

Science

December 2011



This thesis was produced entirely using free software.



Abstract

This thesis extends the concept of compactifications of topological spaces to a setting

where spaces carry a partial order and maps are order-preserving. The main tool is a

Stone-type duality between the category of d-frames, which was developed by Jung and

Moshier, and bitopological spaces. We demonstrate that the same concept that underlies

d-frames can be used to do recover short proofs of well-known facts in domain theory. In

particular we treat the upper, lower and double powerdomain constructions in this way.

The classification of order-preserving compactifications follows ideas of B. Banaschew-

ski and M. Smyth. Unlike in the categories of spaces or locales, the lattice-theoretic

notion of normality plays a central role in this work. It is shown that every compactifica-

tion factors as a normalisation followed by the maximal compactification, the Stone-Čech

compactification. Sample applications are the Fell compactification and a stably compact

extension of algebraic domains.
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4.5.2 The Stone-Čech compactification of an algebraic poset . . . . . . . . 169

4.6 Notes on Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5 Conclusion 173



6 Appendix 175

6.1 Partial orders and preorders . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.1.1 Constructions on preorders . . . . . . . . . . . . . . . . . . . . . . . 176

6.1.2 Joins and meets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1.3 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.1.4 Semilattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.5 Complete lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.1.6 Directed complete partial orders . . . . . . . . . . . . . . . . . . . . 183

6.1.7 Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.1.8 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.1.9 Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.1.10 Completely distributive frames . . . . . . . . . . . . . . . . . . . . . 188

6.1.11 Auxiliary relations and proximities . . . . . . . . . . . . . . . . . . . 192

6.2 Information systems and abstract bases . . . . . . . . . . . . . . . . . . . . 193

6.2.1 Approximable mappings . . . . . . . . . . . . . . . . . . . . . . . . . 193

6.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.3.1 The specialisation order . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.3.2 Separation axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Index 208



List of Tables

1.1 Presenting domains and their continuous functions . . . . . . . . . . . . . . 11

1.2 Axioms for interaction algebras . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Axioms for compactness and stable local continuity . . . . . . . . . . . . . . 54

2.1 Axioms for a d-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.1 Axioms for a d-frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.1 Axioms characterising a proximity on a frame . . . . . . . . . . . . . . . . . 149

vi



List of Figures

1.1 The interaction algebra of the two-chain . . . . . . . . . . . . . . . . . . . . 17

1.2 The interaction algebra 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 The relationships between round upper and lower sets . . . . . . . . . . . . 21

1.4 Token maps and semi-open morphisms . . . . . . . . . . . . . . . . . . . . . 27

1.5 Hierarchy of stages of interaction algebras . . . . . . . . . . . . . . . . . . . 29

1.6 Interaction algebras, information systems and abstract bases . . . . . . . . 36

1.7 An interaction algebra failing join-strength . . . . . . . . . . . . . . . . . . 47

1.8 The interaction algebra of the one-point space . . . . . . . . . . . . . . . . . 53

2.1 The lattice of truth values in four-valued logic . . . . . . . . . . . . . . . . . 91

2.2 A generic d-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.3 Consistency and totality in the open ideal completion . . . . . . . . . . . . 102

3.1 The dualising object of bitopological spaces . . . . . . . . . . . . . . . . . . 117

3.2 Free d-frame over the one-point set . . . . . . . . . . . . . . . . . . . . . . . 122

3.3 The dualising object of d-frames . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4 A frame isomorphic to its own Lawson dual . . . . . . . . . . . . . . . . . . 143

4.1 The d-lattice of dyadic rationals . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2 The d-frame of the bitopological unit interval . . . . . . . . . . . . . . . . . 153

vii



Chapter 0

Introduction and Motivation

Order theory pervades everyday life, through the order on natural numbers as a concept

of quantities as well as the order on the real numbers as a concept of the flow of time and

causality. Topological spaces are one of the two branches that real analysis, the study of

smooth real-valued functions, developed into at the beginning of the 20th century (the

other branch is measure spaces). Thanks to its generality, topology has found numerous

applications throughout mathematical sciences, theoretical computer science being no ex-

ception. Compactifications are, in a certain sense, ways of making a large space larger in

order to make it appear small. In this thesis we explore the tools necessary to extend the

theory of compactifications of topological spaces to a setting where spaces are ordered and

maps between them are order-preserving.

To be more precise about the line of thought in this thesis, we abstract the compactifi-

cation problem of ordered spaces to a more general setting. The techniques we employ are

borrowed from domain theory and locale theory. In the first abstraction step we replace

the two items of data, the topology and the order on the underlying set, by two new items

of data. The ordered topological space becomes a set with two topologies (a bitopological

space) where we think of the two collections as the opens that are downward and upward

closed opens in the given order, respectively. Thus the original problem becomes the com-

pactification problem for bitopological spaces. In the second abstraction step we move to

the localic setting and consider algebraic objects that are related to bitopological spaces

via a Stone-type duality. These algebraic objects we call d-frames. Once an appropriate

notion of compactification is formulated for d-frames, it becomes apparent that compact-

ifications are obtained by a familiar technique that is called round ideal completion in the

domain theory literature.

There are two recurring themes throughout this work: The first one is the use of

dualities, where we not only make use of Stone-type dualities between categories of spaces

and categories of algebraic objects, but also extensive use of self-dualities such as the

order-dual of partially ordered sets. The second theme is the decomposition of an order

relation on a single set into two more fundamental relations between a pair of sets.
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In the following sections we motivate the topic and the tools of this thesis and review

where the techniques that we use originate from.

0.1 Organisation of this document

0.1.1 What is where

The remaining sections of this chapter are not meant to serve as a comprehensive introduc-

tion. Instead, the reader may refer to the more detailed introductions at the beginning of

each chapter. The notes concluding each chapter contain historical notes, references, list

the author’s contributions and hint at open problems and ongoing work. The appendix

lists definitions and known facts about the various structures we intend to present in

Chapters 1, 2 and 3. It is best consulted as supplementary reference from within the main

chapters. In order to aid the reader in coping with the idiosyncrasies of this thesis, lists

of symbols (page 199) and an index (page 208) are provided.

0.1.2 What it is built on

Our methods rely heavily on techniques that were developed around continuous lattices

and domains, the core of which is now gathered in the Compendium [22]. In one way or

another, practically every result in this thesis can be considered as a contribution to domain

theory. As reference on bitopology, Nachbin’s monograph [45] or Kopperman’s paper [38]

may be used, although our point-free approach has much in common with the biframes

that Banaschewski and others [6] have developed. The very definition of the structure we

employ, d-frames, is due to Jung and Moshier, and their technical report [33] may serve

the reader as additional reference. Special cases of order-preserving compactifications

have been considered in the domain-theoretic community, instances are [50, 26, 28, 23]. In

domain theory, round ideal completions have been a tool since the early stages, see [17, 49,

23, 48, 1, 60]. It has also been known for long that round ideal completions are intimately

related to compactifications, a fact that we shall exploit in Chapter 4. We assume a modest

amount of category theory as a prerequisite for reading this thesis, however, not much more

than functors, adjunctions and monads are used here. In the appendix, these notions can

be seen instantiated on partially ordered sets. One of the standard references for category

theory is [43]. Another important tool we use is Stone duality, originally conceived by

M. H. Stone [51, 52] and developed further by Isbell, Priestley [46], Johstone [30] and

many others. Stone duality allows one to switch between the spatial/geometric and the

logical/algebraic point of view. D-frames are Stone duals of bitopological spaces and, as

discussed in Section 3.1, have some advantages over biframes.
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0.1 Organisation of this document

0.1.3 What is new

Chapter 1 recovers well-knownand not-so-well-known facts about domains (see Subsec-

tion 6.1.7) in a novel way. It can be seen as combining the presentation of a domain

by abstract bases with the presentation by information systems (see Section 6.2). Our

approach is tuned so that (1) proofs can be done in a natural deduction style and never

involve infinite operations, (2) dualities are built into the structures rather explicitly, and

therefore (3) switching from one point of view to the dual is effortless. Each of the first

few sections of Chapter 1 comes equipped with a minimal set of axioms necessary to char-

acterise an associated subcategory of domains. Although our morphisms are slightly more

complicated to work with than the morphisms between information systems, we retain

all the advantages. For instance, the duality functors such as Stone duality or Lawson

duality leave the data that describes a morphism invariant, only reverses its direction. At

the same time, Chapter 1 lays the conceptual foundations for the subsequent chapters, and

indeed in Section 2.4 we meet a proper subcategory of the category explored in Chapter 1.

While the results of Chapters 2, 3 and 4 are mostly independent of those in Chapter 1,

the proofs share the same techniques.

Chapter 2 mainly builds up auxiliary results for Chapter 3, but the structures consid-

ered there do not appear in other published work except [36] and are interesting in their

own right. A particular aspect worth mentioning is a seemingly innocent generalisation of

normal lattices which behaves rather differently in this work.

In Chapter 3 we present the concrete Stone duality for bitopological spaces that was

developed by Jung and Moshier. We demonstrate that said Stone duality completes the

three categories Top, Frm and BiTop to a commutative square of (dual) adjunctions. Other

novel results involve a bitopological analogue of the Heyting negation of frames and some

useful facts about regularity.

Chapter 4 sets out with a bitopological version of completely regular frames, that we

derive from the analogous concepts for locales and bitopological spaces in a straightfor-

ward manner. Once a notion of point-free bitopological compactification is agreed upon,

we prove a classification theorem very much like the ones known for spaces or locales.

Surprisingly, the compactifications of the structures that we consider all admit a certain

factorisation, which is not known of spaces or locales.

Compared to the journal paper [36], the definition of proximity ([36, Definition 13] vs.

Definition 4.3.1) is simplified, and Chapter 1 as well as the applications in Section 4.5 are

new. Some of the notation was unified, compare [36, Lemma 3] against Lemma 2.3.6.

0.1.4 How to read this document

The reader interested in compactifications alone may first read the introduction of Chap-

ter 4 to get an overview of the previously existing techniques, and then start with Chap-

ter 2. The Stone duality-minded person may find the introduction to Chapter 3 a good
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entry point, although numerous references to Chapter 2 are made in Chapter 3. The do-

main theorist and computer scientist may enjoy Chapter 1, where we provide new proofs

involving Stone duality, Lawson duality and the Smyth, Hoare and double power construc-

tions.

0.2 Why compactness?

Historically, the archetype of a compact space is a closed bounded interval in the real line.

The Heine-Borel Theorem states that whenever such an interval is covered by a collection

of open intervals then there exists a finite sub-collection of open intervals that still cover

the closed interval. This theorem has many useful consequences. To list a few, any real-

valued function on such a closed bounded interval is uniformly continuous and attains its

infimum and supremum. The latter property is a consequence of the general fact that the

image of a compact set under a continuous map is again compact. Compactness is also

used in more involved constructions in analysis: Holomorphic functions defined on a subset

of the complex plane are extended analytically along paths, that are continuous images of

the unit interval. Again the Heine-Borel covering property is of central importance here.

One approach to Lebesgue integration is via real-valued functions with compact support.

Such a function is constant zero outside a compact subset. This approach works because

the real line is locally compact , whence any real-valued function can be approximated by

functions with compact support.

The Heine-Borel property can easily be generalised to arbitrary topological spaces by

declaring a space to be compact if any covering of the space by open sets has a finite

sub-cover.

In a wide variety of cases compactness is just as good as being finite (we make this more

precise below). In a suitable setting one can show that (1) the intersection of compactly

many open sets is open1, and more generally, (2) the point-wise infimum of compactly

many continuous functions is continuous2.

In computer science compact spaces enter the scene via denotational semantics. Do-

main theory gives a model of functional programming languages such as the lambda cal-

culus and PCF that associates each data type with an ordered topological space. The

topology is a redundant bit of information since it is determined by the order alone. How-

ever, the denotation of a program term yields a continuous order-preserving map between

the denotations of its source and target type. This fact is exploited when proving that a

certain mathematical function between denotations can not arise as the denotation of a

program. For example, the naive approach to exact real number computation via infinite

sequences of binary digits is flawed, because even addition of two real numbers is not a

1There is a paper by Escardó with that name, submitted for publication.
2This holds for a collection of continuous functions X → L where X is exponentiable and L is a

continuous lattice.
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continuous operation on the denotational model.

As Mart́ın Escardó phrased it once, the compact spaces are those spaces which continu-

ous functions defined on them believe to be finite. This has rather surprising consequences.

Given a suitable representation of a compact set3 as a subset of a data type, one can search

it in finite time, even if the compact subset is infinite. What this means is that for any

continuous predicate on the data type (i.e. a boolean-valued function), it can be decided

in finite time whether the predicate is true for every element of the compact subset. One

says that the compact subsets admit continuous universal quantification. If we disregard

for a moment that not every continuous function between types is computable, then the

Hofmann-Mislove Theorem states that the compact subspaces are precisely the ones that

admit continuous universal quantification.

If a continuous function f : X → Y is defined on a non-compact space where Y is

compact, then one is interested in the compactification problem, that is to embed the

space X into a compact space βX (called a compactification of X) such that f can be

uniquely extended to a continuous map βf : βX → Y . Classically one requires βX to be

compact Hausdorff, whence X itself must be Hausdorff as well. In that case uniqueness

of βf can be achieved by requiring X to be dense as a subspace of βX. By dropping the

requirement that the map X → βX must be a topological embedding one obtains a more

general notion of compactification.

An instance which has naturally attracted much attention is the compactifications of

the real line. It admits a smallest compactification, the Alexandrov compactification. The

real line is homeomorphic to the open unit interval (0, 1) which embeds densely into the

unit circle S1 via t 7→ e2πt. A largest compactification always exists and its construction

is due to Stone and Čech, who independently published it in 1937. The Stone-Čech

compactification is functorial and in fact provides the left adjoint to the inclusion functor

from compact Hausdorff spaces to topological spaces.

In case of the real line there is a third compactification that appears to be rather

natural. One amends the real line by two points at infinity (say −∞ and ∞) and thus

obtains the extended real line [−∞,∞] which is homeomorphic to the closed unit interval.

This thesis is partly motivated by the question as to what extent this compactification is

canonical.

0.3 Why bitopology?

A typical example of a bitopological space in disguise is the real line. Endowed with the

Euclidean topology it is an ordered topological space where the usual order ≤ is a closed

subset of the product space R× R. It is a topological group where addition is continuous

and order-preserving in each argument. For any ordered set the collections of upper- or

lower closed subsets are closed under arbitrary unions and intersections. It follows that

3Escardó [20] uses selection functions (X → 2) → X
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the upper- or lower closed open subsets of an ordered topological space each form another

topology that is coarser than the original one. On the real line the two topologies thus con-

structed are known as the topology of lower- and upper semicontinuity. Addition is both

upper- and lower semicontinuous in each argument, which captures monotonicity. Nega-

tion, however, is neither upper- nor lower semicontinuous because it reverses the order.

Thus it must be understood as a map from the reals with the topology of upper semiconti-

nuity to the reals with the topology of lower semicontinuity (or the other way around). In

fact negation provides a homeomorphism between these two topological spaces. Observe

that the order can be recovered from the topology alone as the specialisation order of the

topology of lower semicontinuity. Another fact about the reals that is not true for arbi-

trary ordered topological spaces is that the Euclidean topology is the coarsest topology

that contains both topologies of semicontinuity. This is why bitopological constructions

are often not identified as such.

Moving from the Euclidean reals to the reals with the topology of lower semicontinuity

can be understood as an act of symmetry breaking. It is a well-known fact that in every

Hausdorff space compact subsets are closed. If the Hausdorff space is itself compact, then

the dual statement is also true: Every closed subset is compact, resulting in the concepts of

“closed” and “compact” being identical. For an asymmetric version of compact Hausdorff

spaces one considers sets with two topologies where the closed subsets with respect to

the first topology are precisely the compact saturated subsets with respect to the other

topology. In that situation one says that the concepts of “closed” and “compact” are dual.

The class of asymmetric topological spaces with the self-duality described above is the

class of stably compact spaces. These include many important instances, such as the real

unit interval with the topology of lower semicontinuity, the coherent spaces that Stone

used in his representation theorem for bounded distributive lattices as well as virtually

every class of domains that are relevant to semantics of programming languages. Many

theorems about compact Hausdorff spaces can be generalised to stably compact spaces.

For example, there is a well-established theory of power constructions including the proba-

bilistic powerspace. The Vietoris powerspace (a compact Hausdorff topology on the set of

closed subsets of a compact Hausdorff space) can be generalised in two ways, considering

either the closed or the compact subsets of a stably compact space.

A (not entirely) different reason for considering bitopological spaces is the question how

to represent contradicting or incomplete knowledge in logic. Vickers [59] gives an account

of how a logic where the law of excluded middle fails leads to topological spaces (or rather

locales). Similarly, Jung and Moshier motivate d-frames via Belnap’s four-valued logic [10],

a logic where a statement can be true and false at the same time.
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0.4 Why interaction algebras?

Interaction algebras arose initially as an abstraction of normal d-lattices which we intro-

duce in Section 2.4. In particular the question was: What is the most liberal kind of

morphism that gives rise to a continuous map between stably compact spaces? Various

related answers were given by Jung, Sünderhauf and Jung, Kegelmann and Moshier in

the form of algebras that carry the signature of bounded distributive lattices and certain

relations between them. In each approach, an element of the bounded distributive lattice

can be interpreted either as a basic open set or a basic compact set of the stably compact

space. This dual interpretation reflects the self-dual nature of the category of stably com-

pact spaces. However, in order to make the self-duality more tangible and the translation

from spaces to algebraic structures more direct, one may choose to keep the opens and

the compact sets separate, resulting in a structure where two bounded distributive lattices

interact via relations; hence the name “interaction algebras”.

Another – and in the author’s opinion more compelling – reason for interaction alge-

bras is the way in which the internal structure of a stably compact topology is represented.

Apart from unions and intersections of open sets the key ingredient is the way-below re-

lation between open sets that is witnessed by compact sets. Effectively the way-below

relation is broken down into a composition of two more fundamental relations between

opens and compact sets. These fundamental relations are hidden in the previous ap-

proaches because opens and compacts were indistinguishable. Once one knows what to

look for, a multitude of order relations used in mathematics are witnessed relations in the

sense that they can be decomposed into two other relations. In fact the original definition

of way-below relation on a domain that was given by Dana Scott is of this form.
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Chapter 1

Interaction algebras

This chapter serves two purposes. It provides a supercategory for categories we define in

Chapters 2 and 3. At the same time, it presents the synthesis of Abramsky and Jung’s

abstract bases, which are identical to Smyth’s concept of R-structures, and Vickers’ infor-

mation systems. Both concepts have the purpose of specifying a domain without having

to define all of its elements. Let us call the elements of an abstract basis or an informa-

tion system “tokens”. While every token of an abstract basis gives rise to an element of

the domain presented, there is no such assignment for tokens of an information system.

Instead, every token yields a Scott open set of the presented domain. This reflects the

localic viewpoint of information systems.

One advantage, and historically possibly the main reason for considering abstract bases

at all, is a reduction in cardinality. For instance, the algebraic domains in the standard

Scott model of PCF can be of uncountable cardinality, but they all have a countable basis

of compact elements. Likewise, a topological space might have an uncountable lattice of

open sets, but it could still have a countable basis. This is the case for the Euclidean

topology on the real numbers, to mention just one important example.

Knowing the action of a continuous map on a set of basic elements is enough to deter-

mine its action on arbitrary elements. However, once one has chosen bases for presenting

two domains, most continuous maps between the two structures will fail to map basic

elements to basic elements. Thus one is forced to consider relations between the bases.

When working with abstract bases, the fundamental question one asks about a contin-

uous map f : D → E is: Is y way below f(x)? The answer is recorded in a relation

between tokens. One says that x is related to y whenever y ≪ f(x). The approach for

information systems is quite similar. Here, the question one asks about a continuous map

is: When is the Scott open V completely below f−1(U)? A basic open V is related to a

basic open U whenever V ≪ f−1(U). Why do these relations contain all information

about the map f? Any element of the domain D is the directed join of tokens from the

abstract basis, and f preserves this directed join. Therefore, f(x) equals the join of the

set {f(x′) |x′ is a token way below x}. Now the elements f(x′) might themselves not be
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tokens, but our relation knows all tokens y that are way below f(x′). Then f(x) equals

the join of the set {y | y is a token related to some token x′ ≪ x}. The same idea applies

to information systems.

We wish to combine the two approaches and use the best of both. The main idea

becomes clear when we formulate the fundamental question to ask about a continuous

map f : When is f(x) contained in the Scott open U? Observe that one could equivalently

formulate the question as When is x contained in the preimage f−1(U)? It is obvious

how to fit abstract bases into this scheme: Let x range over all tokens of the abstract

basis, and let U range over all Scott open sets of the form ։y. With information systems,

the situation is slightly less obvious. The completely-below relation on Scott open sets is

witnessed by elements of the domain as follows (see Proposition 6.1.20). U ′ is completely

below U precisely when there exists an element x ∈ U which is a lower bound of U ′.

Therefore V is completely below f−1(U) precisely when there exists a lower bound x of V

which is an element of f−1(U). We have taken up the thread which will guide us through

this work:

A relation between two entities is witnessed by a third.

When dealing with interpolative relations, such as the way-below relation between

elements of a domain, or the completely-below relation between elements of a completely

distributive lattice, the witness can always be chosen of the same kind. Indeed, the

interpolation property states that x≪ y precisely when there exists a z with x≪ z ≪ y.

But suppose we want more freedom in what kind of witness we choose. For example,

a more natural characterisation of the way-below relation (and in fact this was Scott’s

original definition) is that x is way below y if there exists a Scott open set U such that x is

a lower bound of U and y is an element of U . Now the way-below relation is decomposed

into two other relations, the is-a-lower-bound-of relation and the is-an-element-of relation

between points and Scott opens. The interpolation property of the way-below relation is

now hidden in the relationship between y and U . Indeed, for a domain it is true that

y ∈ U precisely when there exists an element y′ of U and another Scott open U ′ such that

y is an element of U ′, the open U ′ has y′ as a lower bound and y′ is an element of U .

Let us collect the situation in a picture. For a domain D, denote its Scott topology

by σD. For the sake of neutrality, we write U⌢⌣x whenever x is an element of U . Likewise,

we write x⌢⌣U whenever x is a lower bound of U . Thus we obtain the following diagram

of relations1.

σD

⌢⌣
))
D

⌢⌣
kk

If we forget for a moment that the two sets in the diagram are just two sides of the same

1Think of D as the domain of open upper rays on the real line and σD as being represented by open
lower rays. The idea behind the symbols is that ⌢⌣ represents two overlapping open intervals _?� � and

⌢⌣ represents disjoint intervals _? � � .
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1 Interaction algebras

medal, then all we have is a pair of sets interacting via two relations, thus our name

interaction algebra. We write composition of relations as “;” and from left to right. With

this, the way-below relation on D is recovered as ⌢⌣;⌢⌣. The interpolation property of ≪,

as explained above, is now a consequence of an interpolative law for the relation ⌢⌣: it

reads ⌢⌣ = ⌢⌣;⌢⌣;⌢⌣. Indeed, using this law we can deduce

≪= ⌢⌣;⌢⌣ = ⌢⌣;⌢⌣;⌢⌣;⌢⌣ =≪;≪ .

But the diagram tells us even more. The composition ⌢⌣;⌢⌣ is a relation on σD, and by

now it is an old friend: U⌢⌣;⌢⌣U ′ precisely when U ′ is completely below U . Now the

same property of ⌢⌣ that allowed us to deduce the interpolation property of the way-

below relation on D allows us to deduce the interpolation property for the completely-

below relation on σD. The author believes that the interpolative law for ⌢⌣ is the more

fundamental one.

Bearing in mind our basic questions about a continuous map, it is readily seen that the

identity function is represented by the relation ⌢⌣. This suggests that if we wish to turn

our construction into a category, we should make the relation ⌢⌣ the identity morphism of

an object. But what would composition of morphisms look like? Again, the interpolative

law contains the answer. Recall that the identity morphisms of objects X and Y have to

satisfy idY ◦ f = f ◦ idX for any morphism f : X → Y . In particular idX = idX ◦ idX .

The latter equation is exactly what the interpolative law for⌢⌣ provides. Let us make this

precise. Suppose X
f //Y

g //Z are continuous maps of domains. When is (g ◦ f)(x) in

a Scott open U ∈ σZ? Note that g(f(x)) ∈ U precisely when f(x) ∈ g−1(U). We claim

that g(f(x)) ∈ U is equivalent to the assertion that U⌢⌣g(y), y⌢⌣V and V⌢⌣f(x) for some

y ∈ Y and V ∈ σY . Indeed, if the assertion is true, then because of y ∈ g−1(U) we must

have f(x) ∈ g−1(U) and so g(f(x)) ∈ U . Conversely, if f(x) ∈ g−1(U) then we can find

some y ∈ g−1(U) with y ≪ f(x). Now a witness V for the relation y ≪ f(x) yields what

we desired. As we have demonstrated, the relation⌢⌣ plays a role in the composition of two

functions. Let URgy whenever g(y) ∈ U and V Rfx whenever f(x) ∈ V . Then the relation

Rg◦f is the composition Rg;⌢⌣;Rf . With this it becomes clear that the interpolative law

for the relation ⌢⌣ : σX → X says nothing but idX = idX ◦ idX , and that a relation Rf

derived from a continuous function f must satisfy Rf = ⌢⌣;⌢⌣;Rf ;⌢⌣;⌢⌣. The diagram

below is an illustration of how composition works.

σZ

⌢⌣
))

@A
EDRg ��

Z⌢⌣jj Z

σY ⌢⌣
))

@A
EDRf ��

Y
⌢⌣

kk Y

g

OO

σX ⌢⌣
))
X

⌢⌣
kk X

f

OO
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Role of tokens Fundamental question about functions

Information system

Basic Scott open set Is V completely below f−1(U)?

Abstract basis

Basic point of the domain Is y way below f(x)?

Interaction algebra

Token: basic point; Is f(x) an element of the Scott open U?

Witness: basic Scott open set

Table 1.1: Presenting domains and their continuous functions

It should be mentioned that the direction of the arrows ⌢⌣ and ⌢⌣ is chosen somewhat

arbitrary and forces the assignment f 7→ Rf to be contravariant. We find it convenient

nevertheless because we can write the way-below relation as ⌢⌣;⌢⌣. Table 1.1 compares

the three concepts we encountered above.

Even without the interpolative law, the idea of decomposing an order relation into two

other relations is by no means limited to domain theory. There are numerous examples

from topology and algebra. We list a few.

• For opens U ′ and U of a topological space, say that U ′ is well inside U and write

U ′ ⊳ U if the closure of U ′ is contained in U . This relation has a canonical witness,

namely the closure of U ′. But we can express the fact that U ′ is well inside U more

neutrally by saying that there exists another open V such that U ′ ∩ V is empty and

V ∪ U is the entire space. Here the relation ⊳ is decomposed into the is-disjoint-

from (“consistency”, con) and the covers-the-space relation (“totality”, tot) between

opens. Observe that the separation axiom regularity is equivalent to requiring every

open U being the union of all the opens well inside it. Moreover, the separation

axiom normality is equivalent to the interpolative law tot = tot; con; tot.

• For opens U ′ and U of a topological space, say that U ′ is really inside U and write

U ′ 0 U whenever there exists a continuous function f into the unit interval separat-

ing them, meaning that f is constant 0 on U ′ and constant 1 outside U . Here the

witnesses are bounded real-valued functions and the relation is broken down into

U ′ ∩ f−1(0, 1] = ∅ and f−1[0, 1) ⊆ U . The separation axiom complete regularity is

11



1 Interaction algebras

equivalent to requiring that every open is the union of all opens really inside it. The

really-inside relation is interpolative for all spaces.

• If one restricts ⊳ using only witnesses which are simultaneously open and closed,

then the concept of zero-dimensionality amounts to the assertion that every open is

the union of opens below it in this sense.

• A continuum is a compact, connected metrizable space. For opens U ′ and U of a

topological space write U ′ ≺ U whenever U ′ ⊆ C ⊆ U for some subcontinuum of the

space. The assertion that every open U is the union of all the opens U ′ with U ′ ≺ U

is known as connectedness im Kleinen. Evidently ≺ is stronger than the way-below

relation between opens, whence every space which is connected im Kleinen is locally

compact.

• If L is a bounded lattice, consider relations between the set FiltL of filters of L and

the set IdlL of ideals of L. One says FiltL ∋ F ≤ I ∈ IdlL whenever the filter

F intersects the ideal I, and I ≤ F whenever all elements of the ideal I are lower

bounds of the filter F . This defines a structure known as the intermediary structure

of the lattice L, the MacNeille completion of which is the canonical extension of the

lattice L.

1.1 Interaction algebras for completely distributive frames

Our main goal is to treat domain theory the way we proposed in the introduction above.

But it turns out that it is convenient to examine interaction algebras for completely dis-

tributive frames first. This section provides the backbone category of this chapter and

“Stage 0” in our hierarchy of continuous posets. Many results proved in this section can

be specialised or extended in subsequent sections. Be warned that from Section 1.2 on we

change the semantics of interaction algebras (round ideals vs. round lower sets). There-

fore, moving from Section 1.1 to Section 1.2 does not mean restricting to more special

structures on the semantic side.

Completely distributive frames have every feature one needs for an interaction algebra

(see subsection 6.1.10 of the Appendix):

• There is an interpolative auxiliary relation which is of central importance to the

structure, namely the completely-below relation ≪.

• Any completely distributive frame is order-isomorphic to the set of round lower sets

with respect to ≪.

• For every completely distributive frame, the auxiliary relation ≪ is witnessed by

another lattice, namely its order dual.
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• There is a well-behaved self-duality (−)! on completely distributive frames which

transforms tokens into witnesses and vice versa.

Recall that completely prime upper sets of a complete lattice L are defined using the

structure map of the lattice: U ⊆ L is completely prime if

∨
S ∈ U ⇔ S ∩ U 6= ∅

for any lower set S. If x is a lower bound for such a set U and y is an element of it, then x

is completely below y. Indeed, if S is a lower set with y ≤
∨
S then in particular

∨
S ∈ U

whence S ∩ U 6= ∅. Then x –being a lower bound for U– must be below some element of

S, and since S is a lower set, it must contain x. Completely distributive frames have the

property that the converse also holds: If x≪ y then there exists some completely prime

upper set U which contains y and has x as a lower bound.

Although the lattice of completely prime upper sets is order-isomorphic to the order

dual of a complete lattice (every completely prime upper set of a complete lattice L is of

the form L \ |◭x for some x ∈ L), keeping the viewpoint of subsets is sometimes convenient.

In many aspects the completely prime upper sets provide the functionality for completely

distributive frames that we assigned to the Scott open sets of a domain. Analogous

to the way outlined in the introduction for the way-below relation, we decompose the

completely-below relation into two relations. Write L! for the completely prime upper

sets of a completely distributive frame L, ordered by inclusion. Consider the structure

L!
⌢⌣

))
L

⌢⌣
kk (1.1)

where, just as for domains, the relation ⌢⌣ is the contains-relation between upper sets and

points, and ⌢⌣ is the lower-bound-of -relation between points and upper sets. Armed with

this intuition about information systems for completely distributive frames, we embark

upon the axiomatic approach.

Definition 1.1.1. An interaction algebra consists of two sets L+ and L− which we call

tokens and witnesses, respectively. These interact by two relations ⌢⌣ : L− → L+ and

⌢⌣ : L+ → L− where the former satisfies the interpolative law ⌢⌣ = ⌢⌣;⌢⌣;⌢⌣. A

morphism between interaction algebras (L−, L+,⌢⌣,⌢⌣) and (M−,M+,⌢⌣,⌢⌣) is a relation

R : L− →M+ which satisfies R = ⌢⌣;⌢⌣;R;⌢⌣;⌢⌣. The composition of two morphisms is

defined as R#S := R;⌢⌣;S and the identity morphism on every object is⌢⌣. Emphasising

the role of the token set, the category of interaction algebras is denoted by Tok0. With

later refinements in mind, interaction algebras are also called Stage 0 interaction algebras

and their morphisms Stage 0 morphisms.

Notation. We usually denote interaction algebras with upper case script letters, e.g. L,

M,. . . The set of tokens and witnesses are then denoted by the same letter in standard
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1 Interaction algebras

typeface. For example, the interaction algebra L has components (L−, L+,⌢⌣,⌢⌣). Wit-

nesses are usually given lower case Greek letters, e.g. φ, ψ,. . . and tokens lower case Roman

letters.

1.1.1 Basic facts and constructions

Self-duality of interaction algebras

Probably the first observation that strikes the reader is that there is no apparent difference

between the witnesses and the tokens, apart from the fact that we write the former set

with a negative subscript and the latter with a positive subscript. Moreover, as both

the internal structure and the morphisms are relations, one might just as well reverse all

arrows and obtain the same kind of structure. If we start with the depiction of a morphism

as on the left in the diagram below, then reversal of the arrows makes the relation R now

have type M+ → L−. The only way to make this a morphism again is to swap the roles

of tokens and witnesses, that is, to flip the entire diagram at the vertical axis.

L−

⌢⌣ **
@A

EDR
��

L+⌢⌣jj L+

⌢⌣ **
L−⌢⌣jj

M−
⌢⌣

++
M+

⌢⌣
kk M+

⌢⌣
++GF
BC

R

OO

M−
⌢⌣

kk

(1.2)

Clearly now the diagram on the right represents another morphism between interaction

algebras. We arrive at

Proposition 1.1.1. There is a contravariant functor Flip : Tok0 → Tok0 which takes

an interaction algebra (L−, L+,⌢⌣,⌢⌣) to (L+, L−,⌢⌣
−1,⌢⌣−1) and a morphism R to R−1.

The category Tok0 is self-dual, as Flip ◦Flip is the identity functor.

The functor Flip will save us some work below because for many constructions on

interaction algebras there are four possible definitions. The involution Flip usually reduces

the possibilities to two.

Orders on tokens and witnesses

With information systems in mind, one can re-assemble the internal structure ⌢⌣ and ⌢⌣

of an interaction algebra into a binary relation ⌢⌣;⌢⌣ on tokens. On the witnesses one can

do the same: The composition ⌢⌣;⌢⌣ is a binary relation on witnesses.

Definition 1.1.2. For any interaction algebra, we write ≺ for the composition ⌢⌣;⌢⌣ and

call this the auxiliary order on tokens. Likewise, we abbreviate the composite ⌢⌣;⌢⌣ by ≻

and call its relational inverse the auxiliary order on witnesses.

As the symbol ≺ suggests, we understand this relation as a sort of less-than-relation,

whereas ≻ is to be understood as a greater-than-relation.
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1.1 Interaction algebras for completely distributive frames

Warning! Deviating from standard notation of order theory, the relation ≻ is not

just the relational inverse of ≺. The convention of writing Greek symbols for witnesses

and Roman symbols for tokens should help to avoid confusion. One nice feature about

interaction algebras is that in fact one is never forced to turn one of those relations around,

and proofs can be written rather elegantly keeping the order on witnesses in the greater-

than-style.

We record a few easy observations.

Lemma 1.1.2. For any interaction algebra, the relations ≻ and ≺ are idempotent. Hence

both (L−,≻) and (L+,≺) are information systems. The interpolative law for the relation

⌢⌣ can be written as ⌢⌣ = ⌢⌣;≺=≻;⌢⌣. A relation R : L− →M+ between witnesses and

tokens of two interaction algebras is a Stage 0 morphism precisely when ≻;R;≺= R.

Moreover, any relation R : L− →M+ can be turned into a morphism by the idempotent

operation R 7→ (≻;R;≺).

It should be noted that apart from being transitive, the relations ≻ and ≺ have little

in common with partial orders, for they are neither reflexive nor antisymmetric in general.

This can be turned into one of the strengths of the information system approach: One can

present a domain using a convenient set of (possibly redundant) tokens and the relation

≻ collapses several tokens into the same basic Scott open set.

The involution Flip of Proposition 1.1.1 is, as far as the order on tokens and witnesses

is concerned, an order-preserving operation.

Lemma 1.1.3. Let L be an interaction algebra, φ ≻ ψ be witnesses and a ≺ b be tokens.

Then in the interaction algebra FlipL the witnesses a and b are related by b ≻ a and the

tokens φ and ψ are related by ψ ≺ φ.

Proof. We have a ≺ b in L iff a⌢⌣;⌢⌣b which is equivalent to b(⌢⌣−1); (⌢⌣−1)a. Recall that

(⌢⌣−1); (⌢⌣−1) is the relation ≻ on the witnesses of FlipL. A similar argument applies to

φ and ψ.

When presented with a preorder, one natural question to ask is what its upper and

lower sets are. Given a preorder (P,≤), one calls a subset U ⊆ P an upper set if U ∋ u ≤ x

implies x ∈ U . Although the relations ≺ and ≻ are technically not preorders, we want a

suggestive notation for upper and lower sets.

Notation. For any subset U ⊆ L+ of tokens of an interaction algebra, we write ↑U for

the upper closure of the set U with respect to ≺, meaning that a ∈↑U if there exists some

u ∈ U with u ≺ a. Dually, the lower closure of ↓U is the set of tokens a for which a ≺ u

for some u ∈ U . Likewise, one writes ↑Φ for the set of witnesses ψ with ψ ≻ φ for some

φ ∈ Φ and calls this set the upper closure of the witness set Φ. The lower closure of a set

of witnesses is defined accordingly. Upper and lower closures of singletons are abbreviated

as ↑{a} =↑a etc.
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1 Interaction algebras

The reader should be aware that the upper and lower closure are not a closure operators

in the strict sense, because for example the upper closure ↑{a} does not contain a unless

the token satisfies a ≺ a. However, upper and lower closure are idempotent operations

because the relations ≺ and ≻ are idempotent. For the same reason every closed set ↑U

or ↓U is round in the sense of Definition 1.1.3 below. More results on upper and lower

closed sets are gathered in Proposition 1.1.5.

Definition 1.1.3. Let X be a set with with a transitive binary relation <. We call a

subset U ⊆ X a round upper set with respect to < if it satisfies

x ∈ U ⇔ ∃u ∈ U. u < x.

The collection of round upper sets of X, ordered by inclusion, is denoted by Up<X.

Dually, a subset U ⊆ X is called a round lower set with respect to < if

x ∈ U ⇔ ∃u ∈ U. x < u

holds. The collection of round lower sets of X, ordered by inclusion, is denoted by Lo<X.

One checks that both Up<X and Lo<X are complete lattices, where joins are com-

puted as set union (in particular, the empty set is both round lower and round upper).

Remark. Consider subsets of X as binary relations U ⊆ X×{∗} Then, in the language of

relational composition, the round lower sets of X are those morphisms U : X → {∗} of Rel

which satisfy <;U = U . Dually, if one regards subsets of X as morphisms U : {∗} → X

in Rel then round upper sets are those which satisfy U = U ;<. The interaction algebra

version of this observation is the content of Proposition 1.1.5.

So far we have not specified any requirements on the size of the relations⌢⌣ and⌢⌣. In

fact, even the empty relation between witnesses and tokens satisfies the interpolative law.

But it should be obvious that the fewer tokens and witnesses are related by ⌢⌣ and ⌢⌣, the

more uninteresting the interaction algebra becomes. As it turns out, any token or witness

which is not “bounded above” by some other element can be considered as superfluous.

Definition 1.1.4. We call a token a of an interaction algebra bounded if there exists

another token b with a ≺ b. Likewise, a witness φ is called bounded if ψ ≻ φ for some

witness ψ. The tokens and witnesses which are bounded by themselves, i.e. a ≺ a or

φ ≻ φ, are called compact.

Proposition 1.1.4. If L = (L−, L+,⌢⌣,⌢⌣) is an interaction algebra, let L− and L+

denote its bounded witnesses and tokens. With the relations restricted accordingly, the

tuple (L−, L+,⌢⌣,⌢⌣) is an interaction algebra which is isomorphic to L.

Proof. The interpolative law for ⌢⌣ implies that φ⌢⌣a if and only if there are bounded ψ

and b such that φ ≻ ψ⌢⌣b ≺ a. Let R be the restriction of ⌢⌣ to L− × L+ and S the

16
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Figure 1.1: The interaction alge-
bra of the lattice 2 = {0, 1} pic-
tured as the product of witnesses
and tokens. A bullet • is a pair re-
lated by ⌢⌣ and a circled element
is a pair related by ⌢⌣.

ϕ
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∗
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Figure 1.2: The interaction alge-
bra 1 with only one witness and
one token. It is the bounded part
of the interaction algebra depicted
in Figure 1.1.

restriction of ⌢⌣ to L−×L+. Then it is easy to see that both R and S are morphisms and

R # S = S #R =⌢⌣.

Example 1. Consider the two-chain 2 = {0, 1} which is obviously a completely distribu-

tive frame where 1 ≪ 1. It has two completely prime upper sets, namely ∅ and {1}. This

yields the interaction algebra depicted in Figure 1.1. The sets of tokens and witnesses

have only one bounded member each, which happens to be compact: 1⌢⌣{1}⌢⌣1. By the

previous proposition, this interaction algebra is isomorphic to the interaction algebra com-

prising only one witness and one token where the relations ⌢⌣ and ⌢⌣ are maximal. We

call this reduced interaction algebra 1, write its token as ∗ and its witness as ϕ.

1.1.2 Duality for interaction algebras

Interaction algebras are no good if we do not know what they represent. In the following

we develop a contravariant duality between the categories Tok0 and CDFrm. The style of

presentation has the flavour of a Stone-type duality. This means that each contravariant

functor is presented using a dualising object.

Round upper and round lower sets

In the category Rel of sets and relations, the set of morphisms between any two sets is

a complete lattice when ordered by inclusion. Furthermore, composition of relations is

monotone and preserves arbitrary unions. The same applies to the category Tok0 and

the composition #. Indeed, the only non-trivial fact to check is that the union of a set of

Stage 0 morphisms is again a Stage 0 morphism. Suppose R is a subset of Tok0(L,M).

We have φ (
⋃
R) a if and only if φRa for some R ∈ R. If ψ ≻ φ and a ≺ b then because

R is a morphism we also have ψRb and thereby ψ (
⋃
R) b. Further, φRa implies that

φ ≻ θRc ≺ a for some θ and c. This shows that
⋃
R is a Stage 0 morphism.

Proposition 1.1.5. Let L be an interaction algebra and 1 be the interaction algebra with

token set {∗} and witness set {ϕ} as depicted in Figure 1.2.
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1. There is an order-isomorphism between the lattice of round upper sets of tokens (sets

satisfying U =↑U ) and the complete lattice of morphisms 1 → L.

2. There is an order-isomorphism between the round upper sets of witnesses (sets sat-

isfying Φ = ↑Φ ) and the complete lattice of morphisms L → 1.

3. Both the complete lattices Tok0(1,L) and Tok0(L,1) are completely distributive fra-

mes, with U completely below V if and only if there exists an element of V which is

a lower bound for U .

Proof. (1) If R : 1 → L is a Stage 0 morphism then the set U = {a ∈ L+ |ϕRa} is easily

seen to be a round upper set with respect to ≺ because of R = R;≺. Conversely, any

round upper set U generates a morphism R : 1 → L via ϕRa ⇔ a ∈ U . Clearly the two

constructions are mutually inverse and preserve the inclusion order. One proves (2) by

applying the contravariant functor Flip to the situation of (1).

(3) Follows from (1) and (2) and the fact that U =
⋃
u∈U ↑ u holds for any round

upper set.

The proposition tells us that there are two ways of extracting a completely distribu-

tive frame from an interaction algebra. In fact, “general categorical nonsense” tells us

even more: The assignment L 7→ Up≺ L+ which is presented as Tok0(1,−) is covariantly

functorial, where the action of the functor on morphisms is just post-composition with the

morphism:

1
R

����
��

��
�

R#S

  A
AA

AA
AA

A

L
S

// M

Dually, the construction presented as Tok0(−,1) is contravariantly functorial where the

action on morphisms is pre-composition. Since we know that composition of relations

preserves all unions, the functors transform Stage 0 morphisms to join-preserving maps

between completely distributive frames. But which functor is the one we are after, the

functor that extends to the duality with CDFrm? Consider again the interaction algebra

(1.1) we constructed from a completely distributive frame L. We know that L is isomorphic

to the round lower sets of L with respect to the completely-below relation. This seems to

match none of the functors above. To see that the contravariant functor Tok0(−,1) is the

one we want, we invoke a lemma which is so useful for the rest of this chapter that we

dare call it the Fundamental Lemma of interaction algebras.

Lemma 1.1.6 (The Fundamental Lemma of interaction algebras). For any interaction

algebra, the complete lattice of round lower sets of tokens is order-isomorphic to the

18



1.1 Interaction algebras for completely distributive frames

complete lattice of round upper sets of witnesses via the following operations.

U⌢⌣ = {φ ∈ L− | ∃u ∈ U. φ⌢⌣u} (1.3)

Φ⌢⌣ = {a ∈ L+ | ∃φ ∈ Φ. a⌢⌣φ} (1.4)

Proof. Fist observe that a set U of tokens is a round lower set if and only if it coincides

with its lower closure.

The operations (1.3) and (1.4) can be defined for arbitrary subsets U ⊆ L+ and Φ ⊆ L−.

Clearly both maps are monotone with respect to inclusion. Using the definition of ≺ and

≻ it is easy to see that U = (U⌢⌣)⌢⌣ precisely when U is a round lower set and likewise

Φ = (Φ⌢⌣)⌢⌣ precisely when Φ is a round upper set. Thus, by the very definition, the

composites (−)⌢⌣ ◦ (−)⌢⌣ and (−)⌢⌣ ◦ (−)⌢⌣ restrict to the identities on round lower sets

of tokens and round upper sets of witnesses, respectively. Observe that both (−)⌢⌣ and

(−)⌢⌣ preserve round sets. Indeed, ⌢⌣;≺ = ≻;⌢⌣ whence (↓U )⌢⌣ =↑ (U⌢⌣) , and likewise

for sets Φ ⊆ L−.

Theorem 1.1.7. 1. There is a contravariant functor Ω : Tok0 → CDFrm which is

presentable as Tok0(−,1). It maps a morphism R : L → M to a join-preserving

map Ω(R) : Lo≺M+ → Lo≺ L+ between round lower sets of tokens. The functor Ω

is order-preserving on hom-sets.

2. Suppose h : L→M is a join-preserving map between completely distributive frames

and S :M! → L is the relation between interaction algebras as in the diagram (1.1)

derived from L and M , where a completely prime upper set U ⊆ M is related to an

element x ∈ L if and only if h(x) ∈ U . Then the map Ω(S) : Lo≺ L → Lo≺M is

isomorphic to h.

Proof. (1) From Proposition 1.1.5 and the observations following it, we know that Tok0(−,1)

presents a contravariant functor which sends an interaction algebra to the completely dis-

tributive frame of round upper sets of witnesses. The Fundamental Lemma 1.1.6 states

that we can equivalently describe that functor as producing maps between round lower

sets of tokens. As the functor Tok0(−,1) as pre-composition, and composition is mono-

tone, the functor is monotone on hom-sets. (2) Recall that in the interaction algebra

depicted in diagram (1.1) the relation ≺ on tokens coincides with the completely-below

relation. Further recall that any round lower set with respect to ≪ must be the lower set

of a point (see Lemma 6.1.18 of the Appendix). Let x ∈ L and consider the round lower

set

։։

x = {y ∈ L | y ≪ x}. The map (−)⌢⌣ defined in equation (1.3) of the Fundamental

Lemma 1.1.6 transforms the set

։։

x to the round upper set V =
{
V ∈ L! ∣∣ ∃y ≪ x. y ∈ V

}

which is the same as
{
V ∈ L! ∣∣x ∈ V

}
. Thus, the point x ∈ L is represented by the

Stage 0 morphism R : L! → 1 where V R∗ iff V ∋ x. Using the relation USy ⇔ h(y) ∈ U
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1 Interaction algebras

and its image under the contravariant functor Tok0(−,1) we obtain the relation

U(S #R)∗ ⇔ ∃y, U. USy⌢⌣VR ∗

⇔ h(y) ∈ U, y ≪ x

⇔ h−1(U) ∋ y ≪ x

⇔ h(x) ∈ U

which results in the round upper set U =
{
U ∈M! ∣∣h(x) ∈ U

}
. Now apply the isomor-

phism defined in equation (1.4) of the Fundamental Lemma and obtain the round lower

set {
m ∈M

∣∣∣ ∃U ∈M!.m⌢⌣U ∋ h(x)
}

which, as the completely prime upper sets witness the completely-below relation, can be

written as

։։

h(x). We conclude that Ω(S)(

։։

x) =
։։

h(x) whence the map Ω(S) is isomorphic

to h.

Having found a use for the contravariant functor Tok0(−,1), we do the same for the

covariant functor Tok0(1,−). Observe that Tok0(1,−) can be expressed as the functor

Flip followed by Tok0(−,1). We arrive at

Proposition 1.1.8. The following diagram of contravariant functors commutes (up to

isomorphism).

Tok0
Flip //

Ω
��

Tok0

Ω
��

CDFrm
(−)!

// CDFrm

Here (−)! is the self-duality on completely distributive frames (see Theorem 6.1.21).

Proof. Using the Fundamental Lemma 1.1.6 and Proposition 1.1.5, we reformulate the

object part of the diagram as the assertion “The lattice of completely prime upper sets

of Lo≺ L+ is isomorphic to the lattice of of round upper sets of tokens.” For any round

upper set U ⊆ L+ we define

U ♯ =
{
A ∈ Lo≺ L+

∣∣U ∩A 6= ∅
}
.

Since arbitrary joins of round lower sets are computed as set union, it is trivial to prove

that any such U ♯ is a completely prime upper set in Lo≺ L+. We claim that the inverse

to the operation (−)♯ is given by the assignment

C♯ = {a ∈ A | ↓a ∈ C} .

Observe that a ≺ b implies that ↓a ≪↓ b because of the characterisation of ≪ we

gave in Proposition 1.1.5 (3). Hence the set C♯ is an upper set in L+. It is also round with
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Figure 1.3: The relationships between round upper and lower sets of an interaction algebra.
The solid lines indicate isomorphism; the dashed lines stand for one lattice being the order
dual of the other.

respect to ≺. Indeed, if ↓a is an element of the completely prime upper set C, then there

must be some round lower set B ∈ C with B ≪↓a . This means that B ⊆↓ b for some

b ≺ a, whence also ↓b ∈ C.

It remains to show that the two operations (−)♯ and (−)♯ are mutually inverse. Starting

with a round upper set of tokens U ∈ Up≺ L+, the tokens a with ↓a ∩U 6= ∅ are precisely

the elements of U . Indeed, the inclusion (U ♯)♯ ⊆ U is trivial, and if a ∈ U then b ∈ U

for some b ≺ a because U is round. Now suppose C is a completely prime upper set of

round lower sets. If ↓a ∈ C and a ∈ A for some round lower set A then certainly ↓a ⊆ A

whence A itself must be an element of C. Thus (C♯)
♯ is contained in C. For an element A

of C use complete primality and obtain C ∋ B ≪ A for some B. This means that B ⊆↓a

for some a ∈ A. Hence a is a witness for A ∩ C♯ 6= ∅.

Note that we can read what we just showed the other way around: The lattice of

completely prime upper sets of Up≺ L+ is isomorphic to the lattice of round lower sets of

tokens.

Now we turn towards morphisms. What we have to show is the fact which corresponds

to the equivalence h(x) ∈ U ⇔ x ∈ h−1(U) in the category of completely distributive

frames. Let S ∈ Tok0(L,M) be a Stage 0 morphism. It is convenient to apply the

Fundamental Lemma once more and regard Ω(S) as a map from round lower sets of

tokens of M to round upper sets of witnesses of L sending a round lower set A ∈ Lo≺M+

to the round upper set {φ ∈ L+ | ∃a ∈ A. φSa}. Similarly, we regard (Ω◦Flip)(S) as a map

sending round lower sets of L− to round upper sets ofM+ via Φ 7→ {a ∈M+ | ∃φ ∈ Φ. φSa}.

We need to show that Ω(S)(A) intersects Φ if and only if (Ω◦Flip)(S)(Φ) intersects A. But

both statements are easily seen to be equivalent to Φ×A intersecting the relation S.

Our studies of round upper and lower sets are summarised in Figure 1.1.2.

The canonical interaction algebra

We now turn towards the problem of finding an adjoint to the functor Ω presented in

Theorem 1.1.7. Looking at equation (1.1), there is an obvious candidate:
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Definition 1.1.5. If L is a completely distributive frame, let IalgL denote the interaction

algebra where the set of tokens is L and the set of witnesses is L!, the completely prime

upper sets of L. The relations ⌢⌣ and ⌢⌣ are defined as U⌢⌣x iff x ∈ U and x⌢⌣U iff x is a

lower bound for U . If h : L→M is a join-preserving map between completely distributive

frames then let Ialg(h) :M! → L be the relation U Ialg(h)x⇔ h(x) ∈ U .

One needs to check that the construction IalgL indeed yields a Stage 0 interaction

algebra and Ialg(h) indeed a Stage 0 morphism. The interpolative law for⌢⌣ holds because

⌢⌣;⌢⌣ coincides with the interpolative relation ≪ and because the completely prime upper

sets are precisely the round upper sets with respect to ≪. The relation Ialg(R) is indeed

a morphism: If h(x) ∈ U ∈M! then there exists some m≪ h(x) which is still in U . As

the set U ′ = {y ∈M |m≪ y} is completely prime, we get U⌢⌣m⌢⌣U ′⌢⌣h(x) and thereby

Ialg(h) ⊆≻; Ialg(h). On the other side we have x =
∨ ։։

x and h preserves this join, whence

because of U being completely prime we must have h(x′) ∈ U for some x′ ≪ x. Thus

Ialg(h) ⊆ Ialg(h);≺. The converse inclusion ≻; Ialg(h);≺⊆ Ialg(h) is trivial.

Now we have all ingredients for our contravariant duality.

Theorem 1.1.9. The functors CDFrm
Ialg //

Tok0
Ω

oo constitute a contravariant Stone-type

duality of categories. The dualising object in CDFrm is the two-chain 2 and the dualising

object in Tok0 is the interaction algebra 1 with one witness and one token.

Proof. Lemma 6.1.22 and Theorem 1.1.7 tell us that Ω is presented as Tok0(−,1) and

Ialg is presented as CDFrm(−, 2). Furthermore, from Theorem 1.1.7 (2) we know that

Ω ◦ Ialg is equivalent to the identity functor on CDFrm. It remains to show that Ialg ◦Ω is

equivalent to the identity functor on Tok0.

Using Proposition 1.1.8 and the Fundamental Lemma, we can express the interaction

algebra Ialg ΩL as comprising the round lower sets of L+ as tokens and the round lower

sets of L− as witnesses. A round lower set of tokens Φ corresponds to the completely

prime upper set U :=
{
B ∈ Lo≺ L+

∣∣B⌢⌣ ∩ Φ 6= ∅
}

whence we have Φ⌢⌣A in Ialg ΩL if

and only if the product Φ×A intersects the relation ⌢⌣ in L. We claim that A is a lower

bound for the completely prime upper set U that corresponds to Φ precisely when A× Φ

is contained in⌢⌣;⌢⌣;⌢⌣. Suppose A×Φ ⊆ ⌢⌣;⌢⌣;⌢⌣ and the round lower set B ∈ Lo≺ L+

is an element of the completely prime upper set U . This means that φ⌢⌣b for some φ ∈ Φ

and b ∈ B. By hypothesis we have a⌢⌣;⌢⌣;⌢⌣φ⌢⌣b for all a ∈ A, whence A ≪ B. Hence

A is a lower bound for U . Now suppose A is a lower bound for U . Fix an element φ ∈ Φ.

Since Φ is a round lower set of witnesses, there exists some ψ ∈ Φ with ψ(⌢⌣;≺)b⌢⌣φ. This

means that the round lower set ↓b is an element of the completely prime upper set U . By

hypothesis A is contained in ↓b whence for all a ∈ A we have a ≺ b⌢⌣φ. As φ was chosen

arbitrary, we deduce A × Φ ⊆ ⌢⌣;⌢⌣;⌢⌣ and the claim is proved. Observe that A⌢⌣;⌢⌣B

in the interaction algebra Ialg ΩL if and only if A≪ B in Lo≺ L+.

Next we construct the isomorphism between L and Ialg ΩL. Define a relation R be-

tween witnesses and round lower sets of tokens by φRA iff φ⌢⌣a for some a ∈ A. Likewise
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1.1 Interaction algebras for completely distributive frames

define a relation S between round lower sets of witnesses and tokens by ΦSa iff φ⌢⌣a

for some φ ∈ Φ. Clearly ≻;R = R and S = S;≺. Observe that φR ↓ a if and only

if φ⌢⌣a, and likewise ↓φSa precisely when φ⌢⌣a. With this and the characterisation of

the completely-below relation on round lower sets, one shows R = R;≪ and ≫;S = S.

Hence R is a Stage 0 morphism L → Ialg ΩL and S is a Stage 0 morphism Ialg ΩL → L.

Finally, by iterating the interpolative law for ⌢⌣ one finds that φ⌢⌣a is equivalent to

φR ↓b⌢⌣ ↓ψ Sa for suitable round lower sets of tokens and witnesses. Dually, Φ⌢⌣A if and

only if Φ ∋ φ⌢⌣a ∈ A for some φ and a, which we can expand to Φ ∋ φ⌢⌣;⌢⌣;⌢⌣a ∈ A

using the interpolative law. Notice that the latter relation says ΦS # RA. This concludes

the proof of L ∼= Ialg ΩL.

It remains to consider the action of Ialg ◦Ω on morphisms. Let Q : L → M be a mor-

phism between interaction algebras. We claim that φQa is equivalent to ↓φ (Ialg(Ω(Q)))↓a .

We know that Ω(Q) maps the round lower set ↓a ∈ Lo≺M+ to the round upper set of

tokens {ψ ∈ L− | ∃b ≺ a. ψQb}. Because of Q = Q;≺ we have the simpler description

Ω(Q)(↓a ) = {ψ ∈ L− |ψQa}. Obviously, a round lower set of witnesses Φ intersects this

set if any only if Φ ∋ φQa for some member φ. In particular, using ≻;Q = Q we conclude

that ↓φ intersects Ω(Q)(↓a ) precisely when φQa.

1.1.3 Special morphisms

For the remainder of this section we study special kinds of morphisms. An important tool

will be the concept of adjoint pairs of morphisms, which we derive from the corresponding

notion in the category Rel. There, a relation R : X → Y is called right adjoint to a relation

S : Y → X if x(R;S)x for every x ∈ X and y(S;R)y′ implies y = y′ for any pair y, y′ ∈ Y .

Using the identity relations ∆X and ∆Y , we can write the conditions more concisely as

∆X ⊆ R;S and S;R ⊆ ∆Y . Observe that the right adjoints in Rel are precisely the

defined and single-valued relations, i.e. the functions.

In the context of interaction algebras and their duality with completely distributive

frames, however, the adjoint pairs of relations serve a different purpose. As we shall see,

the existence of an adjoint is intimately related to compact tokens and maps preserving≪.

Adjoints

The definition of adjoint pairs of relations between interaction algebras is straightforward.

All we have to do is to replace relational composition with # and the diagonal relation

with the identity relation ⌢⌣. Interestingly, the definition makes sense even if the relations

involved are not Stage 0 morphisms. We borrow notation from locale theory, where the

frame homomorphism associated with a locale map f is commonly denoted by f∗ and its

right adjoint by f∗.

Definition 1.1.6. Let L andM be interaction algebras, R∗ : L− →M+ andR∗ :M− → L+
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1 Interaction algebras

be a pair of relations. Then (R∗, R∗) is an adjoint pair if

⌢⌣ ⊆ R∗ #R∗,

R∗ #R∗ ⊆ ⌢⌣.

Here, R∗ is called the left adjoint and R∗ is called the right adjoint. One writes R∗ ⊣ R∗

to indicate the fact that R∗ is left adjoint to R∗. A morphism R which has a (Stage 0)

right adjoint is called semi-open.

Using the monotonicity of relational composition, it is easy to prove that if one of the

relations in an adjoint pair is a Stage 0 morphism, then one can produce an adjoint pair

of Stage 0 morphisms: Suppose R∗ # R∗ = R∗ #⌢⌣ # R∗ and R∗ # R∗ = R∗ #⌢⌣ # R∗. Then

the defining inequalities of the adjunction can be extended to

⌢⌣ ⊆ ⌢⌣ #R∗ #⌢⌣ #R∗ #⌢⌣

⌢⌣ #R∗ #⌢⌣ #R∗ #⌢⌣ ⊆ ⌢⌣

whence the relation ⌢⌣ #R∗ #⌢⌣ is left adjoint to ⌢⌣ #R∗ #⌢⌣. Moreover, a Stage 0 adjoint

is unique: Suppose R∗ ⊣ R∗ is an adjoint pair. Let S be the union of all right adjoints

to R∗. Then clearly R∗ ⊆ S and therefore ⌢⌣ # R∗ # ⌢⌣ ⊆ ⌢⌣ # S # ⌢⌣. For the reverse

inclusion, use ⌢⌣ ⊆ R∗ #R∗ and R∗ #S ⊆ ⌢⌣ to deduce ⌢⌣ # S ⊆ R∗ #⌢⌣ from the tautology

R∗ #R∗ # S ⊆ R∗ #R∗ # S.

Observe that the contravariant involution Flip preserves the order on relations, whence

it transforms left adjoints to right adjoints and vice versa. The contravariant functor Ω

also preserves the order on hom-sets and therefore preserves adjoints:

⌢⌣ ⊆ R∗ #R∗, R∗ #R∗ ⊆⌢⌣

⇒ id ≤ Ω(R∗) ◦ Ω(R
∗), Ω(R∗) ◦ Ω(R∗) ≤ id

⇒ Ω(R∗) ⊣ Ω(R∗)

A first application of adjoints is a characterisation of compact tokens and witnesses.

Proposition 1.1.10. There is a bijection between

1. Equivalence classes of compact tokens of an interaction algebra L,

2. Morphisms R : L → 1 which have a right adjoint,

3. Round lower sets of tokens A ∈ Lo≺ L+ which are completely compact, meaning

A≪ A.

Proof. Suppose a ≺ a is a compact token in L+. Then a⌢⌣φ⌢⌣a for some compact wit-

ness φ. Define relations L
R //

1
R∗

oo as ψR∗ ⇔ ψ ≻ φ and ϕR∗b ⇔ a ≺ b. Because of
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1.1 Interaction algebras for completely distributive frames

a ≺ a and φ ≻ φ both relations are Stage 0 morphisms. We have ⌢⌣ ⊆ R∗ # R because

of ϕR∗a⌢⌣φR∗. If ψ(R # R∗)b then ψ ≻ φ⌢⌣a ≺ b whence ψ⌢⌣b. Thus R∗ is right adjoint

to R. If a′ is equivalent to a, meaning a′ ≺ a ≺ a′, then we have a′⌢⌣φ′⌢⌣a′ for some

compact witness φ′. It is easy to show that φ′ ≻ φ ≻ φ′ also holds and the pair (φ, a)

generates the same pair of morphisms (R,R∗). The functor Ω sends the morphism R

to the round lower set ↓ a . This is completely compact in Lo≺ L+, because a union of

round lower sets contains ↓a precisely when a is an element of one of the round lower sets

already. Conversely, if A is a completely compact round lower set of tokens, then by the

characterisation of the completely-below relation we have A ⊆↓a for some a ∈ A whence

A =↓a and in particular a ∈↓a which means a ≺ a.

The proposition above is a special case of a more general fact. Notice that the set {∗}

is completely compact as a round lower set, meaning {∗} ≪ {∗}. Therefore, any map into

the round lower sets of L+ which preserves the completely-below relation will map {∗} to

a set of the form ↓ a where a is a compact token. We arrive at the interaction algebra

version of Proposition 6.1.24.

Theorem 1.1.11. The following are equivalent for a Stage 0 morphism R.

1. The morphism R is semi-open, i.e. has a right adjoint.

2. The homomorphism Ω(R) between round lower sets of tokens preserves the completely-

below relation.

Proof. Suppose R : L → M has the right adjoint R∗ and A,B are round lower sets of

tokens of M where A ⊆↓b for some b ∈ B. Since B is round we have b⌢⌣ψ0⌢⌣b′ for some

b′ ∈ B. For our convenience we employ the Fundamental Lemma 1.1.6 once more and

write Ω(A) = {φ ∈ L− | ∃a ∈ A. φRa}. From b⌢⌣ψ0⌢⌣b′ ∈ B and ⌢⌣ ⊆ R∗ # R we obtain

ψ0R∗;⌢⌣φ0Rb
′. Notice that in particular φ0 ∈ Ω(B). We claim that Ω(A) ⊆↑φ0 . Indeed,

if φRa for some a ∈ A then φRa ≺ b⌢⌣ψ0R∗;⌢⌣φ0 which because of R # R∗ ⊆ ⌢⌣ implies

φ ≻ φ0. This shows that Ω(R) preserves the completely-below relation.

For the reverse implication, suppose that the map Ω(R) preserves the completely-below

relation. We construct a right adjoint to R as follows. Let S :M+ → L− be the relation

mSφ :⇔ ∀φ′ ∈ L−. (φ
′Rm⇒ φ′ ≻ φ).

We claim that the right adjoint to R is R∗ := ⌢⌣;S;⌢⌣.

φ′(R #R∗)a ⇔ φ′(R;≺)mSφ⌢⌣a

⇒ φ′RmSφ⌢⌣a

⇒ φ′ ≻ φ⌢⌣a

⇒ φ′⌢⌣a.
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1 Interaction algebras

Hence R # R∗ is contained in ⌢⌣. The fact that Ω(R) preserves the completely-below

relation has the following consequence. Whenever m′ ≺ m in M+ then the round lower

sets generated by these tokens have ↓m′ ≪↓m and thus Ω(R)(↓m′ ) ≪ Ω(R)(↓m ),

meaning that there exist a witness φRm with the property that φ′Rm′ implies φ′ ≻ φ.

We use this to show ⌢⌣ ⊆ R∗ # R. Suppose ψ⌢⌣m in M. We interpolate to ψ⌢⌣m′ ≺ m

and use the observation we just made: There exists a witness φRm which, by definition

of the relation S above, has m′Sφ. Hence ψ⌢⌣m′SφRm which, using ⌢⌣ # R = R, we can

expand to ψ(R∗ #R)m. This finishes the proof that R∗ is right adjoint to R.

Token maps

In some cases we are lucky, and the particular sets of tokens and witnesses we chose to

represent a completely distributive frame allow us to express a homomorphism in CDFrm

as a function between tokens rather than a relation. This situation typically occurs when

representing functors and monads, such as the powerdomain monads of sections 1.10, 1.11

and 1.12.

Definition 1.1.7. A token map between interaction algebras M and L is a pair of func-

tions

M−

⌢⌣ ++

f−
��

M+

⌢⌣
kk

f+
��

L−

⌢⌣ **
L+

⌢⌣
jj

which preserve the structure of the interaction algebra, meaning that f−(φ)⌢⌣f+(a) when-

ever φ⌢⌣a and f+(a)⌢⌣f−(φ) whenever a⌢⌣φ.

The central fact about token maps is the existence of a functorial assignment to adjoint

pairs of morphisms:

Proposition 1.1.12. There is a contravariant functor from the category of Stage 0 in-

teraction algebras and token maps to the category of Stage 0 interaction algebras and

semi-open morphisms.

Proof. Given a token map (f−, f+) : M → L define relations R+ : L− → M+ and

R− :M− → L+ as φR+m iff ∃m′ ≺ m.φ⌢⌣f+(m
′) and ψR−a iff ∃ψ′. ψ ≻ ψ′ and f−(ψ

′)⌢⌣a.

First observe that preservation of ⌢⌣ and ⌢⌣ implies that both f+ and f− are monotone

with respect to ≺ and ≻, respectively.

It is easy to see that both R+ and R− are Stage 0 morphisms, whence we concentrate

on showing that R− is right adjoint to R+. Suppose φ⌢⌣f+(m
′), m′ ≺ m⌢⌣ψ ≻ ψ′

and f−(ψ
′)⌢⌣a. Then in particular f+(m

′)⌢⌣;⌢⌣;⌢⌣f−(ψ
′) and therefore φ⌢⌣a. Hence

R+ # R− ⊆ ⌢⌣. Now suppose ψ⌢⌣m. Then there exist ψ′ and m′ such that ψ ≻

ψ′⌢⌣m′ ≺ m. Consequently f−(ψ
′)⌢⌣f+(m

′) with which we can conclude ψR− # R+m.

Thus ⌢⌣ ⊆ R− #R+.
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1.1 Interaction algebras for completely distributive frames

M−

⌢⌣ ++

f−

��

M+⌢⌣kk

f+

��

M−

⌢⌣ ++

R−!!D
DD

DD
DD

D
M+⌢⌣kk Ω(M)

Ω(R+)
��

L−
⌢⌣

**
L+

⌢⌣
jj L−

⌢⌣
**

R+

==zzzzzzzz
L+

⌢⌣
jj Ω(L)

Ω(R−) ⊣

OO

Figure 1.4: Token maps give rise to semi-open morphisms, which in turn yield adjoint
pairs of linear maps between completely distributive frames.

Observe that in case (f−, f+) is the pair of identity maps on L−×L+ then the resulting

relations are both equal to ⌢⌣. Let again be (f−, f+) : M → L, (g−, g+) : L → K and

S− and S+ be the relations generated by g− and g+. We have θS+ # R+m iff θ⌢⌣g+(a
′),

a′ ≺ a⌢⌣φ⌢⌣f+(m
′) and m′ ≺ m. Then a′ ≺ f+(m

′) and so g+(a
′) ≺ (g+ ◦ f+)(m

′) which

shows that (θ,m) is in the relation generated by g+ ◦ f+.

Conversely, suppose that θ⌢⌣(g+◦f+)(m
′) for some m′ ≺ m. Interpolate to m′ ≺ m′′ ≺

m and note f+(m
′) ≺ f+(m

′′). Define a′ = f+(m
′). Then θ⌢⌣g+(a

′), a′ ≺ a⌢⌣φ⌢⌣f+(m
′′)

for suitable a and φ whereby θ(S+ #R+)m. The proof for S− #R− is analogous.

In some cases the token maps themselves satisfy some sort of a continuity condition,

in which case the definition of the resulting adjoint pair of relations becomes easier.

Lemma 1.1.13. If (f−, f+) : M → L is a token map such that additionally

1. ψ⌢⌣f+(m) implies that there exists m′ ≺ m with ψ⌢⌣f+(m
′),

2. f−(ψ)⌢⌣a implies that there exists ψ ≻ ψ′ with f−(ψ
′)⌢⌣a

Then the resulting adjoint pair of relations has the simpler definition φR+m iff φ⌢⌣f+(m)

and ψR−a iff f−(ψ)⌢⌣a.

Proof. Straightforward.

Corollary 1.1.14. Consider the following diagram of interaction algebras, where R is a

Stage 0 morphism and (g−, g+) and (f−, f+) are token maps.

J L
(g−,g+)oo R //M K

(f−,f+)oo

Suppose the component maps f+ and g+ satisfy the additional condition of Lemma 1.1.13.

1. The composition of R with the Stage 0 morphism defined by f+ is given as φ(R #f+)k

iff φRf+(k).

2. The composition of R with the Stage 0 morphism defined by g+ is given as θ(g+ #R)m

iff θ ≻ g−(φ), φRm for some witness φ ∈ L−.
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1 Interaction algebras

Proof. (1) The map f+ defines the relation ψFk ⇔ ψ⌢⌣f+(k). Thus, φ(R # F )k iff

φRm⌢⌣ψ⌢⌣f+(k) which is equivalent to φRf+(k).

(2) The map g− defines the relation θGa ⇔ θ⌢⌣g+(a). Thus θ(G # R)m holds by

definition if and only if θ⌢⌣g+(a) and a⌢⌣φRm for some token a ∈ L+ and some witness

φ ∈ L−. Since (g−, g+) preserves ⌢⌣ we deduce θ⌢⌣g+(a)⌢⌣g−(φ). Conversely, if θ ≻

g−(φ) and φRm then φ⌢⌣a⌢⌣;Rm for some token a whereby θ ≻;⌢⌣g+(a) and therefore

θ(G #R)m.

1.2 Interaction algebras for domains

Having established the core category Tok0 of interaction algebras and having studied its

basic properties, we turn towards interaction algebras of the kind we saw in the introduc-

tion to this chapter. The tokens are now thought of as elements of a domain. There are

two available dualities for domains: Lawson duality puts a domain into correspondence

with the poset of its Scott open filters. However, this duality is not functorial for Scott

continuous maps. One needs to ensure that the preimage of a Scott open filter is again a

filter. The most suitable category to consider Lawson duality on is the category of pre-

frames and Scott continuous maps preserving finite meets. Hence we postpone the study

of Lawson duality until we reach this stage.

Stone duality puts domains and Scott continuous maps into dual equivalence with

completely distributive frames and frame homomorphisms. This matches our intuition

about the type of witnesses we want to use. However, there are some obstacles we have

to overcome:

• The Stage 0 morphisms between interaction algebras correspond to maps preserving

all joins. Hence we need a way of expressing when such a map also preserves finite

meets.

• If the set of tokens is to be an abstract basis for the domain we present, then we

need to ensure that the round lower set of any token is an ideal with respect to the

relation ≺.

It turns out that one can achieve both of the above goals neatly by closing the basis of Scott

open sets that makes up the set of witnesses under binary meets. This does not do any

harm to the cardinality of the information system, as for example the set of finite subsets

of a countable set is still countable. The binary meet of Scott open sets then obeys some

simple rules. For example, a point of the domain is contained in the intersection of two

Scott open sets if and only if it is contained in both opens. Another fact which is always

true is that any point has at least one Scott open set it is a member of. (Observe that

the corresponding fact is not true for completely distributive frames and completely prime

upper sets: The least element 0 ∈ L of a completely distributive frame is only member of

the upper set L = |◮0 . This is not completely prime, as 0 =
∨
∅ ∈ L but clearly ∅ does
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1.2 Interaction algebras for domains

Stage 0: completely
distributive frames

CDFrm

�
�
�

Stage 1:
domains
Dom
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Stage 2a: continuous
preframes
CPreFrm

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
B

Stage 2b: domains
with bottom

Dom⊥!

QQQQQQQQQQQQ

Stage 2c: continuous
complete Sup-lattices

CCSup

Stage 3:
continuous lattices

CCL

mmmmmmmmmmmm

Stage 4:
continuous frames

CFrm

Stage 5:
stably continuous frames

SCFrm

Figure 1.5: Hierarchy of categories and stages of interaction algebras. Solid lines signify
inclusion of subcategories.

not intersect L.) Now the round lower set ↓ a =

։

a of a token is an ideal with respect

to ≺=≪ by the very definition of a continuous dcpo. Conveniently, the binary meet of

Scott open sets will also enable us to express frame homomorphisms between the Scott

topologies in a manner slightly easier than the approximable mappings between Vickers’

information systems.

The subcategories of domains we consider are all constructed by postulating additional

finitary structure on the domains. For example, a continuous lattice is a domain which, in

addition to directed joins, has finite joins as well. A continuous preframe is a domain which

in addition to directed joins has finite meets, and finite meets distribute over directed joins.

Distributive laws of this kind can be enforced with a simple trick: We know that the set

of all round lower sets of tokens is completely distributive, hence satisfies all distributive

laws we could ever want. If we present a preframe as a certain subset of round lower sets,

and show that this subset is closed under directed joins and finite meets in that frame,

then it inherits the distributive law from the ambient completely distributive frame.
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1 Interaction algebras

The hierarchy of categories we study is depicted in Figure 1.5. For each stage, we

will add binary or nullary operations to either tokens or witnesses. The prime example is

the binary meet of Scott open sets. However, there is no need for the binary operation

to be a real semilattice operation. While it is convenient to assume that the operation

is commutative and associative, it is not required to be idempotent. The distinguished

elements, although we use them as if they were neutral elements or units for the binary

operation, need not obey the corresponding algebraic laws in the strict sense. Instead,

it suffices if the algebraic laws hold up to a certain equivalence. For example, a binary

operation ⊓ on witnesses may have φ⊓φ 6= φ, but we require φ⊓φ⌢⌣a to be equivalent to

φ⌢⌣a. A distinguished witness 1 need not have 1⊓φ = φ⊓1 = φ, but it suffices if 1⊓φ⌢⌣a

precisely when φ⌢⌣a.

The algebraic axioms we add to either tokens or witnesses are listed in Table 1.2,

written in the deduction-rule style. By convention, all axioms which hold for a morphism R

in particular hold for the identity morphism ⌢⌣. The axioms accumulate throughout the

hierarchy. For example, at Stage 2a all axioms of Stage 1 hold, too. Since Stage 3 is just

the union of the Stage 2b and Stage 2c axioms, we omitted the Stage 3 axioms from the

table.

Notation. If n is either 0, 1, 2a, 2b, 2c, 3 or 4 then by Tokn we denote the category

where objects are interaction algebras that satisfy all Stage n axioms, and morphisms are

relations R that satisfy all Stage n axioms involving R. We refer to these structures as

Stage n interaction algebras and Stage n morphisms.

1.2.1 Semilattice-like structure

If a set L is equipped with a semilattice operation ⊓ then one derives a partial order from

it by defining x ⊑ y whenever x ⊓ y = x. In this order, x ⊓ y is the binary meet of x

and y or infimum of the set {x, y}. Notice that the partial order ⊑ is reflexive because

⊓ is idempotent, transitive because ⊓ is associative, and antisymmetric because we used

the antisymmetric relation = in the definition. Since equality of witnesses is too strong

a requirement, the above definition of partial order will have little meaning for Stage 1

interaction algebras. Instead, let us study how the binary operation ⊓ on witnesses behaves

with respect to the relation ≻.

Definition 1.2.1. We say that a token a of an interaction algebra L is weakly below a

token b and write a 4 b if the round lower set ↓a is contained in the round lower set ↓b .

The tokens a and b are said to be lower equivalent, written a ≃ b, if a 4 b 4 a. Similarly,

a witness ψ is weakly below φ if ↓ψ is contained in ↓φ . We write this relation as φ < ψ

and say that the witnesses are lower equivalent if φ < ψ < φ.

It is immediate that both 4 and < are preorders. From the duality with completely

distributive frames we know that these preorders have a natural interpretation: The former
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1.2 Interaction algebras for domains

Stage 0 (Completely distributive frame) ⌢⌣;⌢⌣;R;⌢⌣;⌢⌣ = R

Stage 1 (Domain) (L−,⊓)

binary meet
φRa ψRa

φ ⊓ ψRa

weakening rules
φ ⊓ ψRa

φRa

a⌢⌣φ

a⌢⌣φ ⊓ ψ

definedness
a ∈ L+

∃φ ∈ L−. φRa

Stage 2a (Continuous preframe) (L+,⊓)

binary meet
φRa φRb

φRa ⊓ b

weakening rules
φRa ⊓ b

φRa

a⌢⌣φ

a ⊓ b⌢⌣φ

dual definedness
φ ∈ L−

∃a ∈ L+.φRa

Stage 2b (Continuous cpo and strict maps) 1 ∈ L−, 0 ∈ L+

empty meet 1Ra 0⌢⌣1

strictness
φR0

φ⌢⌣0

Stage 2c (Continuous complete Sup-lattice) (L+,⊔)

binary join
a⌢⌣φ b⌢⌣φ

a ⊔ b⌢⌣φ

weakening rules
φRa

φRa ⊔ b

a ⊔ b⌢⌣φ

a⌢⌣φ

join-strength
φRa ⊔ b

∃ψRa, θRb. φ ≻ ψ ⊓ θ

Stage 3 (Continuous lattice) combine Stages 2b and 2c

Stage 4 (Continuous frame) ⊓ and ⊔ distribute (Definition 1.7.1)

Table 1.2: Axioms for interaction algebras
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preorder is derived from the inclusion ↓: L+ → ΩL of tokens into round lower sets, whereas

the latter is derived from the inclusion ↓: L− → (ΩL)! of witnesses into completely prime

upper sets.

Observe that a 4 b can be defined in terms of⌢⌣ alone. Indeed, using the interpolative

law it is easy to show that x ≺ a implies x ≺ b precisely when φ⌢⌣a implies φ⌢⌣b for all

witnesses φ. Likewise, the relation φ < ψ holds if and only if ψ⌢⌣a implies φ⌢⌣a for all

tokens a.

We claim that for witnesses φ and ψ of a Stage 1 interaction algebra, the witness φ⊓ψ

is a greatest lower bound2 with respect to the preorder <. Indeed, the weakening rule

for ⊓ yields that φ, ψ < φ ⊓ ψ. If θ is another lower bound for both φ and ψ, then θ⌢⌣a

implies φ⌢⌣a and ψ⌢⌣a, whence using the meet rule φ ⊓ ψ⌢⌣a. Therefore φ ⊓ ψ < θ which

proves the claim. In particular, φ is lower equivalent to φ ⊓ φ.

One way of interpreting our findings is that in case one quotients the set of witnesses

by the equivalence relation < ∩(<)−1 then ⊓ becomes a true semilattice operation.

1.2.2 The round ideal functor

In the category of Stage 0 interaction algebras, we presented the duality with completely

distributive frames as the hom-set functor Tok0(−,1). As we shall see, the same approach

can be taken in the category Tok1 of Stage 1 interaction algebras and Stage 1 morphisms.

Definition 1.2.2. A round ideal of tokens of an interaction algebra L is a round lower

set I ⊆ L+ which is directed with respect to ≺, meaning that I is not empty and whenever

a, b ∈ I then a, b ≺ c for some c ∈ I. The collection of all such round ideals, ordered by

inclusion, is denoted by Idl≺ L+.

Vickers shows in [60] that for an information system (X,<) the completely distributive

frame Up≺X of round upper sets is the Stone dual of Idl≺X, where a basis for the topology

is given by sets of the form
{
I ∈ Idl≺X

∣∣ a ∈ I
}
for tokens a ∈ X. We will derive a similar

result for interaction algebras. Note that the interaction algebra 1 satisfies all Stage 1

axioms if we declare a binary operation on the witness set {ϕ} by ϕ ⊓ ϕ = ϕ.

Lemma 1.2.1. Let L be a Stage 1 interaction algebra. The following sets are order-

isomorphic.

1. The set Idl≺ L+ of round ideals of tokens,

2. The set of round filters of witnesses, that is non-empty round upper sets which are

closed under ⊓,

3. Stage 1 morphisms L → 1.

2In a preorder, greatest lower bounds are not always unique.
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1.2 Interaction algebras for domains

Proof. The isomorphism (−)⌢⌣ which we defined in equation (1.3) of the Fundamental

Lemma 1.1.6 restricts to an isomorphism between round ideals of tokens and round filters

of witnesses. Knowing this, the other claims follow from Proposition 1.1.5.

An immediate consequence of the lemma above is that the round ideal operator is

contravariantly functorial on Tok1. What is the class of objects thus constructed? Round

ideals are closed under directed unions, because round lower sets are closed under all

unions, and using the isomorphism with round filters of witnesses it becomes apparent

that the directed union of such filters is again closed under ⊓.

Lemma 1.2.2. For a Stage 1 interaction algebra L, the map ↓ takes tokens to round ideals

of tokens and transforms the relation ≺ into ≪.

Proof. First observe that for a token of a Stage 1 interaction algebra the round lower set

↓a is a round ideal. Indeed, the Stage 1 axioms for the relation ⌢⌣ say that for any token

a the set {a}⌢⌣ = {φ ∈ L− |φ⌢⌣a} is a round filter and by the lemma above corresponds

to the round ideal ({a}⌢⌣)⌢⌣ =↓a . From Proposition 1.1.5 (3). we know that ↓a ≪↓ b

in the complete lattice of round lower sets whenever a ≺ b. As the round ideals of tokens

form a sub-dcpo, we now have ↓a ≪↓b in the dcpo of round ideals.

Proposition 1.2.3. The hom-set functor Tok1(−,1) presents a contravariant functor pt1

from Stage 1 interaction algebras to domains and Scott continuous maps.

Proof. Let I be a round ideal of tokens. Since I is in particular a round lower set, we

know that I =
⋃
a∈I ↓a . This union is directed. Indeed, a ≺ b implies ↓a ⊆↓b , and I is

directed with respect to ≺. From Lemma 1.2.2 above we know that ↓a ≪ I for any a ∈ I.

For a Stage 0 morphism R : L → M the map Ω(R) : Lo≺M+ → Lo≺ L+ preserves

arbitrary unions of round lower sets, and the functor which is presented by Tok1(−,1)

is just the restriction of Ω to round ideals, whence this restriction preserves directed

unions.

Remark. In the proof of the proposition above we showed that the structure (L+,≺) is an

abstract basis in the sense of Abramsky and Jung. The preceding lemma and proposition

correspond to [1, Proposition 2.2.22].

We postpone the description of the dual adjoint of the functor pt1 until we know more

about the Scott topology of the domain pt1 L.

1.2.3 Stone duality of domains via interaction algebras

Theorem 1.2.4. Let O be the contravariant functor which takes a Scott continuous map

between domains to the preimage operation between the Scott topologies. The following
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diagram of contravariant functors commutes (up to isomorphism).

Tok1
pt1 //

Flip

��

Dom

O
��

Tok0 Ω
// Frm

Proof. The proof follows the same pattern as the proof of Proposition 1.1.8.

Frame homomorphisms between Scott topologies

A priori we only know that Ω ◦ Flip produces join-preserving maps between completely

distributive frames. However, it can be shown directly that this functor maps Stage 1

morphisms to frame homomorphisms: Let R : L− → M+ be as in the proof of the

theorem above. The join-preserving map of interest sends a round lower set Φ ⊆ L− to

h(Φ) = {m ∈M+ | ∃φ ∈ Φ. φRm}. First, notice that h preserves the top element. Indeed,

because of the definedness axiom, the entire set M+ is a round upper set. Use definedness

of the relation R and obtain ∀m ∈ M+∃φ ∈ L−. φRm. Interpolate to φ ≻ φ′Rm. Now

observe that φ′ is an element of the largest round lower set in L−. Thus, the definedness

axiom for R implies that the map h defined above preserves the empty meet.

For binary meets, because of monotonicity of h it suffices to check the inclusion h(Φ)∧

h(Ψ) ⊆ h(Φ ∧ Ψ). Suppose that m ∈ h(Φ) ∧ h(Ψ), that is, Φ ∋ φRx, Ψ ∋ ψRy and

x, y ≺ m. From weakening it is immediate that φ, ψRm whence by the meet rule φ⊓ψRm.

Roundness of R now yields φ ⊓ ψ ≻ θRm. Observe that because of the weakening rules,

φ⊓ψ is an element of Φ∩Ψ and therefore θ is an element of the meet Φ∧Ψ. This shows

m ∈ h(Φ ∧Ψ).

1.2.4 Duality with domains

By now it should be clear what the adjoint Dom → Tok1 to the functor pt1 might be:

Definition 1.2.3. For a domain D, let Ialg1D denote the interaction algebra where the

witnesses are Scott open sets of D, tokens are elements of D, the relation U⌢⌣x holds

whenever x ∈ U and the relation x⌢⌣U holds if x is a lower bound for U . If f : D → E

is a Scott continuous map between domains, then Ialg(f) is the relation σE → D with

U Ialg1(f)x iff f(x) ∈ U .

The axioms of Stage 1 are easily checked for the interaction algebra Ialg1D, where

⊓ is binary intersection of Scott opens sets. In the introduction we convinced ourselves

that, since the relation ≺ on the tokens of Ialg1D coincides with the way-below relation,

the domain pt1 Ialg1D is isomorphic to D and that the Scott continuous map f : D → E

corresponds to the map (pt1 ◦ Ialg1)(f). The relations⌢⌣ and⌢⌣ of the interaction algebra

Ialg1(D) behave well with respect to the complete structure on tokens and witnesses in
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1.2 Interaction algebras for domains

the following sense. If U is a set of Scott opens sets of D and X is a directed set in D,

then
⋃

U⌢⌣
⊔
X precisely when U⌢⌣x for some pair (U, x) ∈ U ×X already. Dually, the

relation
⊔
X⌢⌣

⋃
U holds if and only if x⌢⌣U for all x ∈ X and U ∈ U .

Theorem 1.2.5. The functors Dom
Ialg1 //

Tok1
pt1

oo constitute a contravariant equivalence of

categories. The functor Ialg1 is presented by Dom(−, 2) while the functor pt1 is presented

by Tok1(−,1).

Proof. Under the Scott topology, the domain 2 is homeomorphic to the Sierpinski space.

It is well-known that the opens of any topological space X are in order-preserving bijection

with the continuous maps into the Sierpinski space. If the Scott open U ∈ σE is presented

by its characteristic map χU : E → 2 then for a map f : D → E the relation Ialg1(f)

defined above has the description U Ialg1(f)x iff (χU ◦ f)(x) = 1.

It remains to show that the composite Ialg1 ◦ pt1 is isomorphic to the identity functor

on Tok1. For this we modify the proof of Theorem 1.1.9. From Proposition 1.2.4 we know

that the witnesses of the interaction algebra Ialg1 pt1 L are the round lower sets of L−. In

the same way as in the proof of Theorem 1.1.9 one can now show that Ialg1 ◦ pt1 is indeed

isomorphic to the identity functor, checking the Stage 1 axioms at the appropriate places

in the proof.

1.2.5 Duality with information systems and abstract bases

We know that both the categories of information systems and abstract bases are equivalent

to the category of domains. Using Theorem 1.2.5 we can conclude that both categories

are dually equivalent to Tok1. The detour via Dom is a bit wasteful when considering

the cardinalities of the sets involved. It is desirable to know whether the dualities can be

described efficiently without blowing up the cardinalities too much. Figure 1.6 summarises

how to extract an information system or an abstract basis from an interaction algebra.

Proposition 1.2.6. There are contravariant faithful functors from the category Tok1 of

Stage 1 interaction algebras to the categories Infosys and Abs.

Proof. If L is a Stage 1 interaction algebra, then its tokens together with the relation

⌢⌣;⌢⌣ =≺ form an abstract basis which presents the domain Idl≺ L+. According to

Vickers an information system (X,<) presents the domain Idl<X which has the round

upper sets of X with respect to < as Scott opens. Thus we may take the witnesses of

L as tokens of an information system and let < be the relation ⌢⌣;⌢⌣ =≻. Then the

round upper sets with respect to < are the round lower sets with respect to ≻, and from

Theorem 1.2.4 we know that these are the Scott opens of pt1 L.

It remains to consider morphisms. In Definitions 6.2.1 and 6.2.2 we chose a contravari-

ant way of writing the morphisms between information systems and abstract bases. This
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Figure 1.6: A Stage 1 interaction algebra contains an information system as well as an
abstract basis.

makes it easier to construct the morphism parts of our functors. Given a Stage 1 mor-

phism R : L → M, define relations R;⌢⌣ : L− → M− and ⌢⌣;R : L+ → M+. We claim

that the former relation is an approximable mapping, i.e. a morphism of the category

Infosys, and the latter is an approximable relation, which are the morphisms in the cate-

gory Abs. It is immediate that ⌢⌣;R satisfies the axiom (AM1) of Definition 6.2.1 because

R;⌢⌣;≻= R;≺;⌢⌣ = R;⌢⌣. Even more trivial to check is the axiom (AM2). For (AM3),

suppose Φ ⊆ L− is a finite set and ψ ≻ ψ′ are elements of M− such that for every element

φ of Φ the relation φ(R;⌢⌣)ψ ≻ ψ′ holds. Let m ∈ M+ be a token with ψ⌢⌣m⌢⌣φ′. In

case Φ is the empty set, use the definedness axiom of Stage 1 and obtain some witness

φ′ ∈ L− with φ′Rm which implies φR;⌢⌣ψ′. Otherwise, if Φ is not empty then for every

φ ∈ Φ we have ψR;⌢⌣;⌢⌣m and thereby φRm. Now use the meet rule of Stage 1 and

obtain
d

ΦRm. Using R ⊆≻;R we obtain
d
Φ ≻ φ′Rm for some witness φ′ whence by

the weakening rules φ ≻ φ′ for every φ ∈ Φ. Combining this with m⌢⌣φ′ yields the axiom

(AM3).

The relation ⌢⌣;R clearly satisfies the axioms (AR1) and (AR2) of Definition 6.2.2.

We check axiom (AR3). Let A ⊆ L− be a finite set, m ∈ M+ and suppose for all a ∈ A

the relation a(⌢⌣;R)m holds. In case A is the empty set we use the definedness axiom and

obtain some witness φ such that φRm. Then also φ⌢⌣a′(⌢⌣;R)m and we are done. If A is

not empty then for any such a ∈ A there is a witness φa with a⌢⌣φaRm. Apply the meet

rule and get
d
a∈A φaRm. Using R ⊆≻;R and weakening we get some witness φ′ and a

token a′ with a⌢⌣
d
a∈A φa⌢⌣a′⌢⌣φ′Rm. Then a′ is the desired token for the axiom (AR3).

For faithfulness observe that R;⌢⌣ = S;⌢⌣ implies R;⌢⌣;⌢⌣ = R = S = S;⌢⌣;⌢⌣.

Similarly ⌢⌣;R = ⌢⌣;S implies R = S.

Given an abstract basis (X,≺) we know that the tokens also yield a basis for the Scott

topology on Idl≺X via the assignment x 7→
{
I ∈ Idl≺X

∣∣x ∈ I
}
. In order to construct

a Stage 1 interaction algebra out of this, we need to close this basis under binary meets.
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1.2 Interaction algebras for domains

We achieve this in the same manner as one constructs the free semilattice over a poset.

Proposition 1.2.7. From an abstract basis (X,≺) construct an interaction algebra where

the tokens are elements of X and the witnesses are finite subsets of X. The relations ⌢⌣

and ⌢⌣ are defined as

M⌢⌣x ⇔ ∀m ∈M.m ≺ x

x⌢⌣M ⇔ ∃m ∈M.x ≺ m

With a binary operation ⊓ defined as union of finite sets, the structure (FinX,X,⌢⌣,⌢⌣) is

a Stage 1 interaction algebra where the relation⌢⌣;⌢⌣ agrees with ≺ on X. This assignment

extends to a functor Abs → Tok1 as follows. If R : Y → X is a relation constituting an

approximable relation between abstract bases (X,≺) and (Y,≺) thenMR̂x⇔ ∀y ∈M. yRx

is a Stage 1 morphism.

Proof. We begin with checking the Stage 0 axioms for the relations ⌢⌣ : FinX → X and

⌢⌣ : X → FinX. If M ⊆ X is a finite set and M⌢⌣x then using the axiom (AR3) of

Definition 6.2.2 we find a token x′ with M⌢⌣x′ ≺ x. Use the interpolation property of ≺

to obtain x′ ≺ b ≺ x. Then M⌢⌣x′⌢⌣{b}⌢⌣x. The inclusion ⌢⌣;⌢⌣;⌢⌣ ⊆ ⌢⌣ is a trivial

application of transitivity of ≺. Notice that x′⌢⌣M⌢⌣x implies x′ ≺ m ≺ x for some

m ∈ M and thereby x′ ≺ x. Conversely, x′ ≺ x is equivalent to x′ ≺ m ≺ x for some

token m, whereby x′⌢⌣{m}⌢⌣x. Thus the relation ≺ of the abstract basis agrees with

⌢⌣;⌢⌣.

The Stage 1 axioms are easily checked. The meet rule and the associated weakening

rule for ⌢⌣ holds because ⌢⌣ was defined using universal quantification on the witness

side. Similarly, the weakening rule for ⌢⌣ follows because that relation was defined using

existential quantification. The definedness axiom is trivial because ∅⌢⌣x for any token x.

Suppose R : Y → X is a relation which satisfies the axioms of Definition 6.2.2. Define

a relation

R̂ : FinY → X, MR̂x⇔ ∀y ∈M. yRx

We claim this is a Stage 1 morphism. Indeed, this is proved is the same way as the Stage 1

axioms for ⌢⌣ and ⌢⌣ above. Obviously the assignment R 7→ R̂ maps ≺ to ⌢⌣. It remains

to show that Ŝ;R = Ŝ # R̂ for two approximable relations Z
S //Y

R //X . Suppose

M ⊆ Z is a finite set and MŜ;Rx. That means for all z ∈ M there exists some yz ∈ Y

with zSyzRx. Writing N := {yz}z∈Z we have NR̂x. Using the interpolative law for R̂ we

obtain N ≻ N ′R̂x for some finite set N ′ ⊆ Y , where the relation N ≻ N ′ is witnessed

by a token y′ ∈ Y . Observe that because of the way we defined N , the relation N⌢⌣y′

implies MŜy′. Therefore MŜy′⌢⌣N ′R̂x and we have shown the inclusion Ŝ;R ⊆ Ŝ # R̂.

For the other inclusion, suppose MŜy⌢⌣N ′R̂x. Then y ≺ y′Rx for some y′ ∈ N ′ and we

can conclude MŜ;Rx.

If R is an approximable relation between abstract bases, then using the terminology
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of the proposition above, the relation ⌢⌣; R̂ is the same as the relation R itself. Thus

post-composing the functor of Proposition 1.2.7 with the forgetful functor from Propo-

sition 1.2.6 yields the identity functor on Abs. The other way around, notice that the

identity morphism of an interaction algebra L can be regarded as a morphism from L to

the interaction algebra (FinL+, L+,⌢⌣,⌢⌣) as constructed in Proposition 1.2.7 above, and

likewise the identity morphism ⌢⌣ of the interaction algebra (FinL+, L+,⌢⌣,⌢⌣) serves as

a morphism into L. These two morphisms are readily seen to establish an isomorphism

in Tok1.

Interestingly, there seems to be no simple way of turning an information system into

a Stage 1 interaction algebra while preserving countability of the sets involved. A con-

struction proposed by Achim Jung goes a follows. If (X,<) is an information system

where X is countable, then the relation < itself is a countable set. For any pair x0 < y

of tokens, use countable dependent choice and the interpolation property of < to con-

struct a countable ascending chain x0 < x1 < x2 < . . . < y which yields a round ideal

I(x0, y) = {x ∈ X | ∃n ∈ N. x < xn} that contains x0 and has y as an upper bound. The

collection of all ideals thus constructed is still countable. Take, as before, the witnesses

of an interaction algebra to be the finite powerset FinX with set union as the binary

operation ⊓, and let the tokens of the interaction algebra be the set of ideals of the form

I(x0, y). Let the relation ⌢⌣ between finite sets and round ideals be the set inclusion

relation and let I(x0, y)⌢⌣A whenever I(x0, y) ⊆↓a for some element a of the finite set A.

One checks that the structure thus defined is indeed a Stage 1 interaction algebra and

that the relation ≻ on the witnesses extends the relation < of the information system

in the sense that {x0} ≻ {y} holds precisely when x0 < y. Furthermore, since by con-

struction {x0}⌢⌣I(x0, y)⌢⌣{y}, one can show that for any two finite sets A ≻ B implies

that A ≻ {y} ≻ B for some singleton. It follows that the round ideals of the information

system (FinX,≻) are in bijective correspondence with the round ideals of (X,<).

1.2.6 Semi-open morphisms and token maps

In some settings it is convenient to consider only a subclass of all Scott continuous maps

between domains. One such subclass is formed by the maps which preserve the way-below

relation. A proper map f between locally compact topological spaces is a continuous

map where the preimage of a compact saturated set is compact again. (In the absence of

local compactness, a proper map is further required to be closed, but for locally compact

spaces the latter follows from the former, see [27, Remark 1.3] or [28, Prop. 3.3].) Such

maps will feature later in this thesis (Sections 3.7, 4.5) and are intimately related to the

Patch topology [27, 38, 18]. Now f is perfect if and only if the frame homomorphism O(f)

preserves the way-below relation (see [22, V-5.18,V-5.19]). We shall prove a fact for

Stage 1 interaction algebras corresponding to [22, IV-1.4], based on Theorem 1.1.11.

Theorem 1.2.8. The following are equivalent for a Stage 1 morphism R.

38



1.2 Interaction algebras for domains

1. The morphism R has a Stage 0 right adjoint.

2. The homomorphism pt1(R) between round ideals of tokens preserves the way-below

relation.

Proof. Theorem 1.1.11 states that the morphism R, when considered as a Stage 0 mor-

phism, has a Stage 0 right adjoint if and only if the induced map Ω(R) between round lower

sets preserves the completely-below relation. Recall from the remark following Proposi-

tion 1.2.3 that the set of round ideals is a sub-dcpo of the complete lattice of round lower

sets, and furthermore the way-below relation on round ideals is the restriction of the

completely-below relation to this sub-dcpo. Therefore it suffices to prove the implication

(2) ⇒ (1).

If a Scott continuous map f : D → E between domains preserves the way-below rela-

tion, then the forward image operation Up(f) restricts to a join-preserving map between

Scott open sets. Indeed, if U is a Scott open set of D then Up(f)(U) =
⋃
d∈U

|◮f(d) . For

any d ∈ U there exists some d′ ≪ d with d′ ∈ U , and preservation of≪ yields f(d′) ≪ f(d).

Therefore Up(f)(U) is Scott open. Clearly the map Up(U) is left adjoint to the preimage

map O(f) between Scott topologies.

Apply the above observation to the case where f = pt1(R). Stone duality for interac-

tion algebras tells us that the frame homomorphism O(f) is represented by Ω(Flip(R)),

whence this map having a left adjoint means that R must have a Stage 0 right adjoint.

Remark. Be aware that the existence of a Stage 0 right adjoint to a Stage 1 morphism

R does not mean that the Scott continuous map pt1(R) has a right adjoint morphism in

Dom. It is true, however, that the frame homomorphism corresponding to pt1(R) will

have a left adjoint.

Definition 1.2.4. A Scott continuous map between domains is called semi-open if it

preserves the way-below relation.

Corollary 1.2.9. Let L be a Stage 1 interaction algebra. There is an order-preserving

bijection between

1. Stage 1 morphisms L → 1 which have a right adjoint,

2. Weak equivalence classes of compact tokens of L,

3. Compact elements of the domain of round ideals Idl≺ L+.

Proof. The duality between Stage 1 interaction algebras and domains takes 1 to the one-

element domain {∗} where ∗ ≪ ∗. Clearly the compact round ideals I ≪ I of Idl≺ L+ are

in bijection with the maps f : {∗} → Idl≺ L+ which preserve the way-below relation. The

theorem above and the duality with domains then yields the bijection between morphisms

L → 1 that have a right adjoint and compact round ideals. Then apply Proposition 1.1.10

to finish the proof.
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Remark. A similar characterisation is used in locale theory: A locale X is compact if

and only if the unique map X → 1 is proper, meaning that the frame homomorphism

O(f) : 2 → OX preserves ≪.

The theorem above demonstrates one of the strengths of the information system ap-

proach: A Scott continuous map between domains and the associated frame homomor-

phism between Scott topologies are presented by the same relation. Thus, switching

between the point-set theoretic and the localic viewpoint requires no effort at all. We

conclude our study of semi-open morphisms by extending Proposition 1.1.12 to the cate-

gory Tok1.

Proposition 1.2.10. There is a contravariant functor from the category of Stage 1 inter-

action algebras and token maps to the category of Stage 1 interaction algebras and Stage 1

morphisms which possess a Stage 0 right adjoint.

Proof. Given a token map (f−, f+) : M → L, it suffices to check that the left adjoint

R+ : L− → M+ is a Stage 1 morphism. Recall that φR+m if there exists some m′ ≺ m

such that φ⌢⌣f+(m
′). Further recall that the map f+ preserves the relation ≺. First we

verify the meet rule for R+. Suppose φ, ψR+m, meaning that there exist mφ,mψ ≺ m

such that φ⌢⌣f+(mφ) and ψ⌢⌣f+(mψ). Using the fact that ↓m is an ideal, we obtain

a token m′ with mφ,mψ ≺ m′ ≺ m. Then, as f+ preserves the relation ≺, we have

φ⌢⌣f+(mφ) ≺ f+(m
′) and ψ⌢⌣f+(mψ) ≺ f+(m

′). Therefore φ, ψ⌢⌣f+(m
′) and with the

meet rule for⌢⌣ we obtain φ⊓ψR+m. The weakening rule for R+ trivially follows from the

weakening rule for ⌢⌣. Finally, to see that R+ satisfies the definedness axiom, let m ∈M+

be any token. As ↓m is an ideal, it is in particular not empty. Let m′ ≺ m. Then f+(m
′)

is a token of L and by the definedness axiom of ⌢⌣ we have φ⌢⌣f+(m
′) for some witness φ,

whereby φR+m.

1.3 Interaction algebras for continuous preframes

Beginning with this section, we keep adding finitary algebraic structure to domains. The

addition of finite meets is chosen to be the first for the sake of Lawson duality. Observe

that instead of using Scott open sets as witnesses in the Stage 1 interaction algebra pre-

senting a domain, one could restrict to Scott open filters. A domain has a plentiful supply

of Scott open filters; a fact that can be shown using the interpolation property of the

way-below relation and countable dependent choice: Given x≪ y0 one uses the interpola-

tion property to successively build a countable descending chain x≪ . . .≪ y2 ≪ y1 ≪ y0

which gives rise to a Scott open filter φ = {y | ∃n ∈ N. yn ⊑ y} that contains y0 and has x

as a lower bound. The set of all Scott open filters of a domain D, ordered by inclusion, is

denoted by D∧ and called the Lawson dual of D. In any poset the set of filters is closed

under directed unions, whence D∧ is a sub-dcpo of the completely distributive frame of

Scott open sets and thereby a domain, too. Any domain D is isomorphic to its second
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Lawson dual (see [41, Theorem 3.7],[22, IV-2.14]) where the isomorphism is given by the

map x 7→ {φ ∈ D∧ |x ∈ φ}. Unfortunately, this duality is not functorial, as the preimage

of a Scott open filter under a Scott continuous map is Scott open, but not necessarily a

filter. In the Compendium [22] and Lawons’s paper [41], this is remedied by restricting to

the subcategory DOMFILT of domains with Scott continuous maps having the property

that the preimage of a Scott open filter is again a filter. A more elegant way is to further

restrict to the subcategory of continuous semilattices, that is, meet-semilattices which are

also domains, and Scott continuous maps which are semilattice homomorphisms. A pleas-

ing property of continuous semilattices is that these automatically satisfy the preframe

distributive law, which says that for every element x the meet operation d 7→ x⊓d is Scott

continuous. Directed complete semilattices with this property (not necessarily domains)

are also called meet-continuous for obvious reasons. We regard continuous semilattices

as an intermediate step towards continuous frames. Therefore we call a meet-continuous

semilattice with top element a continuous preframe, where the Scott continuous semi-

lattice homomorphisms are referred to as preframe homomorphisms. On this category

CPreFrm, Lawson duality is a contravariant involution [41, Theorem 7.4]. When looking

at the axioms for Stage 2a in Table 1.2 is is not the least surprising that continuous pre-

frames have a nice self-duality, as the token- and witness side have the same algebraic

structure and axioms.

1.3.1 Duality for Stage 2a interaction algebras

As it was demonstrated above, the witnesses for the way-below relation on a continuous

preframe can be taken to be Scott open filters instead of arbitrary Scott open sets. This

motivates the following definition.

Definition 1.3.1. For a continuous preframe L we define an interaction algebra Ialg2a L

which has the set L as tokens and the Lawson dual L∧ as witnesses. The relations ⌢⌣,

⌢⌣ and the morphism part of the functor Ialg2a are the same as in Ialg1 L, that is, φ⌢⌣x

whenever x ∈ φ, x⌢⌣φ whenever x is a lower bound for φ and φ Ialg2a(f)x whenever

f(x) ∈ φ. The binary operation ⊓ on the tokens is given as binary meet.

Lemma 1.3.1. Let L be a Stage 2a interaction algebra. The round lower set operation

↓: L+ → Lo≺ L+ transforms ⊓ into binary meet.

Proof. The round lower set of a token ↓a = {a′ ∈ L+ | a′ ≺ a} is an ideal in any Stage 1

interaction algebra, so in particular a round lower set. The round lower sets are closed

under all meets which are computed as lower closure of set intersection. Therefore, if a

and b are tokens of L, the meet ↓a∧ ↓b is the set of tokens x which satisfy x ≺ x′ ≺ a, b

for some token x′. If x ≺ a⊓b then x ≺ x′⌢⌣φ⌢⌣a⊓b for some token x′ and some witness φ.

Using the weakening rule of Stage 2a we deduce x′ ≺ a, b whence x is an element of the

round lower set ↓a∧ ↓b . Now suppose x ∈↓a∧ ↓b , meaning x⌢⌣θ⌢⌣x′, x′ ≺ a and x′ ≺ b.
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Then θ⌢⌣a, b whence by the meet rule θ⌢⌣a ⊓ b and therefore x ≺ a ⊓ b. We have shown

that ↓(a ⊓ b) =↓a∧ ↓b .

Lemma 1.3.2. Let L be a Stage 2a interaction algebra. The binary meet of round upper

sets of witnesses is computed as set intersection.

Proof. Let Φ,Ψ be round upper sets of witnesses. It suffices to show that Φ∩Ψ is a round

upper set. Let θ ∈ Φ∩Ψ. Since both Φ and Ψ are round upper sets, we have θ⌢⌣a⌢⌣φ ∈ Φ

and θ⌢⌣b⌢⌣ψ ∈ Ψ for some tokens a, b and some witnesses φ, ψ. Using the binary meet

rule and the weakening rule of Stage 2a one deduces θ⌢⌣a ⊓ b⌢⌣φ,ψ which we expand to

θ ≻ θ′⌢⌣a ⊓ b. Then clearly θ′ ∈ Φ ∩Ψ and therefore Φ ∩Ψ is a round upper set.

Theorem 1.3.3. The dual equivalence between the categories Dom and Tok1 restricts to

a dual equivalence between the categories CPreFrm of continuous preframes and preframe

homomorphisms and the category Tok2a of Stage 2a interaction algebras and Stage 2a

morphisms.

Proof. First observe that the interaction algebra Ialg2a L constructed from a continuous

preframe indeed satisfies all Stage 2a axioms. The binary meet rule holds because the

witnesses are now closed under binary meets, and dual definedness holds because every

witness is non-empty, as it contains the top element 1 ∈ L, the neutral element for ⊓. It

is an easy exercise to check that the relation Ialg2a(f) derived from a preframe homomor-

phism satisfies the Stage 2a axioms as well.

Every continuous preframe L is in particular a domain. Notice that for every such

L the interaction algebras Ialg1 L and Ialg2a L are isomorphic as objects in Tok1. This

amounts to the fact that if a point x is contained in a Scott open set U then there is

some Scott open filter completely below U which still contains x. Let pt2a denote the

restriction of the round ideal functor pt1 to the subcategory Tok2a. It suffices to verify

that pt2a produces continuous preframes and preframe homomorphisms. Once that is

done, the duality Theorem 1.2.5 tells us that pt2a ◦ Ialg2a is isomorphic to the identity

functor on CPreFrm and Ialg2a ◦ pt2a is isomorphic to the identity functor on Tok2a.

Let R : L → M be a Stage 2a morphism between Stage 2a interaction algebras. Fist

we show that pt2a L = Idl≺ L+ is a continuous preframe. Because of the dual definedness

axiom of Stage 2a, the set L− of witnesses is a round upper set: If φ ∈ L− then φ⌢⌣a for

some token a and therefore φ ≻ φ′⌢⌣a for some other witness φ′. The meet rule of Stage 1

now tells us that L− is in fact a round filter, and clearly the largest such. Using the

Fundamental Lemma 1.2.1 we conclude that the domain Idl≺ L+ has a largest element,

namely the ideal of all bounded tokens. Recall from Lemma 1.3.1 that the binary meet of

round the ideals ↓a and ↓b in the frame of round lower sets of tokens is ↓(a⊓ b) , which is

again a round ideal. Further recall that any round ideal I can be written as the directed

union
⋃
a∈I ↓a . Therefore, using the preframe distributive law in the frame Lo≺ L+, we
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can write the binary meet of two round ideals I and J as

I ∧ J =
⋃

{↓(a ⊓ b) | a ∈ I, b ∈ J} .

This union is directed, because ↓ transforms ≺ into ≪ and ⊓ into binary meet, as we saw

in Lemma 1.3.1. Hence I ∧ J is again a round ideal. Now the preframe distributive law

of Idl≺ L+ follows from the preframe distributive law of LoL+. This concludes the proof

that pt2a L a continuous preframe.

It remains to show that the Stage 2a morphism R induces a preframe homomorphism

pt2a(R). Just as in the proof of Theorem 1.2.5 it is convenient to regard the map pt2a(R)

as a map from round ideals of tokens to round filters of witnesses. Since pt2a is just the

restriction of pt1 to Stage 2a interaction algebras, it suffices to show that pt2a(R) preserves

finite meets. Because of the dual definedness axiom we know that every witness φ ∈ L+

has φRm for some (bounded) token m ∈ M+ which means that pt2a(R) preserves the

empty meet. The binary meet rule of Stage 2a tells us that

{φ |φRa} ∩ {φ |φRb} = {φ |φR(a ⊓ b)} .

Apply Lemma 1.3.2 and conclude that pt2a(R) preserves the binary meet ↓a∧ ↓b . The

general case follows from the same argument we used above for the domain Idl≺ L+.

1.3.2 Lawson duality

Once more the functor Flip on interaction algebras proves to be very useful. Recall that in

the category of Stage 1 interaction algebras it presented the Stone duality between domains

and completely distributive frames. In the category of Stage 2a interaction algebras it

presents a duality as well, but this time the points of the dual are Scott open filters

instead of Scott open sets. The following theorem is the interaction algebra version of [55,

Theorem 3.2.3].

Theorem 1.3.4. Let (−)∧ be the duality on preframes which takes a preframe homo-

morphism to the preimage operation between Scott open filters. The following diagram of

contravariant functors commutes (up to isomorphism).

Tok2a
pt2a //

Flip
��

CPreFrm

(−)∧

��
Tok2a pt2a

// CPreFrm

Proof. Notice that the axioms of a Stage 2a interaction algebra are symmetric in tokens

and witnesses. Therefore the functor Flip restricts to a contravariant involution on Tok2a.

From Theorem 1.2.4 we know that pt1 ◦Flip takes a Stage 1 morphism to the preimage

operation between Scott open sets. Therefore it suffices to show that for any Stage 2a
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interaction algebra L the domain pt2a FlipL is the Lawson dual of pt2a L. In the proof of

Theorem 1.2.4 we showed that Scott open sets of Idl≺ L+ are in order-preserving bijection

with round upper sets of tokens. This order-isomorphism restricts to an order-isomorphism

between Scott open filters in Idl≺ L+ and round filter of tokens.

Remark. The proof that round filters of tokens correspond to Scott open filters of round

ideals does not require the Stage 2a axioms. Together with Theorem 1.1.8 we recover a

result published by Lawson [41]: The Scott topology of the Lawson dual of a domain is

order-isomorphic to the order dual of the domain’s Scott topology. In short: σ(D∧) ∼=

(σD)∂ .

Knowing that the preframe of round ideals of witnesses is the Lawson dual of the round

ideals of tokens, one wonders what the interaction algebra Ialg2a pt2a L concretely looks

like. In the proof of Theorem 1.1.9 we gave a conrete description of the Stage 0 interaction

algebra derived from the completely distributive frame of round lower sets of tokens. The

same argument can be modified to account for round ideals.

Proposition 1.3.5. Let L be a Stage 2a interaction algebra.

1. A round ideal I of tokens is contained in the Scott open filter corresponding to the

round ideal Φ of witnesses precisely when the set Φ× I intersects the relation ⌢⌣.

2. A round ideal I of tokens is a lower bound for the Scott open filter corresponding to

the round ideal Φ of witnesses if and only if the set I×Φ is contained in the relation

⌢⌣;⌢⌣;⌢⌣.

1.4 Interaction algebras for domains with least element

In this section we demonstrate how to add an empty join, i.e. a least element to a domain

presented by an interaction algebra. The canonical interaction algebra we used to present a

domainD has all Scott open sets as witnesses. There is always a largest witness, namelyD.

If we write the largest witness more neutrally as 1, then we have 1⌢⌣a for every token a

of our canonical interaction algebra. The domain D has a least element precisely when

there is some token 0 ∈ D which is a lower bound for the witness 1. Indeed, any token

d ∈ D then has 0⌢⌣1⌢⌣d and thereby 0 ≪ d. In particular the least element 0 always

satisfies 0 ≪ 0. It must therefore be an element of any set of tokens which we might use

to present the domain. Phrased differently, the domain D has a least element if and only

if the maximal witness 1 is compact in the sense that 1 ≻ 1.

A map f : D → E between domains with bottom is said to be strict if f(0) = 0. The

category of domains with bottom and strict Scott continuous maps is denoted by Dom⊥!.

Theorem 1.4.1. The duality between domains and Stage 1 interaction algebras restricts

to a dual equivalence between Stage 2b interaction algebras and Stage 2b morphisms and

the category Dom⊥! of domains with least element and strict Scott continuous maps.
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1.5 Interaction algebras for continuous Sup-lattices

Proof. If D is a domain with least element 0, let 1 denote the Scott open D. Then the

interaction algebra Ialg1D with Scott opens as witnesses and points of the domain as

tokens satisfies all axioms of Stage 2b listed in Table 1.2. If f : D → E is a strict map

between domains with bottom, then certainly f(a) ∈ E for any element a ∈ D, whence

the relation Ialg1(f) satisfies the empty meet rule of Stage 2b. The relation φ Ialg1(f)0

holds by definition when f(0) is an element of the Scott open set φ, but since the map

f is strict this means that 0 ∈ φ. Therefore the functor Ialg1 restricts to a functor

Ialg2b : Dom⊥! → Tok2b.

It remains to show that the restriction of pt1 to the subcategory Tok2b produces do-

mains with bottom and strict maps. From the axioms of Stage 2b it follows that the

postulated token 0 satisfies 0 ≺ 0, whence we know by Corollary 1.2.9 that ↓0 is a com-

pact round ideal of tokens. Moreover, any other token a has 0⌢⌣1⌢⌣a, whence the round

ideal ↓0 is contained in any other round ideal. If R is a Stage 2b morphism then the image

of ↓0 under pt1(R) is again the lower set of 0, as enforced by the strictness axiom.

1.5 Interaction algebras for continuous Sup-lattices

In section 1.3 we added finite meets to a domain. Dually one might want to add finite joins

to a domain and thus obtain a continuous (complete) lattice. But we already demonstrated

in section 1.4 how to add the empty join to a domain, so it suffices to find a way of adding

binary joins to a domain. Together with the directed joins such a domain will be a

complete Sup-lattice, that is, a poset which has joins for all non-empty subsets. Since

complete Sup-lattices can be described as the Eilenberg-Moore algebras for the non-empty-

lowerset monad on Poset, the natural choice of morphisms between these structures are

the monotone maps which preserve all non-empty joins.

In due course we will prove that the interaction algebras that present continuous com-

plete Sup-lattices are precisely those satisfying the Stage 2c axioms. The binary join and

weakening rules for Stage 2c listed in Table 1.2 look harmless, but the join-strength axiom

might require explanation. Suppose L is a continuous complete Sup-lattice, φ ⊆ L is a

Scott open set and a⊔ b ∈ φ. From continuity we know that a =
⊔ ։

a and b =
⊔ ։

b. Since

directed joins distribute over binary joins, we can write a⊔ b =
⊔
{a′ ⊔ b′ | a′ ≪ a, b′ ≪ b}.

Observe that this join is directed. Therefore, by φ being a Scott open set, we have a′⊔b′ ∈ φ

for some a′ ≪ a and b′ ≪ b already. Clearly then a ∈ ։a
′ and b ∈ ։b

′ and the intersection

։a
′ ∩ ։b

′ is completely below the Scott open φ, as witnessed by a′ ⊔ b′. This can be turned

into a join-strength axiom for the way-below relation. It reads

x≪ a ⊔ b
∃a′ ≪ a ∃b′ ≪ b. x≪ a′ ⊔ b′

The term “join-strength” was first mentioned to the author by Sam van Gool, but

auxiliary relations which satisfy the join-strength axiom and an order-dual thereof have

been examined by Smyth [50] and subsequently many others [16, 2, 35, 33].
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In any domain the join of two points a and b, if it exists, has the property that a⊔b≪ x

whenever a ≪ x and b ≪ x. For continuous Sup-lattices this means that it is possible

to compute the binary meet of Scott opens by taking point-wise joins. Indeed, if U1 and

U2 are Scott open sets then the set U = {a ⊔ b | a ∈ U1, b ∈ U2} is clearly contained in

U1 ∩ U2. For the reverse inclusion, any u ∈ U1 ∩ U2 has a′ ≪ a ⊑ u and b′ ≪ b ⊑ u for

some a′, a ∈ U1 and b′, b ∈ U2. Thus a′ ⊔ b′ ≪ a ⊔ b ⊑ u whence U1 ∩ U2 ⊆ U . We begin

our study of Stage 2c interaction algebras by exhibiting the analogues of the observations

above.

Lemma 1.5.1. Let L be a Stage 2c interaction algebra.

1. The relations ⌢⌣ and any Stage 2c morphism (in particular ⌢⌣) satisfy

φRa ψRb

φ ⊓ ψRa ⊔ b

a⌢⌣φ b⌢⌣ψ

a ⊔ b⌢⌣φ ⊓ ψ

2. The relation ≺ on tokens satisfies the join-strength axiom

x ≺ a ⊔ b
∃a′ ≺ a ∃b′ ≺ b. x ≺ a′ ⊔ b′

3. The relation ≺ on tokens satisfies

a ≺ x b ≺ x
a ⊔ b ≺ x

4. Any token b is lower equivalent to b ⊔ b.

5. Any witness φ is lower equivalent to φ ⊓ φ.

6. The relation ≻ on witnesses satisfies

φ ≻ θ ψ ≻ θ

φ ⊓ ψ ≻ θ

Proof. (1) If φRa and ψRb then first use the weakening axiom to obtain φ, ψRa ⊔ b and

then use the meet rule of Stage 1 to get φ ⊓ ψRa ⊔ b. The rule for ⌢⌣ is proved dually.

(2) Suppose x⌢⌣φ⌢⌣a ⊔ b. Apply the join-strength axiom and obtain witnesses ψ⌢⌣a,

θ⌢⌣b such that φ ≻ ψ⊓θ. With the interpolative law for⌢⌣ we get ψ⌢⌣a′ ≺ a and θ⌢⌣b′ ≺ b

for some tokens a′ and b′. Using (1) we deduce ψ ⊓ θ⌢⌣a′ ⊔ b′ and with φ ≻ ψ ⊓ θ this

implies φ⌢⌣a′ ⊔ b′. Thus x ≺ a′ ⊔ b′.

(3) If a⌢⌣φ⌢⌣x and b⌢⌣ψ⌢⌣x then because of the weakening rule of Stage 2c we have

a ⊔ b⌢⌣φ,ψ⌢⌣x which using the axioms of Stage 1 implies a ⊔ b⌢⌣φ ⊓ ψ⌢⌣x.

(4) The weakening rule of Stage 2c yields the implication φ⌢⌣b ⇒ φ⌢⌣b ⊔ b. For the

reverse implication, apply the join-strength axiom to φ⌢⌣b⊔b and obtain ψ⌢⌣b with φ ≻ ψ

whereby φ⌢⌣b.

(5) Is true even for Stage 1 interaction algebras; see the observations following Defini-

tion 1.2.1.

(6) If φ⌢⌣a⌢⌣θ and ψ⌢⌣b⌢⌣θ then use (1) and the weakening rule for ⌢⌣ and obtain

φ ⊓ ψ⌢⌣a ⊔ b⌢⌣θ.
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Figure 1.7: The interaction algebra of Example 2 depicted as the product L− × L+. Filled
dots are members of ⌢⌣ and circled dots are members of ⌢⌣.

Corollary 1.5.2. A round lower set of tokens of a Stage 2c interaction algebra is a round

ideal if and only if it is non-empty and closed under the operation ⊔.

Proof. The rule (3) of the previous lemma is reversible. This can be shown easily using

the weakening rule for ⌢⌣ of Stage 2c.

Corollary 1.5.3. If φ is a witness of a Stage 2c interaction algebra, then the round upper

set ↑φ is either empty or a round filter.

Proof. Follows from the rule (6) of the previous lemma.

The join-strength axiom is not derivable from other axioms of Stage 2c, as the following

example demonstrates.

Example 2. Consider an interaction algebra where the witness set is the two-element

meet-semilattice L− = {φ, 1} where φ ⊓ 1 = φ. The token set is the four-element join-

semilattice L+ = {0, a, b, a⊔ b} where 0 is a unit for the binary operation ⊔. The relations

⌢⌣ and ⌢⌣ are depicted in Figure 1.7. One can think of the witness φ as the singleton set

{a ⊔ b} and of 1 as the set L+. This interaction algebra satisfies all Stage 1 axioms and

moreover all axioms of Stage 2b and Stage 2c except for the join-strength axiom. Indeed,

φ⌢⌣a ⊔ b but the only choice for witnesses ψ⌢⌣a and θ⌢⌣b is ψ = θ = 1. Since 1 ⊓ 1 = 1

and 1 is not below φ, the join-strength axiom fails.

Observe that this interaction algebra has only two round ideals, namely the ones

generated by the compact tokens 0 and a ⊔ b. Hence the tokens a and b are superfluous,

and in fact omitting them yields a Stage 2c interaction algebra.

Remark. A dual to axiom (2) of Lemma 1.5.1 does not hold. If φ ≻ ψ ⊓ θ then there

do not necessarily exist ψ′ ≻ ψ and θ′ ≻ θ such that φ ≻ ψ′ ⊓ θ′. An example where this

fails is the complete Sup-lattice N + {∞} where N carries the flat order and ∞ is above

any n ∈ N. The Scott open sets generated by the even and odd numbers intersect to the

singleton {∞} which is completely below itself, but the former two Scott open sets are

not bounded below.

47



1 Interaction algebras

Theorem 1.5.4. The dual equivalence between the categories Dom and Tok1 restricts to

a dual equivalence between the categories CCSup of continuous complete Sup-lattices and

Sup-lattice homomorphisms and the category Tok2c of Stage 2c interaction algebras and

Stage 2c morphisms.

Proof. Let L be a continuous complete Sup-lattice. Then the tokens of the interaction

algebra Ialg1 L have binary joins. We already verified the join-strength axiom at the

beginning of this section. The binary join rule of Stage 2c is valid because the lower bounds

of any Scott open set are closed under all non-empty joins. Checking the weakening rules

of Stage 2c requires no ingenuity. We conclude that the functor Ialg1 restricts to a functor

Ialg2c : CCSup → Tok2c.

It remains to show that the functor pt1 maps Stage 2c interaction algebras to Sup-

lattices and Stage 2c morphisms to Sup-lattice homomorphisms. Let L be a Stage 2c

interaction algebra. Its domain of round ideals of tokens has binary joins which are

computed just as one computes the join of ideals of any join-semilattice:

I ∨ J =↓{a ⊔ b | a ∈ I, b ∈ J}

The easiest way of seeing that the set thus defined is indeed the join of I and J in the

domain of round ideals, is to consider the special case where I =↓a0 and J =↓b0 . Using

Lemma 1.5.1 (2) and (3) one shows that ↓a0 ∨ ↓b0 =↓a0⊔b0 , which is clearly the smallest

possible ideal containing both ↓a0 and ↓ b0 . Hence the map ↓: L+ → Idl≺ L+ not only

transforms ≺ into ≪ but also ⊔ into binary join. The case where I and J are arbitrary

round ideals now follows using the basic round ideals. Therefore the set of round ideals of

tokens has binary joins. The Fundamental Lemma 1.2.1 tells us that the round filters of

witnesses have binary joins, too. These are computed in the way we would expect:

F ∨G =↑{φ ⊓ ψ |φ ∈ F, ψ ∈ G} .

Let R : L → M be a Stage 2c morphism. Once again, we regard the map pt1(R) as a

function from round ideals of tokens in M to round filters of witnesses in L. We already

know that pt1(R) is monotone, whence it suffices to check the inequality pt1(↓(a ⊔ b) ) ⊆

pt1(↓ a ) ∨ pt1(↓ b ). A witness φ ∈ L− is an element of pt1(↓ (a ⊔ b) ) precisely when

φRa ⊔ b. Now the join-strength rule for R tells us that φ ≻ ψ ⊓ θ for some φ ∈ pt1(↓a )

and θ ∈ pt1(↓b ). We have shown that pt1(R) preserves binary joins of basic round ideals,

and this suffices to conclude that the function preserves all binary joins.

One of the strengths of interaction algebras for domains is that the Lawson dual is

“built in” to the presentation rather explicitly as round ideals of witnesses. Observe that

in the proof of Theorem 1.3.4 we did not make use of the Stage 2a axioms to show that

the Scott open filters of round ideals of tokens correspsond to round ideals of witnesses.

In fact the Stage 2a axioms only come into play when showing that the Lawson dual is
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1.6 Interaction algebras for continuous lattices

functorial.

Thus we may, even in the absence of the Stage 2a axioms, derive properties of the

Lawson dual of a domain by inspecting the algebraic axioms of tokens and witnesses. An

instance of this is provided by Lemma 1.5.1 (6):

Proposition 1.5.5. For a Stage 2c interaction algebra L, the Lawson dual of pt1 L is

stably locally continuous, meaning that the way-upper set of any point is a filter, provided

that it is not empty.

Proof. Suppose Φ, Ψ and Θ are round ideals of witnesses of a Stage 2c interaction algebra

with Φ ≪ Ψ,Θ. Then Φ ⊆↓ψ and Φ ⊆↓θ for some ψ ∈ Ψ and θ ∈ Θ. Further we have

ψ′′ ≻ ψ′ ≻ ψ for some witnesses ψ′′, ψ′ ∈ Ψ, and likewise Θ ∋ θ′′ ≻ θ′ ≻ θ. Using the

weakening rule of Stage 1 we find that ψ′′, θ′′ ≻ ψ′ ⊓ θ′ whence ψ′ ⊓ θ′ ∈ Ψ ∩ Θ. Now

apply Lemma 1.5.1 (6) and conclude that ↓ψ ⊓ θ still contains the ideal Φ. Notice that

the round lower set ↓ψ ⊓ θ is not necessarily a round ideal, but with countable dependent

choice we can construct a round ideal of witnesses that contains ψ ⊓ θ and is bounded

above by ψ′ ⊓ θ′. Thus we have shown that the way-upper set of the ideal Φ, provided

that it is not empty, is a filter.

Remark. The proposition above has a converse: The continuous complete Sup-lattices

are precisely the Lawson duals of stably locally continuous domains.

1.6 Interaction algebras for continuous lattices

In order to present continuous lattices by interaction algebras, all we have to do is combine

Theorem 1.4.1 and Theorem 1.5.4. This yields a dual equivalence between the category

Tok3 and the category CCL of continuous complete lattices and join-preserving maps. From

the viewpoint of universal algebra, the join-preserving maps are by no means the canonical

choice of morphisms. For example, in [22] continuous lattices are studied as the category

CONT where the morphisms are the Scott continuous maps. Another approach we have

taken previously is to look for distributive laws and require homomorphisms to preserve

the meets and joins that are involved in the distributive law. Surprisingly, continuous

lattices can be characterised by the directed distributive law [22, I-2.7]: They are those

complete lattices where arbitrary meets distribute over directed joins. Although a direct

proof is not too complicated, the abstract basis approach provides a neat alternative.

Proposition 1.6.1. In the complete lattice of round ideals of tokens of a Stage 3 interac-

tion algebra, arbitrary meets are computed as in the complete lattice of round lower sets,

that is, as lower closure of set intersection. Consequently, directed joins of round ideals

distribute over all meets.

Proof. Let L be a Stage 3 interaction algebra and let I be a set of round ideals of tokens.

The meet of I in the lattice of round lower sets is given as
∧

I = {a ∈ L+ | ∃b ∈
⋂
I. a ≺ b}.
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It suffices to show that this is a round ideal. First notice that
∧

I is not empty, because

any round ideal of a Stage 2b interaction algebra contains the compact token 0, whence

0 ≺ 0 ∈
⋂
I. If a ≺ a′ ∈

⋂
I and b ≺ b′ ∈ I then use the characterisation in Lemma 1.5.2

and Lemma 1.5.1 (3) to obtain a ⊔ b ≺ a′ ⊔ b′ ∈
⋂
I. Hence

∧
I is a round ideal.

Recall that the complete lattice Lo≺ L+ of round lower sets is a completely distributive

frame. As Idl≺ L+ shares directed joins and arbitrary meets with the frame Lo≺ L+, the

round ideals inherit the directed distributive law.

A consequence of Proposition 1.6.1 is that any continuous lattice satisfies the preframe

distributive law. Therefore we could have included the Stage 2a axioms into Stage 3.

However, by convention this would mean that the homomorphisms between complete

lattices must preserve finite meets. We conclude:

Proposition 1.6.2. There is a dual equivalence between the category of continuous lattices

with frame homomorphisms and the category of Stage 3 interaction algebras and morphisms

which satisfy the Stage 2a axioms as well.

1.7 Interaction algebras for continuous frames

The algebraic structure of continuous frames is best regarded as a distributive lattice

which happens to be a domain. This is because the frame distributive law can be de-

composed into the distributive law of lattices and the preframe distributive law. The

latter distributive law, however, can be derived because any continuous meet-semilattice

is meet-continuous. In the light of Proposition 1.6.2 it therefore comes at no surprise that

in the step from continuous lattices to continuous frames we simply add a distributive law

to the operations ⊔ and ⊓ we postulate on the tokens.

The Scott topology on any domain (and thereby every completely distributive frame)

is a continuous frame, whence the Stage 4 interaction algebras could be considered as

more general than the ones of previous stages. But, at least until Subsection 1.7.2, we are

interested in a continuous frame itself as a domain.

1.7.1 A lattice distributive law without equality

Notation. By Tok3a we denote the category of interaction algebras and morphisms that

satisfy the axioms of Stage 2a, 2b and 2c.

A Stage 3a interaction algebra has two operations on tokens: There is the operation

⊓ of Stage 2a and the operation ⊔ of Stage 2c. Classically, a distributive law involving

these operations would read a ⊓ (b ⊔ c) = (a ⊔ b) ⊓ (a ⊔ c). However, in Section 1.2 we

already pointed out that equality of tokens is way too strong and replaced it with the lower

equivalence of Definition 1.2.1. As we shall see, lower equivalence is the right framework

in which to define a distributive law.
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Lemma 1.7.1. In every Stage 3a interaction algebra, for any three tokens a, b, c the token

(a ⊓ b) ⊔ (a ⊓ c) is weakly below the token a ⊓ (b ⊔ c).

Proof. We have to show that for any witness φ the relation φ⌢⌣(a⊓b)⊔ (a⊓c) implies that

φ⌢⌣a ⊓ (b ⊔ c). Suppose the former relation holds. Using the join-strength rule we obtain

witnesses ψ⌢⌣a⊓ b and θ⌢⌣a⊓ c satisfying φ ≻ ψ⊓ θ. With the weakening rule of Stage 2a

we can decompose the former two relations into ψ⌢⌣a, θ⌢⌣a, ψ⌢⌣b and θ⌢⌣c. These four

we re-gather into the two relations φ ⊓ θ⌢⌣a and ψ ⊓ θ⌢⌣b ⊔ c, where the first is derived

using the meet rule of Stage 1 and the second using Lemma 1.5.1 (1). An application of

the meet rule then yields ψ ⊓ θ⌢⌣a ⊓ (b ⊔ c) whence we can conclude φ⌢⌣a ⊓ (b ⊔ c).

The lemma above has an analogue in lattices: It simply states that the map x 7→ a⊓x

is monotone. This formulation makes no sense for tokens of an interaction algebra, because

⊓ and ⊔ do not define the same preorder. Nevertheless we define our distributive law as

the reversal of Lemma 1.7.1.

Definition 1.7.1. We say that binary relations ⊓ and ⊔ of a Stage 3a interaction algebra

distribute if for all tokens a,b and c the token a ⊓ (b ⊔ c) is weakly below (a ⊓ b) ⊔ (a ⊓ c).

The category Tok4 of Stage 4 interaction algebras is the full subcategory of Tok3a where

the operations ⊓ and ⊔ distribute.

It is merely a curious observation that the distributive law can be phrased without

referring to the weakly-below relation. Instead, what distinguishes a continuous frame

from a continuous lattice is a “bounded” variant of the join-strength axiom.

Lemma 1.7.2. The join-strength rule of Stage 2c is reversible, meaning

ψRa θRb φ ≻ ψ ⊓ θ

φRa ⊔ b

Proof. If ψRa and θRb then using the idea of Lemma 1.5.1 (1) we obtain ψ ⊓ θRa ⊔ b.

Composing this with the hypothesis φ ≻ ψ ⊓ θ yields φRa ⊔ b.

Proposition 1.7.3. A Stage 3a interaction algebra has distributive operations ⊓ and ⊔

in the sense of Definition 1.7.1 if the bounded join-strength rule

φ⌢⌣a φ⌢⌣b ⊔ c

∃ψ⌢⌣b, ∃θ⌢⌣c. φ ≻ ψ ⊓ θ⌢⌣a

holds.

Proof. Suppose φ⌢⌣a⊓(b⊔c). With the weakening rule we get φ⌢⌣a and φ⌢⌣b⊔c. Then we

can apply the bounded join-strength rule and obtain φ ≻ ψ⊓θ⌢⌣a for some witnesses ψ⌢⌣b

and θ⌢⌣c. Notice that further ψ⌢⌣a and θ⌢⌣a hold. Re-gather the last four relations into

ψ⌢⌣a⊓ b and θ⌢⌣a⊓ c and these two into ψ ⊓ θ⌢⌣(a ⊓ b)⊔ (a ⊓ c) and deduce φ⌢⌣(a ⊓ b)⊔

(a ⊓ c). We have shown that the bounded join-strength axiom implies that a ⊓ (b ⊔ c) is

weakly below (a ⊓ b) ⊔ (a ⊓ c).
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For any lattice (L,⊓,⊔) the distributive law, as we phrased it, is equivalent to the

assertion that for any three elements (a⊔ b)⊓ (a⊔ c) ⊑ a⊔ (b⊓ c). We will prove that our

distributive law implies a similar fact. Our proof essentially follows the familiar lattice-

theoretical proof that can be found in standard textbooks such as [13].

Lemma 1.7.4. For any Stage 3a interaction algebra and tokens a and b, the tokens

a ⊔ (a ⊓ b) and (a ⊔ b) ⊓ a are both lower equivalent to a.

Proof. Clearly, if φ⌢⌣a then φ⌢⌣a⊔ (a⊓ b) by the weakening rule of Stage 2c. Conversely,

if φ⌢⌣a⊔ (a⊓b) then use the join-strength rule to obtain ψ⌢⌣a and θ⌢⌣a⊓b with φ ≻ ψ⊓θ.

From the weakening rule of Stage 2a we know θ⌢⌣a whence we may apply the meet rule

of Stage 1 and get ψ ⊓ θ⌢⌣a. Therefore φ⌢⌣a, which finishes the proof of the first claim.

The Stage 2a weakening rule tells us that φ⌢⌣(a⊔ b)⊓ a implies φ⌢⌣a. For the reverse

implication, use the weakening rule of Stage 2c to deduce φ⌢⌣a ⊔ b from φ⌢⌣a, and then

the meet rule of Stage 2a to get φ⌢⌣(a ⊔ b) ⊓ a.

Proposition 1.7.5. If the operations ⊓ and ⊔ of a Stage 3a interaction algebra distribute

then the dual distributive law holds as well, meaning that for any tokens a, b and c the

token (a ⊔ b) ⊓ (a ⊔ c) is weakly below a ⊔ (b ⊓ c).

Proof. Suppose φ⌢⌣(a⊔b)⊓(a⊔c). We show φ⌢⌣a⊔(b⊓c). First apply the distributive law of

Definition 1.7.1 to obtain φ⌢⌣((a⊔b)⊓a)⊔((a⊔b)⊓c). Now we can use the join-strength rule

and get witnesses ψ⌢⌣(a⊔b)⊓a and θ⌢⌣(a⊔b)⊓c which satisfy φ ≻ ψ⊓θ. Using Lemma 1.7.4

and the distributivity of ⊓ and ⊔ we obtain ψ⌢⌣a and θ⌢⌣(a⊓ c)⊔ (b⊓ c). With the help of

Lemma 1.5.1 (1) the latter two relations can be assembled into ψ ⊓ θ⌢⌣a⊔ (a⊓ c)⊔ (b⊓ c).

To finish, apply Lemma 1.7.4 once more and obtain φ⌢⌣a ⊔ (b ⊓ c).

1.7.2 Duality with continuous frames and locally compact spaces

Lemma 1.7.6. In a Stage 4 interaction algebra, binary meets of round ideals distribute

over binary joins.

Proof. Let L be a Stage 4 interaction algebra and I, J1, J2 be round ideals of L+. By

monotonicity of the meet operation I ∧− the inclusion (I ∧ J1) ∨ (I ∧ J2) ⊆ I ∧ (J1 ∨ J2)

holds, so it suffices to prove the reverse inclusion. Let a ∈ I ∧ (J1 ∨ J2). Then a⌢⌣φ⌢⌣a′ ⊓

(b1 ⊔ b2) where a′ ∈ I and bi ∈ Ji. Using distributivity of the operations ⊓ and ⊔ we

obtain a⌢⌣φ⌢⌣(a′ ⊓ b1) ⊔ (a′ ⊓ b2). Apply Lemma 1.5.1 (2) and get xi ≺ a′ ⊓ bi such that

a ≺ x1 ⊔ x2. This shows that a ∈ (I ∧ J1) ∨ (I ∧ J2).

Theorem 1.7.7. The contravariant duality between Stage 2a interaction algebras and

continuous preframes restricts to a duality between the category Tok4 and the category

CFrm of continuous frames and frame homomorphisms.
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1.7 Interaction algebras for continuous frames
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Figure 1.8: The interaction algebra that corresponds to the topology on the one-point
space, depicted as the product of witnesses and tokens. Filled dots are members of ⌢⌣ and
circled dots are members of ⌢⌣.

Proof. From Proposition 1.6.2 we know that the Stage 3a interaction algebras are dually

equivalent to continuous lattices and frame homomorphisms. The previous lemma tells us

that the Stage 4 interaction algebras correspond to continuous frames. If L is a continuous

frame then the interaction algebra Ialg2a L satisfies the axioms of Stage 2b and 2c as well.

As the binary operations ⊓ and ⊔ on the tokens of Ialg2a L are meet and join in L, the

distributive law of Definition 1.7.1 holds.

A continuous frame is spatial (assuming choice). The category CFrm of continuous

frames is dually equivalent to the category lcSob of sober locally compact spaces, whence

the category Tok4 is equivalent to lcSob. Although we could use general Stone duality

to present this equivalence, it is interesting to see how one can describe the equivalence

directly.

Let X be a locally compact sober space. We build an interaction algebra X = IalgX

where the tokens are bounded opens of X (Call an open set U ∈ OX bounded if it is

contained in some compact subspace of X) and the witnesses are compact (saturated)

subsets of X. On the token side X+ the binary operations ⊓ and ⊔ are meet and join

in the lattice OX and 0 ∈ X+ denotes the empty set. The bounded opens indeed form

a (distributive) lattice with least element. On the witness side, let ⊓ be binary union of

compact sets and 1 ∈ X− denote the empty set. Define relations K⌢⌣U iff K ⊆ U and

U⌢⌣K iff U ⊆ K (The notation becomes more intuitive if one thinks of the witnesses as

the complements of compact sets). Clearly then, the way-below relation on the tokens

coincides with ≺. The algebraic axioms for Stage 4 all follow from the algebraic properties

of the set inclusion relation and the fact that OX is a continuous frame. A continuous

map f : X → Y translates to a Stage 4 morphism IalgX → Ialg Y defining K Ialg(f)U

iff f(K) ⊆ U iff K ⊆ f−1(U). This definition matches with the one for the functor Ialg2a

because of the Hofmann-Mislove Theorem ([22, II-1.20],[29]): The Scott open filters of

OX are in order-reversing bijection with the compact saturated subsets of X. Thus we

can read K ⊆ f−1(U) as O(f)(U) ∈ φK where φK denotes the Scott open filter in OX

generated by K.

Going from interaction algebras to spaces, we employ the interaction algebra variant

of Stone duality. The interaction algebra 2 shown in Figure 1.8 is the Stage 4 interaction
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1 Interaction algebras

Compactness 0 ∈ L− a⌢⌣0

Stable local continuity (L−,⊔)

binary join
a⌢⌣φ a⌢⌣ψ

a⌢⌣φ ⊔ ψ

weakening rules
a⌢⌣φ ⊔ ψ

a⌢⌣φ

φ⌢⌣a

φ ⊔ ψ⌢⌣a

dual join-strength
φ ⊔ ψ⌢⌣a

∃φ⌢⌣b, ψ⌢⌣c. b ⊓ c ≺ a

Table 1.3: Axioms for compactness and stable local continuity for Stage 2a

algebra generated from the one-point space and thereby corresponds to the two-element

frame 2. Stone duality works as follows. Topologise the hom-set Tok4(2,L) using basic

opens of the form {R : 2 → L| 0Ra} where a ranges over the tokens of L. Notice that the

algebraic operations ⊓ and ⊔ on tokens translate to binary intersection and union of basic

opens.

1.8 Stable continuity and stable local continuity for pre-

frames

So far we specialised the category Tok1 presenting domains by adding algebraic structure

to the set of tokens – binary meets for preframes, the empty join and binary joins for

continuous lattices. It is a natural question to ask what happens if we add more algebraic

structure to the set of witnesses. As the witnesses always have a binary operation we think

of as meet, and adding a neutral element for this operation does not make any difference

(recall that every interaction algebra of the form IalgL has such a neutral element) we are

left with investigating what domains arise if we add binary joins or empty joins to the set

of witnesses. The categories of domains we thus obtain are interesting from a duality point

of view, because the functor Flip will put them into dual equivalence with the well-known

categories of Stage 2. Table 1.3 lists the rules we are about to study.

Definition 1.8.1. We call a preframe compact if the largest element 1 is way-below itself,

or equivalently, if the way-upper set of any point is non-empty. A preframe is called stably

locally continuous if the way-upper set of any point is closed under binary meets. If a

preframe is both compact and stably locally continuous then we call it stably continuous.

A Stage 2a interaction algebra is called stably locally continuous respectively compact if

it satisfies the corresponding rules of Table 1.3.
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1.8 Stable continuity and stable local continuity for preframes

1.8.1 Compactness for preframes

The compactness axiom listed in Table 1.3 has itself little influence on the shape of the

domain of round ideals of tokens. This is because as long as the witness 0 has no token

with 0⌢⌣a, one can safely omit this witness and obtain an isomorphic interaction algebra.

The first stage at which we can guarantee that the witness 0 is meaningful is Stage 2a,

where the dual definedness axiom implies the existence of some token a with 0⌢⌣a. In

that case we immediately know that (0, a) is a pair of compact elements because 0⌢⌣a⌢⌣0.

Furthermore, for any token b we get b⌢⌣0⌢⌣a which tells us that every token is bounded

by a. Dually, if φ is any witness then dual definedness yields φ⌢⌣b for some token b and

thereby φ⌢⌣b⌢⌣0 which tells us that 0 is below every witness. Let us therefore rename

the token a to 1. This choice is justified, because every token b is lower equivalent to

the token 1 ⊓ b. Indeed, if φ⌢⌣1 ⊓ b then φ⌢⌣b because of the weakening rule of Stage 1.

Conversely, if φ⌢⌣b then because of φ ≻ 0⌢⌣1 we also have φ⌢⌣1 and therefore φ⌢⌣1 ⊓ b.

Observe that the round ideal ↓ 1 is the top element of the preframe of round ideals of

tokens. Corollary 1.2.9 tells us that the top element ↓1 is compact, i.e. way below itself.

Given a preframe L with top element 1 satisfying 1 ≪ 1, we clearly have a smallest

Scott open filter, namely the singleton {1}. Evidently this filter is bounded below by every

point of the preframe, whence Ialg2a L satisfies the compactness axiom. We conclude:

Proposition 1.8.1. The preframe of round ideals of a Stage 2a interaction algebra has

a compact top element if any only if the interaction algebra is isomorphic to one which

satisfies the compactness axiom of Table 1.3.

Note that the name “compactness” for the axiom we just considered has nothing to

do with the domain of round ideals being compact in the Scott topology. The name is

justified by the fact that a topological space X is compact if and only if the frame of opens

OX is a compact preframe. Therefore the Stage 4 interaction algebras which satisfy the

compactness axiom are precisely the duals of compact locally compact sober spaces.

Observe that the functor Flip transforms the compactness axiom into the axioms of

Stage 2b, except for the strictness axiom. This yields a proof of the following fact (see

[41, Proposition 9.5]):

Proposition 1.8.2. The Lawson duals of continuous preframes with bottom are precisely

the continuous preframes with a compact top element.

Proof. The strictness axiom of Stage 2b is only used to ensure that a Scott continuous

map preserves the bottom element.

We can not expect strictness from the morphism part of Lawson duality because the

preimage of the smallest Scott open filter {1} might be larger than just a singleton.
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1.8.2 Stable local continuity for preframes

The domain of all filters of a preframe has finite joins. If F and G are filters of a preframe

L, then the join F ∨G is given as the upper set of {a ⊓ b | a ∈ F, b ∈ G}. Notice that even

if both F and G are Scott open, the join F ∨ G does not need to be. But suppose that

L is a continuous preframe which in addition is stably locally continuous. Then, if a ∈ F

and b ∈ G we know that F ∋ a′ ≪ a and G ∋ b′ ≪ b because both filters were assumed to

be Scott open, and from stable local continuity we can conclude F ∨ G ∋ a′ ⊓ b′ ≪ a ⊓ b

which shows that F ∨ G is Scott open. Note that in this case we can describe F ∨ G as

։ {a ⊓ b | (a, b) ∈ F ×G}. Using the language of interaction algebras, we will also prove

the converse: If the Lawson dual of a continuous preframe L has binary joins, then L itself

must be stably locally continuous.

Lemma 1.8.3. If a Stage 2a interaction algebra satisfies the stable local continuity axioms

of Table 1.3, then the following rules hold.

x ≺ a x ≺ b
x ≺ a ⊓ b

φ ≻ ψ φ ≻ θ

φ ≻ ψ ⊔ θ

Proof. Suppose x⌢⌣φ⌢⌣a and x⌢⌣ψ⌢⌣b. Then because of the binary join rule of stable local

continuity and its associated weakening rule we know that x⌢⌣φ⊔ψ⌢⌣a, b. With the meet

rule of Stage 2a conclude x⌢⌣φ ⊔ ψ⌢⌣a ⊓ b. The second rule is proved dually.

Proposition 1.8.4. Suppose a continuous preframe L is presented by a Stage 2a inter-

action algebra L. Then L is stably locally continuous if and only if L is isomorphic to an

interaction algebra that satisfies the stable local continuity axioms of Table 1.3.

Proof. From the lemma above we know that for basic round ideals of tokens ↓x , ↓a and

↓ b the implication ↓x ≪↓a , ↓ b ⇒↓x ≪↓a ⊓ b holds. This is enough to deduce stable

local continuity for the entire preframe of round ideals, since I ≪ J holds if and only if

I ≪↓x ≪ J for some token x.

We already convinced ourselves that stable local continuity of a preframe L implies that

the Lawson dual has binary joins. Defining the operation ⊔ as binary join of Scott open

filters, the interaction algebra Ialg2a L is readily seen to satisfy all stable local continuity

axioms of Table 1.3. Observe, for example, that the dual join-strength axiom holds because

of the way binary joins of Scott open filters are computed.

The reader will have noticed that the stable local continuity axioms are formally similar

to the axioms of Stage 2c, except that there we imposed them on tokens and not on

witnesses. Hence, the contravariant involution Flip swaps the Stage 2a axioms with Stage 1

axioms and the Stage 2c axioms with stable local continuity axioms. This yields a short

proof of [41, Proposition 9.4]:

Proposition 1.8.5. The stably locally continuous preframes are precisely the Lawson duals

of continuous preframes which are complete Sup-lattices.
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Combining this with Proposition 1.8.2 we obtain [41, Corollary 9.6]:

Proposition 1.8.6. The Lawson duals of stably compact preframes are precisely the con-

tinuous lattices.

1.8.3 Stably locally continuous frames

A consequence of Proposition 1.8.5 is a dual of Lemma 1.5.1. Notice that Lemma 1.8.3

above already contains the dual rules to Lemma 1.5.1 (3) and (6).

Lemma 1.8.7. Let L be a stably locally continuous Stage 2a interaction algebra.

1. The relations ⌢⌣ and ⌢⌣ satisfy

φ⌢⌣a ψ⌢⌣b

φ ⊔ ψ⌢⌣a ⊓ b

a⌢⌣φ b⌢⌣ψ

a ⊓ b⌢⌣φ ⊔ ψ

2. The relation ≻ satisfies the join-strength rule

φ ⊔ ψ ≻ θ

∃φ ≻ φ′, ∃ψ ≻ φ′. φ′ ⊔ ψ′ ≻ θ

3. Any token b is lower equivalent to b ⊓ b.

4. Any witness φ is lower equivalent to φ ⊔ φ.

Lemma 1.8.8. If b ≺ a in a Stage 2c interaction algebra then φ⌢⌣a ⊔ b implies φ⌢⌣a.

Proof. If φ⌢⌣a ⊔ b then the join-strength rule yields witnesses ψ⌢⌣a, θ⌢⌣b with φ ≻ ψ ⊓ θ.

Now b ≺ a implies θ⌢⌣a whence also φ ≻ ψ ⊓ θ⌢⌣a.

Proposition 1.8.9. In a stably locally continuous Stage 4 interaction algebra the opera-

tions ⊔ and ⊓ on the set of witnesses distribute, meaning that for any witnesses φ, ψ and

θ the witnesses φ ⊓ (ψ ⊔ θ) is lower equivalent to (φ ⊓ ψ) ⊔ (φ ⊓ θ).

Proof. In any stably locally continuous Stage 2a interaction algebra the witness (φ⊓ψ)⊔

(φ ⊓ θ) is weakly below φ ⊓ (ψ ⊔ θ). The proof is dual to that of Lemma 1.7.1.

Next we show that the dual distributive law of Proposition 1.7.5 implies that the

witness φ ⊓ (ψ ⊔ θ) is weakly below (φ ⊓ ψ) ⊔ (φ ⊓ θ). Suppose φ ⊓ (ψ ⊔ θ)⌢⌣a. With the

weakening rule of Stage 1 we deduce φ⌢⌣a and ψ⊔θ⌢⌣a. The dual join-strength rule yields

tokens b and c such that ψ⌢⌣b, θ⌢⌣c and b⊓c ≺ a. Use Lemma 1.5.1 (1) to get φ⊓ψ⌢⌣a⊔b

and φ⊓θ⌢⌣a⊔c. The dual rule in Lemma 1.8.7 (1) then gives (φ⊓ψ)⊔(φ⊓θ)⌢⌣(a⊔b)⊓(a⊔c).

Now apply the dual distributive law for tokens to obtain (φ ⊓ ψ) ⊔ (φ ⊓ θ)⌢⌣a ⊔ (b ⊓ c).

With the preceding lemma we get (φ ⊓ ψ) ⊔ (φ ⊓ θ)⌢⌣a.
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1.9 Interaction algebras for stably continuous frames

We already know two categories with a well-behaved self-duality: The completely dis-

tributive frames, presented by Stage 0 interaction algebras, and continuous preframes,

presented by Stage 2a interaction algebras. Now we have arrived at another self-dual

category: The stably continuous frames, presented by stably continuous Stage 4 interac-

tion algebras. Indeed, in a stably continuous Stage 4 interaction algebra both the tokens

and witnesses carry algebraic structure with the signature (⊓,⊔, 0, 1) and the functor Flip

reflects the rules that the algebraic structure is postulated to obey. In terms of domain

theory we get:

Proposition 1.9.1. The Lawson dual of a stably continuous frame is again a stably con-

tinuous frame. Lawson duality restricts to a contravariant endofunctor on the category

SCFrm of stably continuous frames and frame homomorphisms.

Proof. Proposition 1.8.9 allows us to specialise Proposition 1.8.6 to the desired result.

The Stone duality between continuous frames and locally compact sober spaces we

laid out in Section 1.7 restricts to a duality between stably continuous frames and stably

compact spaces. The self-duality of stably compact spaces maps such a space to its de

Groot dual . Its topology is an instance of the co-compact topology known in domain

theory, whose subbasic open sets are the complements of compact saturated sets. The

special property of stably compact spaces is that this subbasis is already a topology. For a

comprehensive account of results about stably compact spaces, the reader may consult [40]

or [35, Chapter 1]. As stably continuous frames and their Stone duals play an important

role in the remaining chapters of this thesis, we christen the stably continuous Stage 4

interaction algebras and Stage 4 morphisms the ultimate Stage 5 of our hierarchy.

1.10 The Smyth powerdomain

The subcategories of domains we represented using interaction algebras of Stage 2a, 2b

and 2c all have left adjoints to the inclusion functor. Just as every adjunction, those

left adjoints give rise to monads on the category Dom which can be thought of as adding

the appropriate algebraic structure to a domain in a “free” manner. In universal algebra

one introduces algebraic operations on a carrier set by postulating a structure map from

the free algebra over the carrier into the carrier. Typically this free algebra will be a

subset of the powerset, but other power objects have been considered; the prime example

being the probabilistic powerdomain whose points are probability distributions. A priori

a single object in a category might have many such structure maps for a given monad. For

example, a non-trivial set admits different monoid structures. Therefore it is noteworthy

that all monads on Poset appearing in this thesis belong to a family of monads which allow

at most one structure map per object.
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1.10 The Smyth powerdomain

The free continuous preframe over a domain is called the Smyth powerdomain. In

contrast to the Smyth power-construction for arbitrary dcpos, the Smyth powerdomain of

a domain D has a nice concrete description: Its points are the Scott compact saturated

subsets of D, whence the Smyth power-construction is also referred to as the upper power-

construction (Recall that saturated sets are upper sets in the specialisation order).

The reader should be warned that in most sources the Smyth powerdomain is defined

as the free deflationary dcpo-semilattice, without the neutral element for the binary oper-

ation. This means to exclude the empty set from the compact saturated sets. In computer

science contexts this is a sensible thing to do: when modelling nondeterminism, is is an

obvious requirement that a process has some possible behaviour at any state. However,

as our preframes always have a largest element, we include the empty set in our definition

of Smyth powerdomain. For the classical construction, replace “finite set” by “non-empty

finite set” in everything that follows.

Definition 1.10.1. If R ⊆ L×M is a binary relation then the Smyth lifting of R to the

finite powersets of L and M is given as

ARSB :⇔ ∀b ∈ B ∃a ∈ A. aRb

Abramsky and Jung [1] prove that if (L,≺) is an abstract basis for a domain D then

(FinL,≺S) is an abstract basis for the Smyth powerdomain of D.

Interestingly, the finite meets we wish to add to the domain D now arise in the same

way as one constructs the free meet-semilattice over a set: If L is a set, then the join

operation ∪ is a binary operation on the finite powerset FinL with the empty set as

neutral element. On the tokens of the abstract basis (FinL,≺S) we declare binary union

to be a meet operation. This meet extends to round ideals of tokens.

We aim to present the Smyth powerdomain as a construction on Stage 1 interaction

algebras. In doing so, we exhibit and exploit a few not-so-well-known facts about the

Smyth powerdomain (only the statement about the unit is somewhat explicitly stated in

[1]):

• The Smyth powerdomain of any domain is a stably continuous preframe.

• The Smyth powerdomain functor preserves semi-open maps.

• The unit and multiplication of the Smyth powerdomain monad are semi-open maps,

and can be derived from the finite-powerset monad Fin on Set.

1.10.1 Relation lifting with algebraic operations

In what sense is the Smyth lifting a canonical construction? There is a canonical way of

lifting a binary relation through a functor called relation lifting. Suppose T is a functor

on Set and R ⊆ L × L is a binary relation. Let L R
π1oo π2 //L denote the projections
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of the set R onto its first and second coordinate. Then T (πi) : TR → TL is the image of

the i-th projection under the functor T . Define a relation T (R) ⊆ TL× TL by declaring

aT (R)b whenever there exists an element x ∈ TR with the property that a = T (π1)(x)

and b = T (π2)(x). In the case where T = Fin is the finite powerset functor and R =≺ is

the order relation of an abstract basis, one obtains the Egli-Milner lifting

AFin(≺)B ⇔ ∀b ∈ B ∃a ∈ A. a ≺ b and ∀a ∈ A ∃b ∈ B. a ≺ b.

Notation. When lifting a relation R through the finite powerset functor we write REM

instead of the more complicated Fin(R).

The abstract basis (FinL,≺EM ) gives rise to the Vietoris powerdomain. Vosmaer

[61] uses relation lifting to generalise the Vietoris powerlocale construction to a power

construction parametrised by a certain monad T on Set. However, the Smyth lifting of

≺ seems not to be of the kind T (≺) for a functor T . We show how to remedy this using

algebraic operations.

Suppose L is a set with a binary relation ⊑ we want to think of as a less-than-relation.

Suppose further that we have a binary operation ⊓ we regard as binary meet. Then one

natural rule for how ⊑ and ⊓ should interact is the weakening rule

x ⊑ y

x ⊓ x′ ⊑ y
.

One could read this as a production rule to enlarge the relation ⊑. And indeed: If (L,≺) is

an abstract basis and A ≺EM B in the finite powerset of L, then for any finite set A′ ⊆ L

we have A ∪ A′ ≺S B. Conversely, suppose A ≺S B. Let A′ = A∩ ↓B . Then A′ ≺EM B

and clearly A ∪A′ = A. We have shown that the Smyth lifting of ≺ is the relation lifting

of ≺ through the finite powerset functor, followed by closure under the weakening rule

above.

A binary algebraic operation can be lifted through the finite powerset functor as follows.

For a set L there is a natural map FinL × FinL → Fin(L × L) sending a pair (A,B) to

the set A × B. Thus an operation ⊓ : L × L → L lifts to a binary operation FinL ×

FinL → FinL by post-composing the natural map by Fin(⊓). This yields A ⊓ B =

{a ⊓ b | (a, b) ∈ A×B}.

Definition 1.10.2. For a Stage 1 interaction algebra L define the Smyth poweralgebra

PSL as follows. Let the witness set be the finite powerset FinL− of the witnesses of L.

Further let 0 denote the empty set in FinL−. Let the token set of PSL be the finite

powerset of the tokens of L, with the symbol 1 denoting the empty set of tokens. For

finite sets of witnesses Φ, Ψ and finite sets of tokens A, B declare binary operations

Φ ⊓Ψ := {φ ⊓ ψ | (φ, ψ) ∈ Φ×Ψ}

Φ ⊔Ψ := Φ ∪Ψ

A ⊓B := A ∪B
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The relations⌢⌣, ⌢⌣ and all morphisms R are lifted to relations PS(⌢⌣), PS(⌢⌣) and PS(R)

on poweralgebras by first lifting the relation through the functor Fin and then closing

under the rules of Stage 2a and the rules of Table 1.3.

As we convinced ourselves above, the relation lifting thus defined produces the Smyth

lifting we described earlier. It remains to show that the Smyth liftings of R and ⌢⌣ are

closed under all Stage 2a rules.

Stage 0. The Smyth lifting is easily seen to be functorial as an operation on morphisms

of Rel. Hence equational axioms such as the Stage 0 axiom are preserved by Smyth

lifting. One consequence of functoriality is that ⌢⌣S ;⌢⌣S =≺S whence we can say that

the domain Idl≺S FinL+ presents the Smyth powerdomain of Idl≺ L+. More generally the

Smyth lifting is monotone with respect to inclusion of relations whence adjoint pairs of

relations are preserved.

Stage 1. Let R be a Stage 1 morphism. If ΦRSA and ΨRSA then for all a ∈ A there

exist φ ∈ Φ, ψ ∈ Ψ such that φ, ψRa. Since R is closed under the meet rule of Stage 1, we

have Φ ⊓ Ψ ∋ φ ⊓ ψRa whence Φ ⊓ ΨRSA. Similarly, the weakening rule for ⊓ on finite

sets of witnesses follows because R satisfies that rule. For the empty set 1 of tokens the

definedness axiom holds vacuously; for all non-empty sets A it follows from the definedness

axiom for R. If ∀φ ∈ Φ∃a ∈ A. a⌢⌣Φ then this certainly remains true for if we replace A

with a set of the form A ⊓B := A ∪B. Thus all Stage 1 rules hold.

Stage 2a. As the binary meet ⊓ of finite sets of tokens is given as binary union, it is

trivial to check that the meet rule of Stage 2a holds for the Smyth lifting of a relation R.

The weakening rule for RS holds because ΦRSA implies that ΦRSA
′ for all A′ ⊆ A. We

used the weakening rule for ⌢⌣ to obtain ⌢⌣S from the relation lifting ⌢⌣EM , so this rule

holds by definition. The dual definedness rule is trivial because ΦRS1 holds vacuously, as

1 is the empty set of tokens.

Stable continuity. The empty set of witnesses 0 satisfies the compactness rule A⌢⌣S0

vacuously. Notice that 0⌢⌣S1. The binary join rule for the operation ⊔ on witnesses holds

because we used this rule to obtain the Smyth lifting of⌢⌣ from its relational lifting⌢⌣EM .

Checking the weakening rules is straightforward. The dual join-strength rule holds for all

morphisms R: Suppose A is a finite set of tokens, Φ and Ψ are finite sets of witnesses

and suppose Φ ⊔ ΨRSA, meaning ∀a ∈ A∃θ ∈ Φ ∪ Ψ. θRa. Then there is another finite

set A′ ≺S A with Φ ⊔ ΨRSA
′. Define two sets B := {a ∈ A′ | ∃φ ∈ Φ. φRa} and C :=

{a ∈ A′ | ∃ψ ∈ Ψ. ψRa}. Then ΦRSB and ΨRSC and furthermore B ⊓ C = B ∪ C = A′

whence B ⊓ C ≺S A.

The names 0 and 1 for the empty set of witnesses and tokens are chosen purposefully.

The empty set 0 satisfies 0 ⊔ Φ = Φ and 0 ⊓ Φ = 0 for all finite sets Φ of witnesses and
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A⌢⌣S0 for all finite sets A of tokens. Dually, the empty set of tokens 1 satisfies 1⊓A = A

for all finite sets A of tokens and Φ⌢⌣S1 for all finite sets Φ of witnesses. Moreover, the

operations ⊓ and ⊔ on finite sets of witnesses distribute in the classical sense. For we have

Φ ⊓ (Ψ ⊔Θ) = {φ ⊓ η |φ ∈ Φ, η ∈ Ψ ∪Θ}

= {φ ⊓ ψ |φ ∈ Φ, ψ ∈ Ψ} ∪ {φ ⊓ θ |φ ∈ Φ, θ ∈ Θ}

= (Φ ⊓Ψ) ⊔ (Φ ⊓Θ).

This distributive law was expected because intuitively the Smyth powerdomain of a domain

is the Lawson dual of the Scott topology. And in fact, Proposition 1.8.6 tells us that the

Lawson dual of the domain presented by a Smyth poweralgebra is a frame. We need to

show yet that this frame is in fact the Scott topology we expect it to be.

The Smyth poweralgebra construction preserves token maps in virtue of the finite

powerset functor. A token map (f−, f+) between Stage 1 interaction algebras yields a pair

(Fin(f−),Fin(f+)) between finite powersets, and it is easy to verify that the latter pair of

functions preserves the relations ⌢⌣S and ⌢⌣S whenever the former preserves ⌢⌣ and ⌢⌣.

Moreover, if we transform a token map into an adjoint pair of relations and lift these,

then the result is the same as first lifting the token map and then transforming it into an

adjoint pair of relations. We collect our findings in the following theorem.

Theorem 1.10.1. The Smyth poweralgebra PS is a functor from Tok1 into the subcategory

of stably continuous Stage 2a interaction algebras. It preserves token maps and adjoint

pairs. If D = Idl≺ L+ is the domain presented by an interaction algebra L, then the

interaction algebra PSL presents the Smyth powerdomain of D.

To conclude the study of the Smyth poweralgebra functor, we give the interaction

algebra proof for the domain-theoretic characterisation of the Smyth powerdomain [22,

Theorem IV-8.10] we mentioned earlier.

Proposition 1.10.2. For any Stage 1 interaction algebra L the following domains are

isomorphic.

1. The domain of round ideals of witnesses of PSL,

2. The domain of round lower sets of witnesses of L.

Consequently, the domain presented by PSL is the Lawson dual of the Scott topology of

the domain presented by L.

Proof. A round ideal I in FinL− yields a round lower set
⋃
I in L−. Conversely, a round

lower set Φ ⊆ L− gives rise to a round ideal {Ψ ∈ FinL− |Ψ ⊆ Φ}. These two assignments

are order-preserving and mutually inverse.

One would expect that the order-isomorphism of the proposition above can be realised

as an isomorphism of interaction algebras, for example between the Stage 1 interaction
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algebra pt1 PSL and the Stage 0 interaction algebra ΩL. But recall that the relation

≻ on the witnesses of ΩL is the completely-above relation, not the way-above relation.

Hence such an isomorphism can not exist. The preceding proposition combined with

Theorem 1.3.4 yields the interaction algebra presentation of the contravariant functor

O : Dom → CFrm as Flip ◦PS .

1.10.2 The Smyth powerdomain monad

The finite powerset functor Fin extends to a monad on Set, with the singleton operation

as unit and union of finite sets as multiplication. In due course we show that the Smyth

poweralgebra functor is a comonad on the category Tok1. Its co-unit and co-multiplication

are in fact given by token maps derived from the unit and multiplication of the monad

(Fin, {−},
⋃
) on Set.

Let L be a Stage 1 interaction algebra. Observe that the Smyth liftings ⌢⌣S and ⌢⌣S

extend the relations ⌢⌣ and ⌢⌣ in the sense that φ⌢⌣a holds if and only if {φ}⌢⌣S{a},

and likewise a⌢⌣φ holds precisely when {a}⌢⌣S{φ}. In particular this tells us that the

pair of singleton maps ({−}, {−}) : L− × L+ → FinL− × FinL+ is a token map. It

has some convenient additional properties: Because we defined the operation ⊓ on finite

sets of witnesses element-wise, the singleton map on witnesses preserves the operation ⊓.

If Φ⌢⌣S{a} then φ⌢⌣a for some φ ∈ Φ and therefore φ⌢⌣b ≺ a for some token b. This

means that the singleton map on tokens satisfies the continuity condition of Lemma 1.1.13

whereby its induced relation FinL− → L+ has a simpler description. Let us write E−
L and

EL for the relations induced by the singleton maps on witnesses and tokens, respectively.

We have an adjoint pair EL ⊣ E−
L where

ΦELa ⇔ Φ⌢⌣S{a}

⇔ ∃φ ∈ Φ.φ⌢⌣a

φE−
LA ⇔ ∃ψ. φ ≻ ψ, ∀a ∈ A.ψ⌢⌣a

⇔ ∃b. φ⌢⌣b, ∀a ∈ A. b ≺ a

Note that not only ⌢⌣ ⊆ E−
L # EL but the stronger identity ⌢⌣ = E−

L # EL holds. In

order to verify that the relation EL extends to a natural transformation in the category

of Stage 1 interaction algebras, we employ Corollary 1.1.14. The post-composition of a

morphism PS(R) with EM is given as Φ(PS(R) #EM)a iff ΦPS(R){a} which is equivalent

to ∃φ ∈ Φ. φRa. The pre-composition of R with a relation EL is given as Φ(EL # R)a iff

Φ ≻S {ψ}, ψRa for some witness ψ. But Φ ≻S {ψ} is equivalent to ∃φ ∈ Φ. φ ≻ ψ whence

Φ(EL #R)a iff ∃φ ∈ Φ. φRa. Thus PS(R) # EM = EL #R.

Let us now consider the pair of union maps
⋃

: Fin2 L− → FinL− and
⋃

: Fin2 L+ →
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FinL+. Observe that for sets of witnesses we have

⋃
{Φ,Ψ} = Φ ⊔Ψ,
⋃

{Φ} = Φ,
⋃

∅ = ∅ = 0

Therefore, extending the arity of ⊔ on Fin2 L− to finite sets, we can say that for � ∈

Fin2 L− the union
⋃
� coincides with

⊔
�. Dually, for finite sets of tokens we have

⋃
{A,B} = A ⊓B,
⋃

{A} = A,
⋃

∅ = ∅ = 1

whence we can say that
⋃
A =

d
A for an element A ∈ Fin2 L+.

Lemma 1.10.3. For any stably continuous Stage 2a interaction algebra L the pair of

maps (
⊔
,
d
) : PSL → L is a token map. It is natural in L, meaning that the relation SL

associated with the map
d

constitutes a natural transformation from the identity functor

on stably continuous Stage 2a interaction algebras to PS.

Proof. Let L be a stably continuous Stage 2a interaction algebra. Suppose Φ⌢⌣SA in

PSL. Then there exists a family {φa}a∈A ⊆ Φ with φa⌢⌣a for all a ∈ A. The first

rule in Lemma 1.8.7 (1) yields
⊔
a∈A φa⌢⌣

d
A. Using the weakening rule for ⊔ and

Lemma 1.8.7 (4) we conclude
⊔
Φ⌢⌣

d
A. Now suppose A⌢⌣SΦ. A similar argument

using Lemma 1.8.7 (1) and (3) yields
d
A⌢⌣S

⊔
Φ. Therefore (

⊔
,
d
) is a token map.

We claim that the map
d

: FinL+ → L+ satisfies the continuity condition of Lemma

1.1.13. Indeed, if φ⌢⌣
d
A then φ⌢⌣b ≺

d
A for some token b. With the weakening

rule of Stage 2a we get ∀a ∈ A. b ≺ a whence {b} ≺S A. Therefore the relation SL

defined by
d

has the simple description φSLA iff φ⌢⌣
d
A. Now suppose R : L → M

is a Stage 1 morphism. Corollary 1.1.14 tells us that post-composing the morphism R

with the relation SM defined by
d

: FinM+ → M+ gives the relation φ(R # SM)B iff

φR
d
B. Pre-composing PS(R) with SL gives the relation φ(SL # PS(R))B iff φ ≻

⊔
Ψ

and ΨPS(R)B for some Φ ∈ FinL−. Recall from Lemma 1.8.3 and the weakening rule for

⊔ that φ ≻
⊔
Ψ is equivalent to ∀ψ ∈ Ψ. φ ≻ ψ whence φ(SL # PS(R))B is equivalent to

{φ}(≻S ;PS(R))B which in turn is seen to coincide with R # SM.

Remark. The lemma above does not hold in the absence of stable continuity. In domain-

theoretic terms we can say: The map that takes a compact saturated subset of a continuous

preframe to its infimum does not necessarily preserve the way-below relation, but for stably

compact preframes it does.
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Corollary 1.10.4. The pair of union maps
⋃

: Fin2 L− → FinL− and
⋃

: Fin2 L+ →

FinL+ form a token map for any Stage 1 interaction algebra L. Moreover, the relation

UL associated with the map
⊔

on tokens is a natural transformation in Tok1 from PS to

(PS)
2.

Proof. The Smyth poweralgebra of a Stage 1 interaction algebra L is a stably continuous

Stage 2a interaction algebra, whence the previous lemma applies. As we explained above,

on (PS)
2L the union of sets of witnesses is computed via

⊔
and the union of sets of tokens

is computed via
d
.

Now that we have established two natural transformations on the category of Stage 1

interaction algebras which are given by token maps, and knowing that the Smyth pow-

eralgebra functor preserves token maps, we get the defining diagrams for a comonad on

Tok1 for free: They simply follow from the fact that Fin extents to a monad on Set. We

summarise:

Theorem 1.10.5. The Smyth poweralgebra functor on Tok1 extends to a comonad where

the co-unit and co-multiplication are given by token maps ({−}, {−}) and (
⋃
,
⋃
). In

particular, the Smyth poweralgebra functor restricts to a monad on the category of Stage 1

interaction algebras and token maps.

Corollary 1.10.6. The Smyth powerdomain monad on the category of domains has semi-

open unit and multiplication maps and preserves semi-open maps.

1.10.3 Algebras for the Smyth powerdomain monad

For all the monads on the category of posets we encountered so far (for instance the lower

set monad and ideal monad) the Eilenberg-Moore algebras played an important role. As

these monads are KZ-monads (Kock-Zöberlein, [37]) where the multiplication is adjoint to

the unit, every object in the underlying category admits at most one monad algebra. In this

subsection we demonstrate, using interaction algebras, that the Eilenberg-Moore algebras

for the Smyth powerdomain monad on Dom are precisely the continuous preframes (For

a more general account of this fact, see [47]). Since the points of the Smyth powerdomain

are the compact saturated subsets of a domain, we conclude that a continuous preframe

must have infima for all compact subsets, not only for the finite ones as postulated in the

definition of a preframe. Once more, this emphasises our credo that compact sets behave

as if they were finite.

Explicit top elements

Although preframes in this thesis have a top element (the empty meet), we do not need

to add a special token 1 to every interaction algebra presenting a preframe. Instead, the

top element is represented by the round ideal of all bounded tokens, which contains every
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other round ideal. Sometimes, however, it is convenient to have a special token 1 which

generates this largest round ideal. The stably continuous Stage 2a interaction algebras are

an example, where we extended the binary operation ⊓ on tokens to a finitary operation
d

with
d
∅ = 1. In order to do this for any (not necessarily stably continuous) Stage 2a

interaction algebra, we add a token 1 and a witness 1 which obey the following nullary

weakening rules.

1Ra φR1

Notice that these rules imply the definedness and dual definedness rules. Any Stage 2a

interaction algebra enhanced with these rules is isomorphic to the original one. Indeed,

one can apply Proposition 1.1.4 because neither the token 1 nor the witness 1 are bounded.

Hence it is justified to use
d

as if it was a map on finite sets of tokens, even if the original

interaction algebra did not have a token 1. Observe that the argument of Lemma 1.10.3 still

applies where we showed that the map
d

satisfies the continuity condition of Lemma 1.1.13.

Thus we can express the structure morphism SL of a Stage 2a interaction algebra as φSLA

iff φ⌢⌣
d
A and use the first part of Corollary 1.1.14, even though

d
does not extend to a

token map.

Coalgebra morphisms

Lemma 1.10.7. If L is a Stage 2a interaction algebra then the structure morphism SL is

right adjoint to the unit EL.

Proof. Under Stage 2a axioms the right adjoint E−
L to EL coincides with the structure

map SL. In general φE−
LA if there exists some witness ψ with φ ≻ ψ and ∀a ∈ A.ψ⌢⌣a.

With Stage 2a axioms this is equivalent to φ ≻ ψ⌢⌣
d
A which in turn is equivalent to

φ⌢⌣
d
A.

Remark. For continuous preframes the lemma above becomes manifest in the equivalence

x ≤
∧
K ⇔ |◮x ⊇ K where x is a point and K a compact saturated subset (Recall that

|◮ is the unit of the Smyth powerdomain monad and that the order on compact saturated

subsets is reverse set inclusion).

Lemma 1.10.8. 1. If L is a Stage 2a interaction algebra then the morphism SL derived

from the structure map
d

is a coalgebra for the Smyth poweralgebra comonad.

2. The Stage 1 morphisms between Stage 2a interaction algebras that are Smyth pow-

eralgebra morphisms are precisely the Stage 2a morphisms.

Proof. (1) First we verify the defining identities for SL being a comonad coalgebra. This
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means we have to prove that the diagrams below commute.

L
SL //

SL

��

PSL

UL

��

L

id
  B

BB
BB

BB
BB
SL // PSL

EL

��
PSL PS(SL)

// (PS)
2L L

(1.5)

We already observed above that the right-hand diagram commutes, as SL coincides with

the right adjoint E−
L . The left-hand square commutes because we assumed the operation

⊓ to be associative. Indeed, all morphisms in the square above are given by maps on

tokens, whence the square above commutes if and only if the square below commutes.

L+ FinL+

d
oo

FinL+

d
OO

Fin2 L+Fin(
d
)

oo

⋃
OO

But this is precisely associativity of
d
.

(2) Now suppose R : L → M is a Stage 2a morphism. This is a Smyth poweralgebra

morphism if SL #PS(R) = R #SM. But this identity is precisely naturality of the structure

morphism which we showed in Lemma 1.10.3.

Finally, we show that R being a Smyth poweralgebra morphism implies that R satisfies

the Stage 2a rules. The meet rule: Let φRa and φRa′. Use ≻;R = R and get φ⌢⌣b⌢⌣ψRa

and φ⌢⌣b′⌢⌣ψ′Ra′. With B := {b, b′} and Ψ := {ψ, ψ′} we have φSLB⌢⌣SΨPS(R)A. Use

the hypothesis (SL #PS(R)) ⊆ (R #SM) and obtain φRx⌢⌣θSL for some token x and some

witness θ. Then M being a Stage 2a interaction algebra yields φRx⌢⌣θ⌢⌣a ⊓ a′ and so

φRa ⊓ a′. The weakening rule for R follows from the weakening rule for the relation ⌢⌣

in M. Dual definedness: Let φ ∈ L−. By dual definedness for L we have φ⌢⌣b for some

token b ∈ L+. We can write this as φSL{b}. Trivially {b}⌢⌣S∅PS(R)∅. Then use the

inclusion (SL # PS(R)) ⊆ (R # SM) and obtain φRx for some token x ∈M+.

Next we prove a converse to Lemma 1.5: If a Stage 1 interaction algebra admits

a coalgebra for the Smyth poweralgebra comonad, then it is isomorphic to a Stage 2a

interaction algebra. The structure morphism SL of the lemma above tells us when a basic

Scott open φ contains the infimum of a finite set A. As we will see below, this relation is

the only possible way a morphism can be a Smyth poweralgebra coalgebra.

Lemma 1.10.9. If R : L → PSL is a coalgebra map for the Smyth poweralgebra comonad,

then the interaction algebra L presents a continuous preframe. Moreover, the morphism

R is unique because it is right adjoint to the co-unit morphism EL.

Proof. First let us examine what it means that R is a coalgebra for the Smyth poweralgebra

comonad. The unit law states thatR#EL = ⌢⌣ which means that φ⌢⌣a if and only if φR{a}.
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In the interaction algebra PSL this means that Φ⌢⌣SA if and only if ΦPS(R) {{a} | a ∈ A}.

Suppose A ∈ FinL+ is a non-empty set of tokens and φRA. With UL denoting the co-

multiplication of the Smyth poweralgebra obtained from the map
⋃
, we can write

φRA ⇔ φ(R #⌢⌣S)A

⇔ φ(R #⌢⌣S)
l

a∈A

{a} by definition of the meet operation

⇒ ∀a ∈ A. φR{a} by the weakening rule for ⌢⌣S

⇒ {φ}⌢⌣SA by the unit law.

Recall that by the Fundamental Lemma 1.2.1 the domain pt1 L is isomorphic to the

domain of round filters of witnesses of L. Here, a token a ∈ L+ corresponds to the

round filter Fa = {φ ∈ L− |φ⌢⌣a}. We claim that the binary meet of filters Fa and Fb

is given as Fa⊓b := {φ ∈ L− |φR{a, b}}. We already convinced ourselves that φR{a, b}

implies φRa and φRb, whence the filter Fa⊓b is contained in both Fa and Fb. The meet

of Fa and Fb as round upper sets is given as Fa ∧ Fb = {φ ∈ L− |φ ≻ ψ⌢⌣a, b}. For any

φ ∈ Fa ∧ Fb we have φ⌢⌣c⌢⌣ψ⌢⌣a, b for some token c and some witness ψ. One can write

this as φR{c}⌢⌣S{ψ}⌢⌣S{a, b} whereby φ ∈ Fa⊓b. Thus the meet Fa ∧ Fb coincides with

the round filter Fa⊓b which makes the latter the infimum of Fa and Fb in the domain of

round filters. Having binary meets for filters of the form Fa suffices to get binary meets

for arbitrary round filters, as the filters Fa form a basis for the domain of round filters.

Recall that the empty set of tokens 1 ∈ FinL+ has A ≺S 1 for any finite set A of

tokens. Any round filter F of witnesses consists entirely of witnesses which are bounded

below, as φ ∈ F implies that φ ≻ ψ ∈ F for some other witness ψ. Now φ ≻ ψ means

φ⌢⌣a⌢⌣ψ for some token a, whereby φR{a} and so φR1. Hence every round filter F of

witnesses is contained in the round filter {φ ∈ L− |φR1} whereby the domain pt1 L has a

largest element.

It remains to show that R is right adjoint to the co-unit morphism EL. The unit

law tells us that ⌢⌣ = R # EL, so in particular ⌢⌣ ⊆ R # EL. At the beginning of this

proof we convinced ourselves that φRA implies {φ}⌢⌣SA, which we can use to show that

EL #R ⊆ ⌢⌣S .

The previous two lemmas combined yield:

Theorem 1.10.10. Every Stage 1 interaction algebra admits at most one coalgebra for

the Smyth poweralgebra comonad. The subcategory of Stage 2a interaction algebras is

equivalent to the Eilenberg-Moore category of the Smyth poweralgebra comonad.

For the category of domains we record (compare [47, Lemma 4.4, Theorem 7.16]):

Corollary 1.10.11. The Eilenberg-Moore algebras for the Smyth powerdomain monad on

Dom are precisely the continuous preframes. Moreover, the meet operation on compact

saturated subsets of a stably continuous preframe is a semi-open map.
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Continuing from Theorem 1.10.10, the general theory of monads tells us that the

Smyth powerdomain functor is the left adjoint to the inclusion functor CPreFrm →֒ Dom.

In other words, the Smyth powerdomain of a domain is the free continuous preframe

over that domain. Dually, the Smyth poweralgebra functor PS is the right adjoint to the

inclusion functor Tok2a →֒ Tok1. This means that for any Stage 2a interaction algebra

L and any Stage 1 interaction algebra M there is a natural isomorphism of hom-sets

Tok2a(L,PSM) ∼= Tok1(L,M). Concretely this isomorphism goes as follows. For a Stage 1

morphism R : L− →M+ define a relation R† : L− → FinM+ by composing the structure

map SL with the relation PS(R). This yields the relation

φR†A iff ∀a ∈ A. φRa. (1.6)

In particular that means φR†{a} iff φRa. Going the other direction, given a Stage 2a

morphism R : L− → FinM+ one obtains a Stage 1 morphism L− → M+ simply by

restricting the relation R to singleton sets on the right.

1.10.4 Smyth powerdomains at other stages

We conclude our study of the Smyth poweralgebra with some preservation results, which

can be found in [25, Theorems 5.1,6.1].

Proposition 1.10.12. 1. The Smyth poweralgebra of a Stage 2b interaction algebra is

a Stage 2b interaction algebra. If R is a Stage 2b morphism, then so is PS(R).

2. The Smyth poweralgebra of a Stage 2c interaction algebra is a Stage 2c interaction

algebra. If R is a Stage 2c morphism, then so is PS(R).

Proof. (1) Let L be a Stage 2b interaction algebra with distinguished witness 1 and dis-

tinguished token 0 which satisfy the axioms of Stage 2b. Then it is easy to see that the

Smyth liftings of the relations ⌢⌣ and ⌢⌣ have {1}⌢⌣SA for every finite set A of tokens and

{0}⌢⌣SΦ for every finite set Φ of witnesses. If R is a Stage 2b morphism and ΦPS(R){0}

then φR0 for some witness φ ∈ Φ. Then the strictness rule for R yields φ⌢⌣0 whence

Φ⌢⌣S{0}. Thus the morphism PS(R) is strict.

(2) Let L be a Stage 2c interaction algebra. Lift the binary operation ⊔ on tokens to

FinL+ element-wise: A⊔B := {a ⊔ b | (a, b) ∈ A×B}. The binary join rule and weakening

rules for ⊔ on FinL+ follow immediately from the corresponding rules of L. Similarly, if

R is a Stage 2c morphism then PS(R) is easily seen to satisfy the binary join rule and

the weakening rules of Stage 2c. It remains to check the join-strength rule. Let R be a

Stage 2c morphism, Φ be a finite set of witnesses, A and B be finite sets of tokens with

ΦPS(R)A ⊔ B. First consider the case where either A or B is the empty set. Suppose

B = 1 is the empty set. Then ΦPS(R)A ⊔ 1 holds vacuously because A ⊔ 1 is the empty

set. Using the definedness axiom of Stage 1 we can find a set Ψ = {ψa | a ∈ A} with

ψaRa for all a ∈ A. For the set B we choose the empty set of witnesses 0 which also
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satisfies 0PS(R)1. Now Ψ ⊓ 0 is the empty set of witnesses and therefore Φ ≻S Ψ ⊓ 0

holds vacuously. This proves the join-strength axiom for the case that at least one of A,B

is empty. Now suppose that both A and B are not empty. We have to find ΨPS(R)A

and ΘPS(R)B such that Φ ≻S Ψ ⊓Θ. Recall that ΦPS(R)A ⊔B means that for all pairs

(a, b) ∈ A × B there exists a witness φab ∈ Φ with φabRa ⊔ b. Fix a pair (a, b). The

join-strength rule for R yields witnesses ψabRa and θabRb with φab ≻S ψab ⊓ θab. Doing

this for all pairs (a, b) yields two families {ψab | (a, b) ∈ A×B} and {θab | (a, b) ∈ A×B}.

By the meet rule of Stage 1 we know that for any a ∈ A the witness ψa :=
d
b∈B ψab

satisfies ψaRa. Likewise, θb :=
d
a∈A θab is a witness with θbRb for any token b ∈ B.

Furthermore, the weakening rule for ⌢⌣ of Stage 1 implies that φab ≻ ψa ⊓ θb for any pair

(a, b), because ψa is the meet of ψab with some more witnesses and likewise for θb. Form

two finite sets Ψ := {ψa | a ∈ A} and Θ := {θb | b ∈ B}. By construction we have ΨPS(R)A

and ΘPS(R)B. Moreover, the meet Ψ ⊓ Θ has the description {ψa ⊓ θb | (a, b) ∈ A×B}

and we have convinced ourselves above that any such pair has φab ≻ ψa ⊓ θb for some

φab ∈ Φ. Therefore Φ ≻S Ψ ⊓Θ and the proof of the join-strength rule is complete.

Corollary 1.10.13. The Smyth poweralgebra of a Stage 3 interaction algebra is a Stage 5

interaction algebra. If R is a Stage 3 morphism, then so is PS(R).

Proof. The only fact which does not follow from Proposition 1.10.12 is that the operations

⊓ and ⊔ on FinL+ commute. The proof for this uses the same argument that we employed

to show that ⊓ and ⊔ on FinL− commute.

The corollary above is part of an even more pleasing fact: The adjunction between the

categories Tok1 and Tok2a restricts to an adjunction between Tok3 and Tok4.

Theorem 1.10.14. The Smyth poweralgebra functor is right adjoint to the inclusion func-

tor Tok3 →֒ Tok4.

Proof. Let L be a Stage 4 interaction algebra and M be a Stage 3 interaction algebra.

We claim that the assignment (−)† defined in equation (1.6) yields a natural isomorphism

Tok4(L,PSM) ∼= Tok3(L,M). By Proposition 1.10.12 the left-hand side of this identity

is well-defined. To conclude the proof observe that the Stage 3 axioms are independent

of those of Stage 2a whence R† is a Stage 4 morphism precisely when R is a Stage 3

morphism.

1.11 The Hoare powerdomain

In this section we address the problem of finding a left adjoint to the inclusion functor from

continuous lattices to domains. Recall that the Scott topology of a domain is a completely

distributive frame and the category of completely distributive frames is invariant under

taking order-duals. As every completely distributive frame is in particular a continuous
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1.11 The Hoare powerdomain

lattice, the lattice of Scott closed subsets of a domain is a continuous lattice. There is an

obvious embedding from a domain into the lattice of Scott closed sets: It maps a point x

to its principal ideal |◭x . To see more concretely that the lattice of Scott closed subsets of

a domain is continuous, we show that it is isomorphic to the lattice of round lower sets

with respect to the way-below relation: If C ⊆ D is a Scott closed subset of a domain D,

then the set

։

C =
⋃
x∈C

։

x is a round lower set with respect to ≪ and clearly C is its

Scott closure. Conversely, if U ∈ Lo≪D is a round lower set, then U is certainly contained

in the round lower set of the Scott closure of U . To see that the round lower set of the

Scott closure of U is contained in U , let I ⊆ U be an ideal and x≪
⊔
I. Then x ∈ I and

therefore x ∈ U .

From the information system point of view, the observation we just made is not the

least surprising. Since we know that the round upper sets of D with respect to ≪ are

precisely the Scott opens, the round lower sets must be the Scott opens of the Lawson

dual of D. It is easy to check that every Scott closed set C ⊆ D yields a Scott open set

of Scott open filters via {φ ∈ D∧ |φ ∩ C 6= ∅} and furthermore every Scott open set of D∧

arises this way (compare Theorem 1.2.4).

A topology on the lattice of Scott closed sets of D is given by the following basis. For

any finite set Φ of Scott open sets of D consider the collection of Scott closed sets which

intersect every Scott open set in Φ. Notice that a Scott open φ ∈ Φ intersects a Scott

closed set C precisely when φ intersects

։

C. For two finite collections Φ and Ψ of Scott

opens, it is easy to see that the basic open set defined by Φ ∪Ψ is the intersection of the

two basic opens defined by Φ and Ψ.

1.11.1 The Hoare order

It is a common technique in order theory to turn a join into a directed join by first forming

finite subsets. For example, every set is the directed union of its finite subsets. Given a

domain presented by an abstract basis (L,≺) one approximates a Scott closed set C ⊆ D

by finite subsets A ⊆

։

C ∩L. These form a round ideal when ordered in the Hoare order :

Definition 1.11.1. If R ⊆ L×M is a binary relation then the Hoare lifting of R to the

finite powersets of L and M is given as

ARHB :⇔ ∀a ∈ A ∃b ∈ B. aRb

One checks that the Hoare lifting of relations preserves relational composition and

inclusion of relations. If (L,≺) is an abstract basis for the domain D then (FinL,≺H) is

an abstract basis for the domain of Scott closed subsets of D, which is called the Hoare

powerdomain or lower powerdomain.

It should be mentioned that some authors define the Hoare powerdomain excluding

the empty set from the lattice of closed sets. That way one obtains the free inflationary
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dcpo-semilattice over a domain where the binary operation does not have a neutral ele-

ment. Writing “non-empty finite” instead of “finite” in what follows, one obtains Stage 2c

interaction algebras instead of Stage 3 interaction algebras. The reader may convince him-

self that the arguments we use below work independently for non-empty finite sets and

for the empty set and that statements about the empty set typically require only Stage 2b

axioms.

Definition 1.11.2. For a Stage 1 interaction algebra L define the Hoare poweralgebra

PHL as follows. Let the witness set be the finite powerset FinL− of the witnesses of L.

Further let 1 denote the empty set in FinL−. Let the token set of PHL be the finite

powerset of the tokens of L, with the symbol 0 denoting the empty set of tokens. For

finite sets of witnesses Φ, Ψ and finite sets of tokens A, B declare binary operations

Φ ⊓Ψ := Φ ∪Ψ

A ⊔B := A ∪B

The relations ⌢⌣, ⌢⌣ and all morphisms R are lifted to relations PH(⌢⌣), PH(⌢⌣) and

PH(R) on poweralgebras by first lifting the relation through the functor Fin and then

closing under the rules of Stage 2b and Stage 2c.

We claim that the relation lifting one obtains from Definition 1.11.2 is precisely the

Hoare lifting. If Φ is a finite set of witnesses and A is a finite set of tokens and Φ is related

to A by the relation lifting of a Stage 1 morphism R, then by the weakening rule for ⊔

of Stage 2c we have ΦPH(R)A ∪ B for any other finite set B of tokens. This shows that

the Hoare lifting of R is contained in the relation PH(R). Conversely, if Φ is related to A

by the Hoare lifting of R then let B be the set {a ∈ A | ∃φ ∈ Φ. φRa}. Now the set Φ is

related to B by the relation lifting Fin(R) = REM and the weakening rule for ⊔ tells us

that ΦPH(R)A = B ∪ A. Using the same argument, but the weakening rule involving ⌢⌣

and ⊓ one shows that the lifting PH(⌢⌣) coincides with the Hoare lifting ⌢⌣H . It remains

to check that the Hoare lifting of relations ⌢⌣, R and ⌢⌣ is closed under all other rules of

Stage 3.

The following lemma is very helpful because it allows us to transfer results about the

Smyth poweralgebra to the Hoare poweralgebra.

Lemma 1.11.1. If R : L → M is a binary relation then the inverse of the Smyth lifting

of R to FinL× FinM is the Hoare lifting of the inverse of R.

Proof. Let A ⊆ L and B ⊆ M be finite sets. Then B(RS)
−1A if and only if ∀b ∈ B∃a ∈

A. aRb which is clearly the same as saying that B(R−1)HA.

Armed with this Lemma, we can easily derive that the Hoare lifting of a Stage 1

morphism is a Stage 3 morphism. The Hoare lifting is a Stage 0 morphism if and only

if its inverse is, and this follows from the Smyth lifting being a Stage 0 morphism. The
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1.11 The Hoare powerdomain

Stage 1 axioms of the Hoare lifting are the Stage 2a axioms for the inverse whence this, too,

follows from what we know about the Smyth lifting. The Stage 2b axioms holds because

every Smyth poweralgebra is compact and the Stage 2c axioms correspond to stable local

continuity of the Smyth poweralgebra.

Remark. The Stage 1 axioms for R are not needed to show that the Hoare lifting RH

is a Stage 3 morphism. The Hoare powerdomain functor can be defined on the category

Tok0 instead.

The names 0 and 1 for the empty sets of tokens and witnesses, respectively, match

their algebraic behaviour, as 0 is a neutral element for ⊔ and 1 is a neutral element for ⊓.

Similar to the Smyth lifting of section 1.10 one finds that whenever a pair (f−, f+) is a

token map between Stage 1 interaction algebras L and M then the pair (Fin(f−),Fin(f+))

is a token map between PHL and PHM. We arrive at:

Theorem 1.11.2. The Hoare poweralgebra PH is a functor from Tok1 into the subcategory

of Stage 3 interaction algebras. It preserves token maps and adjoint pairs. If D = Idl≺ L+

is the domain presented by an interaction algebra L then the interaction algebra PHL

presents the Hoare powerdomain of D.

Another application of Lemma 1.11.1 is the following.

Corollary 1.11.3. For any interaction algebra L, the round ideals of tokens of the Hoare

poweralgebra PHL are in order-preserving bijection with the round ideals of witnesses of

the Smyth poweralgebra of FlipL.

Proof. The functor Flip sends all relations to their inverse and swaps tokens with witnesses.

We just gave an almost trivial proof for the fact that the Lawson dual of the Hoare

powerdomain of a domain is the Smyth powerdomain of the Lawson dual of the domain. In

short (PHD)∧ ∼= PS(D
∧). This is not too surprising if we recall that a similar commutative

law of functors holds for the Scott topology of domains: From Theorem 1.3.4 we deduced

that (σD)∂ = σ(D∧).

The following is the interaction algebra proof for the fact that the Hoare powerdomain

of a domain is isomorphic to the lattice of Scott closed subsets [22, Corollary IV-8.6].

Proposition 1.11.4. For any Stage 1 interaction algebra L the following domains are

isomorphic.

1. The domain of round ideals of tokens of PHL,

2. The domain of round lower sets of tokens of L.

Consequently, the domain presented by PHL is the domain of Scott closed sets of the

domain presented by L.

Proof. Apply Lemma 1.11.1 to Proposition 1.10.2.
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1.11.2 The Hoare powerdomain monad

Co-unit and co-multiplication

One result we can transfer immediately from the Smyth poweralgebra is that the singleton

and union maps extend to token maps L → PHL and P2
HL → PHL. We have φ⌢⌣a

if and only if {φ}⌢⌣H{a} and a⌢⌣φ if and only if {a}⌢⌣H{φ}. The singleton map on

witnesses satisfies the continuity condition of Lemma 1.1.13 because the singleton map

on the tokens does for the Smyth poweralgebra. Not derivable from section 1.10 is the

fact that the singleton map on tokens satisfies the continuity condition, too. If Φ⌢⌣H{a}

then by definition φ⌢⌣a for all φ ∈ Φ. In case that Φ = 1 is the empty set, we can just

use definedness to obtain b ≺ a with 1⌢⌣H{b}. Otherwise use the meet rule of Stage 1 to

obtain
d
Φ⌢⌣a and deduce

d
Φ⌢⌣b ≺ a. Hence Φ⌢⌣H{b} ≺H {a} and so both singleton

maps satisfy the continuity condition of Lemma 1.1.13. For every Stage 1 interaction

algebra the token map ({−}, {−}) yields an adjoint pair EL ⊣ E−
L where

ΦELa ⇔ Φ⌢⌣H{a}

⇔ ∀φ ∈ Φ.φ⌢⌣a

φE−
LA ⇔ {φ}⌢⌣HA

⇔ ∃a ∈ A. φ⌢⌣a.

Notice that for all non-empty sets of witnesses Φ we can write ΦELa iff
d

Φ⌢⌣a. We show

that the left adjoint EL extends to a natural transformation from PH to the identity (The

corresponding argument for the Smyth poweralgebra shows that the right adjoint, too, is

a natural transformation, but it is only a Stage 0 morphism in general). Given a Stage 1

morphism R : L → M, Corollary 1.1.14 tells us that the relation Φ(PH(R) # EM)a holds

if and only if ∀φ ∈ Φ. φRa. The relation Φ(EL # R)a holds whenever there is a witness ψ

with Φ ≻H {φ} and φRa. Clearly the inclusion (EL # R) ⊆ (PH(R) # EM) holds. For the

reverse inclusion, (assuming the non-trivial case where Φ is not empty) we deduce
d
ΦRa

from ΦPH(R){a} and then use ≻;R = R to get a witness ψ which satisfies Φ ≻H {ψ}

and ψRa.

Now let us turn attention towards the token map derived from the multiplication
⋃

of

the finitepowerset monad on Set. Just as in Lemma 1.10.3 we internalise the union maps

as algebraic operations on an interaction algebra. For a Stage 3 interaction algebra we use

the conventions
d
{φ} = φ and

d
∅ = 1 for finite sets of witnesses and

⊔
{a} = a,

⊔
∅ = 0

for finite sets of tokens. First we prove an extension of Lemma 1.5.1 (1).

Lemma 1.11.5. For all Stage 3 morphisms R (in particular for ⌢⌣) between Stage 3

interaction algebras, for all finite sets of witnesses Φ and all finite sets of tokens A the

following rules hold.

ΦRHAd
ΦR

⊔
A

A⌢⌣HΦ⊔
A⌢⌣

d
Φ
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1.11 The Hoare powerdomain

Proof. We need to perform case analysis on the cardinality of the sets Φ and A. Suppose

Φ = 1 is the empty set. Then the premise of the first rule is trivial and the consequence

1R
⊔
A is the empty meet rule of Stage 2b. In case Φ = {φ} is a singleton, the premise

reads ∃a ∈ A. φRa. The weakening rule for Stage 2c then yields φR
⊔
A. In all other

cases, ΦRHA implies that for some subset A′ ⊆ A the stronger relation ΦREMA
′ holds.

Then apply Lemma 1.5.1 (1) to obtain
d

ΦR
⊔
A′ and with the weakening rule of Stage 2c

finally
d

ΦR
⊔
A.

Now consider the second rule. Again, in case A = 0 is the empty set, the premise of

the second rule is trivial and the consequence 0⌢⌣
d
Φ follows from the Stage 2b axioms.

In case A is a singleton, the rule is the same as the weakening rule for ⊓ of Stage 1. In all

other cases use the same trick as for the first rule above and employ Lemma 1.5.1 (1).

Lemma 1.11.6. For any Stage 3 interaction algebra L the pair of maps (
d
,
⊔
) : PHL → L

is a token map. It constitutes a natural transformation from the identity on Tok3 to PH .

Proof. Let L be a Stage 3 interaction algebra, The fact that the pair (
d
,
⊔
) is a token map

is a consequence of Lemma 1.11.5. We claim that both
d

and
⊔

satisfy the continuity

condition of Lemma 1.1.13. For the map
d

: FinL− → L− the proof is dual to the

argument we used on the map
d

: FinL+ → L+ in the proof of Lemma 1.10.3. Next

suppose φ⌢⌣
⊔
A where A ∈ FinL+. In case A = 0 there is nothing to show because

0 ≺H 0. In case that A = {a} is a singleton, simply use the interpolative law for ⌢⌣

and get φ⌢⌣b =
⊔
{b} for some {b} ≺H {a}. For the remaining cases, let us assume for

simplicity that A = {a, b} is a two-element set. Then φ⌢⌣
⊔
A means φ⌢⌣a ⊔ b. Apply

the join-strength rule of Stage 2c and obtain witnesses ψ⌢⌣a, θ⌢⌣b satisfying φ ≻ ψ ⊓ θ.

Then also ψ⌢⌣a′ ≺ a and θ⌢⌣b′ ≺ b for some tokens a′ and b′. With Lemma 1.5.1 (1) we

obtain φ ≻ ψ⊓θ⌢⌣a′⊔b′. Thus we have φ⌢⌣
⊔
{a′, b′} ≺H {a, b} and thereby the continuity

condition of Lemma 1.1.13. The Stage 1 morphism SL : L− → FinL+ corresponding to

the structure map
⊔

therefore has the characterisation φSLA⇔ φ⌢⌣
⊔
A.

It remains to show that SL is natural in the parameter L. Let R : L → M be a Stage 3

morphism. From Corollary 1.1.14 we know that φ(R # SM)A precisely when φR
⊔
A,

and φ(SL # PH(R))A holds if and only if φ ≻
d
Ψ and ΨPH(R)A for some Ψ ∈ FinL−.

Notice that by Lemma 1.11.5 the relation ΨPS(R)A implies
d

ΨR
⊔
A whence the relation

(SL #PS(R)) is contained in (R #SM)A. The reverse inclusion is precisely the join-strength

rule for R.

Corollary 1.11.7. The pair of union maps
⋃

: Fin2 L− → FinL− and
⋃

: Fin2 L+ →

FinL+ form a token map for any Stage 1 interaction algebra L natural in the parameter L.

This yields a natural transformation in Tok1 from PH to (PH)
2.

As with the Smyth poweralgebra comonad, we get the unit and associative law for free,

because the token maps of the co-unit and co-multiplication are derived from the unit and

multiplication of the finite-powerset monad on Set.
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Theorem 1.11.8. The Hoare poweralgebra functor on Tok1 extends to a comonad where

the co-unit and co-multiplication are given by token maps ({−}, {−}) and (
⋃
,
⋃
). In

particular, the Hoare poweralgebra functor restricts to a monad on the category of Stage 1

interaction algebras and token maps.

Corollary 1.11.9. The Hoare powerdomain monad on the category of domains has semi-

open unit and multiplication maps and preserves semi-open maps.

1.11.3 Algebras for the Hoare powerdomain monad

Just as the Eilenberg-Moore coalgebras for the Smyth poweralgebra comonad are precisely

the Stage 2a interaction algebras, we show that the coalgebras for the Hoare poweralgebra

comonad are precisely the Stage 3 interaction algebras. For the category Dom this means

that the only Hoare powerdomain algebra maps are the join operations of continuous

lattices. Again, such a structure map
∨

is adjoint to the unit: For any Scott closed set

C and any point x we have
∨
C ≤ x ⇔ C ⊆ |

◭x . In terms of interaction algebras, this

equivalence becomes manifest in the following lemma.

Lemma 1.11.10. If L is a Stage 3 interaction algebra, then the structure map SL is left

adjoint to the co-unit morphism EL.

Proof. Recall from Lemma 1.11.6 that the structure map SL derived from
⊔

has the

characterisation φSLA iff φ⌢⌣
⊔
A whereas the co-unit morphism is given as ΦELa iff

d
Φ⌢⌣a. First we show ⌢⌣H ⊆ EL #SL. From the first rule of Lemma 1.11.5 we know that

Φ⌢⌣HA implies
d

Φ⌢⌣
⊔
A. Use the interpolative law for ⌢⌣ and get

d
Φ⌢⌣;⌢⌣;⌢⌣

⊔
A

which means Φ(EL # SL)A.

For the inclusion SL #EL ⊆ ⌢⌣ suppose φ⌢⌣
⊔
B, B⌢⌣HΨ and

d
Ψ⌢⌣a. Use the second

rule of Lemma 1.11.5 and get φ⌢⌣
⊔
B⌢⌣

d
Ψ⌢⌣a, whence φ⌢⌣a holds. Notice that in fact

SL # EL = ⌢⌣ because φ⌢⌣a implies φSL{b}⌢⌣H{ψ}ELa for suitable b and ψ.

Lemma 1.11.11. 1. If L is a Stage 3 interaction algebra, then the morphism SL de-

rived from the structure map
⊔

is a coalgebra for the Hoare poweralgebra comonad.

2. Those Stage 1 morphisms between Stage 3 interaction algebras which are Hoare pow-

eralgebra morphisms are precisely the Stage 3 morphisms.

Proof. (1) Let L be a Stage 3 interaction algebra and φSLA iff φ⌢⌣
⊔
A. We have to verify

that the diagrams (1.5) in the proof of Lemma 1.10.8 commute, where PS is replaced by PH

and the definitions of the morphisms SL, EL and UL are adjusted accordingly. The unit

law was verified in the preceding lemma. The associative law, again, is just associativity

of the operation ⊔ on tokens: Both the multiplication UL and the structure map SL are
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given by token maps, whence it suffices to check that the square below commutes.

L+ FinL+

⊔

oo

FinL+

⊔
OO

Fin2 L+Fin(
⊔
)

oo

⋃
OO

(2) Let R : L → M be a Stage 3 morphism between Stage 3 interaction algebras. We

show that R is a PH -coalgebra morphism, meaning (SL #PH(R)) = (R #SM). This identity

holds because of naturality of SL which we proved in Lemma 1.11.6.

Next we prove the converse: If R : L → M is a Stage 1 morphism which satisfies

(SL # PH(R)) = (R # SM) then it satisfies all Stage 3 rules. For the empty meet rule of

Stage 2b, let a ∈M+. Since L is a Stage 3 interaction algebra, we have 1⌢⌣0 in L. Recall

that 0 =
⊔
0 and observe that 1RH{a} trivially holds. Therefore 1EL0⌢⌣H1PH(R){a} and

so by hypothesis 1Ra =
⊔
{a}. For the strictness axiom of Stage 2b, suppose φR0. Since

0 =
⊔
0 the hypothesis yields 1ELB⌢⌣HΨPH(R)0 for some sets B and Ψ. Notice that

ΨPH(R)0 can only be true if Ψ is empty, which in turn implies thatB must be empty. Then

φ⌢⌣
⊔
∅ which gives the desired φ⌢⌣0. The weakening rule for R of Stage 2c follows from the

fact thatM is a Stage 3 interaction algebra: If φRa then φ(R#⌢⌣)a. Now use the weakening

rule for ⌢⌣. For the join-strength rule of Stage 2c, suppose φRa1 ⊔ a2. By hypothesis we

have φ⌢⌣
⊔
B, B⌢⌣HΨ and ΨPH(R){a1, a2} for some finite sets B and Ψ. For the rest of

this proof, let i range over {1, 2}. Write Ψ = Ψ1 ⊓Ψ2 where Ψi = {ψ ∈ Ψ |ψRai} (recall

that ⊓ is set union). We assumed that R is a Stage 1 morphism, so by the definedness

rule there exist witnesses θ1, θ2 with θiRai for all i. By the meet rule of Stage 1 we have
d

Ψi ⊓ θiRai for all i. Further observe that φ⌢⌣
⊔
B⌢⌣

d
Ψ whence by the weakening

rule also φ ≻ (
d
Ψ1 ⊓ θ1) ⊓ (

d
Ψ2 ⊓ θ2). This concludes the proof that R satisfies the

join-strength rule.

The last ingredient for our characterisation of Tok3 is to show that coalgebras for the

Hoare poweralgebra comonad on Tok1 all correspond to Stage 3 interaction algebras.

Lemma 1.11.12. If R : L → PHL is a coalgebra for the Hoare powerdomain comonad

then L presents a continuous lattice. Moreover, the morphism R is unique because it is

left adjoint to the co-unit morphism EL.

Proof. Let R : L → PHL be a coalgebra for the Hoare poweralgebra comonad. This means

that R satisfies the unit law ⌢⌣ = (R #EL) and the associative law (R #UL) = (R #PH(R)).

The former identity tells us that φ⌢⌣a if and only if φR{a} whereas the latter says that

for any witness φ and any A ∈ Fin2 L+ we have φR
⋃
A if and only if for some B ∈ FinL+

and Ψ ∈ FinL− the relations φRB⌢⌣HΨPH(R)A hold.

We show that⌢⌣H ⊆ (EL #R). For this, suppose Φ⌢⌣HA. First consider the case where

Φ = 1 is the empty set. From the definedness axiom for R and ≻;R = R we know that for
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some witnesses φ, φ′ and some token a we have φ⌢⌣a⌢⌣φ′RA. The relation 1ELa trivially

holds, whereby 1(EL # R)A. In particular this argument applies to A = 0. Here we get a

token 0 ∈ L+ and a witness 1 ∈ L− satisfying 1EL0⌢⌣1R0. Since 0 ≺H {a} for any token

a, the relation 1R0 together with the unit law implies that 1⌢⌣a for every token a ∈ L+.

Thus L is a Stage 2b interaction algebra and presents a domain with bottom. We use the

convention
d
∅ := 1 to extend the binary operation ⊓ on witnesses to finite arities. Next

consider the case where Φ⌢⌣HA and both Φ and A are non-empty.

∀φ ∈ Φ∃a ∈ A. φ⌢⌣a ⇒ ∀φ ∈ Φ∃a ∈ A. φR{a} by the unit law

⇒ ∀φ ∈ Φ∃a ∈ A. φ(R #⌢⌣H){a}

⇒ ∀φ ∈ Φ. φRA by the weakening rule for ⌢⌣H

⇒
l

ΦRA by the meet rule of Stage 1

⇒
l

Φ(⌢⌣;⌢⌣;R)A

⇒ Φ(EL #R)A.

We have shown the inclusion ⌢⌣H ⊆ (EL # R). Together with the unit law we now know

that R is left adjoint to the co-unit morphism EL. This establishes uniqueness of R.

Next we show that the Stage 1 interaction algebra L is isomorphic to a Stage 3 inter-

action algebra L⋄. Intuitively, the relation R tells us when the join of a finite set of points

is contained in a basic Scott open set. Let the witnesses of the interaction algebra L⋄

be the witnesses of L. As tokens are of L⋄ take the finite subsets of the token set L+.

We interpret a finite set A ⊆ L+ as its join, so we take as the relation ⌢⌣ of L⋄ the

relation R. The join of a finite set A is a lower bound of a basic Scott open if and only

if all elements a ∈ A are lower bounds of the Scott open set. Hence we define a relation

⌢⌣⋄ : FinL+ → L− by A⌢⌣⋄φ⇔ ∀a ∈ A. a⌢⌣φ⇔ A⌢⌣H{φ}. We claim that the interaction

algebra L⋄ = (L−,FinL+,⌢⌣⋄, R) satisfies all Stage 3 axioms and is isomorphic to L.

Stage 0: Let φRA. Since R is a Stage 1 morphism from L to PHL we have φ⌢⌣b⌢⌣ψRA

for some token b and witness ψ. By the unit law φR{b}⌢⌣⋄ψRA, whence R ⊆ (R#R) in L⋄.

For the reverse inclusion, suppose φRB⌢⌣⋄ψRA. Again use the identity ≺;R = R and

get φRB⌢⌣⋄ψ⌢⌣x⌢⌣ψ′RA. Observe that now φ(R;⌢⌣H ;EL)x whence we may apply the

inclusion R # EL ⊆ ⌢⌣ and obtain φ⌢⌣x⌢⌣ψ′RA and thus φRA. Therefore L⋄ is a Stage 0

interaction algebra.

Stage 1: The binary operation ⊓ on witnesses of L⋄ is the same as in L. The definedness

rule and meet rule of Stage 1 hold because R is a Stage 1 morphism.

Stage 2b: Above we already showed the existence of a witness 1 ∈ L− with 1RA for

all finite sets A ⊆ L+. Together with the empty set 0 ∈ FinL+ which satisfies 0⌢⌣⋄φ for

every witness φ, we know that L⋄ is a Stage 2b interaction algebra.

Stage 2c: The Stage 2c weakening rule for the relation ⌢⌣⋄ is trivial: If a⌢⌣φ for all

a ∈ A and b⌢⌣φ for all b ∈ B then certainly x⌢⌣φ for all tokens x ∈ A ∪ B. For the other
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1.11 The Hoare powerdomain

weakening rule, suppose φRA and B ∈ FinL+. Use R = R;≺H and the weakening rule

of the Stage 3 interaction algebra PHL to obtain φR;≺H A ∪ B and thereby φRA ∪ B.

Next we prove the join-strength rule. Suppose φRA1 ⊔ A2. With A = {A1, A2} we have

φ(R # UL)A which by the associative law implies φRB⌢⌣HΨPH(R)A for some finite sets

B and Ψ. For i ∈ {1, 2} let Ψi = {ψ ∈ Ψ |ψRAi}. By the Stage 1 meet rule we have
d

ΨiRAi. Abbreviate ψi =
d
Ψi. Successive application of the Stage 1 weakening rule for

⌢⌣ yields ∀b ∈ B. b⌢⌣ψ1 ⊓ ψ2. Therefore φ(R;⌢⌣⋄)ψ1 ⊓ ψ2 and ψiRAi. This finishes the

proof that L⋄ is a Stage 3 interaction algebra.

Finally we establish an isomorphism between L and L⋄. Observe that the relation R

can be considered as a morphism L → L⋄. Likewise,⌢⌣ serves as a morphism L⋄ → L. The

identity R;⌢⌣⋄;⌢⌣ = ⌢⌣ holds because of R;⌢⌣H ;EL = ⌢⌣. The identity ⌢⌣;⌢⌣;R = R

holds because R is in particular a Stage 0 morphism.

Combining Lemma 1.11.11 and Lemma 1.11.12 yields:

Theorem 1.11.13. Every Stage 1 interaction algebra admits at most one coalgebra for the

Hoare poweralgebra comonad. The subcategory of Stage 3 interaction algebras is equivalent

to the Eilenberg-Moore category of the Hoare poweralgebra comonad.

Corollary 1.11.14. The Eilenberg-Moore algebras for the Hoare powerdomain monad on

Dom are precisely the continuous lattices. Moreover, the join operation on Scott closed

subsets of a continuous lattice is a semi-open map.

(Compare with [47, Lemma 4.3, Theorem 6.6].)

We have not used the binary operation ⊓ on witnesses in the definition of the Hoare

poweralgebra of a Stage 1 interaction algebra. One might lift this binary meet element-

wise to finite sets of witnesses. The corresponding operation on the Hoare powerdomain

of a continuous lattice is the point-wise join of Scott closed sets. It generalises the binary

join from points to arbitrary Scott closed sets.

Once more, general category theory tells us that the Hoare powerdomain functor is left

adjoint to the inclusion functor CCL →֒ Dom and thus the Hoare powerdomain is the free

continuous lattice of a domain. Dually the Hoare poweralgebra functor is the right adjoint

to the inclusion functor Tok3 →֒ Tok1. Consequently we have a natural isomorphism of

hom-sets Tok3(L,PSM) ∼= Tok1(L,M) resulting from the same categorical construction

as for the Smyth poweralgebra functor: If R : L− → M+ is a Stage 1 morphism from

a Stage 3 interaction algebra L to a Stage 1 interaction algebra M then let R† be the

composition of the structure map SL with PH(R). Concretely the resulting relation is

given as

φR†A iff ∃Ψ ∈ FinL−. φ ≻
l

Ψ, ΨRHA. (1.7)

Notice that φR†{a} iff φRa.
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1.11.4 Hoare powerdomains at other stages

Just as the Smyth poweralgebra functor restricts to the subcategories Tok2b and Tok2c,

the Hoare poweralgebra functor enjoys similar preservation properties (Compare with [25,

Theorems 5.1,6.1]):

Proposition 1.11.15. 1. The Hoare poweralgebra of a Stage 2a interaction algebra is

a Stage 2a interaction algebra. If R is a Stage 2a morphism, then so is PH(R).

2. The Hoare poweralgebra functor preserves stable local continuity.

3. The Hoare poweralgebra functor preserves compactness.

Proof. (1) We lift a binary operation ⊓ on tokens to a binary operation on finite sets

of tokens element-wise: Define A ⊓ B = {a ⊓ b | (a, b) ∈ A×B}. Let R be a Stage 2a

morphism. Using the Stage 2a rules for R, one shows that ΦRHA⊓B holds precisely when

ΦRA and ΦRB. Likewise, the weakening rule for ⌢⌣H and ⊓ follows the corresponding

weakening rule for ⌢⌣. In particular the above applies to R = ⌢⌣ whence the Hoare

poweralgebra functor restricts to the subcategory Tok2a.

(2) One lifts the binary operation ⊔ on witnesses element-wise to FinL−. The stable

continuity rules of Table 1.3 lift to the Hoare poweralgebra in a straightforward manner.

(3) If a Stage 2a interaction algebra L has a witness 0 with a⌢⌣0 for all tokens a ∈ L+,

then the witness 0 := {0} ∈ FinL− has A⌢⌣H0 for all A ∈ FinL+. Moreover, the token

1 with 0⌢⌣1⌢⌣0 lifts to a token 1 = {1} of the Hoare poweralgebra with the property

0⌢⌣H1⌢⌣H0. Thus the functor PH preserves compactness of Stage 2a interaction algebras.

Corollary 1.11.16. The Hoare poweralgebra of a Stage 2a interaction algebra is a Stage 4

interaction algebra.

Proof. It is easy to show that the element-wise meet operation ⊓ on finite sets of tokens

distributes over set union.

Theorem 1.11.17. The Hoare poweralgebra functor is right adjoint to the inclusion func-

tor Tok2a →֒ Tok4.

Proof. Let L be a Stage 4 interaction algebra and M be a Stage 2a interaction algebra.

We claim that the natural isomorphism (−)† defined in equation (1.7) yields a natural

isomorphism Tok4(L,PHM) ∼= Tok2a(L,M). By the previous corollary the left-hand side

of this identity is well-defined. To conclude the proof, observe that the Stage 2a axioms

are independent of those of Stage 3 whence R† is a Stage 4 morphism precisely when R is

a Stage 3 morphism.
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1.12 The double powerdomain

1.12 The double powerdomain

Having studied the Smyth and Hoare powerdomains, we put both together in a neat

result, proved in greater generality for arbitrary locales by Johnstone and Vickers in [31]

and for arbitrary dcpos by Heckmann [25]: The Smyth and Hoare powerdomain functors

commute, giving rise to another monad on the category Dom. In fact we already are in

possession of all the necessary jigsaw pieces. According to Theorems 1.10.14 and 1.11.17

the Smyth powerdomain provides the free continuous frame over a continuous lattice and

the Hoare powerdomain gives the free continuous frame over a continuous preframe. Thus,

given any domain, one can construct a (stably) continuous frame out of it in two ways:

As the Hoare powerdomain of the Smyth powerdomain or as the Smyth powerdomain of

the Hoare powerdomain. Left adjoint functors compose, whence both composite functors

construct the free frame over a domain (compare [25]). But left adjoints are unique

up to isomorphism, so for general categorical reasons these functors must be naturally

isomorphic.

1.12.1 Choices and the finite distributive law

It is an interesting exercise to see that at the core of this commutative law of functors is

a familiar commutative law of semilattices. The reason is that while in one interaction

algebra a finite set of finite sets represents a meet of joins, in the other interaction algebra

a finite set of finite sets stands for a join of meets. Therefore an isomorphism between

the two interaction algebras PHPSL and PSPHL must use the finite distributive law to

transform a meet of joins into a join of meets. In a bounded distributive lattice this goes

as follows. Let A be a finite set of finite subsets of a bounded distributive lattice. The

lattice element
∧
{
∨
A |A ∈ A} can be written as the join of meets

∨{∧
γ(A)

∣∣∣ γ : A→
⋃

A choice function
}
.

Vickers notes in [57] that the formula for the distributive law remains true if one allows

multi-valued choice functions. While this makes no difference classically, the use of choice

relations rather than choice functions renders his argument valid in any topos. One can

write the join of meets above as

∨{∧
C
∣∣∣C ∈ Ch(A)

}

where Ch is the choice operator defined below3.

Definition 1.12.1. For any set X define the choice operator Ch : Fin2X → Fin2X

which sends a finite set A of finite subsets of X to the collection of its choices, that are

sets C ∈
⋃
A with the property that for every A ∈ A there exists some x ∈ A ∩ C.

3The choice operator could be defined on the full double powerset, but we do not need this full generality.
It is easy to show that the general construction restricts to finite sets.
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One finds that in the interaction algebra PHPSL the relation �(⌢⌣S)HA between a

witness and a token holds precisely when Ch(�)(⌢⌣H)S Ch(A) holds in the interaction

algebra PSPHL.

Theorem 1.12.1. The functors PHPS and PSPH are naturally isomorphic via the token

map (Ch,Ch).

1.12.2 The double powerdomain monad and its algebras

Given two monads on a category and a distributive law between the two functors, it is

not necessarily the case that one can compose the functors and obtain another monad. In

this subsection we show that one indeed obtains another monad when instantiating to the

Smyth- and Hoare powerdomain monads on the category of domains. In order to keep

the notation tidy we formulate most facts abstractly and only instantiate where the proof

is not purely categorical. Interaction algebras do us a great service here, because thanks

to token maps all calculations involving the natural transformations of the powerdomain

monads can be reduced to calculations in the category of sets. The distinction between

the two powerdomain monads becomes merely a question of typechecking.

Composing monads

Suppose (F, ηF , µF ) and (G, ηG, µG) are two monads on a category and there is a natural

isomorphism δ : FG→ GF . There always is a natural transformation η from the identity

functor to GF given by the commutative square4

Id
ηF //

ηG

��

η

!!D
DD

DD
DD

D F

ηGF

��
G

GηF
// GF

This will serve as a unit for the new monad. In order to define a natural transformation µ

from GFGF to GF that becomes the multiplication of the monad, one uses the natural

transformation δ in the commutative diagram:

GFF
GµF

##H
HH

HH
HH

HH

GFGF
GδF // GGFF

µGFF
99ssssssssss

GGµF %%KKKKKKKKKK GF

GGF
µGF

;;vvvvvvvvv

If the natural transformation δ satisfies certain compatibility conditions with the unit and

multiplication of the two monads, then (GF, η, µ) is another monad. These compatibil-

4The square commutes because of the naturality of ηG
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1.12 The double powerdomain

ity conditions can equivalently be formulated as identities involving µ and the unit and

multiplication of the monads. For an account of these conditions consult [9].

In the instance where the two monads are the Smyth and Hoare powerdomain monads

on the category Dom, we know through the theory of interaction algebras that their units

and multiplications are derived from the finite powerset monad on Set. Therefore, apart

from some typechecking, the compatibility conditions amount to the fact that the free

bounded distributive lattice over a set is constructed as the free join-semilattice over the

free meet-semilattice. The distributive law between the two possible compositions of the

two free semilattice functors is, of course, given by the choice operator we defined above.

Thus we deduce the compatibility conditions for the two powerdomain monads from what

is well-known in lattice theory. We record:

Theorem 1.12.2. The double powerdomain functor extends to a monad on the category

Dom of domains and Scott continuous maps. It has semi-open unit and multiplication

maps and its functor preserves semi-open maps. The image of the double powerdomain

monad consists of stably continuous frames.

Proof. In terms of interaction algebras, a token set L+ is mapped to the set Fin2 L+ and

likewise for witnesses. The token map presenting the unit sends a token a to {{a}}. The

multiplication token map is described as follows. Given a set A ∈ Fin4 L+, one first applies

the choice operator to all its elements and obtains another set {Ch(A) | A ∈ A} ∈ Fin4 L+.

Then one applies the union operation either on the outermost and then on the innermost

level or the other way around.

Algebras for the double powerdomain monad

Suppose α : GFX → X is an algebra for the monad (GF, η, µ). When does the object X

have algebras for both of the component monads? There are obvious candidates. Define

a map h : FX → X as

FX
ηGF //GFX

α //X .

In order for this map to be an algebra for the monad (F, ηF , µF ), the unit law requires

that the diagram

X
ηF //

id

��4
44

44
44

44
44

44
44

FX

ηGF
��

h

��

GFX

α

��
X

commutes, which it does because it is just the unit law for α as a GF -algebra (recall η =

ηGF ◦ηF ). The associative law for the map h requires that the outer square in the following
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diagram commutes.

FFX
FηGF //

µF

��

FGFX
Fα //

ηGFGF
��

FX

ηGF
��

GFGFX
GFα

//

µ

��

GFX

α

��
FX

ηGF

// GFX α
// X

The small square in the top right commutes because of naturality of ηG, whereas commu-

tativity of the square in the bottom right is just the associative law for the GF -algebra α.

Since commutative squares compose, it remains to check that the square on the left com-

mutes. In the case of the powerdomain monads we can perform this within the category

of sets because all of the maps involved are token maps. Let us regard the object X as

a set and both the functors F and G as the finite powerset functor. The unit maps ηF

and ηG are singleton maps and the multiplications µF and µG set union. The action of

µ is described in the proof of Theorem 1.12.2. Let A ∈ Fin2X be a finite set of finite

sets, which we regard as an element of FFX. Then the natural transformation FηGF

instantiated to X sends A to the set {{A} |A ∈ A} ∈ Fin3X. This set is transformed by

ηGFGF into {{{A} |A ∈ A}} ∈ Fin4X. Observe that for any set B the set {{b} | b ∈ B}

has only one choice, namely B. Hence, when applying the natural transformation µ to

the set above we first obtain {{A}}, then
⋃
{{A}} = {A} and finally {

⋃
A}. Going the

other way in the square, the transformation µF maps A to
⋃
A which under µGF goes

to {
⋃
A}. Hence the left square in the diagram above commutes in the case where the

two monads are the Smyth- and Hoare powerdomains, which means that α ◦ ηGF is a

F -algebra structure map on X. Further observe that the GF -algebra α is in particular a

F -algebra structure map, as can be seen from the composition of commutative squares

FGFX
Fα //

ηGFGF
��

FX

ηGF
��

GFGFX
GFα //

µ

��

GFX

α

��
GFX α

// X

where µ is the GF -algebra structure on GFX. Notice that for the argument above it is

irrelevant whether F is the Smyth- or Hoare powerdomain. We have shown:

Proposition 1.12.3. If a domain has an algebra structure map for the double powerdo-

main monad, then it has algebra structure maps for both the Smyth- and Hoare power-

domain monads. Consequently, the category of Eilenberg-Moore algebras for the double

powerdomain monad on Dom is a full subcategory of the category of continuous lattices

and frame homomorphisms. In particular, any algebra structure map for the double pow-
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1.12 The double powerdomain

erdomain is a frame homomorphism.

Remark. For the construction of a G-algebra structure map from a GF -algebra structure

map α one seems to have two possibilities:

Either GX
GηF //GFX

α //X

or GX
ηGF //FGX

δ //GFX
α //X .

But one of the compatibility conditions for δ that Barr and Wells [9] list is that δ ◦ ηFG =

GηF .

Recall that algebras for the Smyth- and Hoare powerdomains are, insofar they exist,

unique. We shall use this fact to show that algebras for the double powerdomain must

also be unique. Suppose X is a continuous lattice presented by a Stage 3a interaction

algebra L and suppose α is an algebra structure map for the double powerdomain on X

that is presented by a Stage 3a morphism Rα : L → PHPSL. Without loss of generality

we regard the token set L+ as a basis of the domain X. As such, it is a dense subset if the

continuous lattice X is endowed with the Lawson topology. Any token of PHPSL is a finite

join of tokens from PSL, since we can write A =
⊔
A∈A{A}. According to Proposition 1.12.3

the algebra structure map α preserves joins (and meets) and the meet-semilattice structure

on X is obtained by injecting elements of the Smyth powerdomain of X into the double

powerdomain and then computing the value under α. Therefore α sends a generator

A ∈ Fin2 L+ of the double powerdomain to the lattice element
∨
A∈A

∧
A. The map α

is thus uniquely determined on a Lawson-dense subset of the double powerdomain of X

(indexed by the tokens of PHPSL), whence by Scott-continuity of α this map must be

unique.

Dually one shows that in case the algebra structure map α is presented by a morphism

L → PSPHL then a generator A ∈ Fin2 L+ of the double powerdomain is mapped to

the element
∧
A∈A

∨
A. The isomorphism between the two representations of the double

powerdomain is given by the choice operator on Fin2 L+. Therefore the continuous lattice

enjoys the finite distributive law, since

∨

C∈Ch(A)

∧
C = α(A) =

∧

A∈A

∨
A.

We have strengthened Proposition 1.12.3 to

Proposition 1.12.4. Algebras for the double powerdomain are unique. The Eilenberg-

Moore category of the double powerdomain monad on Dom is a full subcategory of the

category CFrm of continuous frames and frame homomorphisms.
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Next we turn towards the dual problem: If an object X has an F - as well as a G-

algebra morphism, when can we use these to construct a GF -algebra morphism? Suppose

α : FX → X is a F -algebra and β : GX → X is aG-algebra. There is an obvious candidate

for a GF -algebra map: We define γ : GFX → X as the composite GFX
Gα //GX

β //X .

The unit law for the composite monad requires that the outer triangle in the following

diagram commutes.

X
ηG //

idX

##F
FFFFFFFFFFFFFFFFFFFF GX

GηF //

GidX $$H
HH

HH
HH

HH
GFX

Gα
��

GX

β

��
X

But this is obvious because the inner square and triangle commute. The associative law

for γ requires that the outer square in the diagram below commutes.

GFGFX
GFGα //

GδF
��

GFGX
GFβ //

Gδ
��

GFX

Gα

��

GGFFX
GGFα //

GGµF

��

GGFX

GGα
��

GGFX
GGα //

µGF

��

GGX
Gβ //

µG

��

GX

β

��
GFX

Gα
// GX

β
// X

On the left-hand side of the diagram, the top square commutes because δ is a natural

transformation, the middle square commutes because α is an F -algebra and the bottom

square commutes because µG is a natural transformation. The square in the bottom right

commutes because β is a G-algebra. Thus it remains to check that the larger square in

the top right corner commutes. By functoriality of G we may prove the simpler fact that

the square below commutes.

FGX
Fβ //

δ
��

FX

α

��

GFX

Gα
��

GX
β

// X

(1.8)

Let us consider this situation in the instance where X is a domain presented by an interac-

tion algebra L, where (F, ηF , µF ) is the Hoare powerdomain monad and (G, ηG, µG) is the
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Smyth powerdomain monad. In Sections 1.10 and 1.11 we showed that the existence of

the monad algebras α and β means that X is a continuous lattice (which is automatically

a continuous preframe), so we may assume that the interaction algebra L presenting it is a

Stage 3a algebra. Further recall from Section 1.10 that without loss of generality we may

assume that the token set L+ of the interaction algebra L has a special element 1 so that

the structure map β is derived from a map
d

: FinL+ → L+ where
d
∅ = 1. The square

(1.8) above is instantiated (under reversal of all arrows) to a square in the category Tok1

given by maps on tokens:

Fin2 L+

Fin(
d
) //

Ch
��

FinL+

⊔

��

Fin2 L+

Fin(
⊔
)

��
FinL+ d // L+

This square is precisely the finite distributive law for the operations ⊔ and ⊓ on the token

set as formulated in Definition 1.7.1. Indeed, commutativity of the corresponding square of

Tok1 morphisms means that for any set of sets A ∈ Fin2 L+ the tokens
d
{
⊔
C |C ∈ Ch(A)}

and
⊔
{
d
A |A ∈ A} are lower equivalent. We arrive at:

Proposition 1.12.5. Any continuous frame has an algebra structure map for the double

powerdomain monad. A frame homomorphism between continuous frames is a homomor-

phism of double powerdomain algebras.

Together with Proposition 1.12.4 we get

Theorem 1.12.6. The Eilenberg-Moore category of the double powerdomain monad on

Dom is equivalent to the category CFrm.

1.12.3 An alternative description of the double powerdomain

We conclude this section with a fact mentioned in [56, 58]. Recall that a domain D enjoys

the identity (σD)∂ ∼= σ(D∧) where σ is the Scott topology, (−)∂ is order dual and (−)∧

the Lawson dual. We also showed in Proposition 1.10.2 and Proposition 1.11.4 that the

Smyth powerdomain of D is isomorphic to (σD)∧ and the Hoare powerdomain of D is

isomorphic to (σD)∂ . Therefore the Hoare powerdomain of the Smyth powerdomain of D

is isomorphic to
(
σ
(
(σD)∧

))∂ ∼=
(
(σσD)∂

)∂
∼= σσD.
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1.13 Notes on Chapter 1

All of the domain-theoretic results presented in this chapter are in principle known, al-

though some –to our knowledge– have not been stated explicitly in the literature, for

example our results on semi-open maps and the powerdomains. To compare the proofs

based on interaction algebras with the classical ones, the reader may consult the Com-

pendium [22] or the Handbook [1]. The latter also contains an account of how to present

a domain by an abstract basis, as well as further applications and bibliography on this

subject. The Handbook approaches powerdomains via the more general dcpo-algebras,

which can be constructed freely using abstract bases. Before the rather simple and “pure”

presentation for continuous dcpos was developed, Scott [48] used information systems for

the algebraic dcpos arising in programming semantics to solve fixed point equations for

domains. These information systems feature a covering relation that captures the infor-

mation when the join of a set of points is above a certain element. The concept of covering

relations, or coverages, is also found in locale theory where it is used to describe the frame

of opens of a locale using some set of generators.

The idea for the category of interaction algebras was developed by the author together

with M. Andrew Moshier in 2010. It has numerous sources of inspiration: There are Chu

spaces and the intermediary structure of a lattice, to mention more distantly related ones,

as well as abstract bases and Vickers’ information systems which we covered in 1.2.5 and

6.2. The Stage 5 interaction algebras have their ancestry in the multi-lingual sequent

calculus [32] and strong proximity lattices [35].

Independently, a presentation for locally compact spaces bearing much similarity to

interaction algebras is being developed by Paul Taylor. His presentation is motivated by

open and compact intervals on the real line, where one can do away with finite joins of

tokens because a compact interval is contained in the union of open intervals if and only

if it is contained in a single interval already.

Another related structure are the topological systems of Vickers [59]. These comprise

“points” and “opens” which are linked by a satisfaction relation x |= U that can be

understood as “The point x has the observable property U .”

The proofs in Section 1.1 are quite similar to what can be found in [60] and [57]. The

author thanks Reinhold Heckmann for providing unpublished notes on Vickers’ informa-

tion systems and what is called a token map in this work.

Future work

It should be straightforward to give presentations of categorical constructions on com-

pletely distributive frames and domains such as products and coproducts. For the cat-

egory Tok0 one may take products and coproducts of the token- and witness sets. For

higher stages it may be necessary to generate the free algebra of the appropriate signature

subject to some relations.
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In particular we expect that Stage 1 interaction algebras give a hint at why the category

of domains is not closed under function spaces. For a construction of mixed variance such

as function space the witness set should be a mixture of tokens and witnesses from source

and target. It seems to be impossible to define the binary meet of witnesses on such an

algebra in a meaningful way.

The category of completely distributive frames and linear maps carries a symmetric

monoidal closed structure. How this structure is presented by interaction algebras remains

to be worked out.

We gave the translation between Stage 5 interaction algebras and stably compact

spaces. The latter category has several possible notions of morphism other than the

continuous maps we covered. Another translation that is of interest is that between the

category Tok5 and the multi-lingual sequent calculus.

Finally, the various stages of lattice-like structure are by no means the only possible

way the base category Tok0 could be enhanced. Other lines of work might be modal

operators or probabilistic powerconstructions.
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D-lattices

Because of the origins of topology in the Euclidean geometry, spaces that do not enjoy

the Hausdorff separation property are a curiosity in most circles of classical topologists.

Theoretical computer science found great use for spaces which typically do not satisfy

more than the T0 separation axiom. The study of domains, continuous lattices and their

most canonical topology, the Scott topology, their apparent connection to topological

semigroups and semilattices, quickly lead to the consideration of refinements of the Scott

topology which render said T0 spaces Hausdorff. This is typically done by forming the

common refinement of the Scott topology with a “dual” topology. Of most interest were

those structures for which the common refinement of said two topologies yields a compact

Hausdorff space. Examples include:

• Continuous lattices under the Lawson topology, the common refinement of the Scott

topology and the weak lower topology,

• Priestley duality for bounded distributive lattices, where the compact Hausdorff

topology on the spectrum of a lattice is the join of two (coherent) topologies,

• Power constructions of spaces where the set of closed subsets of a space is topologised

using two different kinds of sub-basic opens. Important instances are the Vietoris

topology on the set of closed subsets of a compact Hausdorff space and the Fell

compactification [21] of a locally compact space.

In a compact Hausdorff space the concepts of “closed” and “compact” coincide. In all

of the examples listed above it happens that the closed sets of one topology are precisely

the compact sets of the other. Using open sets instead of closed sets one can state this

connection between the two counterparts as: The compact sets of one topology are precisely

those whose complement is open in the other.

Now there are two views on this statement: (1) One might want to stress the duality

between compact and open. The spaces where this duality is absolutely symmetric are

the stably compact spaces, and it is now well-known that virtually all kinds of domains
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Figure 2.1: The lattice of truth values in Belnap’s four-valued logic and the logical (≤)
and information (⊑) orderings.

used in theoretical computer science are stably compact in their Scott topology. (2) One

could regard the duality of compact and open as coincidental and retain the fact that one

is dealing with a bitopological space.

In this chapter we shall assume the latter point of view, but abstract a little further.

Let us motivate this abstraction by means of a particular logic, the four-valued logic of

Belnap. An example Belnap gave for his logic was a database with bits of information

entered by agents. A request to this database in form of a proposition may be answered

with either of the following.

(t) “I have evidence for the truth of the proposition.”

(f) “I have evidence for the falsehood of the proposition.”

(⊥) “I have no information available to decide the truth of the proposition.”

(⊤) “I have various items of information available, some of them positive and some of

them negative evidence for the truth of the proposition.”

These four possibilities form the lattice of truth values depicted in Figure 2.1. Forming the

Lindenbaum algebra of propositional logic over basic propositions p, q, . . . with connectives

∨,∧, t, f,⊥,⊤ yields a bounded distributive lattice of (equivalence classes of) formulas. Its

least and greatest elements are the formulas f and t while the formulas ⊥ and ⊤ form a

complemented pair, that is ⊥∨⊤ = t and ⊥∧⊤ = f . It is well-known from the theory of

bilattices that this lattice of formulas can be written as the product of two sub-lattices: If

(L,∧,∨, f, t,⊥,⊤) is such a lattice, let L− be the image of L under the map ϕ 7→ ϕ∧⊥ and

likewise L+ be the image of L under ϕ 7→ ϕ ∧⊤. Both of these are sub-lattices of L; The

former is the interval [f,⊥] in the logical order, whereas the latter is the interval [f,⊤].

Using the fact that (⊥,⊤) is a complemented pair one finds that ϕ = (ϕ ∧ ⊥) ∨ (ϕ ∧ ⊤).

In this lattice, two sets of formulas are of particular interest: First there are those

formulas that are not self-contradictory in any model, meaning that under any assignment

of truth values to the basic propositions the value of the formula can be either ⊥, t, f

but never ⊤. We call these formulas the consistent formulas because their true and false
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2 D-lattices

extents do not overlap in the space of all models. Secondly there are those formulas whose

true and false extents cover the space of all models, meaning that under any assignment of

truth values to the basic propositions the value of the formula can be t, f , ⊤ but never ⊥.

These formulas we call the total ones. Since both {⊥, t, f} and {t, f,⊤} form sub-lattices

of the lattice of truth values, both the consistent and the total formulas each form a sub-

lattice of the lattice of all formulas. In the intersection of these two sub-lattices we find

the formulas that behave like the formulas of ordinary propositional logic: They can be

either true or false, but never self-contradictory.

Thus we arrive at an algebraic theory with the signature (L,∧,∨, t, f,⊥,⊤, con, tot)

where ∧,∨, t, f is a bounded distributive lattice structure on the set L and con and tot

are two predicates on L comprising the consistent and total formulas.

2.1 The different faces of a d-lattice

There are several ways of defining the structure we call a d-lattice. In the bilattice style,

a d-lattice consists of a set that carries two bounded distributive lattice structures and

two unary predicates. By a well-known representation theorem for bilattices, the d-lattice

thus represented is the product of two of its sub-lattices and the two predicates induce a

pair of relations between the two sub-lattices.

2.1.1 D-lattices as bilattices

Definition 2.1.1. A d-lattice is a structure (L,⊓,⊔,∧,∨,⊥,⊤, f, t, con, tot) where the set

L carries two bounded distributive lattice structures (L,⊓,⊔,⊥,⊤) and (L,∧,∨, f, t). The

partial order ⊑ induced by the former lattice structure is called the information order

and the order ≤ induced by the latter is called the logical order . Further, con, tot ⊆ L are

two predicates called consistency and totality . The lattice structures are required to be

connected as follows.

1. The pair (⊥,⊤) is complemented with respect to ∧,∨, meaning that ⊥ ∧⊤ = f and

⊥ ∨⊤ = t.

2. For any two elements x, y ∈ L one has

x ⊓ y = (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y)

x ⊔ y = (x ∧ ⊤) ∨ (y ∧ ⊤) ∨ (x ∧ y)

3. The pair (f, t) is complemented with respect to ⊓,⊔.

4. All four lattice connectives distribute over one another.

The predicates con and tot are required to have the following properties.
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Figure 2.2: A generic d-lattice with predicates con and tot.

1. The predicate con is a lower set in information order.

2. The predicate tot is an upper set in information order.

3. Both con and tot are sub-lattices of the lattice (L,∧,∨, f, t).

4. For any two elements x ∈ con and y ∈ tot, whenever x ⊔ y = x ∧ y or x ⊔ y = x ∨ y

then x ⊑ y.

The picture of a generic d-lattice we suggest the reader to keep in mind is the one

given in Figure 2.2. Notice that the predicates con and tot by definition overlap in the set

{f, t} but the intersection may be larger. However, there may be elements of the d-lattice

which are neither consistent nor total.

The 90-degree-lemma

The definition of a d-lattice we gave contains some redundancies. For the bilattice structure

it suffices to specify the logical structure (∧,∨, f, t) and a complemented pair (⊥,⊤). All

other facts can be derived from the so-called 90-degree-lemma. It has its origin in a ternary

operation studied by Birkhoff [11] and Grau [24].

Proposition 2.1.1 (90-degree-lemma). Let (L,∨,∧, f, t) be a bounded distributive lattice

and (⊤,⊥) a complemented pair, that is ⊤∨⊥ = t and ⊤∧⊥ = f. Then by the operations

x ⊓ y := (x ∧ ⊥) ∨ (y ∧ ⊥) ∨ (x ∧ y) (2.1)

x ⊔ y := (x ∧ ⊤) ∨ (y ∧ ⊤) ∨ (x ∧ y) (2.2)

one obtains another bounded distributive lattice (L,⊓,⊔,⊥,⊤) in which (f, t) is a comple-

mented pair. Moreover, the operations ∨,∧,⊓,⊔ distribute over each other. By substituting

f for ⊥, t for ⊤, ⊓ for ∨ and ⊔ for ∨ in (2.1) and (2.2) one one can recover the original

lattice operations.

The name “90-degree-lemma” is chosen to reflect the understanding that the logical

order and information order are “orthogonal” to each other. In the face of the 90-degree-
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lemma one may understand bounded distributive lattices as high-dimensional diamond-

shaped objects, where every complemented pair can be made the top and bottom of the

structure and thus lie on the “surface” of the lattice, while the non-complemented elements

are situated in the “inside”. Consequently, a boolean algebra is a sort of high-dimensional

hollow object.

The bilattice representation theorem

Examining the identities (2.1) and (2.2) of the 90-degree-lemma, one finds that the interval

[⊥, f] in the information order is a sub-lattice of L where the information order is dual to

the logical order, that is, for x, y ⊑ f one has x ∨ y = x ⊓ y. Dually, whenever x, y ⊑ t

then x∨ y = x⊔ y, so in the interval [⊥, t] the logical and information order agree. There

are maps x 7→ x ⊓ f and x 7→ x ⊓ t which send a lattice element x to its projections onto

the intervals [⊥, f] and [⊥, t], respectively. Using the distributive law and the fact that

(f, t) is a complemented pair one finds that the join (x ⊓ f) ⊔ (x ⊓ t) is equal to x. This

observation is the key ingredient to the following representation theorem. A proof can be

found for example in [3].

Theorem 2.1.2. The following are equivalent for a bilattice (L,∨,∧,⊓,⊔, f, t,⊥,⊤).

1. The bilattice satisfies the hypothesis of the 90-degree-lemma 2.1.1.

2. The bilattice is isomorphic to the product of two bounded distributive lattices

(L−,⊓,⊔, 0, 1) and (L+,⊓,⊔, 0, 1) where L ∼= L− × L+, ⊥ = (0, 0), ⊤ = (1, 1),

f = (1, 0), t = (0, 1) and the lattice operations on L are given as follows.

(x, y) ⊓ (x′, y′) = (x ⊓ x′, y ⊓ y′)

(x, y) ⊔ (x′, y′) = (x ⊔ x′, y ⊔ y′)

(x, y) ∧ (x′, y′) = (x ⊔ x′, y ⊓ y′)

(x, y) ∨ (x′, y′) = (x ⊓ x′, y ⊔ y′)

There is a version of the bilattice representation theorem which does not require the

bounds. Observe that in a bilattice of the form L−×L+ the information join (x, y)⊔(x′, y′)

coincides with the logical meet (x, y) ∧ (x′, y′) precisely when y = y′ and dually (x, y) ⊔

(x′, y′) coincides with the information join (x, y)∨ (x′, y′) precisely when x = x′. Thus one

reconstructs the “layers” of the product even in the absence of the bounds. We shall use

this fact to interpret the requirement (4) on the predicates con and tot in Definition 2.1.1

above.

Example 3. If (L,⊓,⊔,∧,∨,⊥,⊤, f, t) is a bilattice satisfying the distributive law of the

definition above, then the minimal possible predicates that complete this structure to a

d-lattice are con = |

◭{f, t} and tot = |◮{f, t} .
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Example 4. Let (A,⊓,⊔, 0, 1) be a bounded distributive lattice and ≺ be an auxiliary

relation on A that is a sub-lattice of A × A. Special cases of this are (1) when ≺ is the

order of the lattice or (2) when ≺ is a quasi-proximity on A. Construct a d-lattice where

L is the product of the order-dual of A with A. Let con be the lattice order ⊑ regarded as

a subset of A∂ ×A, and let tot be the auxiliary relation ≺ regarded as a subset of A∂ ×A.

One has f = (0, 0), t = (1, 1), ⊥ = (1, 0) and ⊤ = (0, 1).

Example 5. Let (A,⊓,⊔, 0, 1) be a bounded distributive lattice. On the product A× A

let (x, y) ∈ con whenever x ⊓ y = 0 and (x, y) ∈ tot whenever x ⊔ y = 1. We call this the

symmetric d-lattice associated with A.

Example 6. Suppose L− and L+ are two sub-lattices of a bounded distributive lattice.

For instance, the ambient lattice could be the powerset of a set X. On L− × L+ declare

the predicate con to consist of the pairs (U, V ) where U ∩V = ∅ (the consistent, or disjoint

pairs) and the predicate tot to consist of pairs (U, V ) which satisfy U ∪ V = X (the total

pairs). It is this class of examples that the naming of the predicates originates from.

2.1.2 D-lattices as pairs of lattices with relations

Because of the bilattice representation theorem one can give an interaction algebra-style

definition of a d-lattice. Although d-lattices enjoy an obvious symmetry, we shall distin-

guish notationally between the two sides by using lowercase Greek symbols for the one and

lowercase Roman symbols for the other. Evidently, Definition 2.1.2 below is equivalent to

the bilattice-style Definition 2.1.1.

Definition 2.1.2. A d-lattice is a structure

L−

tot **
L+

con
jj

where (L−,⊓,⊔, 0, 1) and (L+,⊓,⊔, 0, 1) are bounded distributive lattices and con and tot

are two relations satisfying the axioms of Table 2.1.

Notation. Similarly to the interaction algebras of Chapter 1 we denote a d-lattice by

uppercase script letters L,M, . . . and their components by the same letter in standard

font. For example, L stands for the d-lattice with components (L−, L+, con, tot).

The reader easily convinces himself that the upper- and lower set axioms amount to

the fact that con ⊆ L+ × L− is a lower set and tot ⊆ L− × L+ is an upper set. The meet

and join axioms say that both relations define sub-lattices of the bounded distributive

lattice L−
∂ × L+ where f = (1, 0) and t = (0, 1). The last axioms require that in each

“slice” of the form L(x) = {(φ, x) |φ ∈ L−} or L(φ) = {(φ, x) |x ∈ L+} any consistent

pair is below any total pair.
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lower set
xconφ

(x ⊓ y)con(φ ⊓ ψ)
(con- ↓)

binary meet and join
xconφ yconψ

(x ⊓ y)con(φ ⊔ ψ)

xconφ yconψ

(x ⊔ y)con(φ ⊓ ψ)
(con-∧), (con-∨)

empty meet and join 0con1 1con0 (con-f), (con-t)

upper set
φtotx

(φ ⊔ ψ)tot(x ⊔ y)
(tot- ↑)

binary meet and join
φtotx ψtoty

(φ ⊓ ψ)tot(x ⊔ y)

φtotx ψtoty

(φ ⊔ ψ)tot(x ⊓ y)
(tot-∨), (tot-∧)

empty meet and join 0tot1 1tot0 (tot-t), (tot-f)

consistency vs. totality
xconφ φtoty

x ⊑ y

φtotx xconψ

φ ⊒ ψ
(con-tot)

Table 2.1: Axioms for a d-lattice in the interaction algebra style. The third column lists
the names used in [33].

2.1.3 Morphisms

The bilattice-style definition of a d-lattice suggests the following definition of d-lattice

homomorphism.

Definition 2.1.3. A homomorphism of d-lattices is a function between the underlying sets

that preserves the two lattice structures, their constants and the predicates con and tot.

The category of d-lattices and d-lattice homomorphisms is denoted by dLat.

Remark. Because of the 90-degree-lemma it suffices to postulate that a d-lattice ho-

momorphism is a homomorphism with respect to the lattice structure (⊓,⊔,⊥,⊤) and

furthermore preserves the complemented pair (f, t) and the predicates.

When writing a d-lattice in the interaction algebra-style of Definition 2.1.2, a homo-

morphism becomes a pair of homomorphisms between the bounded distributive compo-

nent lattices that preserve the relations con and tot. For example, if (L−, L+, con, tot) and

(M−,M+, con, tot) are d-lattices then a homomorphism is a pair of lattice homomorphisms

h− : L− → M− and h+ : L+ → M+ such that φtotx implies h−(φ)toth+(x) and xconφ

implies h+(x)conh−(φ).

Remark. Notice the similarity between homomorphisms of d-lattices and token maps

between interaction algebras.

2.1.4 Basic constructions

Due to the symmetry of the d-lattice structure there are two possible ways of generalising

the order-dual operation (−)∂ of lattices to d-lattices. While one of them is merely useful
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for providing slick proofs, the other one will turn out to be significant once we know how

to interpret d-lattices topologically.

The order-dual of a d-lattice

Definition 2.1.4. If L denotes the d-lattice L−
tot //L+
con

oo then L∂ denotes the structure

L∂+
con //L∂−
tot

oo which we call the order-dual of L.

The assignment L 7→ L∂ extends to a covariant involution on the category dLat that

sends a homomorphism (h−, h+) to (h+, h−).

Swapping polarities

The more interesting variant of order-dual swaps the component lattices.

Definition 2.1.5. If L denotes the d-lattice L−
tot //L+
con

oo then FlipL denotes the structure

L+
tot−1

//L−
con−1

oo which we call the dual of L.

The assignment Flip(h−, h+) := (h+, h−) turns Flip into another covariant endofunctor

on dLat.

Remark. In Chapter 1 we already defined a functor Flip on interaction algebras. This

dual use of names is justified because syntactically both functors perform the same oper-

ations on d-lattice homomorphisms or token maps.

2.2 The well-inside relation

The last two axioms in Table 2.1 are the only ones connecting the relations con and tot.

These axioms are connected to the so-called well-inside relation from topology. In a

topological space, a subset A is said to be well inside another subset B if the topological

closure of A is contained in the interior of B. Equivalently, one can demand that there

exist open sets U and V such that A is disjoint from U , V is contained in B and the

union of U and V covers the space. Clearly the well-inside relation is stronger than the

set inclusion relation. Note that in case B is open one may choose V = B.

Let OX denote the lattice of open sets of the topological space X. Then according

to Example 6 one can build a d-lattice (OX,OX, con, tot) where the well-inside relation

restricted to open sets coincides with the relational composition con; tot.

Definition 2.2.1. Let (L−, L+, con, tot) be a d-lattice. We say that an element x ∈ L+

is well inside another element y ∈ L+ and write x ⊳ y if there exists an element φ ∈ L−

with xconφtoty. The element φ is said to be a witness for the relation x ⊳ y. Dually, we

say that ψ ∈ L− is well inside φ ∈ L− and write φ ⊲ ψ if there exists a witnessing element

x ∈ L+ with φtotxconψ.
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Let us state some immediate properties of the well-inside relations.

Lemma 2.2.1. The well-inside relation ⊳ on the component lattice L+ of a d-lattice has

the following properties.

1. The well-inside relation is stronger than the lattice order.

2. The relational composition ⊑;⊳;⊑ is identical to ⊳, that is, the well-inside relation

is downward closed on the left and upward closed on the right.

3. The well-inside relation is transitive.

4. The well-inside relation is a sub-lattice of the product lattice L+ × L+.

Similar facts hold for the well-inside relation on the component lattice L−.

Proof. The fact that x ⊳ y implies x ⊑ y is enforced by the last row of Table 2.1. To

see that ⊳ is downward closed on the left, use the definition con; tot and the fact that

con is downward closed. Similarly, the fact that tot is upward closed implies that ⊳ is

upward closed on the right. Transitivity of ⊳ is a consequence of the first two properties.

Observe that 0con1tot0 and 1con0tot1, whence the relation ⊳ contains the bounds of

the lattice L+
2. For the algebraic properties, suppose xconφtoty and x′conψtoty′. Then

(x⊓x′)con(φ⊔ψ)tot(y⊓ y′). Thus ⊳ is a sub-meet-semilattice. The proof for binary joins

is dual.

Lemma 2.2.2. D-lattice homomorphisms preserve the well-inside relation.

Proof. Follows from the fact that d-lattice homomorphisms preserve the relations con

and tot.

In general there are not many elements of a d-lattice that are well inside themselves.

The only elements of this kind present in any d-lattice are the bounds, as 0 ⊳ 0 and

1 ⊳ 1 is always true. For the well-inside relation on the powerset of a topological space

the sets well inside themselves are precisely the clopen sets. Indeed, a set U being well-

inside itself by definition means that its closure is contained in its interior, so U is both

open and closed. Each clopen set has an obvious counterpart witnessing clopenness: The

complement of a clopen set is again clopen.

Definition 2.2.2. Let L be a d-lattice. An element of a component lattice is called

complemented if it is well-inside itself. For example, x ∈ L+ is complemented if xconφtotx

for some element φ ∈ L+. In the situation xconφtotx we say that (φ, x) is a complemented

pair.

Obviously complemented elements come in pairs. If x ⊳ x is a complemented element

in the component lattice L+ then any witness xconφtotx is also complemented because

φ ⊲ φ is witnessed by x. An easy corollary to Lemma 2.2.2 is that d-lattice homomor-

phisms preserve complemented elements.
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2.3 Round sets and round ideal completion

In Chapter 1 we used round ideals to interpret interaction algebras as presentations of

dcpos. We intend to do the same with d-lattices, even though a d-lattice is not an in-

teraction algebra in general (but those d-lattices that are interaction algebras will be of

particular importance). Let us begin with some definitions and facts.

2.3.1 Some topologies on d-lattices

Recall from Definition 1.1.3 that a round upper set of a set L with transitive binary

relation ⊳ is a subset U ⊆ L such that x ∈ U if and only if u ⊳ x for some u ∈ U . Dually,

a round lower set of L is a subset U such that x ∈ U precisely when x ⊳ u for some u ∈ U .

Thus a round lower set is a round upper set with respect to the relational inverse of ⊳.

Definition 2.3.1. Let (L−, L+, con, tot) be a d-lattice. We call a subset U ⊆ L+ an

open upper set of the component lattice L+ if it is a round upper set with respect to the

well-inside relation. The complete lattice of open upper sets of L+ is denoted by Up⊳ L+.

Dually, we call a subset U an open lower set of L+ if it is a round lower set with respect

to ⊳. The complete lattice of open lower sets is denoted by Lo⊳ L+.

In the same manner one defines the open upper sets and open lower sets1 Up⊳ L− and

Lo⊳ L− of the component lattice L−.

The open upper sets of a component lattice are indeed upper sets in the lattice order:

If U ∋ u ⊑ x then we know that there is some element u′ ∈ U well inside u and thereby

well inside x. Hence x is also an element of U . Next we show that our choice to call round

sets “open” is justified.

Proposition 2.3.1. Let L be a d-lattice. The open upper sets of the component lattice

L+ form a compact topology on L+. Similar statements holds for the component lattice

L− and the open lower sets of both component lattices.

Proof. For general reasons the open upper sets form a complete lattice where arbitrary

joins are computed by set union. We have to show that finite meets are also given as set

intersection. First observe that the entire lattice L+ is an open upper set because of 0 ⊳ 0.

Thus the empty meet in Up⊳ L+ is the empty set meet2. Now suppose U1 and U2 are

open upper sets and x is an element of their intersection. Then there are elements ui ∈ Ui

(i ∈ {1, 2}) well inside x. Since the well-inside relation is closed under finite joins on the

left we get U1 ∩ U2 ∋ u1 ⊔ u2 ⊳ x which shows that the intersection U1 ∩ U2 is an open

upper set. Therefore Up⊳ L+ is indeed a topology. It is a compact topology because any

open cover of L+ must in particular cover the bottom element.

1The notation might cause some confusion, because by convention we write the well-inside relation on
L− as its relational inverse ⊲. But if one interprets Up⊲ L− as in Definition 1.1.3 then this symbolises
what we call open lower sets here.

2Recall that in general the largest round upper subset is not necessarily the entire set.
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Apply what we just proved to the order-dual L∂ and the dual FlipL and obtain proofs

for the other statements of this proposition.

In general there might be very few open upper and lower sets. If the relations con and

tot are minimal, meaning that x ⊳ y implies that either x = 0 or y = 1 then the only open

upper sets of L+ are the empty set, {1} and L+.

Remark. Observe that d-lattice homomorphisms give rise to frame homomorphisms be-

tween open upper and lower sets. Suppose (h−, h+) is a d-lattice homomorphism. For

general reasons the map Up(h+) between upper sets preserves all unions, and since h+

preserves the well-inside relation, Up(h+) maps open upper sets to open upper sets. Since

finite meets of open upper sets are computed as element-wise join and h+ preserves these,

the map Up(h+) preserves finite meets.

The following fact relating open upper and lower sets will be very useful in our de-

velopment. Its proof is the same as the proof we gave for the Fundamental Lemma of

interaction algebras 1.1.6.

Notation. If U is a subset of a component lattice of a d-lattice then we write U tot for

the set of elements of the other component lattice that are total with some element of U .

Similarly, Ucon denotes the set of elements consistent with some element of U . For singleton

sets we write xtot and xcon instead of {x}tot and {x}con.

Lemma 2.3.2. For any d-lattice L the frame of open lower sets of L+ is order-isomorphic

to the frame of open upper sets of L−. The isomorphism sends an open lower set U ∈

Lo⊳ L+ to

U tot = {φ ∈ L− | ∃u ∈ U. φtotu}

and an open upper set Φ ∈ Up⊳ L− to

Φcon = {x ∈ L+ | ∃φ ∈ Φ. xconφ} .

2.3.2 The open ideal completion

Next we restrict the open upper and lower sets to filters and ideals. It is well-known from

lattice theory that the ideal completion of a bounded distributive lattice is a frame where

directed joins are computed as set union, arbitrary meets are computed as set intersection

and binary joins are computed element-wise.

Definition 2.3.2. For a d-lattice L, let Idl⊳ L+ denote the open ideals of the component

lattice L+, that is, lattice ideals which are round lower sets with respect to the well-inside

relation. Dually let Filt⊳ L+ denote those filters of L+ that are open upper sets.

Similarly one defines the open ideals and filters of the component lattice L−.

From the algebraic properties of the consistency and totality relations one derives the

following lemma.
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Lemma 2.3.3. The isomorphism of Lemma 2.3.2 restricts to open ideals and filters.

Since open ideals share directed joins and all meets with the open lower sets, it is

immediate that open ideals form a preframe. But even more is true:

Lemma 2.3.4. The open ideals of a component lattice of a d-lattice form a compact

sub-frame of the frame of all ideals. A dual statement applies to open filters.

Proof. Is suffices to show that the binary join of open ideals is again open. If I and J

are open ideals of the component lattice L+ of a d-lattice L then any element of the join

I ∨ J in the frame of all ideals can be written as x ⊔ y where x ∈ I and y ∈ J . By

hypothesis there exist x′ and y′ with x ⊳ x′ ∈ I and y ⊳ y′ ∈ J . Now use the fact that

the well-inside relation is a sub-lattice of L2
+ and obtain x⊔ y ⊳ x′ ⊔ y′. Hence the binary

join of open ideals is open. The frame of open ideals is compact because the largest open

ideal is principal.

Corollary 2.3.5. A d-lattice homomorphism gives rise to frame homomorphisms between

open ideals and filters.

Proof. A component h+ : L+ → M+ of a d-lattice homomorphism L → M gives rise to

a frame homomorphism via the ideal completion functor Idl. We already remarked that

the maps Up(h+) and Lo(h+) derived from a d-lattice homomorphism preserve open sets.

But the action of Idl(h+) on ideals is just the restriction of the lower set map Lo(h+) to

ideals. Dually Filt(h+) restricts to a frame homomorphism between open filters.

Lemma 2.3.6. Let L = (L−, L+, con, tot) be a d-lattice, I ∈ Idl⊳ L−, J ∈ Idl⊳ L+ be open

ideals and F ∈ Filt⊳ L−, G ∈ Filt⊳ L+ be open filters. Define the following consistency

and totality relations.

J con◦ I :⇔ J × I ⊆ con (2.3)

I tot◦ J :⇔ (I × J) ≬ tot (2.4)

F con◦G :⇔ F ×G ⊆ tot (2.5)

G tot◦ F :⇔ (G× F ) ≬ con (2.6)

1. Both the open ideal completion Idl◦ L := (Idl⊳ L−, Idl
⊳ L+, con◦, tot◦) and the open

filter completion Idl◦ L := (Filt⊳ L+,Filt
⊳ L−, con

◦, tot◦) are d-lattices.

2. The two d-lattices defined in (1) are isomorphic. That is, the open ideal completion

of L is isomorphic to the open ideal completion of the order dual L∂.

Proof. The proof is straightforward. The techniques are identical to the ones used to prove

Theorem 1.3.4, Proposition 1.3.5 and Theorem 1.7.7. If the d-lattice L was a Stage 2a

interaction algebra then the content of assertion (2) is that any continuous preframe is

isomorphic to its second Lawson dual.
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Figure 2.3: The relations con◦ and tot◦ of the open ideal completion of a d-lattice. Pictured
is the product L− × L+ of the component lattices together with the predicates con and
tot on the product. The smaller dashed square depicts a consistent pair of ideals, whose
product is contained in con. The larger square depicts a total pair of ideals, whose product
intersects tot.

Lemma 2.3.7. The open ideal completion of d-lattices is functorial.

Proof. We already noted that a d-lattice homomorphism (h−, h+) lifts to a pair of frame

homomorphisms Idl(h−) and Idl(h+) between the frames of open ideals. It remains to

show that the pair (Idl(h−), Idl(h+)) preserves the relations con◦ and tot◦. If the product

J × I of open ideal is contained in con, then so is the product of the forward images

h+(J)×h−(I) because (h−, h+) preserves con. Therefore (Idl(h−), Idl(h+)) preserves con◦.

Suppose I ∋ φtotx ∈ J is a witnessing pair for the relation Itot◦J . Then h−(φ)toth+(x)

is a witnessing pair for the relation Idl(h−)(I)tot◦ Idl(h+)(J).

We have gathered all the facts necessary to prove the existence of the open ideal

completion endofunctor on d-lattices.

Theorem 2.3.8. There is an endofunctor Idl◦ on the category dLat that maps a d-lattice

L to the d-lattice of open ideals as defined in Lemma 2.3.6 and a d-lattice homomorphism

h = (h−, h+) to the pair Idl◦(h) = (Idl(h−), Idl(h+)).

A d-lattice homomorphism extends to a homomorphism of open ideal completions.

However, one can be more liberal and still obtain d-lattice homomorphisms between open

ideal completions.

Proposition 2.3.9. Let L and M be d-lattices and let h : L+ →M+ be a lattice homomor-

phism that preserves the well-inside relation. Then the map Idl(h) : Idl⊳ L+ → Idl⊳M+

can be extended to a d-lattice homomorphism between the open ideal completions.

Proof. We define a homomorphism f : Idl⊳ L− → Idl⊳M− by mapping an open ideal

I ⊆ L− to

f(I) = {ψ ∈M− | ∃φ ∈ I ∃x ∈ L+. φtotx, h(x)conψ} .
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2.4 Normal d-lattices

In terms of the isomorphism between the open ideals and filters one can write f(I) =

(Filt(h)(Itot))con. From this expression it is evident that f is even a frame homomorphism.

We claim that the pair (f, Idl(h)) preserves the consistency and totality relations. Suppose

the open ideal J ⊆ L+ is consistent with I, that is, J×I is contained in the relation con. For

any j ∈ J and ψ ∈ f(I) we have jconφtotx and h(x)conψ for some φ ∈ I and x ∈ L+. Now

use the assumption that h preserves the well-inside relation and deduce h(j) ⊳ h(x)conψ

which shows that Idl(J) × f(I) is contained in the consistency relation. Thus the pair

(f, Idl(h)) preserves the relation con◦.

Now suppose J is an open ideal that is total with I, meaning I ∋ φtotj ∈ J for some

pair (φ, j). Since I is an open ideal, the element φ is well inside another element φ′ of I.

Then φ′totxconφtotj and so by hypothesis h(x) ⊳ h(j). This means that h(x)conψtoth(j)

for some ψ ∈M−. Observe that this ψ is a member of the open ideal f(I) which demon-

strates that the pair (f, Idl(h)) preserves the relation tot◦.

2.4 Normal d-lattices

When examining Lemma 2.3.6 one finds that on a component frame of the open ideal

completion the well-inside relation is contained in the way-below relation. Indeed, let L

be any poset and D be a sub-dcpo of the ideal completion of L (Think of L as a component

lattice and D as the frame of its open ideals). Whenever I, J ∈ D are ideals with I ⊆ |

◭x

for some x ∈ J then I is way below J . This is because by hypothesis directed joins in D

are computed as set union, so any directed union
⋃
J of ideals in D containing J must

have a member that contains x and thereby the ideal I.

Below we exhibit a class of d-lattices that admit a notion of “principal open ideal”.

Their open ideal completions have the property that the frame of open ideals is a domain

and moreover the well-inside relation on open ideals coincides with the way-below relation.

Thus the way-below relation inherits the property of being closed under finite meets on

the right from the well-inside relation. Such a frame we called stably continuous. As a

hint towards why stable continuity is desirable, consider the d-lattice (OX,OX, con, tot)

constructed from a locally compact sober topological space X in the fashion of Example 6.

The way-below relation on the domain OX coincides with the well-inside relation of this

d-lattice precisely when X is a compact Hausdorff space.

2.4.1 Normality for d-lattices

Definition 2.4.1. A d-lattice (L−, L+, con, tot) is called normal if

(tot; con; tot) = tot.

The name of this property is justified, as it subsumes normal lattices as well as normal

spaces (see Lemma 6.3.3).
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2 D-lattices

Notation. For an element of a component of a d-lattice we write

_

for the operator that

returns the ideal of elements well-inside a given element. Dually, _ is the operator that

returns the filter of elements that a given element is well-inside of.

Let us list some immediate consequences of this definition.

Lemma 2.4.1. Let L be a normal d-lattice.

1. The well-inside relations on the component lattices have the interpolation property.

2. For any element x ∈ L+ the filter xtot = {φ ∈ L− |φtotx} is open.

3. The ideal

_

x of elements well-inside the element x ∈ L+ is open. A similar statement

holds for the component lattice L−.

4. A bounded distributive lattice is normal if and only if the d-lattice derived from it

as in Example 5 is normal. In particular, a topological space has the T4 separation

axiom if and only if the symmetric d-lattice (OX,OX, con, tot) is normal.

5. A normal d-lattice is a compact Stage 2a interaction algebra that also satisfies the

Stage 2b rules.

Proof. (1) By definition the well-inside relation ⊳ is the relational composition con; tot.

By normality this relation is identical to con; tot; con; tot.

(2) If we write normality as tot = (⊲; tot) then it is immediate that φ is total with x

if and only if there is some ψ well inside φ still total with x.

(3) Observe that the ideal

_

x can be written as (xtot)con, so this ideal is open because

of (2) and the Fundamental Lemma 2.3.2. Alternatively, use the fact that the well-inside

relation is interpolative.

(4) In the symmetric d-lattice (A,A, con, tot) derived from a bounded distributive

lattice (A,⊓,⊔, 0, 1) one has φtotx whenever φ ⊔ x = 1 and xconφ whenever x ⊓ φ = 0.

Clearly then the lattice A is normal in the lattice-theoretical sense of Lemma 6.3.3 precisely

when its symmetric d-lattice is normal.

(5) A normal d-lattice satisfies all axioms of Tables 1.2 and 1.3 except for the join-

strength rules.

A d-lattice can be normal for trivial reasons. Suppose the totality relation contains

only those pairs (φ, x) where either φ = 1 or x = 1 (or both). In this situation, whenever

φtotx then one of the elements involved is 1 and so one can extend the relation either

as 1tot0con1totx or as φtot1con0tot1. More generally, if the relation tot is such that for

any total pair (φ, x) there exists either ψ ⊑ φ or y ⊑ x complemented, then the d-lattice

is normal for trivial reasons. The interaction algebra of Example 2 is in fact a d-lattice

that is normal for trivial reasons, so it demonstrates that the join-strength rules do not

necessarily hold. The d-lattice of Example 2 is derived as follows. Let X = {x, y} be
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2.4 Normal d-lattices

a two-element set and let L− = {∅, X} and L+ = PX be sub-lattices of its powerset.

Consistent pairs of sets are disjoint and total pairs of sets cover X.

A topological space is normal if and only if the well-inside relation on the powerset

is interpolative. This equivalence breaks down if one considers the well-inside relation

restricted to the lattice of open sets. For example, the natural numbers with the cofinite

topology is not a normal3 space but the well-inside relation on the lattice of open sets is

interpolative for trivial reasons, since there are no non-trivial disjoint pairs of opens.

2.4.2 The normal coreflection

Certainly the most useful property of normal d-lattices is that the well-inside relation ⊳ is

interpolative. In a general d-lattice only the inclusion (⊳;⊳) ⊆⊳ holds. Using induction

one shows that iterating the operator R 7→ (R;R) on the well-inside relation produces a

descending chain of binary relations. The properties listed in Lemma 2.2.1 are all preserved

under arbitrary intersection of relations. Thus one may consider the intersection of the

descending chain ⊳, (⊳;⊳), . . . which is the greatest fixed point of the operator R 7→ (R;R)

contained in the well-inside relation. Being such a fixed point, this relation is interpolative.

Surprisingly one can use this interpolative relation to turn any d-lattice into a normal d-

lattice.

A construction enforcing normality

Lemma 2.4.2. Let L be a d-lattice and ≺ be an interpolative auxiliary relation on L+,

stronger than the well-inside relation, that is a sub-lattice of L2
+. (In other words, ≺ has

all properties that the well-inside relation of a normal d-lattice would have.) Define a

relation tot≺ = tot;≺. The structure L≺ = (L−, L+, con, tot
≺) is a normal d-lattice where

the well-inside relation on L+ agrees with ≺.

Proof. First notice that by moving from tot to tot;≺ we do not break any d-lattice axioms.

The join- and meet rules still hold because ≺ has all necessary algebraic properties and

below we will see that the new well-inside relation is even stronger than the old one. We

claim that the identity (≺;⊳) =≺ holds. Indeed, since ⊳ is stronger than the lattice

order, the composite ≺;⊳ is contained in ≺;⊑ and the latter is identical to ≺ because

this relation is upward closed on the right. For the reverse inclusion, use the fact that ≺

is the same as ≺;≺ and the assumption that ≺ is contained in ⊳. Similarly one proves

3Because of the Urysohn Lemma and the Intermediate Value Theorem, any connected normal space
with at least two points must be uncountable.
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2 D-lattices

that ⊳;≺ is identical to ≺. With the claim proved we can write

tot≺; con; tot≺ = tot;≺; con; tot;≺

= tot;≺;⊳;≺

= tot;≺;≺

= tot;≺

= tot≺.

The identity we just proved is precisely normality of the d-lattice L≺. Its well-inside

relations compute to

con; tot≺ = con; tot;≺

= ⊳;≺

= ≺

tot≺; con = tot;≺; con.

We intend to instantiate the preceding lemma with the interpolative relation described

earlier. But before we do so, let us give a more interesting and concrete description.

The really-inside relation

Notation. We write D for the set of dyadic rationals, that are rational numbers of the

form m
2n where n is a natural number and m is a natural number between 0 and 2n.

The dyadic rationals can be defined inductively as the least fixed point of an inflation-

ary operator on the powerset of the unit interval: The set D is the smallest subset of [0, 1]

with the properties {0, 1} ⊆ D and whenever d, e ∈ D then their midpoint (arithmetic

mean) d+e
2 is also in D. In Theorem 4.1.5 we will see that the dyadic rationals are inti-

mately related to real-valued functions. Notice that the dyadic rationals form a bounded

distributive lattice in the usual order, as does any chain with least and greatest element.

Definition 2.4.2. A scale between elements x0 and x1 of the component lattice L+ of

a d-lattice is an extension of the set {x0, x1} to a dyadic-indexed set {xd}d∈D such that

whenever d < e in D then xd is well-inside xe.

Definition 2.4.3. Let x0 and x1 be elements of the component lattice L+ of a d-lattice.

We say that x0 is really inside x1 and write x0 0 x1 if there exists a scale between x0

and x1.

It is immediate from the definition that the really-inside relation is stronger than the

well-inside relation, because 0 < 1 in D implies x0 ⊳ x1. Further, if {xd}d∈D is a scale
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2.4 Normal d-lattices

then x0 0 x 1

2

0 x1 because one can re-index the set of dyadic rationals between 0 and
1
2 using the map d 7→ 2d and obtain a scale between x0 and x 1

2

. Hence the really-inside

relation is interpolative. Let us show that it has all the algebraic properties required in

the hypothesis of Lemma 2.4.2. Trivially an element well inside itself is also really inside

itself, as one can extend x ⊳ x to a scale where xd = x for all dyadic rationals. Thus 0 0 0

and 1 0 1. The really-inside relation is downward closed on the left and upward closed on

the right, because if x ⊑ x0 ⊳ xd ⊳ x1 ⊑ y holds for all dyadics d strictly between 0 and 1

then also x ⊳ xd ⊳ y holds. Finally, element-wise binary meet or join of scales preserves

the property of being a scale, as the well-inside relation is a sub-lattice of L2
+.

Lemma 2.4.3. In a normal d-lattice the well-inside relation is identical with the really

inside relation.

Proof. If x0 ⊳ x1 then use the interpolation property of the well-inside relation to induc-

tively extend {x0, x1} to a scale.

Since d-lattice homomorphisms preserve the well-inside relation, it is evident that

the image of a scale under a d-lattice homomorphism is again a scale, whence d-lattice

homomorphisms preserve the really-inside relation. We arrive at:

Theorem 2.4.4. The category of d-lattices coreflects into the full subcategory of normal d-

lattices via the functor that maps a d-lattice L to the d-lattice L0 as defined in Lemma 2.4.2

and leaves a d-lattice homomorphism unchanged.

Proof. The counit of the coreflection is the pair of identity lattice homomorphisms idL :

L0 → L. Being the identity on elements, this family of maps parametrised by L is clearly

a natural transformation. Since the relation tot;0 is contained in the totality relation

of L, the identity homomorphism preserves both consistency and totality. It remains to

show that any d-lattice homomorphism N → L from a normal d-lattice N into L factors

uniquely through the normal coreflection L0. By Lemma 2.4.3 the totality relation on the

normal d-lattice N coincides with tot;0 and since d-lattice homomorphisms preserve both

tot and0, any d-lattice homomorphism fromN into L can be regarded as a homomorphism

into the normal coreflection. Thus we obtain the desired unique factorisation: A d-lattice

homomorphism N
h //L factors as N

h //L0 idL //L .

Remark. It may seem that the normal coreflection of a d-lattice is an asymmetric con-

struction. This is not so: Suppose φ1 and φ0 are elements of the component lattice L−

of a d-lattice L where φ0 is well-inside φ1 in the normal coreflection. From the proof

of Lemma 2.4.2 we know that this means that φ1totx0 0 x1conφ0 for some elements

x0, x1 ∈ L+. We construct a scale between φ0 and φ1 using a scale between x0 and x1 as
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follows.

φ1totx0 0 x1conφ0

⇒ φ1totx0 0 x 1

4

⊳ x 3

4

0 x1conφ0

⇒ ∃φ 1

2

. φ1totx0 0 x 1

4

conφ 1

2

totx 3

4

0 x1conφ0

⇒ φ1(tot;⊳; con)φ 1

2

(tot;⊳; con)φ0

⇒ φ1 ⊲ φ 1

2

⊲ φ0

In the next step, apply same construction as shown above to φ1totx0 0 x 1

4

conφ 1

2

and

φ 1

2

totx 3

4

0 x1conφ0 and so on until φd is defined for all dyadic rationals. Hence the well-

inside relation on the component lattice L− of the normal coreflection is the really-inside

relation.

2.4.3 The open ideal completion of a normal d-lattice

As we promised above we proceed to show that normal d-lattices are yet another way of

presenting stably continuous frames.

Proposition 2.4.5. Let L be a normal d-lattice. Then the open ideals of each component

lattice form a stably continuous frame and the way-below relation on it coincides with the

well-inside relation induced by the open ideal completion d-lattice Idl◦ L.

Proof. All statements below apply to both component lattices of a normal d-lattice by

virtue of the endofunctor Flip that preserves normality. Recall from Lemma 2.4.1 (5) that

a normal d-lattice is a compact Stage 2a interaction algebra. Thus by Theorem 1.3.3 the

open ideals of a component lattice form a continuous preframe. The way-below relation

on it is characterised as follows (See Lemma 1.2.2). An open ideal I is way-below an

open ideal J if and only if J contains an upper bound of I. In Lemma 2.3.4 we showed

that this preframe is in fact a compact frame. If we knew that the dual join-strength

rule of Table 1.3 held for any normal d-lattice, then stable local continuity would follow

from Proposition 1.8.4. However, stable local continuity can be shown without this rule4.

Indeed, in Lemma 2.3.6 we showed that the well-inside relation in the d-lattice of open

ideals has the same characterisation as the one we gave for the way-below relation above.

Now the well-inside relation is always closed under binary meets on the right, whence the

domain of open ideals is stably locally continuous.

According to Theorem 1.3.4 the component frames of the open ideal completion of

a normal d-lattice are Lawson duals of each other. Can we relate the consistency and

totality relations con◦ and tot◦ to the Lawson dual? Yes, indeed: By Proposition 1.3.5

The relation Itot◦J holds precisely when the ideal J is contained in the Scott open filter

4Later we will see why this does not contradict Proposition 1.8.4.
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2.5 Cut rules and the patch lattice

corresponding to I, whereas the relation Jcon◦I holds if and only if the ideal J is a lower

bound for said Scott open filter.

2.4.4 A topological characterisation of normality

If a d-lattice is normal, the topology of open upper sets on a component lattice has a basis

of open filters. Indeed, If U ⊆ L+ is an open upper set and x ∈ U then by definition there

is some y ∈ U that is well inside x. Hence x is an element of the open filter _y (it is open

by Lemma 2.4.1 (3)) which in turn is a subset of U .

This observation leads to a topological view on the normality axiom: It says that

whenever a pair (φ, x) is total then there exist basic opens _ψ and _y such that (φ, x) ∈

( _ψ × _y) ⊆ tot. In other words, a normal d-lattice has a totality relation that is open as

a subset of the product space (L−,Up
⊳ L−)× (L+,Up

⊳ L+). The converse is also true: If

the totality relation is open in that product space then φtotx implies that there are open

sets φ ∈ Φ ∈ Up⊳ L− and x ∈ U ∈ Up⊳ L+ with Φ× U ⊆ tot. Consequently, there exists

some u ∈ U well inside x with the property φtotu ⊳ x, whence the d-lattice is normal.

2.5 Cut rules and the patch lattice

The intuition we suggest the reader to keep in mind when thinking about d-lattices is

the situation of Example 6: There is an ambient bounded distributive lattice L, which

the component lattices L− and L+ are sub-lattices of, such that an element x ∈ L+ is

consistent with an element φ ∈ L− precisely when the meet x ⊓ φ in L is 0 and similarly

φ is total with x if and only if φ ⊔ x = 1 holds.

The question that we address in this section is: Does every d-lattice arise this way?

The answer is “no” and in due course we shall derive two necessary conditions and point

to examples violating these.

2.5.1 The finitary cut rules

Let φ, ψ, x and y be elements of a bounded distributive lattice L and suppose we have

ψ ⊔ x ⊔ y = 1 = φ ⊔ ψ ⊔ y and x ⊓ φ = 0. Then using the distributive law one finds

ψ ⊔ y = (ψ ⊔ y) ⊔ (x ⊓ φ)

= (ψ ⊔ y ⊔ x) ⊓ (ψ ⊔ y ⊔ φ)

= 1 ⊓ 1 = 1.

By considering the order-dual, one finds that y⊓ψ = 0 whenever y⊓φ⊓ψ = 0 = y⊓x⊓ψ

and x⊔φ = 1. Thus any d-lattice that arises from two sub-lattices of an ambient bounded

distributive lattice must obey the finitary cut rules:
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2 D-lattices

ycon(ψ ⊓ φ) φtotx (x ⊓ y)conψ

yconψ
(cutcon)

ψtot(y ⊔ x) xconφ (φ ⊔ ψ)toty

ψtoty
(cuttot)

Example 7. Consider a d-lattice L = (L−, L+, con, tot) with the component lattices

depicted below.

◦ 1

@@
@@

@@
@

φ ~~
~~

~~
~

◦

0

@@
@@

@@
@ ◦

ψ

~~
~~

~~
~

◦

◦ 1

@@
@@

@@
@

x ~~
~~

~~
~

◦

0

@@
@@

@@
@ ◦

y

~~
~~

~~
~

◦

L− L+

Let the consistency relation be the lower set of {(x, φ), (0, 1), (1, 0)} in the information

order and the totality relation be the upper set of {(φ, x), (0, 1), (1, 0)} in the information

order. This renders L a d-lattice where the premises of both finitary cut rules are satisfied

but neither yconψ nor ψtoty hold.

The counterexample above is a rather esoteric one. Let us consider conditions under

which the cut rules do hold.

Lemma 2.5.1. D-lattices that arise from an auxiliary relation on a bounded distributive

lattice in the way of Example 4 obey the cut rules.

Proof. Suppose a d-lattice is derived from a lattice with relation ≺ as such:

L∂
≺

))
L

⊑
jj

Let x, y, φ, ψ be elements of a bounded distributive lattice L and suppose ψ ≺ (y ⊔ x),

x ⊑ φ and (φ ⊔ ψ) ≺ y. Then also ψ ≺ (y ⊔ φ) holds, and knowing that ≺ is a sub-lattice

of L2 one deduces the rule (cuttot) as

ψ = ψ ⊓ (ψ ⊔ ψ) ≺ (y ⊔ φ) ⊓ y = y.

Dually, suppose that y ⊑ (ψ ⊓ φ), φ ≺ x and (x ⊓ y) ⊑ ψ. Since ≺ is stronger than the

lattice order also (φ ⊓ y) ⊑ ψ holds and therefore the rule (cutcon) is derivable as

y = y ⊔ (φ ⊓ y) ⊑ (ψ ⊔ φ) ⊔ ψ = ψ.
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2.5 Cut rules and the patch lattice

Join-strong d-lattices

As we remarked in Section 2.4, a normal d-lattice is almost a Stage 5 interaction algebra,

except that the join-strength rules (see Tables 1.2 and 1.3) might fail. Even without

normality, join-strength is a useful concept.

Definition 2.5.1. A d-lattice is called join-strong on the right if it obeys the rule on the

right below. Dually, the d-lattice is join-strong on the left if the rule on the left below

holds.

(φ ⊔ ψ)totx

∃φtota, ∃ψtotb. a ⊓ b ⊑ x

φtot(x ⊔ y)

∃ψtotx, ∃θtoty. φ ⊒ ψ ⊓ θ

A d-lattice that is join-strong both on the left and on the right is called join-strong.

One can give a characterisation of join-strength in terms of the map (−)tot on ideals of

a component lattice. Recall that the binary join of ideals of a bounded distributive lattice

can be computed as element-wise join and dually the binary join of filters of a bounded

distributive lattice can be computed as element-wise meet. Let I, J ⊆ L+ be ideals and

consider the filter

(I ∨ J)tot = {φ ∈ L− | ∃(x, y) ∈ I × J. φtot(x ⊔ y)} .

If the d-lattice is join-strong on the right then the filter above equals the join of the filters

Itot and J tot. By considering principal ideals one finds that the d-lattice is join-strong on

the right precisely when the map (−)tot : IdlL+ → FiltL− preserves binary joins.

Lemma 2.5.2. A d-lattice that is either join-strong on the left or on the right satisfies

the cut rule (cuttot).

Proof. Without loss of generality assume that the d-lattice is join-strong on the right.

Suppose the premise of the rule (cuttot) is satisfied, meaning ψtot(x ⊔ y), xconφ and

(φ⊔ψ)toty. By the join-strength rule there exist θtotx and ζtoty with ψ ⊒ θ⊓ζ. Together

with xconφ we deduce that φ is well inside θ which in particular means that θ ⊒ φ. Since

the relation tot is upward closed we obtain (θ⊔ψ)toty, and together with ζtoty we conclude

(θ ⊔ψ)⊓ ζtoty. Using the distributive law we can write (θ ⊔ψ)⊓ ζ = (θ ⊓ ζ)⊔ (ψ ⊓ ζ) and

because of ψ ⊒ θ ⊓ ζ we obtain ψ = ψ ⊔ (ψ ⊓ ζ)toty.

D-lattices with closed consistency

Consider the component lattices of a d-lattice as topological spaces endowed with the

topologies of open upper sets described in Definition 2.3.1. We characterised the normal

d-lattices as those d-lattices where the totality relation is open as a subset of the product

space L− × L+. So it is natural to consider d-lattices where the consistency relation is

closed as a subset of the product L+ × L−.
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2 D-lattices

Definition 2.5.2. We say that a d-lattice L has closed consistency if the relation con ⊆

L+ × L− is closed when the component lattices are endowed with their topologies of open

upper sets according to Definition 2.3.1. Concretely, a d-lattice has closed consistency if

whenever x is not consistent with φ then there exists some y well inside x and some ψ

well inside φ such that y is still not consistent with ψ.

Lemma 2.5.3. A d-lattice with closed consistency satisfies the cut rule (cutcon).

Proof. Let ycon(ψ ⊓ φ), φtotx and (x ⊓ y)conψ. According to the cut rule (cutcon) we

should have yconψ. We assume that y is not consistent with ψ and derive a contradiction

under the hypothesis that the consistency relation is closed. Because of closed consistency,

we may assume that there exist elements bconβtoty and ψtotaconα such that b is not

consistent with α.

Our first claim is that β ⊒ ψ. From βtoty and φtotx deduce that β ⊔ φ is total

with x ⊓ y, whence by (x ⊓ y)conφ we obtain that ψ is well inside β ⊔ φ. Consequently

(ψ ⊓ β) ⊔ (ψ ⊓ φ) is larger than ψ. Observe that because of βtotycon(ψ ⊓ φ) we have

β ⊒ (ψ⊓φ) whereby we obtain (β ⊓ψ)⊔β ⊒ ψ. Apply the absorption law β = (β ⊓ψ)⊔β

to finish the proof of the claim.

From bconβ and β ⊒ ψ one derives bconψ. But then bconψ ⊲ α implies bconα in

contradiction to the choice of b and α. Therefore the assumption that y is not consistent

with ψ must be false and so the cut rule (cutcon) holds.

As an example of a d-lattice that has no closed consistency consider Example 7. Here y

is not consistent with ψ but the only elements well inside y or ψ are the least elements of

the component lattices. As 0 is always consistent with 0 we conclude that the consistency

relation is not closed.

2.5.2 The patch lattice

Definition 2.5.3. Given a bounded distributive lattice L, let L= denote the symmetric

d-lattice over L whose component lattices are both identical to L and where φtot=x holds

whenever φ ⊔ x = 1 in L and xcon=φ if x ⊓ φ = 0. A homomorphism h of bounded

distributive lattices lifts to a d-lattice homomorphism (h, h) between symmetric d-lattices.

Clearly the assignment (−)= constitutes a functor from the category of bounded dis-

tributive lattices to the category of d-lattices. This functor has a left adjoint that can be

seen as the canonical way of embedding the component lattices into an ambient lattice.

Definition 2.5.4. The patch lattice PatchL of a d-lattice L has generators pφq− and pxq+

where φ ranges over elements of the component lattice L− and x ranges over the component

lattice L+. One quotients the free bounded distributive lattice over these generators by

the rules enforcing that that the pair (p−q−, p−q+) is a d-lattice homomorphism from L

to (PatchL)=.
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2.5 Cut rules and the patch lattice

Concretely the relations on the patch lattice say that p−q− : L− → PatchL and

p−q+ : L+ → PatchL are lattice homomorphisms and further the rules

xconφ

pxq+ ⊓ pφq− = 0

φtotx

pφq− ⊔ pxq+ = 1

hold. Given a d-lattice homomorphism h = (h−, h+) one obtains a map between genera-

tors of the patch lattices by letting Patch(h)(pφq−) = ph−(φ)q
− and Patch(h)(pxq+) =

ph+(x)q
+. Evidently the function Patch(h) preserves all relations by which the free lattice

over the generators is factored. Thus the assignment L 7→ PatchL extends to a functor

from d-lattices to lattices. The same calculation that was used at the beginning of Subsec-

tion 2.5.1 to motivate the cut rules shows that whenever the premise of the rule (cutcon)

holds in a d-lattice then pyq+ ⊓ pψq− = 0 holds in the patch lattice, and similarly for the

rule (cuttot).

The composite functor Patch ◦(−)= is not always the identity on objects, as for ex-

ample the three-element chain is transformed to the free bounded distributive lattice over

two generators. Another negative result about the patch lattice is that it may destroy

normality. This was to be expected, as the normal coreflection construction for d-lattices

demonstrates that normality of d-lattices is much easier to achieve than normality for

lattices. Here is the possibly simplest counterexample.

Example 8. Consider the bounded distributive lattice L+ pictured below.
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It is not normal in the sense of Definition 6.3.7, as x ⊔ y = 1 but there are no non-trivial

pairs whose meet is 0. Complete this lattice to a d-lattice where the component L− is the

two-element chain. Observe that the consistency and totality relations on such a structure

are uniquely determined by the axioms. Now the d-lattice we defined is normal for trivial

reasons. Its patch lattice, however, is isomorphic to L+ and thereby not normal.

Theorem 2.5.4. The patch functor is left adjoint to the symmetric d-lattice functor.

Proof. The unit η of the adjunction is the pair (p−q−, p−q+) from a d-lattice to the

symmetric d-lattice over the patch. The patch lattice was defined so that this pair is

indeed a d-lattice homomorphism.

For a lattice A and a d-lattice homomorphism f : L → A= define a lattice homo-

morphism pfq from PatchL to A by its action on the generators: pφq− 7→ f−(φ) and

pxq+ 7→ f+(x). This extends to a well-defined lattice homomorphism precisely because
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2 D-lattices

f preserves con and tot. Clearly (pfq)= ◦ ηL equals f . For uniqueness, observe that any

lattice homomorphism h : PatchL → A with h= ◦ ηL = f must coincide with pfq on the

generators of PatchL.

Lemma 2.5.5. 1. A complemented pair of a d-lattice gives rise to a complemented pair

of the patch lattice.

2. If an element x of a bounded distributive lattice has a complement, then the genera-

tors pxq− and pxq+ of the patch lattice Patch(L=) are equal.

Proof. (1) If φtotxconφ is a complemented pair in a d-lattice then by definition of the

patch lattice pφq− ⊔ pxq+ = 1 and pxq+ ⊓ pφq− = 0.

For the proof of (2) it is convenient to use a characterisation of the lattice distributive

law that can for example be found in [13, Exercise 6.6]. Suppose x and y are complements

in the bounded distributive lattice L, that is, x ⊓ y = 0 and x ⊔ y = 1. Then in the

symmetric d-lattice over L we have xtot=y and ycon=x but also x ⊓ y = 0 and x ⊔ y = 1

in the component lattice L+. Therefore in the patch lattice the generators satisfy the

identities

pxq− ⊓ pyq+ = 0 = pxq+ ⊓ pyq+

pxq− ⊔ pyq+ = 1 = pxq+ ⊔ pyq+

whereby the generators pxq− and pxq+ are identical in the patch lattice.

Corollary 2.5.6. The composite functor Patch ◦(−)= is the identity on boolean algebras.

As a neat application, let us demonstrate that the patch lattice can be used to compute

the free boolean algebra over a bounded distributive lattice.

Proposition 2.5.7. If (L,⊑) is a bounded distributive lattice then the patch lattice of the

d-lattice

L∂
⊑

))
L

⊑
jj

is the free boolean algebra over L.

Proof. First we show that the patch lattice of the d-lattice L shown in the statement is

indeed a boolean algebra. For every element x of the lattice L we have two generators

pxq− and pxq+. Let us write pxq for the latter generator and ¬x for the former. The

relations imposed by consistency and totality say that x ⊑ y implies that ¬x ⊔ pyq = 1

and pxq⊓¬y = 0. In particular this means that the generator ¬x is the complement of the

generator pxq. Hence every generator has a complement. Now every element of the free

distributive lattice over a set is a finite join of finite meets of generators (see Section 1.12),

and since complemented elements are closed under finite joins and meets it follows that

every element of the patch lattice is complemented. Thus PatchL is a boolean algebra.
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2.6 Notes on Chapter 2

Given a bounded distributive lattice L, the generator map x 7→ pxq is a lattice homo-

morphism from L into PatchL. Obviously this assignment is natural in the parameter L.

We have to show that any lattice homomorphism h : L→ B into a boolean algebra factors

uniquely through the generator embedding. We construct a map PatchL → B as follows.

Using ¬ for the negation on the boolean algebra B and the de-Morgan laws, one finds that

the map ¬◦h is a lattice homomorphism from the order dual L∂ to B. Moreover, the pair

(¬ ◦ h, h) is a d-lattice homomorphism from L to the symmetric d-lattice B=. The image

of this homomorphism under the functor Patch is a lattice homomorphism from PatchL

to Patch(B=). By construction the image of the generator pxq under this map is h(x),

so we have a commutative triangle:

L
p−q //

h &&MMMMMMMMMMMM PatchL

Patch(¬◦h,h)
��

B ∼= Patch(B=)

For uniqueness of this factorisation observe that any boolean homomorphism PatchL → B

making the triangle commute must coincide with Patch(¬ ◦ h, h) on the generators.

The patch lattice can be used to compute the coproduct in the category of bounded

distributive lattices.

Proposition 2.5.8. Let L− and L+ be bounded distributive lattices. Then the coproduct

L− + L+ in the category of bounded distributive lattices and homomorphisms is the patch

lattice of the d-lattice (L−, L+, con, tot) where the relations con and tot are minimal.

Proof. The construction of coproducts in a category such as Lat follows a general pattern

of universal algebra: In order to compute the coproduct of structures L− and L+ one

forms the free object over the set L− + L+ (here the operation + denotes the coproduct

in Set, i.e. disjoint union) and then quotients by the relations that enforce the injection

of generators to be homomorphisms with respect to the algebraic structure. In the case

of bounded distributive lattices the coproduct thus becomes

Lat
〈
pφq−, pxq+;φ ∈ L−, x ∈ L+

∣∣ p−q−, p−q+ are lattice homomorphisms
〉

which is the same as the patch lattice of the d-lattice with components L− and L+ and

minimal consistency and totality.

2.6 Notes on Chapter 2

Although the concept was known to the authors, Jung and Moshier focused in their tech-

nical report [33] almost entirely on d-frames rather than d-lattices. The usefulness of
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2 D-lattices

d-lattices became apparent with the discovery of the open ideal completion and its rele-

vance to compactifications.

While most of the results about normal d-lattices are new, conceptually the proofs

are standard domain theory. For example, Proposition 2.4.5 is, modulo nomenclature, the

same as [50, Theorem 1] or [23, 5.6]. The really-inside relation was used by Johnstone [30]

and independently by Banaschewski [8, 4] to define completely regular locales and their

Stone-Čech compactifications. The normal coreflection Theorem 2.4.4 is a new result that

is believed to set apart the theory of d-lattices from other point-free treatments of topology.

Although we can not provide a good example at the moment, we believe that the normal

coreflection in general breaks the cut rules of Section 2.5. The cut rules have their name

from Gentzen’s cut rule in logic. The definition of the patch lattice is a straightforward

analogue of Jung and Moshier’s construction (Definition 3.4.1). Theorem 2.5.4 and the

applications following it are new.

Future work

Little is known about the categorical structure of dLat. While the categorical product is

straightforward, the existence of coproducts is not obvious. A reasonable starting point is

to take the coproduct of component lattices in the category Lat and define the consistency

and totality relations inductively. However, the axiom (con-tot) might force one to take

quotients of the component lattices eventually.

There is a spectral theory of d-lattices that subsumes Priestley duality and yields in-

teresting bitopological variants carrying two orders. The adept reader will be able to

reconstruct this spectral theory, knowing the spectral theory of d-frames laid out in Sec-

tion 3.2. While the condition join-strength is known under the name Wilker property

among topologists and often used as a technical condition, the connection between normal

d-lattices and Stage 5 interaction algebras are still somewhat mysterious. We do not know

whether there exists a way of transforming any normal d-lattice into a join-strong normal

d-lattice.
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Chapter 3

D-frames

3.1 Introduction

It is our intention to develop a concrete Stone duality for the category of bitopological

spaces and bicontinuous maps. Locale theory tells us that in the vast majority of cases

one can recover the points of a topological space just from the algebraic structure of its

frame of opens. However, there are interesting examples of bitopological spaces where

each of the two topologies, when considered for itself, tells little about how many points

the space really has. For a finite example that will gain importance later the reader may

consult Figure 3.1. Knowing that it does not suffice to record the two frames of open

sets, one wonders how much more information one needs in order reconstruct the points

of the underlying set. A solution that Banaschewski, Hardie and Brümmer [6] offer is to

record the common refinement of the two topologies and how the two original topologies

are embedded into it. As Jung and Moshier remarked in their report [33], the resulting

duality between the categories of bitopological spaces and the category BiFrm of biframes

and biframe homomorphisms cannot be concrete over Set, essentially because the free

biframe over the one-point space has the wrong shape.
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??

?

•

U
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CD
�������������

•

Figure 3.1: A four-element bitopological space where each topology is not T0, but the
common refinement is. One topology has U as the only non-trivial open set, while the
other topology’s only non-trivial open set is V .
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3 D-frames

Can there be a more efficient way of recording how the opens of one topology interact

with the opens of the other? Let us consider a generic bitopological space (X, τ−, τ+) and

a point x in it. Consider the (completely prime) filters F− ⊆ τ− and F+ ⊆ τ+ of open

neighbourhoods of the point x. For any pair (U, V ) ∈ F−×F+ we know for certain that U

and V can not be disjoint, as both sets contain x. Moreover, given any disjoint pair (U, V )

of opens, where U ∈ τ− and V ∈ τ+, the point x evidently can be an element of at most one

of them. Phrased differently, if U ∩ V = ∅ and x ∈ U then V can not be a neighbourhood

of x. Dually, is there a condition that forces an open V to be a neighbourhood of x?

Indeed, suppose the union of opens U ∪ V covers the space X and suppose further that

the point x is not an element of U . Clearly then V must be a neighbourhood of x, because

otherwise we had a contradiction to the hypothesis that U and V cover the space. Thus

we arrive at the following two conditions that the pair of neighbourhood filters (F−, F+)

satisfies.

• Whenever two opens U ∈ τ− and V ∈ τ+ are disjoint, then either U 6∈ F− or V 6∈ F+.

• Whenever two opens U ∈ τ− and V ∈ τ+ cover the space, then either U ∈ F− or

V ∈ F+.

Let us assume for the moment that the two conditions above distinguish those pairs of

neighbourhood filters (F−, F+) that are neighbourhood filters of the same point among the

set of all pairs of neighbourhood filters. In order be able to phrase these conditions we need

to record when a pair (U, V ) ∈ τ− × τ+ is disjoint and when it covers the space. Observe

that for a fixed open U ∈ τ− the set of all opens V ∈ τ+ disjoint from U has a largest

element, namely the interior of the complement of U with respect to the topology τ+.

Dually, the set of opens V ∈ τ+ that cover the space together with U is a filter, namely

the filter of open neighbourhoods of the τ−-closed set X \ U .

A bicontinuous map f : (X, τ−, τ+) → (Y, ν−, ν+) is separately continuous as a map

(X, τ−) → (Y, ν−) and (X, τ+) → (Y, ν+). Therefore the preimage map f−1 gives rise to

a pair of frame homomorphisms ν− → τ− and ν+ → τ+. Furthermore, if U and V are

disjoint then the preimage f−1(U) is disjoint from f−1(V ). Similarly, whenever a pair of

opens cover the space Y then the pair of preimages under f will cover the space X.

Let us record the observations made into a working hypothesis that we are to validate

in the next section.

Working hypothesis A bitopological space (X, τ−, τ+) is described completely by the

pair of frames of opens (τ−, τ+) together with the binary relations between them that

record disjointness and covering of the space. A bicontinuous map is entirely described

by a pair of frame homomorphisms between the topologies that preserves the disjointness

and covering relations.
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3.2 Concrete Stone duality for bitopological spaces

3.2 Concrete Stone duality for bitopological spaces

We begin by casting the observations and the working hypothesis made in the introduction

into a definition.

Definition 3.2.1. The category dFrm of d-frames has objects of the form

L−

tot **
L+

con
jj

where L− and L+ are frames and con and tot are two relations satisfying the axioms

of Table 3.1. We call con the consistency relation and say that x ∈ L− is consistent

with φ ∈ L− if (x, φ) is an element of the consistency relation. We call tot the totality

relation and say that φ is total with x if (φ, x) is an element of the totality relation. A

homomorphism of d-frames is a pair of frame homomorphisms

L−

tot **

f−
��

L+
con

jj

f+
��

M−

tot ++
M+

con
kk

that preserve the relations, meaning that xconφ implies f+(x)conf−(φ) and φtotx implies

f−(φ)totf+(x). Composition of homomorphisms is done coordinate-wise in the obvious

way.

Notation. We typically denote d-frames with uppercase script letters L,M, . . . and their

component frames by the same letter in standard font. The elements of the first compo-

nent frame are denoted by Greek letters φ, ψ, . . . (except for the frame constants 0 and

1) whereas the elements of the second component frame are referred to by Roman let-

ters x, y, . . . D-frame homomorphisms commonly have Roman letters f, g, h . . . and their

components are subscripted accordingly. For example, f denotes a pair (f−, f+) of frame

homomorphisms between component frames.

3.2.1 D-frames are d-lattices

The only axiom of Table 3.1 that can not be found in Table 2.1 listing the axioms of

a d-lattice is the axiom (con-
⊔
) stating that every element of each component frame

has a maximal counterpart in the other component frame that it is consistent with. As

every frame is in particular a bounded distributive lattice, the category of d-frames is

a subcategory of the category of d-lattices. If L is a d-lattice where both component

lattices are finite, then the rules (con-∨) and (con-∧) entail the rule (con-
⊔
) whence finite

d-lattices and finite d-frames are the same thing.
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3 D-frames

lower set
xconφ

(x ⊓ y)con(φ ⊓ ψ)
(con- ↓)

binary meet and join
xconφ yconψ

(x ⊓ y)con(φ ⊔ ψ)

xconφ yconψ

(x ⊔ y)con(φ ⊓ ψ)
(con-∧), (con-∨)

arbitrary join
∀φ ∈ Φ. xconφ

xcon
⊔
Φ

∀x ∈ X.xconφ⊔
Xconφ

(con-
⊔
)

empty meet and join 0con1 1con0 (con-f), (con-t)

upper set
φtotx

(φ ⊔ ψ)tot(x ⊔ y)
(tot- ↑)

binary meet and join
φtotx ψtoty

(φ ⊓ ψ)tot(x ⊔ y)

φtotx ψtoty

(φ ⊔ ψ)tot(x ⊓ y)
(tot-∨), (tot-∧)

empty meet and join 0tot1 1tot0 (tot-t), (tot-f)

consistency vs. totality
xconφ φtoty

x ⊑ y

φtotx xconψ

φ ⊒ ψ
(con-tot)

Table 3.1: Axioms for a d-frame in the interaction algebra style. The third column lists
the names used in [33].

A frame can be regarded as a bounded distributive lattice which is directed complete

and satisfies the preframe distributive law. And indeed one may state the rule (con-
⊔
)

for directed sets only, as the arbitrary case then follows together with the rules (con-∨)

and (con-∧). A fact that is well-known in domain theory is that a directed subset of

the product of two dcpos is essentially the same thing as a pair of directed subsets of

the factors. Hence one may phrase the axiom (con-
⊔
) of Table 3.1 as: “The consistency

relation con of a d-frame L is Scott closed as a subset of the dcpo L+ × L−.”

Proposition 3.2.1. The following are equivalent for a d-lattice L.

1. The d-lattice L is a d-frame.

2. The component lattices L− and L+ are preframes and the consistency relation con

is a Scott closed subset of L+ × L−.

Furthermore, those d-lattice homomorphisms between d-frames that are d-frame homomor-

phisms are precisely the pairs (f−, f+) whose component maps are Scott continuous.

3.2.2 The forgetful functor and free d-frames

As promised, we are going to develop a duality between bitopological spaces and d-frames

as a concrete duality. Therefore we have to specify a forgetful functor dFrm → Set and

show that it has a left adjoint. As with d-lattices, one can regard consistency and totality

120



3.2 Concrete Stone duality for bitopological spaces

relations of a d-frame L as predicates on the product frame L− × L+ and d-frame homo-

morphisms as frame homomorphisms between product frames of this kind that preserve

these predicates and the constants f = (1, 0) and t = (0, 1). Hence the obvious choice of

a forgetful functor from d-frames to sets is the following.

Definition 3.2.2. The forgetful functor UdFrm : dFrm → Set takes a d-frame homo-

morphism f = (f−, f+) between d-frames L and M to the product map between sets

f− × f+ : (L− × L+) → (M− ×M+).

The definition above indeed defines a functor which is, as required, faithful. For our

concrete Stone duality we need a left adjoint to this functor where we are particularly

interested in the free d-frame over the one-point set. Recall that the free frame FFrm1 over

the one-point set is the three-element chain. Indeed, given a frame L the set of functions

from the one-point set into L is isomorphic to L as a set. Now, a frame homomorphism

FFrm1 → L must preserve the constants 0 and 1 but may map the middle element a of the

three-chain to any element of the frame L.

Given a d-frame L, the universal property of the cartesian product in Set tells us that

a function X → L− × L+ is the same as a pair of functions X → L− and X → L+. This

suggests that the components of the free d-frame over the set X should be two copies

of the free frame FFrmX over X. What should the consistency and totality relations be?

These must be the minimal relations allowed by the axioms of a d-frame, because otherwise

they constrain what pairs of frame homomorphisms from FFrmX to L− and L+ qualify as

d-frame homomorphisms.

Proposition 3.2.2. The free d-frame FdFrmX over a set X has as component frames two

copies of the free frame over X. The consistency and totality relations on the free d-frame

are minimal. This means that x is consistent with φ precisely when x = 0 or φ = 0, and

dually φ is total with x if and only if either φ = 1 or x = 1 holds.

The free d-frame over the one-point set is pictured in Figure 3.2.

3.2.3 The d-frame of a bitopological space

In Chapter 2 we came across numerous d-lattices that are actually d-frames. In particular,

Example 6 provides the contravariant functor from bitopological spaces to d-frames.

Definition 3.2.3. The functor O : BiTop → dFrm maps a bitopological space (X, τ−, τ+)

to the structure

τ−
tot **

τ+
con

jj

where the consistency relation records when two opens are disjoint and the totality relation

records when two opens cover the space. A bicontinuous map between bitopological spaces

maps to the pair of frame homomorphisms that is obtained by restricting the preimage

121



3 D-frames

��������◦

~~
~~

~~
~~

@@
@@

@@
@@

��������◦

~~
~~

~~
~~

@@
@@

@@
@@

��������◦
~~

~~
~~

~~

@@
@@

@@
@@

��������•

φ

@@
@@

@@
@@ ◦

~~
~~

~~
~

@@
@@

@@
@ ��������•

x
~~

~~
~~

~~

•

@@
@@

@@
@ •

~~
~~

~~
~

•

Figure 3.2: The free d-frame over the one-point set, pictured as the product of the com-
ponent frames. Filled elements are consistent pairs and circled element are total.

operation f−1 to the individual topologies. We call the d-frame OX the Stone dual of the

bitopological space X.

In the introduction we convinced ourselves that the definition above indeed produces

d-frames. As an example, consider the bitopological space S.S of Figure 3.1. Its two

topologies are both isomorphic to the three-element chain and there are no non-trivial

disjoint or total pairs of opens. We conclude that the free d-frame over the one-point set

pictured in Figure 3.2 is the d-frame OS.S associated with the four-element bitopological

space of Figure 3.1.

If the Stone duality is to work as expected, the functor O from bitopological spaces to

d-frames must be presentable as the hom-set functor BiTop(−,S.S). And indeed, given a

bitopological space (X, τ−, τ+) and a pair of opens U ′ ∈ τ−, V
′ ∈ τ+ one defines a map

χU ′,V ′ : X → S.S as follows. Map a point x to the unique element of U ∩ V if and only if

the point x is a member of U ′ ∩V ′. If x is an element of U ′ but not V ′ then map it to the

unique element of U \ V and so forth. As Jung and Moshier described it, the dualising

object S.S represents the four possible ways a point of a bitopological space can be related

to a pair of opens. One can recover the pair of opens (U ′, V ′) from the map χU ′,V ′ by

considering the preimages of U and V under this map. Moreover, the opens U ′ and V ′ are

disjoint if and only if the image of χU ′,V ′ does not intersect the set U ∩ V , and dually the

union U ′ ∪ V ′ covers the space precisely when the image of χU ′,V ′ is contained in U ∪ V .

3.2.4 The spectrum of a d-frame

The obvious forgetful functor UBiTop from bitopological spaces to sets has a left adjoint

FBiTop that takes a set S and endows it with two copies of the discrete topology. In

particular, the free bitopological space FBiTop1 over the one-point set has two lattices of

open sets each isomorphic to the two-element chain 2 = {0, 1}. The d-frame OFBiTop1 is

an old friend of ours, namely the dualising object 2 we employed in Section 1.7 to compute

the locally compact sober space associated with a Stage 4 interaction algebra.
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Figure 3.3: The dualising object 2 of d-frames, depicted as the product 2× 2. Filled dots
are members of con and circled dots are members of tot.

Definition 3.2.4. Define a contravariant functor pt from d-frames to bitopological spaces

as follows. For a d-frame L the spectrum ptL, also referred to as its Stone dual, is the set

of its d-points, that are d-frame homomorphisms into the dualising object 2 depicted in

Figure 3.3. The spectrum is endowed with two topologies, whose opens are of the form

pφq− = {(h−, h+) ∈ dFrm(L,2) |h−(φ) = 1} ; φ ∈ L−,

pxq+ = {(h−, h+) ∈ dFrm(L,2) |h+(x) = 1} ; x ∈ L+.

The action of the functor pt on d-frame homomorphisms is pre-composition: For a d-frame

homomorphism f : L → M one has

pt(f) = (− ◦ f) : dFrm(M,2) → dFrm(L,2).

Observe that the assignment from elements of a component frame to opens of the

spectrum is indeed a frame homomorphism, for the same reasons that make this true in

locale theory. Further observe that a consistent pair of a d-frame gives rise to a disjoint

pair of opens on the spectrum and likewise for total pairs. Most of the time we will work

with an alternative description of the spectrum of a d-frame in terms of pairs of completely

prime filters. Observe that every d-point (h−, h+) gives rise to a pair of completely prime

filters (h−1
− (1), h−1

+ (1)) of the component frames.

Lemma 3.2.3. A pair of completely prime filters F− ⊆ L− and F+ ⊆ L+ corresponds to

a d-point of the d-frame (L−, L+, con, tot) if and only if it satisfies the following two rules.

xconφ

x 6∈ F+ or φ 6∈ F−
(dpcon)

φtotx

φ ∈ F− or x ∈ F+
(dptot)

Proof. Let (h−, h+) be a d-point of the d-frame L. The component frame homomorphisms

give rise to completely prime filters

F− = {φ ∈ L− |h−(φ) = 1} ,

F+ = {x ∈ L+ |h+(x) = 1} .
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3 D-frames

A consistent pair (φ, x) of L can not be mapped to (1, 1) because this is not a consistent

pair of 2. Thus the rule (dpcon) holds. Dually, a total pair (φ, x) can not be mapped to

(0, 0) because this is not a total pair of 2, so the rule (dptot) holds.

If (F−, F+) is a pair of prime filters satisfying the rules (dpcon) and (dptot) then by let-

ting h−(φ) = 1 iff φ ∈ F− and h+(x) = 1 iff x ∈ F+ one obtains a d-frame homomorphism

L → 2.

Lemma 3.2.4. Let F+ ⊆ L+ be a completely prime filter of a component frame of the

d-frame L and let I+ denote the complement of F+. A completely prime filter F− ⊆ L−

extends F+ to a d-point if and only if F− separates the filter (I+)
tot from the ideal (F+)con.

(We used notation from Lemma 2.3.2.)

Proof. Suppose (F−, F+) is a d-point. By (dpcon)we have F+ ∋ xconφ ⇒ φ 6∈ F−

whence F− is disjoint from (F+)con. By (dptot)we have φtotx ∈ I+ ⇒ φ ∈ F− whence

F− contains (I+)
tot. Conversely, if F+ = L+ \ I+ is a completely prime filter then

(F+)con ∩ (I+)
tot = ∅ because otherwise there is some element of the filter F+ well in-

side some element of I+ and so I+ can not be the complement of F+. It remains to show

that any completely prime filter F− ⊆ L− separating the ideal (F+)con from the filter

(I+)
tot is satisfies the axioms (dpcon) and (dptot). If xconφ then either x ∈ F+, in which

case φ ∈ (F+)con and by hypothesis φ 6∈ F−, or x ∈ I+ in which case (dpcon) evidently

holds. If φtotx then either x ∈ F+ in which case there is nothing to show, or x ∈ I+

whence φ ∈ (I+)
tot and so by hypothesis φ ∈ F+. Thus the rule (dptot) holds as well.

As promised, let us now prove the existence of the concrete Stone duality between the

categories dFrm and BiTop.

Theorem 3.2.5. The functors O and pt of Definitions 3.2.3 and 3.2.4 constitute a con-

crete Stone duality between the categories BiTop and dFrm.

Proof. Most of the items that are to check follow from the well-known Stone duality

between the categories Top and Frm. The extra bit of work arises from the consistency

and totality predicates. As we remarked, consistent pairs of a d-frame translate to disjoint

opens and total pairs translate to pairs of opens that cover the spectrum. This yields the

counit

εL = (p−q−, p−q+) : L → O ptL.

A d-frame homomorphism f : L → OX is a pair of frame homomorphisms f− : L− → τ−

and f+ : L+ → τ+ into the topologies of the bitopological space X. Classical Stone duality

tells us how to turn such frame homomorphisms into continuous maps from X into the

spaces of completely prime filters of L− and L+ in a unique way: A point x ∈ X maps to
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3.2 Concrete Stone duality for bitopological spaces

the pair of frame homomorphisms

L−
f− // τ−

χ−(x) // 2

L+
f+

// τ+
χ+(x)

// 2

where χ−(x) and χ+(x) are the characteristic functions of the neighbourhood filters of x

in the two topologies. The pair (χ−(x), χ+(x)) is always a d-frame homomorphism from

OX to 2. From the diagram above one can see that the construction takes a point of X

and returns a d-point of L precisely because the pair (f−, f+) is a d-frame homomorphism.

It follows that every d-frame homomorphism f : L → OX factors through the counit map

ǫL in a unique way.

Let us list some examples from Chapter 2 that are actually d-frames.

Example 9. The open ideal completion functor Idl◦ on the category of d-lattices (see

Theorem 2.3.8) takes values in the subcategory of d-frames.

Example 10. Given a d-lattice L one can form a d-frame with component frames IdlL−

and IdlL+ where consistency and totality relations are defined as for the open ideal com-

pletion in Lemma 2.3.6. The spectrum of the d-frame thus constructed can be understood

as the spectrum of the d-lattice. A special case of this is Priestley duality for bounded

distributive lattices: Given a lattice L, construct a d-lattice in the fashion of Example 4.

The resulting d-frame has as component frames the ideal- and filter completions of L and

its spectrum is the set of prime filters of L. An ideal of L is consistent with a filter of

L as opens of the spectrum if and only if the ideal consists of lower bounds of the filter.

Dually, the ideal is total with the filter precisely when the ideal intersects the filter.

Example 11. Lemma 2.4.2 applies to d-frames. Whenever (L−, L+, con, tot) is a d-frame

and ≺ is a binary interpolative relation on the frame L+ that satisfies all the properties

listed in the lemma, then L≺ = (L−, L+, con, tot
≺) is a d-frame where (tot≺; con; tot≺) =

tot≺. In particular, the normal coreflection functor of Theorem 2.4.4 restricts to the

subcategory of d-frames.

3.2.5 Sobriety and spatiality

As with every adjunction, a natural question to ask is that of the images of the functors.

Definition 3.2.5. A bitopological space (X, τ−, τ+) is called d-sober if it is bihomeomor-

phic to the spectrum of some d-frame L. A d-frame is called spatial if it is isomorphic to

a d-frame of the form OX for some bitopological space X.

A d-frame L is spatial if and only if four conditions are satisfied:
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3 D-frames

1. If x 6⊑ y are distinct elements of the component frame L+ then there exists a d-point

f : L → 2 such that the component map f+ maps x to 1 and y to 0,

2. If φ 6⊑ ψ are distinct elements of the component frame L− then there exists a d-point

f : L → 2 such that the component map f− maps φ to 1 and ψ to 0,

3. If x is not consistent with φ then there exists a d-point f : L → 2 such that f−(φ) = 1

and f+(x) = 1,

4. If φ is not total with x then there exists a d-point f : L → 2 such that f−(φ) = 0

and f+(x) = 0.

The notorious counterexample 7 demonstrates that, in contrast to the category of

frames, not even finite d-frames need to be spatial. Indeed, the spectrum of the d-frame in

that example is a two-element bitopological space with two copies of the discrete topology.

The d-frame derived from this bitopology has the same component frames as the original

d-frame, but richer consistency and totality relations. In other words, the last two of the

four conditions above are violated. However, the example was constructed to violate the

finitary cut rules. And in fact for finite d-frames the cut rules characterise the spatial

d-frames.

Theorem 3.2.6. A finite d-frame is spatial if and only if it satisfies the finitary cut rules.

Proof. Every spatial d-frame satisfies the finitary cut rules. Let (L−, L+, con, tot) be a

finite d-frame. We have to verify the four properties of spatiality. The first two state that

one can separate elements in either frame by d-points. This is proved using Lemma 3.2.4

and the Prime Ideal Theorem; in Proposition 3.6.5 we give a more abstract, different proof.

Therefore only the last two properties of spatiality need to be checked.

To show the third property, let (x, φ) ∈ (L+ × L−) \ con be a non-consistent pair. By

finiteness of the d-frame we may assume that the pair (x, φ) is minimal in the complement

of con. Observe that the element x is not in the ideal φcon := {x′ ∈ L+ |x′conφ} whence

we can find a completely prime filter F+ = L+ \ |

◭p (here p is a meet-prime element)

with x ∈ F+ and φcon ⊆ |

◭p . As the frame L+ is finite the filter F+ has a least element,

say y. For the same reason the filter ptot of elements in L− that are total with p must

have a smallest element, say ψ. From Lemma 3.2.4 we know that a completely prime filter

F− ⊆ L− extends F+ to a d-point if and only if it contains ψ and is disjoint from the ideal

ycon, that is, it contains no element that is consistent with y. There is a largest element in

the ideal ycon which we call θ. Now there are two cases. Case 1: φ ⊓ ψ 6⊑ θ. In that case

we can find a completely prime filter F− containing φ ⊓ ψ but not θ, so we have found a

d-point that witnesses the fact that x is not consistent with φ. Case 2: φ ⊓ ψ ⊑ θ. In

that case notice that p⊓ y is strictly smaller than y because p is not in the filter F+ = |◮y .

It follows that p⊓ y is also strictly smaller than x because x is an element of the filter F+.

Now (x, φ) was assumed to be a minimal non-consistent pair whence (p ⊓ y)conφ. Notice
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3.2 Concrete Stone duality for bitopological spaces

that by definition ψtotp, as ψ was defined to be the smallest element with that property.

As φ ⊓ ψ ⊑ θ and θ is the largest element consistent with y, we can apply the cut rule

ycon(ψ ⊓ φ) ψtotp (p ⊓ y)conφ

yconφ

which contradicts the choice of the filter F+ = |◮y being disjoint from all elements that are

consistent with φ. In summary, the axiom (cutcon) rules out Case 2 and therefore Case 1

applies, where we constructed a d-point with the desired properties.

The fourth property of spatiality states that whenever φ is not total with x then we

can find a d-point (F−, F+) witnessing this fact, meaning φ 6∈ F− and x 6∈ F+. We

dualise the proof of the third property: Recall that under the order-dual operation the

component lattices of a d-lattice reverse their order and the roles of con and tot are

swapped. Therefore, using the cut rule (cuttot) one finds a pair of prime ideals (P−, P+)

with φ ∈ P− and x ∈ P+. Then the complements F− = L− \ P− and F+ = L+ \ P+ form

a d-point with the required properties.

There is much to be said about d-sober spaces. However, we want to focus on the

d-frame side rather than the spatial side and so we are content with demonstrating that

d-sobriety is a much more inclusive concept than sobriety.

Example 12. Consider the open unit interval (0, 1) with the bitopology generated by

sets of the form (x, 1) for the “upper” topology τ+ and (0, x) for the “lower” topology

τ− where x ranges over elements of the unit interval [0, 1]. Thus both topologies are

order-isomorphic to the unit interval. The consistency relation, considered as a subset

con ⊆ [0, 1]× [0, 1] is nothing but the usual order relation. Indeed, x ≤ y is equivalent to

(0, x) ∩ (y, 1) = ∅. Similarly, the totality relation is characterised by the strict order <

with the additional elements added by the rules (tot-t) and (tot-f). The open unit interval

with either topology considered on its own is not a sober space. Instead, the soberification

of the open unit interval with the upper topology yields (0, 1] whereas the soberification

of the unit interval with the lower topology produces [0, 1). This is because the set of

non-empty opens in either topology is a completely prime filter. Let us examine whether

the end-point 0 could be a d-point of the d-frame we described. In the lower topology,

the neighbourhoods of 0 are all non-empty opens. In order for this completely prime filter

to extend to a d-point, we need a completely prime filter of upper opens that does not

contain any opens which are consistent with a lower neighbourhood of 0, which rules out

every open but the maximal (0, 1). But the singleton {(0, 1)} is not a completely prime

filter in the frame of upper opens. A dual argument applies to the end-point 1 arising in

the soberification of the upper topology.

Example 13. The previous example can be tweaked into a d-frame that has spatial

component frames but no d-points at all. Observe that the unit interval [0, 1] in its

natural order ≤ is a frame, and so is its order dual. One forms a d-lattice according to
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3 D-frames

Example 4. The resulting structure

[0, 1]∂
≤

,,
[0, 1]

≤
ll

is not only a d-lattice but a d-frame, with the pseudocomplement map given as x 7→ 1−x.

Any completely prime filter of the component frame [0, 1] is of the form Fx := (x, 1] for

some 0 ≤ x < 1. The ideal of elements in [0, 1]∂ that is consistent with some element of this

filter is the set {y ∈ [0, 1] | ∃x′ > x. x′ ≤ y} = (x, 1]. The complement of the completely

prime filter Fx is the ideal [0, x]. The filter of elements that are total with some element

of this ideal is the set {y ∈ [0, 1] | ∃x′ ≤ x. y ≤ x′} = [0, x]. We know that any completely

prime filter of the frame [0, 1]∂ that completes Fx to a d-point must contain the set [0, x]

and be disjoint from the set (x, 1]. This leaves only one choice, namely [0, x]. But this is

not a completely prime filter in [0, 1]∂ . We conclude that the d-frame we described has no

d-points at all.

Notice that because of Lemma 2.5.1 the d-frame of this example satisfies the finitary

cut rules. Even stronger, since its component frames are chains, it trivially satisfies the

join-strength rules of Definition 2.5.1, and since the well-inside relation on each component

frame coincides with the frame order (every element is complemented) the d-frame has a

closed consistency relation in the sense of Definition 2.5.2.

3.3 Pseudocomplements

A frame is a complete Heyting algebra and is therefore equipped with a Heyting arrow.

Recall that the Heyting arrow → in a Heyting algebra A is a binary operation such that

for any a ∈ A the map b 7→ (a→ b) is right adjoint to the map b 7→ (a ⊓ b). In particular,

any frame has a Heyting negation defined as ¬a = a → 0. Because of completeness of

the frame A one can write the Heyting negation as ¬a =
⊔
{b ∈ A | a ⊓ b = 0}, whence

one also calls the element ¬a the pseudocomplement of a. For topological spaces the

pseudocomplement of an open set has a concrete interpretation: It is the interior of the

(closed) complement of the open set, that is the largest open set disjoint from the given

open.

Obviously the structure of a d-frame allows us to define an analogue to the pseudo-

complement of frames: Recall that by axiom (con-
⊔
) for every element of one component

frame there is a largest element in the other component frame that it is consistent with.

Definition 3.3.1. Let L be a d-frame. Then there is a Galois connection between the

component frames

L−

¬ **
L+

¬
jj
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given by the assignments φ 7→
⊔
{x ∈ L+ |xconφ} and x 7→

⊔
{φ ∈ L− |xconφ}. We call

the element ¬φ the pseudocomplement of φ and likewise ¬x the pseudocomplement of x.

The pair of pseudocomplement maps is indeed a Galois connection, as x ⊑ ¬φ is equiv-

alent to xconφ which is in turn equivalent to φ ⊑ ¬x. Therefore pseudocomplementation

transforms all joins to meets. Observe that in particular ¬0 = 1 and ¬1 = 0. The pseudo-

complement serves as a canonical witness for the well-inside relation. Indeed, recall that

x ⊳ y holds in the component frame L+ of a d-frame L if there exists a witness φ ∈ L−

with the property xconφtoty. By definition then φ ⊑ ¬x whence also xcon¬xtoty holds.

Let us record a useful fact about the pseudocomplement and the well-inside relations.

Lemma 3.3.1. Suppose x is well inside y in the component frame L+ of a d-frame L.

Then the pseudocomplement ¬y is well-inside the pseudocomplement of x in the component

frame L−. A dual statement holds for the well-inside relation of the other component

frame.

x ⊳ y
¬x ⊲ ¬y

φ ⊲ ψ

¬φ ⊳ ¬ψ

Proof. By definition x ⊳ y holds in the component frame L+ if and only if xconφtoty for

some witness φ ∈ L−. Note that x ⊑ ¬φ and, equivalently, ¬x ⊒ φ. For the element

y ∈ L+ we have ycon¬y and therefore φ ⊲ ¬y. We conclude ¬x ⊲ ¬y.

Let us turn towards properties of the pseudocomplementation of d-frames that dis-

tinguish it from the Heyting complement of frames. Although the Heyting negation on

a frame A does only in the rarest instances transform meets to joins, it is always true

that the double negation a 7→ ¬¬a preserves finite meets1. The double negation on, say,

the component frame L+ of a d-frame L is a closure operator, meaning it is inflationary

and idempotent, but it does not always preserve finite meets. This is because any any

Galois connection between two frames can be turned into the pseudocomplement maps of

a d-frame. For the sake of the example one may assume the totality relation to be trivial.

3.4 The patch frame of a d-frame

Possibly the most common way to relate the theories of topological spaces with that of

bitopological spaces is via the join topology, sometimes also called the patch topology. If

τ− and τ+ are two topologies on the same set X then their join τ−∨τ+ is the coarsest topol-

ogy onX that renders the opens sets of both topologies open. A bicontinuous map between

two bitopological spaces is automatically continuous with respect to the join topologies

(the converse does not hold in general). Thus one obtains a functor ∨ : BiTop → Top.

It has an easy-to-describe left adjoint: Any topological space (X, τ) can be regarded as

the bitopological space (X, τ, τ). Let us call such a bitopological space symmetric and

1A remarkable consequence of this is that any locale has a smallest dense sublocale.
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3 D-frames

write Sym : Top → BiTop for the functor that maps a topological space to its symmetric

bitopological space and acts as the identity on morphisms.

Can one lift this adjunction to the point-free setting? So far we can draw a diagram

of adjunctions as this:

dFrm

?

⊥
//______

pt

��

Frm

pt

��

?
oo_ _ _ _ _ _

BiTop

∨

⊤
//

O

OO

Top

O

OO

Sym
oo

(3.1)

Here, the vertical arrows are the two contravariant Stone dualities. If the adjunction

indicated in dashed arrows is to represent the adjunction at the bottom of the square, we

expect that the composite dFrm //___ Frm
pt //Top is the same as the spectrum functor

of d-frames followed by ∨ and dually the composite functor Top
O //Frm //___ dFrm is

the same as the functor Sym followed by the functor from bitopological spaces to d-

frames. There is an obvious candidate for the functor from frames to d-frames, namely

the symmetric d-lattice functor of Definition 2.5.3 which maps a lattice L to the d-lattice

(L,L, con, tot) = L= where xtoty iff x ⊔ y = 1 and xcony iff x ⊓ y = 0. It is not hard to

see that this functor maps the subcategory of frames and frame homomorphisms to the

subcategory of d-frames and d-frame homomorphisms. And indeed we have the identity

(−)= ◦ O = O ◦ Sym, as required. From Section 2.5 we also know what the left adjoint to

the symmetric d-frame functor should be:

Definition 3.4.1. The patch frame PatchL of a d-frame L has generators pφq− and pxq+

where φ ranges over elements of the component frame L− and x ranges over the component

frame L+. One quotients the free frame over these generators by the rules enforcing that

that the pair (p−q−, p−q+) is a d-frame homomorphism from L to (PatchL)=.

Theorem 3.4.1. The patch functor on d-frames is left adjoint to the symmetric d-frame

functor.

Proof. Analogous to the proof of Theorem 2.5.4.

Corollary 3.4.2. For every d-frame, the spectrum of its patch frame is homeomorphic to

the bitopological spectrum of the d-frame endowed with the join topology.

Proof. Once more we make use of the fact that the dualising object 2 of d-frames is the

symmetric d-frame 2= of the dualising object of the category of frames. Because of the

adjunction Patch ⊣ (−)= we have a natural isomorphism of hom-sets

dFrm(L,2) ∼= Frm(PatchL, 2).
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Therefore the spectrum of the patch frame has the same points as the bitopological spec-

trum. It remains to show that the two sets have the same topology. Observe that every

element of the patch frame is a (possibly infinite) join of elements of the form pφq−⊓pxq+

where (φ, x) ∈ L− ×L+. A frame homomorphism f : PatchL → 2 maps such a meet to 1

precisely if it maps both pφq− and pxq+ to 1. Consequently the basic open of pt PatchL

that is given by pφq− ⊓ pxq+ is the same as the intersection of basic opens pφq− and

pxq+ of the bitopological spectrum ptL, and these intersections from a basis of the join

topology.

Example 14. Consider the d-frame of Example 12. The patch frame of this has a basis

of the form pyq− ⊓ pxq+ where x, y ∈ [0, 1]. The relations between these kinds of frame

elements match the standard presentation of the Euclidean topology by generators and

relations. To see this, identify the closed unit interval with the set of extended reals

[−∞,∞] and an element pyq− ⊓ pxq+ of the patch frame with the open interval (y, x)

of R.

Moving to Example 13 one finds that its patch frame, considered as a locale, constitutes

a sublocale of the locale of real numbers. The generator (−∞, x)∪(x,∞) is identified with

the maximal element of the frame of opens. This is in fact a standard trick to produce a

non-trivial sublocale of the locale of reals that has no points.

The patch construction was originally used by Jung and Moshier to provide an adjunc-

tion between the category of d-frames and Banaschewski and Hardie’s category BiFrm of

biframes. Given a biframe (L,L−, L+) where L− and L+ are sub-frames of L generating

it, one defines a d-frame with components frames L− and L+ where xconφ if and only if

x⊓φ = 0 in L and dually φtotx precisely when φ⊔x = 1 in L. The adjoint to this “forgetful

functor” BiFrm → dFrm is given by the patch frame of a d-frame together with the two

sub-frames that arise as the images of the component frames under the generator maps

p−q− and p−q+. Related patch constructions are also associated with adjunctions, but all

rely on an ambient frame. Banaschewski and Brümmer [5] and Escardó [18, 19] construct

the compact regular coreflection of a stably compact locale by means of congruences resp.

nuclei on a frame.

3.5 Regular d-frames

Just as with topological spaces, the bare definition of d-frames does not lead to a wealth of

interesting results. This is because the link between the two component frames is so weak

that it is easy to construct counterexamples to all sorts of conjectures. The motivating

examples of bitopological spaces, such as the order topologies on the real line or the de

Groot dual of stably compact spaces, are all instances of a bitopological version of regular

spaces.
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In many situations the T2 (Hausdorff) separation axiom implies the T3 separation ax-

iom. For example, any locally compact Hausdorff space is regular2, any compact Hausdorff

space is locally compact and therefore regular. These statements even hold for locales, as

Vermeulen [54] showed.

The T3 separation axiom can be formulated without explicit reference to points. In-

deed, suppose U is an open set of a T3 space and x an element of U . Then x is not in

the closed complement of U , whence one can find disjoint open neighbourhoods x ∈ U ′

and (X \ U) ⊆ V . Observe that the open set V is a witness for the fact that U ′ is well

inside U . Hence for T3 one simply requires that every open set U is the union of opens

sets well inside U .

There is an obvious bitopological generalisation of T3 that can be found for instance

in [38]. Given a bitopological space (X, τ−, τ+) one requires that any open U ∈ τ+ is the

union of opens U ′ ∈ τ+ whose closure with respect to τ− is contained in U , and likewise for

opens of the other topology. Again, there is a simple description in terms of the well-inside

relation.

Lemma 3.5.1. A bitopological space X is T3 in the sense of [38] if and only if the Stone

dual OX has approximating well-inside relations.

In the lemma above, the notion of well-inside relation is that of Definition 2.2.1. The

term approximating is borrowed from domain theory and shorthand for saying that every

element x is the join of elements y that satisfy y ⊳ x. We turn this observation into a

definition.

Definition 3.5.1. A d-frame L is regular if its well-inside relations are approximating,

meaning that for all φ ∈ L− and x ∈ L+ one has

φ =
⊔

{ψ ∈ L− |φ ⊲ ψ}

x =
⊔

{y ∈ L+ | y ⊳ x}

Using the notation

_

x to denote the ideal of elements well inside x and similarly for φ,

one can phrase regularity as x =
⊔ _

x and φ =
⊔ _

φ for all (φ, x) ∈ L− × L+.

Let us list some examples.

Example 15. A finite d-frame is regular if and only if it consists entirely of complemented

pairs. Indeed, suppose x is an element of the finite component frame L+. If the d-frame

is regular then x is the join of the ideal

_

x which, as any ideal of a finite frame, must

be principal. Consequently x ⊳ x which means that x is complemented in the sense of

Definition 2.2.2. Conversely, any d-frame that consists entirely of complemented elements,

whether it is finite or not, is trivially regular.

2By local compactness, any open is the union the interior of its compact subsets. In a Hausdorff space,
all compact subsets are closed.
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3.5 Regular d-frames

Example 16. The d-frame of Example 12 is regular. Indeed, the upper open set (x, 1)

is the join of opens (x′, 1) where x < x′. Observe that (x, 1) is total with (0, x′) which in

turn is consistent with (x′, 1).

A curious property of regular d-frames is that the consistency relation is redundant.

Proposition 3.5.2. In a regular d-frame L the pseudocomplement of an element x ∈ L+

can be computed as ¬x =
d
xtot.

Proof. Recall that because of the axiom (con-tot) in every d-frame the element ¬x is

a lower bound of the filter xtot. Hence it suffices to show the inequality
d
xtot ⊑ ¬x.

Because of regularity we can write x as the join
⊔ _

x of elements well inside it. The

pseudocomplement map ¬ : L+ → L−, being part of a Galois connection, transforms all

joins to meets. Therefore

¬x = ¬
⊔ _

x =
l

{¬y | y ⊳ x} .

To finish the proof, recall that an element y is well inside x if and only if ¬y is total with x.

Therefore the set {¬y | y ⊳ x} is contained in xtot.

Recall that the consistency relation of any d-frame is entirely described by the Galois

connection of pseudocomplement maps associated with it. Consequently, knowing that

a d-frame is regular one is able to reconstruct the consistency relation from the totality

relation alone. Another way of interpreting the proposition above is to say that the regular

d-frames are those where the consistency relation is as large as the axiom (con-tot) permits.

Checking for regularity

In many instances one defines a topology on a set by specifying a basis or even a subbasis

only. An arbitrary open set then might be a lot harder to describe than a subbasic open.

Therefore it comes handy that in order to determine whether a d-frame is regular, it

suffices to check a subbasis of each component frame only.

Lemma 3.5.3. Let L be a d-frame and B−, B+ be subbases of the component frames L−

and L+, respectively. (That is, every frame element is a join of finite meets of subbasic

elements.) If every element of a each subbasis is the join of elements well inside it, then

the d-frame is regular.

Proof. The statement of the lemma follows from a general fact about auxiliary relations on

frames. Suppose ⊳ is an auxiliary relation on a frame L such that for every element x of the

frame the lower set

_

x = {y ∈ L | y ⊳ x} is an ideal and further suppose that the relation

⊳ is closed under finite meets on the right. Then the assignment x 7→

_

x : L → IdlL

preserves finite meets. Now suppose x, y are elements of a subbasis of L and x =
⊔ _

x
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and y =
⊔ _

y hold. Then

⊔ _

(x ⊓ y) =
⊔

(

_

x ∩

_

y) =
(⊔ _

x
)
⊓
(⊔ _

y
)
= x ⊓ y.

Here we exploited the fact that the join operation on ideals of a frame is a frame ho-

momorphism and therefore preserves finite meets. We showed that if the relation ⊳ is

approximating on a subbasis, then it is approximating on the basis generated by the sub-

basis. Now let x be an arbitrary element of the frame and let B be a set of basic elements

with x =
⊔
B. Suppose that on B the relation ⊳ is approximating. Then we write

x =
⊔
B =

⊔{⊔ _

b
∣∣∣ b ∈ B

}
=

⊔ ⋃

b∈B

_

b

to see that x, too, is approximated by elements of
_
x.

As an application of the preceding lemma let us prove that an important class of

bitopological spaces is regular.

Proposition 3.5.4. For a continuous poset D, let σD denote the Scott topology and ωD

denote the weak lower topology. Then the bitopological space (D,σD, ωD) is regular.

Proof. It is well-known that the Scott topology on a continuous poset is itself a domain

where a Scott open U0 is way below a Scott open U1 if and only if there is a finite set

A ⊆ U1 such that U0 ⊆ |◮A . As the finitely generated upper sets are the basic closed sets

of the weak lower topology, it follows that the well-inside relation of the bitopology in

concern is approximating on σD.

Now consider a subbasic open D \ |◮d of the weak lower topology. We claim that this

open set is the union of subbasic opens D \ |◮y where y is way below d. This is the same

as claiming that |◮d is the intersection of the upper sets |◮y where y ranges over

։

d. If

d 6⊑ d′ then there exists some x≪ d with d′ 6∈ ։x (see [22, I-1.6]). Using the interpolation

property we find x ≪ y ≪ d whereby d′ 6∈ |◮y . This proves the claim. Observe that

for y ≪ d the lower open D \ |◮d is total with the Scott open set ։y which in turn is

consistent with D \ |◮y . With Lemma 3.5.3 is follows that the well-inside relation on ωD

is approximating.

3.5.1 Spectra of regular d-frames

Let us check that our definition is sound in the sense that spectra of regular d-frames

enjoy the corresponding separation axiom.

Lemma 3.5.5. In a regular d-frame, any Scott open subset of a component frame is open

in the sense of Definition 2.3.1, that is, a round upper set with respect to the well-inside

relation.
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3.5 Regular d-frames

Proof. If
⊔ _

x = x ∈ U ∈ σL+ then by definition of the Scott topology the ideal

_

x

intersects the Scott open U .

In particular we have a relationship between the way-below relation of a component

frame and its well-inside relation.

Lemma 3.5.6. If x≪ y holds in the component frame L+ of a regular d-frame then x is

well inside y.

Proof. x≪ y =
⊔ _

y implies x ∈

_

y by definition of the way-below relation.

Proposition 3.5.7. The spectrum of a regular d-frame is bitopologically T3.

Proof. Consider a d-point of the d-frame L in the guise of a pair of completely prime

filters (F−, F+). Suppose that this point is disjoint from the closed set whose complement

is the open pφq− where φ ∈ L−. In other words φ is an element of the completely prime

filter F−. This filter is in particular Scott open, whence by the preceding lemma there

exists an element ψ ∈ F− that is well inside φ. By definition of the well-inside relation we

have φtotxconψ for some witness x ∈ L+. Observe that because of ψ ∈ F− the point under

consideration is an element of the open set pψq−. Furthermore, the closed set ptL\ pφq−

is contained in the open set pxq+ because of φtotx and the latter open is disjoint from

pψq− because of xconψ. We conclude that in the spectrum of L, any point not contained

in a closed set with respect to the topology τ− can be separated from the closed set by a

pair of disjoint opens, where the open neighbourhood of the τ−-closed set is τ+-open and

the neighbourhood of the point is τ−-open. By symmetry, a similar statement holds for

sets that are closed with respect to the topology τ+.

In due course we will show that not only is the spectrum of a regular d-frame T3, but

also pairwise Hausdorff and thereby regular, as the nomenclature suggests. For this we

employ a result that has many useful consequences.

Theorem 3.5.8. Let M be a regular d-frame and h : M → L a d-frame homomorphism.

Then the components h− and h+ determine each other.

Proof. We claim that the following diagram commutes, where the maps (−)con and (−)tot

are the maps of the Fundamental Lemma of d-lattices 2.3.2.

FiltM−
Filt(h−)// FiltL−

(−)con
��

IdlM+

(−)tot

OO

IdlL+

⊔

��
M+

|

◭

OO

h+

// L+

(3.2)
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3 D-frames

Let m be an element of the component frame M+. We show that the value h+(m) can be

computed knowing only the other component map h−. Expanding the definition yields

(Filt(h−)((|◭m )tot))con = {x ∈ L+ | ∃ψ ∈M−. xconh−(ψ), ψtotm} . (3.3)

By regularity of M we know that h+(m) is the join of the set

{
h+(m

′)
∣∣ ∃ψ ∈M−.m

′conψtotm
}
. (3.4)

Since the d-frame homomorphism h preserves con we know that the set (3.4) is contained

in the set (3.3). From preservation of tot we deduce that every element x of the set (3.3)

satisfies x ⊳ h+(m). Together this yields both inequalities of the desired identity.

Corollary 3.5.9. A completely prime filter of a regular d-frame’s component frame ex-

tends to a d-point in at most one way.

We can say a bit more about the correspondence between points and d-points. Re-

call that the spectrum of any d-frame carries two specialisation orders ⊑− and ⊑+ that

arise from the inclusion orders between completely prime filters in the first and second

component of d-points.

Proposition 3.5.10. The spectrum of a regular d-frame is an order-separated space:

1. The specialisation orders of the topologies τ− and τ+ on the spectrum of a regular

d-frame are dual.

2. Two distinct points of the spectrum can be separated by disjoint opens, where one

open is chosen from τ− and one from τ+.

Proof. Examining Equation (3.3) in Theorem 3.5.8 one finds that the larger the component

frame homomorphism h− (in the point-wise order), the smaller the other component h+

must be. This proves claim (1).

If (F−, F+) and (G−, G+) are two d-points represented as pairs of completely prime

filters, assume without loss of generality that F+ 6⊆ G+. Using Lemma 3.5.5 find F+ ∋

x ⊳ y 6∈ G+. Let xconφtoty. Then pxq+ and pφq− are the disjoint opens of the spectrum

with the desired properties.

Corollary 3.5.11. The spectrum of a regular d-frame is a regular bitopological space.

The corollary has a converse.

Theorem 3.5.12. Every regular bitopological space is d-sober. The dual adjunction be-

tween bitopological spaces and d-frames restricts to a dual adjunction between the category

of regular bitopological spaces and the category of regular d-frames in such a way that the

“d-soberification” endofunctor on regular bitopological spaces is equivalent to the identity.

136



3.5 Regular d-frames

Proof. Let X be a regular bitopological space and OX be the regular d-frame derived from

it. It suffices to show that X is bihomeomorphic to the spectrum of OX. For this we show

that every point of ptOX arises from a point of X, because the natural map X → ptOX

is injective for pairwise Hausdorff spaces. Let (F−, F+) be a d-point of OX. Consider the

meet-prime open sets φ =
⊔
(L− \ F−) and u =

⊔
(L+ \ F+). We know that φ can not be

total with u. According to the way the totality relation on the d-frame OX was defined,

there exists a point x ∈ X that is neither an element of φ nor of u. Let (G−, G+) be the

d-point of OX associated with x (that is, G− and G+ are the neighbourhood filters of x

in the two topologies). As φ 6∈ G− we know that G− ⊆ F−, so by Proposition 3.5.10 we

have F+ ⊆ G+. But as u 6∈ G+ we also have G+ ⊆ F+ and thereby F+ = G+. A dual

argument shows that F− = G+. Hence every d-point of OX arises from a point of X.

3.5.2 The patch construction on regular d-frames

The join topology of a regular bitopological space is Hausdorff. Using Theorem 3.5.12

and Corollary 3.4.2 we can say a bit more about the join topology, because any such join

topology is the patch frame of a regular d-frame.

Lemma 3.5.13. The frame homomorphisms p−q− and p−q+ from the component frames

of a d-frame into its patch frame preserve the well-inside relation.

Proof. Follows directly from the definition of the patch frame.

Proposition 3.5.14. The patch frame of a regular d-frame is regular.

Proof. By the preceding lemma we know that every generator pφq− or pxq+ of the patch

frame is the join of generators well inside it. Those elements form a subbasis of the patch

frame whence by Lemma 3.5.3 the patch frame is regular.

Proposition 3.5.15. If L is a regular d-frame then for any x ∈ L the generators pxq− and

pxq+ of the patch frame PatchL= are equal. Consequently, L is isomorphic to PatchL=.

Proof. We use the same technique as in the proof of Lemma 2.5.5 (2). In order to show

pxq− ⊑ pxq+ we consider the generators pyq− where y is well inside x in the frame L.

By definition of the well-inside relation this means that there exists a witness z ∈ L with

y ⊓ z = 0 and y ⊔ x = 1. We obtain

0 = pyq− ⊓ pzq+ ⊑ pxq+ ⊓ pzq+,

pyq− ⊔ pzq+ ⊑ pxq+ ⊔ pzq+ = 1.

Here, the first inequality holds because z is consistent with y in the symmetric d-frame

L=, whereas the second inequality holds because p−q+ preserves joins. With the lattice

distributive law one obtains pyq− ⊑ pxq+ and using the fact that pxq− is the join of all

the pyq− we conclude pxq− ⊑ pxq+, as desired. A symmetric argument shows that also

the reverse inequality holds.
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3 D-frames

Now let us examine the right adjoint to the patch functor and consider the symmetric d-

frames that arise from regular frames. By the way the consistency and totality relation on

a symmetric d-frame is defined, whenever x is well inside y in a frame L then both pxq+ ⊳

pyq+ and pyq− ⊲ pxq− hold in the symmetric d-frame L=. Therefore the symmetric

d-frame of a regular frame is regular. But even more is true:

Theorem 3.5.16. The category of regular frames is equivalent to the category of symmet-

ric regular d-frames via the functors Patch and (−)=.

Proof. From Proposition 3.5.14 we know that the patch frame of a regular d-frame is reg-

ular, and we convinced ourselves that the symmetric d-frame of a regular frame is regular.

Because of Theorem 3.5.8 the symmetric d-frame functor is full onto the category of sym-

metric regular d-frames. In Proposition 3.5.15 we proved that the composite Patch ◦(−)=

is equivalent to the identity functor on regular d-frames. From this it follows that the

composite (−)= ◦ Patch, too, is equivalent to the identity functor on symmetric regular

d-frames.

3.6 Compact d-frames

It is our declared long-term goal to find a category of d-frames that may serve as an ap-

propriate analogue of the category KHaus of compact Hausdorff spaces. In Section 3.5 we

explored a category of d-frames whose spectra are Hausdorff in the join topology. Now

we turn towards a class of d-frames that include those arising from compact bitopological

spaces. To be more precise, let us review when a bitopological space is called compact. It

is not enough to require that a bitopological space (X, τ−, τ+) is compact in each topology

separately. As an example, consider the punctured unit interval [0, 12) ∪ (12 , 1] with the

upper and lower order topologies. This is a d-sober bitopological space. Any open cover

of this space by lower opens must cover the point 1 and has therefore a singleton subcover.

Dually, any open cover by upper opens must cover the point 0 and has a singleton sub-

cover. However, we certainly do not want to call such a space compact, as for example the

sequence (12 +
−1n

2n )n≥1 does not converge. Instead it is common to declare a bitopological

space compact if it is compact in its join topology. Kopperman calls such spaces join-

compact in [38]. Using the Alexander Subbase Lemma, joincompactness of a bitopological

space (X, τ−, τ+) is equivalent to the following assertion. Whenever {(ui, vi)}i∈I ⊆ τ−×τ+

is a directed family of pairs of opens with the property
(⋃

i∈I ui
)
∪
(⋃

i∈I vi
)
= X then

ui ∪ vi = X for some i ∈ I already. This motivates the following definition.

Definition 3.6.1. A d-frame (L−, L+, con, tot) is compact if for every directed family

{(φi, xi)}i∈I of the product L− × L+ the following holds. Whenever
⊔
i∈I φi is total with⊔

i∈I xi then there is some i ∈ I such that φi is total with xi already. In the language of

domain theory, the compact d-frames are those for which the relation tot is Scott open in

the product frame L− × L+.
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Example 17. Examples of compact d-frames include:

• All finite d-frames,

• The open ideal completion of any d-lattice,

• The d-frame derived from a d-lattice described in Example 10,

• The d-frame OX of opens derived from a joincompact bitopological space.

Example 18. There are non-compact d-frames whose spectrum is compact. For instance,

consider the d-frame of Example 13. Its spectrum is empty and thereby trivially compact.

However, for any x ∈ (0, 1) there is a total pair of opens ((0, x), (x, 1)) which we can write

as a directed join
(⋃

y<x(0, y),
⋃
z>x(z, 1)

)
where no pair ((0, y), (z, 1)) is total. Hence the

totality relation is not Scott open.

Perhaps the most useful consequence of compactness is this: Given an element of a

component frame of a compact d-frame, the filter of elements total with it is Scott open. In

particular this applies to the least element of the component frame, whereby the singleton

{1} = 0tot of each component frame is a Scott open filter. We record:

Lemma 3.6.1. Let L be a compact d-frame. Then the well-inside relation on each com-

ponent frame is contained in the frame’s way-below relation.

Proof. Suppose x, y are elements of the component frame L+ of the compact d-frame L. If

x is well inside y then there is some witness φ ∈ L− such that xconφtoty. By compactness

the filter φtot is Scott open. Since φtot contains y and x is a lower bound for this filter, we

conclude that x is way below y.

Corollary 3.6.2. The component frames of a compact d-frame are compact, that is, the

top element is way below itself.

Proof. In any d-frame the top element 1 is well inside itself.

We arrive at another important example of compact d-frames.

Lemma 3.6.3. A frame L is compact if and only if its symmetric d-frame L= is compact.

Proof. By the preceding corollary, compactness of L= implies compactness of L. For the

reverse implication, use the fact that any directed set of the product L×L gives rise to a

directed set in L by mapping a pair (x, y) to the binary join x ⊔ y. Therefore the totality

relation tot= of the symmetric d-frame L= is Scott open in L× L whenever the singleton

{1} is Scott open in L.

Lemma 3.6.4. Suppose F+ = L+\ |◭p is a completely prime filter of the second component

frame of a d-frame L. If the filter ptot ⊆ L− is Scott open, then F+ extends to a d-point

of L.
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Proof. Let F+ ⊆ L+ be a completely prime filter of a component frame of the d-frame L.

We can write F+ = L+ \ |

◭p for some meet-prime element p. Recall that a completely

prime filter F− ⊆ L− extends F+ to a d-point if and only if it separates the ideal (F+)con

from the filter ptot. As the ideal (F+)con is always disjoint from the Scott open filter ptot,

the join of the ideal (F+)con is still not in the filter ptot. Now apply the Scott Open Filter

Theorem3 and obtain a completely prime filter F− that contains ptot and does not contain⊔
(F+)con. We have found a d-point (F−, F+) extending the original completely prime

filter.

Remark. The elements p with ptot Scott open can for good reasons be called cocompact .

The d-points of a regular d-frame are in bijective correspondence with the cocompact

meet-primes of each component frame.

Proposition 3.6.5. In a compact d-frame, every completely prime filter of a component

frame extends to a d-point.

Proof. In a compact d-frame, every filter of the form ptot is Scott open, so Lemma 3.6.4

applies.

3.7 Compact regular d-frames

From the spectral theory point of view, neither the regular nor the compact d-frames are

entirely satisfying. Any regular bitopological space is the spectrum of a regular d-frame,

but the class of regular d-frames contains highly non-spatial members. The compact d-

frames possess at least as many d-points as their component frames have points, but then

it is easy to construct a compact d-frame whose component frames do not have any points.

Both properties combined, however, lead to a most satisfying class of d-frames.

To begin with, the component frames of a compact regular d-frame are stably contin-

uous. Indeed, recall from Lemma 3.6.1 that in a compact d-frame the well-inside relation

is contained in the way-below relation. With regularity and Lemma 3.5.6 we obtain the

reverse inclusion. It follows that the component frames of a compact regular d-frame are

domains. Furthermore, the way-below relation inherits the algebraic properties of the

well-inside relation, whereby the component frames are stably continuous.

Every stably continuous frame has a stably continuous Lawson dual. Proposition 1.9.1

gave a proof of this fact by means of interaction algebras. And indeed we do not have to

look far to find the Lawson dual of a compact regular d-frame’s component frame:

Proposition 3.7.1. Let L be a compact regular d-frame.

3In a distributive complete lattice, a point and a Scott open filter can be separated by a completely
prime filter. See [22, Lemma I-3.4] or [30, VII-4.3].
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1. The component frame L− is order-isomorphic to the Lawson dual of the component

frame L+ via the assignments

φ 7→ φtot : L− → (L+)
∧, F 7→

⊔
Fcon : (L+)

∧ → L−.

2. Under the isomorphism of (1) the relation φtotx holds precisely when x is an element

of the Scott open filter φ and xconφ holds precisely when x is a lower bound for the

Scott open filter φ.

Proof. As we remarked above, the way-below relation on each component frame coincides

with the well-inside relation. By Definition 3.6.1 and the observation at the end of Sec-

tion 2.4 every compact regular d-frame is therefore normal and in fact a Stage 5 interaction

algebra. Recall that any domain is isomorphic to the domain of its round ideals with re-

spect to the way-below relation (Proposition 6.1.9). Now (1) follows from Theorem 1.3.4

and the claim (2) follows from Proposition 1.3.5.

A priori it is not clear whether there is a restriction on the stably continuous frames

that feature as component frames of compact regular d-frames. This question can be put

aside easily:

Proposition 3.7.2. For every stably continuous frame L the Stage 5 interaction algebra

IalgL = L∧

tot
))
L

con
jj

is a compact regular d-frame.

Proof. Both L and the Lawson dual L∧ are stably continuous frames. As for the axioms

of a d-frame, only (con-
⊔
) needs checking. The pseudocomplement of an element x ∈ L

is the filter ։x of elements way above x. Observe that for this to be a filter, stable

continuity is essential. The pseudocomplement of a Scott open filter is simply its meet

in L. Compactness and regularity are straightforward to check.

We arrive at the somewhat surprising conclusion that a compact regular d-frame is

entirely determined by one component frame. This corresponds to a well-known fact

about stably compact spaces and the de Groot dual [38, Lemma 4.6]: For a T0 space there

is at most one topology that completes it to a compact regular bitopological space, and

in that case both topologies must be stably compact and duals of each other. But even

more is true: From Theorem 3.5.8 we know that the d-frame homomorphisms between

compact regular d-frames are determined by one component map already. Regarding the

first component frame as the set of Scott open filters of the second component, one finds

that the image of a Scott open filter under the d-frame homomorphism is nothing but the

(upper closure of the) forward image of that filter under the second component map.
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Does every semi-open frame homomorphism between stably continuous frames give

rise to a d-frame homomorphism between compact regular d-frames? The answer is yes,

and in due course we will see that it is irrelevant whether the semi-open homomorphism

preserves directed joins.

Lemma 3.7.3. The open ideal completion of a normal d-lattice is a compact regular d-

frame.

Proof. As we remarked already, the open ideal completion of any d-lattice is a compact

d-frame because of the way the totality relation is defined. In Proposition 2.4.5 we showed

that the component frames of a normal d-lattice’s open ideal completion are stably continu-

ous frames. The remarks following that proposition show that the consistency and totality

relations of the open ideal completion are of the form described in Proposition 3.7.1 (2).

Observe that a compact regular d-frame L is in particular a normal d-lattice. The

preceding lemma combined with Proposition 3.7.1 yields:

Proposition 3.7.4. A compact regular d-frame is isomorphic to its own open ideal com-

pletion.

Let us return to the homomorphisms between compact regular d-frames. Suppose

h : L→M is a map between stably continuous frames that preserves all finite meets and

joins as well as the way-below relation. Extending both frames to compact regular d-frames

L = (L∧, L, con, tot) and M = (M∧,M, con, tot) turns h into a well-inside-preserving

lattice homomorphism between the components of normal d-lattices. By Proposition 2.3.9

the map h extends to a d-frame homomorphism between the open ideal completions of L

and M. But these are isomorphic to the d-frames L and M themselves, so the extension

of h can be regarded as a d-frame homomorphism L → M. Concretely, the d-frame

homomorphism generated by h maps an element x ∈ L to the join of the forward image

of

։

x under h, and a Scott open filter φ ∈ L∧ to the upper closure of its forward image

under h. Evidently, if h was a frame homomorphism in the first place, then the process

described gives back h, because h(x) = h (
⊔ ։

x) =
⊔
Idl(h)(

։

x). Let us gather our findings

in a theorem.

Theorem 3.7.5. The category KRdFrm of compact regular d-frames is equivalent to the

category SCFrmπ of stably continuous frames and semi-open frame homomorphisms.

Compact regular frames

The Stone duals of compact Hausdorff spaces are the compact regular frames, that are

frames where the top element is way below itself and the well-inside relation is approx-

imating. Recall from Theorem 3.5.16 that the category of regular frames is equivalent

to the category of symmetric regular d-frames. In particular the well-inside relation of a

regular frame L is the same as the d-frame-theoretic well-inside relation of the symmetric
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3.7 Compact regular d-frames

◦

◦

◦

∞◦

2◦

1◦

0◦

Figure 3.4: A stably continuous frame that is isomorphic to its own Lawson dual, but is
not regular.

regular d-frame L=. Further recall from Lemma 3.6.3 that a frame is compact if and only

if its symmetric d-frame L= is compact. Together with Proposition 3.7.1 we obtain:

Proposition 3.7.6. A frame L is compact regular if and only if the assignment x 7→

{y ∈ L |x ⊔ y = 1} constitutes an isomorphism between the frame and its Lawson dual.

Observe that the existence of an arbitrary isomorphism with the Lawson dual is not

enough. The frame depicted in Figure 3.4 provides a counterexample. Together with

Theorem 3.7.5 we conclude:

Proposition 3.7.7. The category KRFrm of compact regular frames and frame homomor-

phisms is equivalent to the category KRdFrm= of symmetric compact regular d-frames.

Proof. Since the way-below relation on a compact regular frame coincides with the frame-

theoretic well-inside relation and all frame homomorphisms preserve the latter relation,

the category KRFrm is a full subcategory of SCFrmπ.

3.7.1 Spectral theory of compact regular d-frames

Stably compact spaces

It is well known in domain theory that the stably continuous frames are precisely the Stone

duals of stably compact spaces. The semi-open frame homomorphisms on the algebraic

side correspond to proper continuous maps on the spatial side, that is, maps with the extra

property that preimages of compact saturated sets are compact again. We claim that the

best view on this duality is the bitopological one. Indeed, recall that the compact saturated

sets are the basic closed sets of the cocompact topology. Hence a proper continuous map

is actually bicontinuous when the source and target spaces are endowed with the original

topology and its cocompact counterpart.
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3 D-frames

Let us examine how the duality is presented by d-frames.

Lemma 3.7.8. In a compact regular d-frame, every frame point of a component frame

extends to a unique d-point.

Proof. Combine Corollary 3.5.9 and Proposition 3.6.5.

Proposition 3.7.9. Compact regular d-frames are spatial.

Proof. As every continuous frame is spatial (this is shown using the Scott Open Filter

Theorem), the preceding lemma yields that elements of a component frame can be sep-

arated by d-points. It remains to show the two conditions of spatiality concerned with

the relations con and tot. For this is it convenient to use Proposition 3.7.1 and view the

first component frame of a compact regular d-frame as the Lawson dual of the second

component. Let us write L∧ for the first and L for the second component frame of the

compact regular d-frame L. A completely prime filter F = L\ |◭p on the second component

corresponds to the completely prime filter Φp := {φ ∈ L∧ | p ∈ φ} of the Lawson dual.

Suppose x ∈ L is not a lower bound for the Scott open filter φ. Then there exists

some element y ∈ φ such that x is not below y. As the frame L is spatial, we can find

a completely prime filter F ⊆ L that contains x and not y. Notice that y 6∈ F implies

y ⊑ p =
⊔
(L \ F ) whereby (Φp, F ) is a d-point with φ ∈ Φp and x ∈ F , as desired.

Now suppose that x is not an element of φ. This is the classical case for the Scott

Open Filter Theorem; we obtain a completely prime filter F ⊆ L containing φ that x is

not a member of. From φ ⊆ F we also get p =
⊔
(L \ F ) 6∈ φ whence (Φp, F ) is a d-point

with φ 6∈ Φp and x 6∈ F .

In contrast to spectra in general, the bitopological spectrum of a compact regular d-

frame is sober in each of the individual topologies. The Hofmann-Mislove Theorem tells

us that the compact saturated subsets of a sober space are in order-reversing bijection

with the Scott open filters of open sets. This yields an order-isomorphism between the

opens of the cocompact topology and the Lawson dual of a stably compact topology. We

arrive at:

Theorem 3.7.10. The spectrum of a compact regular d-frame consists of a space endowed

with a stably compact topology and its cocompact dual. Every compact regular d-frame

arises as the d-frame of opens of such a bitopological space. The category KRdFrm of

compact regular d-frames is dually equivalent to the category SCTop of stably compact

spaces and proper maps.

Compact ordered Hausdorff spaces

There is yet another manifestation of compact regular d-frames that brings us closer to

our long-term goal of compactifications. Recall from Proposition 3.5.10 that the spectrum

of every regular d-frame is an order-separated space whose order is the specialisation
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order of the second topology. If the d-frame is in addition compact, then using spatiality

and the Alexander Subbase Lemma one shows that the join topology on the spectrum

is compact Hausdorff. As continuous maps are automatically monotone with respect to

the specialisation order, d-frame homomorphisms give rise to monotone continuous maps

between compact ordered Hausdorff spaces. In fact, every compact ordered Hausdorff

space arises as the patch of a stably compact space (see for example the Compendium [22]).

Hence we have yet another category that is dual to compact regular d-frames.

Theorem 3.7.11. The category KRdFrm of compact regular d-frames is dually equivalent

to the category KOrdHaus of compact ordered Hausdorff spaces and monotone continuous

maps.

3.8 Notes on Chapter 3

The material presented in this chapter has large overlaps with what Jung and Moshier

developed in their technical report [33]. Some sections of the technical report are missing

here, as our treatment of d-frames is geared towards compact regular d-frames and the

theory of point-free compactifications. What we call d-frames here are reasonable d-

frames in the technical report; the duality with bitopological spaces actually works without

requiring that the consistency and totality relations satisfy the rules of Table 3.1. However,

every d-frame that arises from a bitopological space obeys the rules of Table 3.1 as well

as the cut rules, hence the term “reasonable”. Practically all results of Section 3.2 were

known before.

Jung and Moshier exhibit other algebraic structures that are equivalent to d-frames.

In a nutshell, instead of the full product of the two component frames, one can restrict the

attention to the consistency predicate only and model the totality predicate as an auxiliary

relation on this lattice. This presentation is particularly suited for the equivalence between

compact regular d-frames and strong proximity lattices.

Yet there are aspects in the present work which are not found in the work of Jung

and Moshier. The view on the consistency relation as being generated by pseudocom-

plements is new, and so is Proposition 3.5.2. The patch construction for d-frames was

originally conceived for the adjunction between d-frames and biframes, so Theorem 3.4.1

was only stated implicitly. Therefore this work is the first that exploits the fact that the

adjunction between frames and d-frames “transports the dualising objects” in the form

of Corollary 3.4.2. For the patch constructions for stably (locally) compact spaces and

locales using various representations, consult [12, 5, 19, 44]. The equivalence between

regular frames and symmetric regular d-frames and in particular Proposition 3.5.15 and

Theorem 3.5.8 are new. However, its consequence Proposition 3.5.10 was shown in [33,

Prop. 6.4] and Theorem 3.5.12 was proved in greater generality in [33, Theorem 4.13].

Proposition 3.6.5 was proved by Achim Jung and the author, although for compact

regular d-frames this extension result already was known by different means.
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3 D-frames

Section 3.7 contains no new results, as most of its contents are well-known facts about

stably compact spaces and the patch topology. The importance of stably compact spaces

and their abundance in domain theory nevertheless lets it appear worthwhile to develop

tools that make calculations with stably compact spaces easy.

Future work and open problems

In contrast to the patch construction of d-lattices, it is not known whether the generator

maps from the components of a d-frame into its patch frame are injective in general.

Connected to this question is the conjecture that there are compact d-frames whose patch

frame and spectrum are not compact. The reason why we believe that such structures

exist is that compactness relies entirely on the totality relation. Therefore it is conceivable

that one can start with a joincompact bitopological space, enlarge the consistency relation

on its d-frame of opens and thereby remove just enough d-points to render the spectrum

non-compact.

The patch frame might provide another approach to the T1 separation axiom for

locales. The adjunction Patch ⊣ (−)= of Theorem 3.4.1 gives rise to a monad on Loc

whose fixed points may for good reasons be called T1 locales4.

The categorical structure of the category dFrm is yet to be explored. While the con-

struction of products seems straightforward and analogous to the construction of products

of d-lattices, coproducts are not as easy to describe. As of the time of writing it seems

that Moshier has solved this problem.

Subobjects in the category of locales have several equivalent presentations, each of

them with its advantages and disadvantages. A sublocale is a regular monomorphism in

Loc, which can be shown to be the same as a surjective frame homomorphism. Using the

fact that every frame homomorphism has a right adjoint one arrives at nuclei . These are

inflationary idempotent self-maps on a frame which preserve finite meets. The collection

of all nuclei on a frame forms another frame in the point-wise order. When moving to

d-frames, the difficulty is how to accommodate for the consistency and totality relations.

A reasonable generalisation seems that a d-frame should have a d-frame of nuclei. An

alternative approach to sublocales is via congruence preorders on frames. As we demon-

strated, it is entirely possible to change the spectrum of a d-frame without altering the

component frames at all. Hence a congruence on a d-frame should extend both the order

on the frame L− × L+ to a congruence preorder as well as the consistency and totality

relations to the their “preorder” counterparts. The difficulty in this approach is that one

must understand the rules of Table 3.1 as production rules which mutually enlarge the

three sets under consideration.

4The standard notion defines a locale X to be T1 if the exponential XS is isomorphic to X, where S is
the Sierpinski locale. In the spectrum of a frame L ∼= Patch(L=), distinct points can be separated either
by disjoint open or by disjoint closed sets.
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Chapter 4

Compactifications of d-frames

Let us review the notion of compactification in classical point-set topology. Suppose one

has specified a continuous function on a spaceX of easily described elements. For example,

a function from the rationals Q to the reals or a function µ assigning a measure to closed

intervals. One would like to extend this function to a set of more complicated elements,

such as the reals or a sigma algebra of sets, respectively. The extension of the function

should be uniquely determined, which can be ensured by requiring the extended domain

to be Hausdorff and the original space X to be dense in it, because then every element

y of the extension is the unique limit of some net (xi) in X; the function is extended as

f(y) = limi f(xi). Moreover, every net (xi) in X should give rise to some some element y

of the extension. The latter is achieved by requiring the extension of X to be compact.

Thus the problem of extending the space X to a space Y with the listed properties

becomes the compactification problem.

The compactification problem. Given a topological space X, find a compact Haus-

dorff space Y such that X can be identified with a dense subspace of Y .

A compactification of X is a dense topological embedding of X into some compact

Hausdorff space Y . This means there exists a continuous map e : X → Y with the

properties

• e is an embedding: The map e is a homeomorphism onto its image.

• The image of e is dense: Any neighbourhood of any point of Y contains some point

of the form e(x).

In fact one may describe a compactification purely in terms of the open sets. The map

e : X → Y is an embedding if and only if the preimage map e−1 : OY → OX is

surjective. The map e is dense precisely when e−1(U) = ∅ implies that U = ∅. We turn

this observation into a definition:

Definition 4.0.1. A compactification of a frame L is a surjective frame homomorphism

h :M ։ L from some compact regular frame M onto L such that h(x) = 0 implies x = 0.
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4 Compactifications of d-frames

The Stone duals of compact Hausdorff spaces are precisely the compact regular frames.

Every space that admits a compactification is Tychonoff and thereby sober. The Stone

duals of Tychonoff spaces are the completely regular frames, whence the definition above

subsumes the compactifications of spaces.

Surprisingly, the dense embedding e : X → Y can be described internally in the

space X as follows1. Consider those pairs (A0, A1) of closed sets in X where the closure

e(A0) is well inside the closure e(A1) in the space Y . This yields a relation ≺ between

opens of X that is stronger than set inclusion. The somewhat unexpected result, to our

knowledge first published in Russian, is the following.

Theorem 4.0.1. The compactification e : X →֒ Y of X can be reconstructed from the

relation ≺ derived from the dense embedding e. Concretely, the frame of opens OY is

isomorphic to the frame Idl≺OX of round ideals of opens and the frame homomorphism

e−1 : OY → OX is isomorphic to the join map
⊔

: Idl≺OX → OX. Moreover, every

compactification arises this way.

Once more let us emphasise that the theorem does not mention points at all, and so it

is not surprising that there is an analogous statement for the compactifications of frames,

due to Banaschewski [4].

Theorem 4.0.2. Let h : M ։ L be a compactification of the frame L. Define a relation

≺ on the frame L as

x0 ≺ x1 iff h∗(x0) ≪ h∗(x1)

where h∗ is the right adjoint to h. Then the frame M is isomorphic to the round ideal

completion Idl≺ L and the frame homomorphism h is isomorphic to the join map
⊔

:

Idl≺ L→ L. Moreover, every compactification of L arises this way.

Those relations ≺ arising from a compactification of a frame are characterised by the

properties listed in Table 4.1 and are called proximities. Every proximity gives rise to a

compactification. In this chapter we set out to answer the following questions.

1. What is the appropriate notion of compactification of a d-frame?

2. Which d-frames admit a compactification? (What are the analogues of completely

regular frames?)

3. What is the appropriate notion of proximity on a d-frame? Can the compactifications

of d-frames be characterised by proximities?

4. Is there a largest compactification? (What is the Stone-Čech compactification of a

d-frame?)

5. Which d-frames possess a smallest compactification?

1If A = X \ U is closed then the closure of e(A) is the complement of the largest open set V ⊆ Y with
e−1(V ) = U . Hence the use of the right adjoint in Theorem 4.0.2 below.
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Auxiliary relation (i) ≺ is contained in the poset order ⊑.

(ii) x′ ⊑ x ≺ y ⊑ y′ implies x′ ≺ y′.

Finite meets and joins (iii) If X is a finite set and for all x ∈ X the relation
x ≺ y holds, then

⊔
X ≺ y.

(iv) If Y is a finite set and for all y ∈ Y the relation
x ≺ y holds, then x ≺

d
Y .

Interpolation (v) Whenever x ≺ z then there exists some y with
x ≺ y ≺ z.

Approximation (vi) The relation ≺ is approximating: every element
y is the join of the set {x |x ≺ y}.

Well-inside (vii) The relation ≺ is stronger than the well-inside
relation: Whenever x ≺ y then x ⊳ y.

Complements (viii) The relation ≺ respects complements: When-
ever x ≺ y then ¬y ≺ ¬x.

Table 4.1: The axioms characterising a proximity on a frame. For general frames, read
¬ as the Heyting complement. If the frame is the powerset of a space, read ¬ as set
complement.
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4 Compactifications of d-frames

4.1 Complete regularity and compactifications of d-frames

Our declared goal is to extend the theory of compactification of spaces to a theory of order-

preserving compactification of ordered spaces. Consequently, the category of compact

regular frames is replaced by the category of compact regular d-frames, as the latter

is dually equivalent to compact ordered Hausdorff spaces (see Theorem 3.7.11). Hence

our tentative definition is: A compactification of a d-frame L is a d-frame homomorphism

h : M → L where M is compact regular, both component maps are surjective and h(φ, x) =

(0, 0) implies that (φ, x) = (0, 0). While surjectivity of the component maps seems to be

an obvious criterion, the implicit definition of density we used here turns out to be too

weak. The reason is that the spectrum of a compact regular d-frame carries two stably

compact topologies, which are in general not Hausdorff. For spaces that are not T1 the

classical version of density makes no sense. Consider, for example, a domain in its Scott

topology and suppose the domain has a top element ⊤. Then the singleton subset {⊤}

is dense in the domain, as every non-empty Scott open set is in particular an upper set

and therefore contains the top element. But the domain can be arbitrarily large and we

certainly do not want the singleton {⊤} to pass as dense.

Hence we need to find a strengthening of the classical notion of density that works for

stably continuous frames. Luckily such a notion already exists. M. Smyth explored the

problem of embedding a space into a stably compact space in his influential paper [50],

from where we have derived the definitions of the following subsection.

4.1.1 Basis embeddings and dense homomorphisms

Recall from Section 6.1.9 that every frame homomorphism h has a right adjoint which is

typically denoted by h∗. Observe that a frame homomorphism h is dense in the classical

sense if and only if h∗(0) = 0.

Definition 4.1.1. A surjective frame homomorphism h :M ։ L from a continuous frame

M onto a frame L is called dense if its right adjoint is a basis embedding with respect to

the way-below relation. That is, whenever a≪ b in M there exists some x ∈ L such that

a≪ h∗(x) ≪ b.

Observe that because of 0 ≪ 0 any surjective frame homomorphism that is dense

in the sense of Definition 4.1.1 is also dense in the usual sense of locale theory. Our

definition clearly rules out the example of the domain with a top element we mentioned

earlier. Equipped with the strengthened version of density we dare to give a definition of

compactification.

Definition 4.1.2. A compactification of a d-frame L is a d-frame homomorphism h :

M → L where M is compact regular and the component maps of h are surjective and

dense frame homomorphisms.
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4.1 Complete regularity and compactifications of d-frames

4.1.2 Completely regular d-frames

The question naturally arises whether every d-frame admits a compactification. In due

course we will see that this is not so, and just as the topological spaces that admit a

compactification are the Tychonoff spaces and the frames that admit a compactification

are the completely regular frames, the class of d-frames that admit a compactification

share a property that for good reasons can be called complete regularity.

Consider a compactification h : M → L of a d-frame L. Recall from Section 3.7

that the component frames of the compact regular d-frame M are stably continuous

frames and their well-inside relation coincides with the way-below relation. But even

more is true: Any compact regular d-frame is normal, whereby the well-inside relation

is interpolative. From Lemma 2.4.3 we know that the well-inside relation on a normal

d-lattice coincides with the really-inside relation we introduced in Definition 2.4.3. Just as

the well-inside relation, the really-inside relation is preserved by d-lattice homomorphisms

and in particular by d-frame homomorphisms. Since the component maps h− and h+ of

the compactification are surjective, for every element x ∈ L+ there exists some a ∈ M+

with x = h+(a). By regularity of M the element a is the join of the elements well inside

it, and h+ preserves the really inside relation and directed joins. It follows that x, too, is

the join of elements really inside it, namely x =
⊔
{h+(a

′) | a′ 0 a}. A similar argument

applies to elements φ ∈ L− of the other component frame. We conclude that any d-frame

that admits a compactification has component frames on which the really-inside relation

is approximating. Let us give a name to this property.

Definition 4.1.3. A d-frame is completely regular if the really-inside relation on each

component frame is approximating.

Proposition 4.1.1. If a d-frame admits a compactification, then it is completely regular.

Complete regularity of d-frames and complete regularity of frames are connected as

follows.

Lemma 4.1.2. Both the symmetric d-frame functor and the patch frame functor preserve

regularity and complete regularity.

Proof. This follows from the fact that both functors transform one version of the well-

inside relation into the other. If x is well inside y in the frame L then x is well inside y

in the component frame of the symmetric d-frame L=. The other direction was shown in

Proposition 3.5.14.

There is, of course, a notion of complete regularity for bitopological spaces that is

defined analogously. Since the well-inside relation and the really-inside relation derived

form it are point-free concepts, a bitopological space is completely regular if and only if the

d-frame derived from it is completely regular. As an example, let us prove a strengthening

of Proposition 3.5.4.
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4 Compactifications of d-frames

Proposition 4.1.3. Any continuous poset with the Scott- and weak lower topology is a

completely regular bitopological space.

Proof. The Scott topology on a continuous poset is a domain and thus its way-below

relation is interpolative. Recall from Theorem 6.1.12 that U0 ≪ U1 holds in σD if and

only if U0 ⊳ U1 with a witness in ωD that is a basic open. Therefore the really-inside

relation on σD is approximating.

For the weak lower topology let us prove the desired fact directly. We showed in

Proposition 3.5.4 that whenever x0 ≪ x1 then the subbasic open D \ |◮x0 is well inside the

subbasic open D\|◮x1 . Again, using the interpolation property one builds a dyadic-indexed

chain {xd}d∈D where d < e implies xd ≪ xe and thus obtains a scale between the basic

opens. As the subbasic open D \ |◮x1 is the union of subbasic opens D \ |◮x0 we conclude

that on ωD the really-inside relation, too, is approximating.

4.1.3 A Urysohn Lemma for d-frames

In point-set topology the Tychonoff spaces are those where a point can be separated from

a closed set by a bounded real-valued function. By “separate” one means that, given a

closed set A ⊆ X of a Tychonoff space and a point x ∈ X \ A, there is a continuous

function f : X → [0, 1] such that f(x) = 0 and f restricted to A is constant 1. This

separation property is also known as T3 1

2

.

The Urysohn Lemma states that at the next stronger separation property T4 one can

do the same where the point x is replaced by another closed set B that is disjoint from A.

The standard proof of the Urysohn Lemma does in fact exploit methods from locale theory,

see the sketch of the proof in the appendix. Let us reformulate the problem.

Lemma 4.1.4. The following are equivalent for two disjoint closed sets A and B of a T4

space X.

1. There is a continuous map f : X → [0, 1] separating A and B.

2. There is a some open neighbourhood U0 of B that is well inside the open set U1 =

X \ A and some continuous map f : X → [0, 1] that is constant zero on U0 and

constant one outside U1.

The bitopological unit interval

The standard proof of the Urysohn Lemma internally makes use of the unit interval with

the bitopology of upper and lower semicontinuity. What is its d-frame representation?

Definition 4.1.4. On the dyadic rationals D declare a binary relation ≺ that is the strict

order < together with the pairs (0, 0) and (1, 1). Let D denote the d-lattice built in the

fashion of Example 4, pictured in Figure 4.1. We call this the d-lattice of dyadic rationals.
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4.1 Complete regularity and compactifications of d-frames

Interpret an element d ∈ D as the lower set ↓d := {e ∈ D | e ≺ d} and an element δ

of the order dual D∂ as the set ↑ δ := {e ∈ D | δ ≺ e}. The element d is defined to be

consistent with δ if and only if the set ↓d consists of lower bounds of the set ↑δ , which

is equivalent to requiring d ≤ δ in D. Dually, define the element δ to be total with d

whenever ↑ δ ∪ ↓ d covers the dyadic rationals, that is to say δ ≺ d. Let us denote the

d-lattice (D∂ ,D,≤,≺) by D. This d-lattice is normal, essentially because the relation ≺

has the interpolation property.

D∂

≺
))
D

≤
jj

Figure 4.1: The d-lattice of
dyadic rationals. Its open
ideal completion is the d-
frame of the unit interval, pic-
tured on the right.
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Figure 4.2: The d-frame of the bitopologi-
cal unit interval. Each component frame is
isomorphic to the unit interval with an ad-
ditional top element. Consistent pairs are
in the lower triangle (including the hori-
zontal line) and the pairs marked with •.
Total pairs are in the upper triangle (not
including the horizontal line), the two di-
agonal lines and pairs marked with a cir-
cle.

Definition 4.1.5. The d-frame I is the open ideal completion of the d-lattice D of dyadic

rationals. Its first component frame is the frame of open filters Filt≺ D and its second

component frame is the frame of open ideals Idl≺ D. It is pictured in Figure 4.2.

Let us show that this definition represents what it is supposed to. The open ideals of

the second component lattice D of the d-lattice D take one of two forms. There are the

least and greatest ideals ↓ 0 = {0} and |

◭1 = D which have a greatest element, and for

each real number 0 < x ≤ 1 there is the open ideal ↓x := {d ∈ D | d < x}. Notice that the

lattice D order-embeds into the frame of open ideals as d 7→↓d . Dually, the elements of the

first component frame of I are round filters of dyadics with respect to ≺, so there are the
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4 Compactifications of d-frames

least filter ↑1 and the greatest filter |◮0 as well as an open filter ↑x := {d ∈ D |x < d} for

every real number 0 ≤ x < 1. Again, the order dual of the dyadics order-embeds into this

frame of filters as δ 7→↑δ . Similarly to the d-lattice of dyadic rationals, one can describe

the consistency relation on I as IconF iff the open ideal I ⊆ D consists of lower bounds

of the open filter F ⊆ D. The filter F is total with the ideal I precisely when the two

subsets of D intersect.

From Lemma 3.7.3 we know that the d-frame I is compact regular and therefore

spatial. The description of its d-points that offers the most insight is via pairs of meet

primes. As the component frames of I are chains, every ideal of D with the exception

of the maximal |◭1 is meet prime and we know that every such meet prime extends to a

d-point. For the ideal ↓x the set of open filters total with it is identical with the set of

filters intersecting that open ideal. The largest open filter not intersecting the ideal ↓x is

the round filter ↑x . We conclude that the d-points of I are in bijective correspondence

with pairs (I, F ) of subsets of D with the properties

1. Both I and F are non-empty,

2. I ∋ d and e ∈ F implies d ≺ e,

3. d ∈ I if and only if there exists some d′ ∈ I with d ≺ d′ and dually for F ,

4. I and F are disjoint,

5. Whenever d ≺ e then either d ∈ I or e ∈ F .

In other words, the d-points of I are in bijective correspondence with Dedekind cuts of

the totally ordered set (D,≺).

Remark. Our cuts differ from Dedekind’s original definition [15] insofar as the relation

≺ we used is not the strict order everywhere. This is necessary because Dedekind sought

to construct the real line from the rationals, where end-points were not desired.

The order on the meet prime opens is dual to the specialisation order on d-points

because the larger the completely prime filter, the smaller the maximal element of its

complement. Hence it makes sense to equate the Dedekind cut (↓x , ↑x ) with the point

1 − x ∈ [0, 1]. In this reading, an element ↓ y of the second component frame of I

corresponds to the lower open [0, y) and dually the element ↑ y of the first component

frame corresponds to the upper open (y, 1]. Note that in particular the largest elements

not equal to the top are ↓1 ∼= [0, 1) and ↑0 ∼= (0, 1], respectively.

Real-valued functions separating opens

Now that we have defined our d-frame version of the unit interval, we can turn towards

the Urysohn Lemma. Recall that our goal is to separate two opens U0, U1 by a real-

valued function f in the sense that the function is constant zero on U0 and constant one
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4.1 Complete regularity and compactifications of d-frames

outside U1. Using open sets only, one formulates: The preimage of the upper open set

(0, 1] under f is disjoint from the open U0 and the preimage of the lower open set [0, 1) is

contained in the open U1. This motivates the following definition.

Definition 4.1.6. Let L be a d-frame and x0, x1 elements of the component frame L+.

A d-frame homomorphism f : I → L is said to separate x0 from x1 if the element x0 is

consistent with f−(↑0 ) and the element f+(↓1 ) is below x1. Dually, the homomorphism

f separates φ0 from φ1 in the component frame L− if φ0 is consistent with f+(↓1 ) and

f−(↑0 ) is below φ1.

Finally, we are able to state the Urysohn Lemma for d-frames.

Theorem 4.1.5 (The Urysohn Lemma for d-frames). Let L be a d-frame and x0, x1 ele-

ments of the second component frame where x0 is really inside x1. (This holds in particular

when L is normal and x0 is well inside x1.) Then there is a d-frame homomorphism from

the d-frame of the unit interval into L that separates x0 from x1.

For the proof of this theorem we need one more lemma.

Notation. For a d-frame L we write εL for the pair of join maps
⊔

: Idl◦ L− → L− and⊔
: Idl◦ L+ → L+

Lemma 4.1.6. For any d-frame L, the pair εL of join maps is a d-frame homomorphism

from the open ideal completion of L to L.

Proof. Recall from Lemma 2.3.4 that the frame of open ideals of a d-frame’s component

frame forms a sub-frame of the frame of all ideals. Since the join operation
⊔

: IdlL→ L

is a frame homomorphism for any frame L, we obtain a pair of frame homomorphisms

(
⊔
,
⊔

) : Idl◦ L → L.

It remains to show that this pair preserves consistency and totality. Recall that a pair of

open ideals is consistent iff their product is a subset of the consistency relation of L. As

the latter set is Scott closed, the join of the ideals remains a consistent pair. A pair of

open ideals is total iff the product of the two ideals intersects the totality relation of L, so

the joins of the ideals are certainly a total pair of L.

Proof of Theorem 4.1.5. By definition x0 is really inside x1 if there exists a scale between

the two elements, that is a dyadic-indexed chain {xd}d∈D such that d < e in D implies xd ⊳

xe. Define a lattice homomorphism h : D → L+ by letting h(d) = xd for dyadic rationals

0 < d < 1 and further h(0) = 0, h(1) = 1. Observe that monotonicity and preservation

of the constants is enough to render h a lattice homomorphism, because D is a chain.

Interpreting D as the second component lattice of the d-lattice D of dyadic rationals puts

us into the situation of Proposition 2.3.9. Hence h extends to a d-frame homomorphism
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4 Compactifications of d-frames

I = Idl◦D → Idl◦ L where the second component map takes the open ideal ↓x ⊆ D to the

lower set of its forward image under h. In particular, the open ideal ↓1 maps to the lower

set of {xd}d<1. The first component map of the d-frame homomorphism maps the open

filter ↑0 (which is an open ideal of the order dual) to the ideal {φ ∈ L− | ∃d > 0. xdconφ}.

Now apply Lemma 4.1.6 and obtain a d-frame homomorphism f : I → L. Here f+(↓1 ) =⊔
d<1 xd is certainly below x1. For any d > 0 we have x0 ⊑ xd whence xdconφ implies

x0conφ. It follows that x0 is also consistent with the join of all such φ. This shows that

f has the desired property: It separates x0 from x1.

Remark. One might think that a similar result holds for the really-inside relation on

d-lattices, where one replaces the d-frame I with the d-lattice D. This conjecture turns

out to be false, because completeness of the component lattices is a crucial ingredient.

The Urysohn Lemma for d-frames has a converse which is almost trivial to prove

because of the way we defined the d-frame of the unit interval.

Lemma 4.1.7. If the element x0 ∈ L+ can be separated from the element x1 by a d-frame

homomorphism f : I → L then x0 is really inside x1.

Proof. Suppose f : I → L is a d-frame homomorphism with x0conf−(↑ 0 ) and f+(↓

1 ) ⊑ x1. Recall that the dyadic rationals embed into the frame Idl≺ D via d 7→↓ d .

By post-composing this embedding with the component map f+ one obtains elements

xd := f+(↓d ) for dyadic rationals 0 < d < 1. To finish the proof, observe that whenever

the dyadic rational d is strictly smaller than e then the open ideal ↓d is well inside the

open ideal ↓e in the d-frame I.

The Urysohn Lemma for d-frames and the preceding lemma combined yield a charac-

terisation of the really-inside relation.

Theorem 4.1.8. An element of a d-frame’s component frame is really inside another if

and only if the former can be separated from the latter by a d-frame homomorphism on

the d-frame I of the unit interval.

Some authors use separation by real-valued functions rather than the really-inside

relation to define complete regularity, see for example [42].

4.2 The Stone-Čech compactification of a d-frame

Complete regularity is a necessary criterion for a d-frame admitting a compactification,

but so far we do not know of any specific example (apart from the identity on compact

regular d-frames). This section is to remedy this lack of examples and to exhibit the

category of compact regular d-frames as a coreflective subcategory of the category of all

d-frames. Dually it is well-known that the category of compact Hausdorff spaces is a reflec-

tive subcategory of Top and the reflection functor takes a topological space to its largest
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4.2 The Stone-Čech compactification of a d-frame

compactification2, which is known as the Stone-Čech compactification. The Tychonoff

spaces are precisely those spaces that embed into their Stone-Čech compactification.

4.2.1 Regular normal d-frames and the normal coreflection

In Example 11 we sketched the proof that the category of d-frames coreflects into the

subcategory of normal d-frames. This coreflection preserves complete regularity. Indeed,

if L = (L−, L+, con, tot) is a d-frame then the normal coreflection functor shrinks the

totality relation to tot;0 and leaves the other data unchanged. As a result, the well-inside

relation on the normal d-frame coincides with the really-inside relation on the original d-

frame. If the really inside relation was approximating on the original d-frame’s component

frames, then so will be the well-inside relation on the normal coreflection. Finally, recall

that in the presence of normality any regular d-frame is also completely regular. Let us

record:

Proposition 4.2.1. The normal coreflection functor restricts to the subcategory of com-

pletely regular d-frames.

The preceding proposition can be used to obtain a somewhat surprising result about

the patch frame. One must reach the conclusion that the concept of normality for d-frames

is much more inclusive than normality for frames.

Proposition 4.2.2. Every completely regular frame is the patch frame of a regular normal

d-frame.

Proof. Given a completely regular frame L, its symmetric d-frame L= is known to be

completely regular by Lemma 4.1.2. The normal coreflection (L=)
0 has the same com-

ponent frames and is regular by Proposition 4.2.1. With Proposition 3.5.15 we obtain an

isomorphic copy of L via the patch frame of the regular normal d-frame (L=)
0.

Next let us examine the open ideal completion of a regular normal d-frame more closely.

In Lemma 4.1.6 we introduced a d-frame homomorphism εL : Idl◦ L → L that maps an

open ideal to its join. In general the d-frame might have only a few open ideals, but

regularity together with normality provides plenty of them.

Lemma 4.2.3. If L is a regular normal d-frame, then the d-frame homomorphism εL is

dense in the sense of Definition 4.1.1.

Proof. For a regular normal d-frame the components of εL are surjective because

_

takes

values in the open ideals (Lemma 2.4.1 (3)) and
⊔
◦

_

is the identity on component frames.

One finds that
⊔

⊣

_

is an adjunction between a component frame and the frame of its

open ideals. Recall from Proposition 2.4.5 that in the stably continuous frame Idl⊳ L+ an

2Here the term “compactification” is to be understood in a wider sense where the map into the compact
space is dense but not necessarily injective.
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ideal I ′ ≪ I is equivalent to I ′ ⊆ |

◭x for some x ∈ I. Since both ideal in question are open,

this is equivalent to the assertion that I ′ ≪

_

x≪ I for some x ∈ L+. Therefore the frame

homomorphism
⊔

is dense.

Corollary 4.2.4. Every completely regular d-frame admits a compactification.

Proof. From Proposition 4.2.1 we know that the normal coreflection L0 of a completely

regular d-frame is regular and normal. Pre-compose the identity map L0 → L with the

compactification of Lemma 4.2.3 above.

Remark. For a regular normal d-frame L, the pair of right adjoints (

_

,

_

) to the compact-

ification morphism εL preserves and reflects the consistency and totality relations, in the

sense that φtotx holds in L if and only if

_

φtot◦
_

x holds in the open ideal completion Idl◦ L

and likewise for consistency. In fact this characterises the open ideal completion among all

compactifications up to isomorphism. A similar fact was observed by Čech in [53] about

the Stone-Čech compactification of a normal space.

4.2.2 The compact regular coreflection

Inspecting the compactification of a completely regular d-frame whose existence we proved

in Corollary 4.2.4, one finds that the component frames of the compact regular d-frame

are those ideals of the original d-frame’s component frames that are round with respect to

the really-inside relation. It is well-known in locale theory that for a locale X the frame

Idl0OX of round ideals of opens is its Stone-Čech compactification [30, IV-2.2]. In due

course we will see that the situation is the same with d-frames.

Proposition 4.2.5. The open ideal completion functor, when restricted to the category of

normal d-frames, is right adjoint to the inclusion functor from compact regular d-frames

to normal d-frames. The family ε of homomorphisms defined in Lemma 4.1.6 is its counit.

Proof. Recall from Lemma 3.7.3 that the open ideal completion of a normal d-frame is

compact regular. Next notice that the homomorphism ǫL : Idl◦ L → L is indeed natural

in the parameter L. This is because the action of the open ideal completion functor on

the components of d-frame homomorphisms is essentially the same as the ideal comple-

tion functor, and we know that the join map is a natural transformation from the ideal

completion functor to the identity in the category of frames.

It remains to show that if L is a normal d-frame and M a compact regular d-frame,

every d-frame homomorphism h : M → L factors uniquely through the map εL. We prove

every statement for the positive component only, because the negative component works
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analogously. Consider the following diagram.

Idl⊳M+
Idl◦(h+)// Idl⊳ L+

⊔
=(εL)+

��
M+

_

OO

h̃+

99r
r

r
r

r

h+

// L+

(4.1)

By hypothesis M is compact regular, so the composition
⊔
◦

_

is the identity on M+.

Using this identity and the fact that the homomorphism h+ preserves joins of ideals we

obtain
⊔
◦ Idl◦(h+) ◦

_

= h+ ◦
⊔
◦

_

= h+ and so the square in (4.1) commutes. In general

the map

_

:M+ → IdlM+ is not a frame homomorphism, but since M is compact regular

it is actually an isomorphism of frames (see Proposition 3.7.4). Hence the composite

h̃+ := Idl◦(h+)◦

_

is a frame homomorphism with the required factorisation property h+ =⊔
◦h̃+. An immediate consequence of this factorisation is that the open ideal completion

functor is faithful on morphisms whose domain is regular, since Idl◦(h+) = Idl◦(g+) implies

h+ = h+ ◦
⊔
◦

_

=
⊔
◦ Idl◦(h+) ◦

_

=
⊔
◦ Idl◦(g+) ◦

_

= g+. Faithfulness of the open ideal

completion functor now implies that the factorisation of h+ in the diagram (4.1) is unique.

Indeed, if f :M+ → Idl⊳ L+ is any map with
⊔
◦f = h+ then Idl◦(

⊔
)◦Idl◦(f) = Idl◦(h+).

But Idl◦(
⊔
) is an isomorphism of the frames Idl⊳ L+ and Idl⊳ Idl⊳ L+ whence there can

be only one such Idl◦(f).

Theorem 4.2.6 (Stone-Čech compactification). The category of d-frames coreflects into

the subcategory of compact regular d-frames. The coreflection factors through the category

of normal d-frames as normal coreflection followed by open ideal completion.

Proof. The composition of two coreflections is a coreflection again. Combine Theorem 2.4.4

with Proposition 4.2.5.

For obvious reasons the following name is chosen for the coreflection of Theorem 4.2.6.

Definition 4.2.1. Given any d-frame L, the compact regular d-frame Idl◦(L
0) is called

the Stone-Čech compactification of L.

Remark. The Stone-Čech compactification of a d-frame has the same description as the

open ideal completion in Lemma 2.3.6, with the well-inside relation replaced by the really-

inside relation.

4.3 Classification of compactifications

Now that we have characterised which d-frames admit a compactification and constructed

the largest such compactification, we turn towards the problem of classifying all compact-

ifications. In Section 4.2 we constructed the Stone-Čech compactification of a completely

regular d-frame using the really-inside relation on the component frames. This relation
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4 Compactifications of d-frames

has the properties (i)–(vi) of Table 4.1. Property (vii) holds if one replaces the well-inside

relation of frames with the d-frame-theoretic one and property (viii) is satisfied jointly by

the really-inside relations on both component frames if one interprets the negation as the

pseudocomplement of d-frames.

Definition 4.3.1. A relation satisfying properties (i)–(v) of Table 4.1 is called a quasi-

proximity . A proximity on a d-frame is an approximating quasi-proximity ≺ on the second

component frame that is stronger than the well-inside relation. Furthermore the relational

inverse of

≻ := (tot;≺; con) (4.2)

is required to be approximating on the first component frame. In the equation above we

followed our custom to write relations on the first component frame in the greater-than-

style.

Observe that the relation defined in equation (4.2) satisfies ≻⊆⊲ because ≺⊆⊳ holds

by definition. These facts are analogous to the property (vii) of Table 4.1. In order to

relate proximities of d-frames to proximities of frames, let us show that a proximity on a

d-frame obeys the negation rules

x ≺ y
¬x ≻ ¬y

φ ≻ ψ

¬φ ≺ ¬ψ

that are analogous to property (viii) of Table 4.1. First we need a lemma.

Lemma 4.3.1. For any proximity ≺ the identity ≺= (⊳;≺) holds.

Proof. Because of the interpolation property, ≺ is the same as ≺;≺. As ≺ is contained

in the well-inside relation we obtain the inclusion ≺⊆ (⊳;≺). For the reverse inclusion,

use the fact that ⊳ is contained in the frame order ⊑ and the composite ⊑;≺ is identical

to ≺ because it is an auxiliary relation.

If now x ≺ y, then using interpolation and the preceding lemma write x ⊳ z ≺ y

whereby ¬xtotz ≺ ycon¬y and so by definition ¬x ≻ ¬y. Dually, if φ(tot;≺; con)ψ then

¬φ(con; tot;≺)¬ψ and using the lemma again arrive at ¬φ ≺ ¬ψ.

To summarise our brief study of the internal structure of proximities, every such prox-

imity is determined by a relation on one component frame that has the same properties

as those listed in Table 4.1, except that the meanings of “well-inside” and “pseudocom-

plement” are re-defined in d-frame-theoretic terms.

Lemma 4.3.2. 1. Any proximity on a d-frame is contained in the really-inside relation.

2. The really-inside relation 0 of a completely regular d-frame is a proximity.

Proof. (1) Let ≺ be a proximity and suppose x0 ≺ x1. Using the interpolation property

one extends this to a dyadic-indexed chain {xd}d∈D where d < e implies xd ≺ xe. Since ≺

is contained in the well-inside relation we conclude that x0 is really inside x1.
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(2) According to the remark following Theorem 2.4.4 any d-frame obeys the identity

1= (tot;0; con).

Corollary 4.3.3. A d-frame admits a proximity if and only if it is completely regular.

Proof. Any proximity is stronger than the really-inside relation by Lemma 4.3.2 (1) and by

definition approximating, whence the really-inside relation itself is approximating. Hence

the existence of a proximity implies complete regularity. The converse is Lemma 4.3.2 (2).

4.3.1 The proximity derived from a compactification

Suppose f : M → L is a compactification of the (completely regular) d-frame L. According

to the construction sketched in the introduction to this chapter, one should obtain a

proximity on L by pushing the way-below relation of the stably continuous component

frames of M along the homomorphism f .

Definition 4.3.2. Given a compactification f : M → L of the d-frame L, define a relation

on L+ as follows. With f+∗ denoting the right adjoint to the component map f+ of f ,

define Let x0 ≺ x1 if and only if f+∗(x0) ≪ f+∗(x1).

Of course we need to check that the definition above indeed produces a proximity.

That ≺ is a quasi-proximity follows from Lemma 6.1.16. It is stronger than the well-

inside relation because ≪ coincides with ⊳ on M+, f+ ◦ f+∗ is the identity on L+ and f+

preserves the well-inside relation. The fact that ≺ is approximating is derived knowing

that M+ is a domain and f+ is surjective, and similarly for the relation ≻= (tot;≺; con).

Definition 4.3.2 follows the ideas of Banaschewski [4]. Smyth [50] uses a different, but

equivalent, definition as Lemma 6.1.17 shows.

4.3.2 The compactification derived from a proximity

Knowing how to construct a proximity from a compactification, we want an inverse that

takes a proximity and produces a compactification. An obvious requirement is that the

really-inside relation should give rise to the Stone-Čech compactification. Recall from

Theorem 4.2.6 that the Stone-Čech compactification factors through the category of nor-

mal d-frames. This was because the really-inside relation satisfies the requirements of

Lemma 2.4.2.

Lemma 4.3.4. Let L be a (completely regular) d-frame and ≺ be a proximity on it. The

d-frame L≺ defined according to Lemma 2.4.2 is regular and normal.

Proof. The proximity ≺ satisfies all requirements of Lemma 2.4.2, whence the d-frame

L≺ = (L−, L+, con, (tot;≺)) is normal. Regularity of this d-frame follows from the char-

acterisation of the well-inside relations on L≺ given in the proof of Lemma 2.4.2.
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With the Stone-Čech compactification in mind, the following definition comes at no

surprise.

Definition 4.3.3. Given a proximity ≺ on a (completely regular) d-frame L, the com-

pactification derived from ≺ is the d-frame homomorphism

(
⊔
,
⊔

) : Idl◦(L
≺) → L.

A little thought is needed to check that the join maps on round ideals are indeed

surjective dense frame homomorphisms. The same argument that we employed in Propo-

sition 2.4.5 to show that Idl⊳ L+ is a sub-frame of IdlL+ can be used to show that the set

of ideals that are round with respect to ≺ is a sub-frame of the frame of all ideals. The

join map restricted to Idl≺ L+ is again a frame homomorphism, and surjective precisely

because the relation ≺ is approximating. The way-below relation on the frame Idl≺ L+

has the same characterisation as on the frame of open ideals. One finds that the right

adjoint to the join map on round ideals is the assignment x 7→ {y ∈ L+ | y ≺ x}. The last

two facts combined yield that the join map of round ideals is a dense homomorphism in

the sense of Definition 4.1.1. Thus Definition 4.3.3 indeed specifies a compactification.

Notice that because of Lemma 4.3.2 the regular normal d-frame L≺ has a totality

relation that is contained in the totality relation tot;0 of the normal coreflection of L.

Thus one obtains a d-frame homomorphism L≺ → L0 that gives rise to a d-frame homo-

morphism Idl◦ L
≺ →֒ Idl◦ L

0 with injective component maps. We interpret this fact as

the Stone-Čech compactification being the largest possible compactification.

4.3.3 The classification theorem

Finally we are able to state and prove the classification theorem of d-frame compactifica-

tions, the main result of this thesis.

Theorem 4.3.5. There is an order-preserving bijection between the compactifications of

a d-frame and its proximities. The operations of Definitions 4.3.2 and 4.3.3 are mutually

inverse.

The term order-preserving in the statement of the theorem requires some explanation.

We order the set of proximities on a d-frame by inclusion of relations. According to

Lemma 4.3.2 the really-inside relation gives rise to the largest proximity in this ordering.

The collection of compactifications of a fixed d-frame is a class that is pre-ordered in the

following way. Say that a compactification M → L is smaller than the compactification

N → L if one can regard M as a sub-d-frame of N . This means that there is a d-

frame homomorphism . as in the diagram below making it commute. The components of

this homomorphism are required to be injective. Further one requires that . reflects the

consistency and totality relations in the sense that xconφ in M holds if and only if the
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image of the pair (x, φ) under . is consistent and similarly for total pairs of M.

M

  A
AA

AA
AA

A
� � . // N

~~~~
~~

~~
~~

L

(4.3)

As we remarked above, any ideal that is round with respect to ≺ is also round with

respect to the really-inside relation. Thus any compactification arising from a proximity

as specified in Definition 4.3.3 is smaller than the Stone-Čech compactification presented

in Theorem 4.2.6.

Proof of Theorem 4.3.5. We need to show that the operations specified in Definitions 4.3.2

and 4.3.3 are mutually inverse and preserve the order.

Given a compactification f : M → L and the induced proximity ≺ on L we show

that the d-frame M is isomorphic to Idl◦(L
≺). Recall from Section 3.7 that a compact

regular d-frame is completely determined by one of its component frames, so it suffices to

show that the component frame M+ of M is isomorphic to Idl≺ L+. The relation ≺ is

the one induced on L+ by the right adjoint f+∗ on the domain M+ as in the statement of

Lemma 6.1.25, whence the desired isomorphism follows. Therefore the compactification

f : M → L is isomorphic to the compactification induced by ≺.

Now suppose there are two comparable compactifications as in the diagram (4.3) above.

Using Lemma 6.1.17, x0 ≺ x1 in L+ holds whenever there exist elements y0 ⊳ y1 in M+

such that x0 ⊑ f+(y0) and f+(y1) ⊑ x1. Since the d-frame homomorphism . preserves

the well-inside relation and f factors through ., we conclude that the quasi-proximity ≺′

induced by the larger compactification N → L has x0 ≺
′ x1 as well. Thus the assignment

from compactifications to proximities is order-preserving.

Now suppose < is a proximity on L and let ≺ be the quasi-proximity on L+ induced

by the dense frame homomorphism
⊔

: Idl< L+ → L+. We show that < and ≺ are

identical. Recall that the right adjoint to
⊔

sends an element x of L+ to the round ideal

↓x := {y ∈ L+ | y < x}. By definition x0 ≺ x1 holds if and only if the round ideal ↓x0 is

way below the round ideal ↓x1 . This is the case precisely when ↓x1 contains an upper

bound of ↓x0 . In that situation we know that the join of the ideal ↓x0 is an element of

↓x1 , and since < is approximating, said join equals x0. We conclude that x0 ≺ x1 implies

that x0 < x1. For the reverse implication, observe that the assignment x 7→↓x transforms

the relation ≺ into the way-below relation.

If <′⊆< is another proximity then any ideal of L+ that is round with respect to <′

is also round with respect to <. Therefore the sub-frame embedding Idl<
′

L+ →֒ Idl< L+

extends to the d-frame homomorphism . witnessing the fact that the compactification

induced by <′ is smaller than the compactification induced by <.
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4.3.4 The spectrum of a compactification

If one uses the compactification of d-frames to obtain compactifications of bitopological

spaces, then it is of interest how exactly the d-frame compactification acts on d-points.

Clearly every d-point L → 2 gives rise to a d-point of a compactification via composition:

If M → L is a compactification and L → 2 is a d-point then M → L → 2 is a d-point of

the compactification. Since the component maps of the compactification homomorphism

are surjective, the compactification map is clearly an epimorphism whereby the d-points

of L injectively map into the d-points of M. The same argument on the level of frames

shows that the frame points L+ → 2 of a component frame injectively map to frame

points M+ ։ L+ → 2 of the component frame of the compactification. But recall from

Lemma 3.7.8 that every such frame point of M+ extends to a unique d-point of M. We

conclude:

Proposition 4.3.6. If X is a completely regular bitopological space, then the spectrum of

any d-frame compactification of OX contains the soberification of X with respect to each

of the two topologies on X.

As round ideals of open sets are not easy to understand and to work with, a description

in terms of objects of lower cardinality might be handy. In locale theory one has the

(classically valid) one-to-one correspondence between completely prime filters and meet

prime elements of a frame. We used this correspondence extensively when working with

regular d-frames, where the relationship between the components of a d-point is most easily

described as a translation from completely prime filters of one component frame to meet

prime elements of the other component and vice versa. In the literature on proximity

lattices, such as [50] or [23], the notion of meet prime is generalised to so-called weak

primes.

Definition 4.3.4. Let L be a bounded distributive lattice and ≺ be a quasi-proximity

on L.

1. An element p ∈ L is called ≺-prime (or weakly prime if it the quasi-proximity is

clear from the context) if for every finite set A ⊆ L the relation
d
A ≺ p implies

that A intersects |◭p .

2. A filter F ⊆ L is called ≺-prime or weakly prime if it is round with respect to ≺ and

for any finite set {↓a }a∈A of principal round ideals whose join in Idl≺ L intersects F

the finite set A intersects F .

Notice that in case the quasi-proximity≺ is the lattice order, the weakly prime elements

are precisely the meet primes of L and the weakly prime filters are precisely the prime

filters. Classical Stone duality for bounded distributive lattices tells us that the frame

homomorphisms IdlL → 2 are in bijective correspondence with the prime filters of L.

More generally, Smyth showed in [50, Proposition 8] that the spectrum of the frame
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4.4 Compactifications of frames and spaces

Idl≺ L of round ideals is a stably compact space whose points are the weakly prime filters

of L. A round ideal I ∈ Idl≺ L is a neighbourhood of a weakly prime filter F ⊆ L if and

only if I and F intersect.

Since any quasi-proximity is stronger than the lattice order, every meet prime element

is weakly prime and every round prime filter is a weakly prime filter. In particular, if

≺ is an approximating quasi-proximity on a frame then all Scott open filters are round,

whence every completely prime filter is weakly prime. This gives another proof for Propo-

sition 4.3.6. Gierz and Keimel show in [23] that every weak prime p of a proximity lattice

(L,≺) gives rise to a round ideal ↓p that is a meet prime in the frame Idl≺ L of round

ideals.

4.4 Compactifications of frames and spaces

The topological spaces that can be embedded densely into compact Hausdorff spaces are

the Tychonoff spaces. Every Tychonoff space is in particular Hausdorff and thereby sober.

Consequently a compactification e : X →֒ Y is completely described by the associated

compactification of frames e−1 : OY ։ OX. In this section we demonstrate that com-

pactifications of d-frames subsume compactifications of frames and thereby implicitly also

compactifications of spaces. The main tool for this will be the adjunction between frames

and d-frames laid out in Section 3.4.

From [4] we know that there is an order-preserving bijection between compactifications

of a completely regular frame and proximities on it, that are relations with the properties

listed in Table 4.1. Any such proximity ≺ on a completely regular frame L is a proximity

on the symmetric d-frame L= where ≻ is the relational inverse of ≺. Indeed, recall that the

d-frame-theoretic well-inside relation on the symmetric d-frame L= is the same as the well-

inside relation in the frame-theoretic sense and similarly the d-frame pseudocomplement

¬ : L → L on L= is the same as the Heyting negation of the frame L. Conversely,

given a proximity on the symmetric d-frame L= one finds that it is a proximity in the

frame-theoretic sense. We conclude:

Lemma 4.4.1. There is a bijection between the proximities on a frame L and proximities

on the symmetric d-frame L=.

Once we know the proximity ≺ on the frame L is a proximity on the symmetric d-

frame L=, we can consider the associated d-frame compactification Idl◦(L
≺
=) → L=. The

component frames of the compact regular d-frame Idl◦(L
≺
=) are both equal to the frame

Idl≺ L of round ideals with respect to the proximity ≺. It is, however, not clear a priori

that this d-frame is symmetric again.

Lemma 4.4.2. If ≺ is a proximity on a frame L, then the compact regular d-frame

Idl◦(L
≺
=) is identical with the symmetric d-frame (Idl≺ L)=.
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4 Compactifications of d-frames

Proof. By definition of the normal coreflection, two round ideals I, J ∈ Idl≺ L are total

if and only if the product I × J intersects the totality relation tot=;≺ of the normal d-

frame L≺
=. The join I ∨ J in the frame of ideals equals the top element |◭1 precisely when

there is a pair (x, y) ∈ I × J with x ⊔ y = 1. Evidently, the latter is equivalent to I × J

intersecting the relation tot=, and using the fact that the ideals under consideration are

round, we obtain the desired equivalence I ∨ J = |

◭1 ⇔ (I × J) ≬ (tot=;≺). We showed

that the totality relation of the d-frame Idl◦(L
≺
=) coincides with the totality relation of

the symmetric d-frame (Idl≺ L)=.

The ideals I and J are consistent in the d-frame Idl◦(L
≺
=) if and only if their product is

contained in the relation con= of the symmetric d-frame L=. This means that for all pairs

(x, y) ∈ I × J the identity x ⊓ y = 0 holds in L. Since finite meets of ideals are computed

as element-wise meet, we conclude that I ∧ J is the smallest ideal |◭0 . The converse holds

as well: If I ∧ J = |

◭0 then the product I × J is contained in con=. Thus the consistency

relation of the d-frame Idl◦(L
≺
=) is the same as the consistency relation of the symmetric

d-frame (Idl≺ L)=.

Remark. Recall from Theorem 3.7.10 that every compact regular d-frame arises from

a stably compact space and its de-Groot dual. The compact Hausdorff spaces are pre-

cisely those stably compact spaces where the topology coincides with its cocompact dual.

Therefore the component frame Idl≺ L of the preceding lemma is the topology of a compact

Hausdorff space.

Proposition 4.4.3. There is a bijection between (equivalence classes of) compactifications

M → L of a frame L and the compactifications M → L= of the symmetric d-frame L=.

Proof. From Theorem 4.3.5 we know that any compactification M → L= arises from a

proximity of L=. Because of Lemma 4.4.1 we know every such proximity to be associated

with a proximity ≺ on the frame L. Using the preceding lemma one shows that the d-

frame homomorphism M → L= is isomorphic to a homomorphism in the subcategory of

symmetric regular d-frames, which we showed in Theorem 3.5.16 to be equivalent to the

category of regular frames.

To conclude our account of frame compactifications, let us consider the compact regular

coreflection on the category of frames. From Theorem 3.4.1 we know that the symmetric

d-frame functor (−)= is right adjoint to the patch frame functor. The normal coreflection

(−)0 of d-frames is right adjoint to the inclusion functor of the subcategory NdFrm of

normal d-frames into dFrm. The inclusion functor KRdFrm →֒ NdFrm of compact regular

d-frames into normal d-frames has as right adjoint the open ideal completion functor,

as we showed in Proposition 4.2.5. Finally, Theorem 3.7.5 tells us that the category of

compact regular d-frames is equivalent to the category of stably continuous frames and
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perfect frame homomorphisms. We obtain a chain of adjunctions:

Frm
(−)=

⊥ // dFrm
(−)0

⊥ //
Patchoo

NdFrm
Idl◦

⊥ //
? _oo

KRdFrm
? _oo

∼= SCFrmπ (4.4)

While the normal coreflection of a symmetric d-frame is not symmetric in general, its

open ideal completion is symmetric again, as we showed in Lemma 4.4.2. Hence the chain

of adjunctions in the diagram (4.4) restricts to a chain of adjunctions involving categories

of symmetric d-frames

Frm
(−)=

⊥ // dFrm=

Idl◦(−)0

⊥ //
Patchoo

KRdFrm=
∼=

? _oo
KRFrm (4.5)

where the equivalence of categories on the right was shown in Proposition 3.7.7. This

demonstrates that the compact regular coreflection of frames factors through the category

of d-frames.

4.5 Applications

The compactifications of frames and spaces via d-frames presented in Section 4.4 is a

somewhat degenerate case. Below we list some truly bitopological and order-preserving

compactifications.

4.5.1 The Fell compactification

A locally compact T0 space (more generally a core compact T0 space) has a topology

which is a continuous lattice, whence said lattice is a compact Hausdorff space under the

Lawson topology. Trivially the same Lawson topology induces a topology on the lattice

of closed subsets of a locally compact space. The assignment x 7→ {x} sending a point

to the closure of its singleton set is injective precisely when the space is T0. In [21] Fell

defined what is now known as the Fell compactification of a locally compact T0 space X

as the closure of the image of X under the embedding x 7→ {x} into the lattice of closed

sets under the Lawson topology. The Lawson topology on OX is described by two kinds

of subbasic opens:

�k = {v ∈ OX | k ⊆ v}

♦u = {v ∈ OX |u 6⊆ v}

where k ranges over the compact (saturated3) subsets of the locally compact space X and

u ranges over the opens. Notice that the first kind of subbasic opens generates the Scott

topology on OX whereas the second kind generates the weak lower topology, so we are

3A compact set k and its saturation generate the same subbasic open.
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4 Compactifications of d-frames

dealing with a bitopological space. Using closed sets instead of opens sets, the open �k

consists of all closed sets disjoint from k, whereas the open set ♦u consists of all closed sets

that intersect u. Observe that {x} intersects an open u if and only if x is an element of u,

whence the preimage of the subbasic open ♦u under the injection map is nothing but the

open u itself. Dually, the closure {x} is disjoint from the compact saturated set k precisely

when x is not an element of k, whereby the preimage of the subbasic open �k under the

injection map is just the complement of k. It follows that the embedding X →֒ (OX)∂ is

continuous if one refines the original topology on X to its patch topology.

In what follows, instead of a locally compact topology OX we consider a continuous

frame L and construct a compact regular d-frame whose spectrum is the Fell compactifi-

cation of the spectrum of L.

Definition 4.5.1. We write <⊳ for the multiplicative closure of the way-below relation of

a complete lattice. x <⊳ y holds if and only if there is a finite set A such that x is way

below every element of A and the meet of A is below y.

Observe that in a continuous frame (more generally in any continuous preframe) the

relation x <⊳ y holds if and only if there is a finite set Φ of Scott open filters such that x

is a lower bound of every member of Φ and y is an element of the filter generated by the

union
⋃
Φ. Therefore the multiplicative closure of the way-below relation can be realised

as the well-inside relation of the following d-frame.

Definition 4.5.2. Given a continuous frame L, define a d-frame FL by the following data.

The second component frame of FL is the frame L itself. The first component frame is

the smallest sub-frame of FiltL that contains the preframe of Scott open filters. (Every

element of the first component frame is a join of Scott open filters.) The consistency and

totality relations are defined just as in the interaction algebra IalgL, that is, a filter φ is

total with an element x ∈ L iff φ ∋ x and an element x ∈ L is consistent with the filter φ

iff x is a lower bound for φ. We call the d-frame FL the Fell d-frame of L.

Proposition 4.5.1. Let L be a continuous frame.

1. The Fell d-frame FL is regular normal.

2. The well-inside relation induced on L as the component frame of its Fell d-frame

coincides with <⊳.

3. The first component frame of the Fell d-frame FL consists of precisely those filters

of L that are round with respect to <⊳.

4. The first component frame of the Fell d-frame FL is stably continuous and its well-

inside relation coincides with the way-below relation.

If L is any d-frame, ≺ a proximity on it and ≻ is the relation defined in equation (4.2)

then the inclusions (≪) ⊆ (≺) ⊆ (⊳) and (≫) ⊆ (≻) ⊆ (⊲) hold. With Proposition
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4.5.1 (4) it follows that the Fell d-frame of a continuous frame admits precisely one com-

pactification. It can be pictured as

Filt<⊳ L

tot --
Idl<⊳ L

con
mm

where a round filter is total with a round ideal if and only if the two sets intersect, and a

round ideal is consistent with a round filter whenever the ideal consists of lower bounds

of the filter. A notable instance of this is a result we alluded to in the introduction:

Proposition 4.5.2. The (normal) d-frame OR of the real line with the topologies of

upper and lower semicontinuity admits precisely one compactification. Its spectrum is the

extended real line.

Proof. Each of the two topologies of semicontinuity on the real line is order-isomorphic to

the extended real line [−∞,∞]. On each of these frames, the d-frame-theoretic well-inside

relation coincides with the way-below relation except that ∞ ⊳ ∞ but not ∞ ≪ ∞. Thus

the top element gives rise to two open ideals

։

∞ and

_

∞, both of which are meet-prime

in Idl⊳[−∞,∞].

The Fell compactification appears in numerous places in the literature. Some instances

we deem worth mentioning are:

• The relation <⊳ is the smallest approximating quasi-proximity on the topology OX

of a locally compact space. Thus the frame Idl<⊳OX is the topology of the smallest

stable compactification of X in the sense of [50].

• Any continuous poset is a locally compact T0 space in its Scott topology. In [26],

Hoffmann shows that the Fell compactification of a continuous poset can be obtained

by embedding it into its injective hull and taking the closure in the Lawson topology4.

• If a locally compact space is Hausdorff, then it is stably locally compact, whence the

way-below relation on the lattice of open sets is almost multiplicative exceptX 6≪ X.

In this situation the Fell compactification coincides with the Alexandrov one-point

compactification.

4.5.2 The Stone-Čech compactification of an algebraic poset

As a second application we turn towards the problem of a maximal order-preserving ex-

tension of an algebraic domain. The standard Scott model of PCF interprets a type as

a certain algebraic domain. While all of these domains are in fact stably compact in the

4The construction is very similar. The injective hull is the complete lattice in FiltOX that is generated
by neighbourhood filters of points.
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4 Compactifications of d-frames

Scott topology and are contained in a cartesian closed subcategory of Alg, there are alge-

braic domains which are not stably compact. In this subsection we seek an extension βD

of an algebraic domain D with the properties

1. The extension βD is a dcpo,

2. The embedding D →֒ βD is Scott continuous and preserves the way-below relation,

3. The embedding D →֒ βD is dense.

Recall that any algebraic domain D is isomorphic to the ideal completion of the poset of

its compact elements and the Scott topology on D is isomorphic to the upper Alexandrov

topology on the compact elements. Therefore we reformulate the problem as to find

a bitopologically compact regular extension of the locally compact T0 space (P,UpP )

where P is any poset. As the way-below relation on UpP is witnessed by the finitely

generated upper sets, the natural partner for the upper Alexandrov topology is the weak

lower topology ωP . Thus we set out to describe the Stone-Čech compactification of the

d-frame O(P, ωP,UpP ).

Theorem 4.5.3. On the set FinP of finite subsets of a poset P define a preorder A ≤ B

iff |◮B ⊆ |◮A . The weak lower topology ωP on P is order-isomorphic to the MacNeille

completion of the preorder (FinP,≤).

Proof. The argument is more clear if one considers the complete lattice L of closed sets

with respect to the weak lower topology. By definition (FinP )∂ is meet-dense in this

lattice, as every closed set is the intersection of basic closed sets |◮A where A ∈ FinP . But

as every upper set is the (filtered) union of its finite subsets, the finitely generated upper

sets are also join-dense in L. By the universal property of the MacNeille completion, ωP

must be the MacNeille completion of (FinP,≤).

We find it convenient to represent an element W of ωP as the associated element

of the MacNeille completion of FinP . Such an element we write as (L,U) where L is

the lower set of finite sets with |◮A ∪W = P and U is the upper set of finite sets with

|◮A ∩W = ∅. Since every weak lower open is in particular a lower set, it has a complement

in UpP , whereby the d-frame (ωP,UpP, con, tot) = O(P, ωP,UpP ) is normal for trivial

reasons. Further it is obviously regular because on the first component frame the well-

inside relation coincides with the frame order, the second component frame is continuous

and its well-inside relation contains the way-below relation. By Theorem 4.2.6 the d-frame

of the Stone-Čech compactification is the compact regular d-frame determined by the ideal

completion of ωP . Hence its spectrum is not only stably compact but even coherent.

From Proposition 4.3.6 and Theorem 3.7.10 we know that the spectrum of the frame

IdlωP contains both the soberification of the spaces (P, ωP ) and (P,UpP ), the latter of

which is the ideal completion IdlP in its Scott topology. Concretely, the ideal completion
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of P embeds into the space pt IdlωP as follows. Consider the chain of monotone maps

P → FinP → ωP where the left map is the singleton embedding x 7→ {x} and the

right map is to be understood as the embedding of FinP into its MacNeille completion.

This map lifts to a map IdlP → IdlωP which preserves the way-below relation (see

Theorem 6.1.13) and transforms an ideal of P into a prime ideal of ωP . The prime ideals

of ωP are by classical Stone duality precisely the points of the frame FiltωP , which is

the second component frame of our bitopological Stone-Čech compactification. Finally,

recall that the points of any sober space form a dcpo in the specialisation order, whence

we declare the desired extension βD of D = IdlP to be the coherent space pt FiltωP .

4.6 Notes on Chapter 4

As mentioned earlier, the methods used for the classification theorem are not new but

stem from the work of Smyth [50] and Banaschewski [4]. In particular the construction of

the Stone-Čech compactification of frames has been known for longer, see Johnstone [30]

and Banaschewski and Mulvey [7]. The spatial analogue of our Stone-Čech compact-

ification 4.2.1 is called the Nachbin-Stone-Čech compactification in [42]. The proof of

classification theorem 4.3.5 follows closely [50, Theorem 2]. The bitopological version of

complete regularity as well as material on stably compact spaces can be found in [38]

and the fact that the Urysohn Lemma works in a bitopological localic setting seems to be

folklore among topologists. Stably compact extensions of T0 spaces can also be obtained

via quasi-uniformities, and this is the method of choice in [42, 38, 39]. Theorem 4.5.3,

although it seems obvious, has to our knowledge not appeared explicitly in the literature

up to now. The author was first made aware of the fact by Andrew Moshier, but the proof

we present in this thesis has been communicated to the author by Marcel Erné.

We believe that the bitopological framework explains neatly why Smyth’s largest stable

compactification is not a reflection of categories as one would expect from a compactifi-

cation. Without the second topology to limit what kind of proximities are allowed, the

topology of the largest stable compactification is simply the ideal completion of the lattice

of open sets, which is idempotent only in trivial cases.

What sets the d-frame theoretic compactification apart from the localic and point-

set theoretic compactifications is the existence of the normal coreflection through which

every compactification factors. This intermediate step is invisible outside the category

of d-frames, as we remarked in Proposition 4.2.2. If one traces the chain of adjunctions

in equation (4.4) using the patch functor, then the transition from completely regular

d-frames to regular normal d-frames is the identity on the level of patch frames.

Future work and open problems

At the time of writing no handy description of the extension βD of Subsection 4.5.2 is

known. In particular it is unknown whether the extension is a continuous dcpo again.
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4 Compactifications of d-frames

Among the real-world examples of completely regular bitopological spaces is the Min-

kowski space of special relativity. Here the order is given by causality: The upper set

of any point in Minkowski space is the light cone emerging from that point. Knowing

the order-preserving compactifications of Minkowski space is desirable because it gives a

handle to describing the long-term behaviour of relativistic systems.

172



Chapter 5

Conclusion

We demonstrated that at the heart of the classical theory of compactifications are compact-

ifications of frames and thereby domain-theoretical techniques. Likewise, Kopperman’s

bitopological separation axioms and compactifications of bitopological spaces, as well as

Smyth’s stable compactifications, are at the core point-free constructions. This point-free

bitopological content we extracted and presented in a clean, efficient manner that has ob-

vious advantages over existing bitopological point-free techniques such as Banaschewski,

Brümmer and Hardie’s biframes. While d-frames have been used in the literature be-

fore [34], the present work is the first that systematically explores the separation axioms

for d-frames above T1 and uses the streamlined notation that makes working with the

well-inside relations easy.

We met interpolation properties at numerous places in the thesis: The way-below

relation of domains, the really-inside relation on frames and bounded distributive lattices

and the normality axiom for lattices and d-lattices that rendered the well-inside relation

interpolative. The normality axiom was the basic axiom upon which we built a novel

presentation for domains. We made a point that the normality axiom should be considered

as more fundamental and more versatile than the interpolation property of the way-below

relation.

Using the novel presentation of domains, we obtained short proofs for previously known

domain-theoretical facts, in particular many results involving the Lawson dual and the

Smyth and Hoare power constructions. More pleasingly, these new proofs are of a finitary

nature because the directed complete structure of domains is only present implicitly in

our presentations.

Although our notion of morphism in Chapter 1 is more complicated than the mor-

phisms between information systems or abstract bases, and keeping track of two different

kinds of tokens does occasionally require extra effort in the proofs, our morphisms resemble

the morphisms of the multi-lingual sequent calculus. We gave ways of translating between

the categories Tok, Abs and Infosys.

In the notes to the preceding chapters we already hinted at open problems and entry
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points for further work. We hope that d-frames provide a tool for both topologists and

lattice theorists in which to explore bitopological concepts in an efficient way.
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Chapter 6

Appendix

This appendix contains definitions and known facts about structures we refer to from

within the main chapters. Although there is nothing in this chapter that was not known

before, the definitions and formulations are stated as to match the terminology of the

main chapters.

6.1 Partial orders and preorders

Anyone who has come in contact with some mathematics should have grasped the concept

of the less-than relation < between numbers. It has two crucial properties. Firstly, if

a number x is less than another number y and this number is in turn less than a third

number z, then x is also less than z. In short, from x < y < z one can conclude x < z.

Secondly, given any number x, there is no number y such that y is less than x and x is less

than y. One says that the order < is strict and antisymmetric. For the mathematician it

is more convenient to weaken the less-than relation to the less-than-or-equal relation ≤.

This inherits the first property from the strict order, and the second property is split into

two others: Any x is less than or equal to itself, and from x ≤ y and y ≤ x one can

conclude x = y.

Definition 6.1.1. Let X be a set and ≤ be a binary relation on X. The pair (X,≤) is

called a preordered set and ≤ a preorder if it is

reflexive x ≤ x for any x,

transitive x ≤ y ≤ z implies x ≤ z.

If the preorder is in addition

antisymmetric x ≤ y and y ≤ x implies x = y

then the relation ≤ is called a partial order and (X,≤) a partially ordered set or poset

for short. A function f : (X,≤) → (Y,⊑) between preordered or partially ordered sets is
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called monotone if x ≤ x′ implies that f(x) ⊑ f(x′). The category of preordered sets and

monotone functions is denoted by Preord and the category of partially ordered sets and

monotone functions is denoted by Poset.

Obviously every poset is a preordered set and the category Poset is a full subcategory

of Preord. Any preordered set (X,≤) can be regarded as a small category where the

objects are the elements of X and there is an arrow x → y whenever x ≤ y. Reflexivity

of ≤ means that every object has an identity arrow and transitivity means that one can

compose arrows. We will use this analogy below to phrase properties of posets in the

language of category theory.

Definition 6.1.2. A poset is called flat or an antichain if the partial order is equality.

A poset is called a chain or is said to be linearly ordered if for any two elements x and y

either x ≤ y or y ≤ x holds.

Sometimes the preordered set (X,≤) is itself called a preorder, and if it is clear from

the context one omits the symbol ≤ and just states “X is a preorder”.

Definition 6.1.3. A monotone map f : X → Y between preordered sets is called an

order embedding if for any x, x′ ∈ X the relation f(x) ≤ f(x′) implies that x ≤ x′.

Two preordered sets are called order-isomorphic if there exits a bijection between them

consisting of monotone maps.

Notice that the maps involved in an order-isomorphism are necessarily order embed-

dings.

Definition 6.1.4. A monotone function f : X → X on a preordered set is called infla-

tionary if for all elements x ≤ f(x). Dually, if for all elements f(x) ≤ x then the function

is called deflationary. An inflationary map which is idempotent, meaning f ◦ f = f , is

called a closure operator. In categorical terms, a closure operator is a monad when the

poset is considered as a small category.

6.1.1 Constructions on preorders

There is an obvious forgetful functor Preord → Set which forgets the preorder relation.

The free preorder over a set is the flat preorder.

Subobjects

If (X,≤) is a preorder and Y a subset of X then the relation ≤ restricted to Y ×Y renders

Y a preorder. We say that this order on Y is the one induced by X.
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Order dual

There is a covariant involution (−)∂ on the category Preord that is the identity on mor-

phisms and maps the pair (X,≤) to the pair (X,≥) where ≥ is shorthand for the relational

inverse of ≤. We say that (X,≥) is the order dual of (X,≤). A monotone map f : X → Y ∂

is said to be an antitone map from X to Y .

Posets from preorders

Given a preordered set (X,≤) one defines the relation ∼ to be the intersection of ≤ and

≥, that is x ∼ y whenever x ≤ y ≤ x. The relation ∼ is an equivalence relation. On the

set of equivalence classes X/∼ one can define a partial order . by [x] . [y] iff x ≤ y.

Preorders induced by functions

If X is a set and f : X → (Y,≤) is a map into a preorder then the preorder on X induced

by f is defined as x ≤ x′ iff f(x) ≤ f(x′) in Y . Observe that with respect to the preorder

on X thus defined, the function f is always an order-embedding. Even if (Y,≤) is a poset,

the induced relation is in general only a preorder, unless the function f is injective.

Products and coproducts

The categories Preord and Poset have arbitrary products and coproducts. If {(Xi,≤i)}i∈I

is a family of preorders then one defines a preorder on the cartesian product
∏
i∈I Xi by

letting (xi)i∈I ≤ (yi)i∈I iff ∀i ∈ I. xi ≤ yi. On the disjoint sum
∐
i∈I Xi define a preorder

by letting x ≤ y if and only if both x and y are elements of the same component Xi

and x ≤i y.

Order-enriched categories

The categories Preord and Poset are enriched over themselves. The set of monotone func-

tions between preordered sets X and Y is preordered point-wise: f ≤ g if and only if

∀x ∈ X. f(x) ≤ g(x). For any three objects X,Y, Z the composition map

◦ : Preord(X,Y )× Preord(Y, Z) → Preord(X,Z)

is monotone in both arguments. In general, a category C is called order-enriched if every

hom-set C(X,Y ) carries a preorder such that composition of morphisms is a monotone

operation. See the categorical notion of “enriched category” for a more detailed axiomati-

sation. Typical examples of order-enriched categories are the subcategories of Poset that

we define in the subsections below.
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6.1.2 Joins and meets

Definition 6.1.5. Let (X,≤) be a preordered set and Y ⊆ X be a subset. An element

x ∈ X is said to be an upper bound for Y if for all y ∈ Y the relation y ≤ x holds. In

case that any upper bound x′ of Y has x ≤ x′ we call the element x a least upper bound,

supremum or join of Y . In a poset, least upper bounds are unique, but in a preordered

set there may be several, all of which are equivalent by the equivalence relation ∼ defined

above. Lower bounds and greatest lower bounds (infima, meets) of subsets are defined

dually.

Notice that the join of a subset Y is the coproduct of Y if (X,≤) is viewed as a category.

Dually the meet of Y is its categorical product. Joins and meets need not always exist.

For example, an antichain has joins and meets only for singleton subsets. In due course we

shall define a hierarchy of subcategories of Poset that are characterised by the existence

of certain joins or meets.

6.1.3 Adjoints

If one regards posets as small categories then monotone maps are functors. A natural

transformation η : f → g between two monotone maps with the same source and target

is nothing but the assertion that f is below g in the point-wise order. The notion of an

adjunction is precisely that of category theory:

Definition 6.1.6. An adjunction between posets (X,≤) and (Y,≤) is a pair of monotone

maps X
f //Y
g

oo such that for every x ∈ X and y ∈ Y the relation f(x) ≤ y holds if and

only if x ≤ g(y) holds. The map f is called left adjoint to g and g is right adjoint to f .

One writes f ⊣ g.

Equivalently, the pair (f, g) is adjoint if g ◦ f is above the identity on X and f ◦ g is

below the identity on Y . General category theory tells us that

1. Adjoints are unique.

2. A left adjoint preserves all existing joins and a right adjoint preserves all existing

meets.

3. A monotone map f : X → Y has a right adjoint if and only if for all y ∈ Y the

right-hand side in the identity below exists and f preserves all such joins.1

g(y) =
∨

{x | f(x) ≤ y}

1In general category theory this is known as the Freyd Adjoint Functor Theorem. A formulation that
resembles the one for posets more closely was observed by Escardó: Let F : X → A be a functor. Then
F has a right adjoint if and only if for every object a in A the forgetful functor U : (F ↓ a) → X has a
colimit and F preserves it. Here (F ↓ a) denotes the comma category.
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Definition 6.1.7. An adjunction between posets X and Y ∂ is called a Galois connection.

It comprises a pair of antitone maps with the property x ≤ g(y) ⇔ y ≤ f(x).

Equivalently, a Galois connection is a pair of antitone maps (f, g) between two posets

such that both f ◦ g and g ◦ f are above the identity.

6.1.4 Semilattices

Definition 6.1.8. A semilattice is a set X together with a binary operation · : X2 → X

that is

idempotent x · x = x for any x ∈ X,

associative x · (y · z) = (x · y) · z for all x, y, z ∈ X,

commutative x · y = y · x for all x, y ∈ X.

The semilattice (X, ·) is bounded if there exists a neutral element e for the binary op-

eration, meaning e · x = x for all x ∈ X. A semilattice homomorphism is a function

between semilattices that preserves the semilattice operation, i.e. f(x · y) = f(x) · f(y).

A homomorphism of bounded semilattices in addition preserves the neutral element. The

category of bounded semilattices and their homomorphisms is denoted by sLat.

Any semilattice carries a natural partial order. Define x ≤ y whenever x · y = x.

This relation is reflexive because · is idempotent, transitive because · is associative and

antisymmetric because · is commutative. The neutral element e is easily seen to be unique

and the greatest element of the poset (X,≤). In the order ≤ the element x·y is the meet of

the set {x, y} whence in this reading the semilattice (X, ·) is said to be a meet-semilattice

and its neutral element is typically denoted by 1. By associativity of the semilattice

operation, the meet of any non-empty finite subset of X is well-defined, and the neutral

element 1 serves as the meet of the empty set.

Dually one can define a partial order x ≤ y iff x · y = y. This partial order is the

relational inverse of the one we defined earlier, whence a semilattice under this order is

called join-semilattice. Its neutral element is commonly denoted by 0.

Example 19. Let X be a set and let FinX denote the set of finite subsets of it. Then

FinX is a semilattice when endowed with set union as binary operation. Its neutral

element is the empty set.

We shall see that the example above is the generic semilattice.

Semilattices as Eilenberg-Moore algebras

The finite powerset operation Fin is a functor on the category Set. For any function f :

X → Y one defines Fin(f)(A) = {f(a) | a ∈ A}, i.e. the action of Fin(f) on finite subsets is
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forward image under f . This endofunctor extends to a monad where the unit X → FinX

is given by the singleton operation x 7→ {x} and the multiplication Fin2X → X is given

by the union operation A 7→
⋃
A.

Theorem 6.1.1. The category sLat of bounded (join-)semilattices and semilattice homo-

morphisms is equivalent to the category of Eilenberg-Moore algebras for the finite powerset

monad on Set.

Proof. As we noted above, a bounded join-semilattice (X, ·, 0) has a join operation
∨

:

FinX → X defined inductively on the cardinality of the subset:

∨
∅ = 0

∨
{x} = x

∨
({x} ∪A) = x ·

∨
A

The unit law for
∨

as a Fin-algebra map is precisely the second identity above. The

associative law holds because both
⋃

and · are associative in the algebraic sense. Observe

that the join-operation
∨

is monotone in the size of its argument. Indeed, if A ⊆ B are

two finite subsets of X then (
∨
A) · (

∨
B) =

∨
B.

Conversely, if a set X has an algebra map α : FinX → X for the finite powerset

monad then define a binary operation x · y := α({x, y}). This operation is idempotent

because {x, x} = {x}, commutative because {x, y} = {y, x} and the associative law of ·

is a consequence of the associative law for α as a monad algebra. Indeed, the associative

law for α requires that α ◦ Fin(α) = α ◦
⋃
. Using this identity and the definition of · one

finds

x · (y · z) = α({x, α({y, z})})

= α({α({x}), α({y, z})})

= (α ◦ Fin(α))({{x}, {y, z}})

= (α ◦
⋃

)({{x}, {y, z}})

= α({x, y, z})

= (α ◦
⋃

)({{x, y}, {z}})

= (x · y) · z

General category theory tells us that the free bounded semilattice over a set X is

(FinX,∪).
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Semilattices over posets

One can adapt the technique of Theorem 6.1.1 to construct the free semilattice over a

poset, in other words to add finite joins to a poset in a free manner.

Let (X,≤) be a poset. On the semilattice (FinX,∪) define a preorder

A . B iff ∀a ∈ A∃b ∈ B. a ≤ b

This preorder contains the inclusion relation ⊆ of finite subsets because ≤ is reflexive.

Furthermore it is evident from the definition that for any three sets A,B,C ∈ FinX

the relation A ∪ B . C holds precisely when A . C and B . C hold. While in the

join-semilattice (FinX,∪) the image of X under the singleton map is an antichain, the

singleton map is an order-embedding into (FinX,.).

Let SL(X) denote the poset obtained by quotienting the preorder (FinX,.) by the

equivalence ∼= (. ∩ &).

Theorem 6.1.2. For any poset (X,≤) the poset SL(X) is a join-semilattice where joins

of (equivalence classes of) finite sets are computed as set union. The operation SL extends

to a monad on Poset in the same manner as Fin is a monad on Set. The Eilenberg-Moore

algebras for this monad are the bounded join-semilattices.

An interesting fact is that while a set X can potentially carry many distinct semilattice

structures (i.e. a set may have many algebras for the finite powerset monad), the algebras

for the monad SL are unique, because an SL-algebra map on a poset (X,≤) must compute

the joins of finite subsets with respect to the partial order≤. Another reason for uniqueness

is that the structure map
∨

of a join-semilattice is left adjoint to the unit of the SL monad.

Indeed, the join of a finite set A ∈ FinX is below an element x precisely when x is an

upper bound for A, which we can express as A . {x}.

Remark. One constructs the free meet-semilattice over a poset by taking the order dual,

constructing its free join-semilattice and then taking order dual again.

6.1.5 Complete lattices

Definition 6.1.9. A poset (X,≤) is a complete lattice if every subset has a join.

A fundamental fact about complete lattices is that a poset has joins for all subsets

if and only if it has meets for all subsets. Indeed, by definition the meet of a subset is

the join of its lower bounds. Hence the order dual transforms a complete lattice into a

complete lattice.

Another way of obtaining new complete lattices from old is via closure operators.

Proposition 6.1.3. Let (L,≤) be a complete lattice and ν : L→ L a monotone inflation-

ary map (In particular, closure operators on L satisfy these requirements). Then the set
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of fixed points fix(ν) ⊆ L of ν under the induced order is a complete lattice where meets

coincide with those of L and the join of a set of fixed points Y ⊆ fix(ν) is calculated using

the join of L as the least fixed point of ν above
∨
Y .

The proof can be found in textbooks like [14]. An important instance is the case where

L is the powerset of some set with the inclusion order.

Categorical properties

A join-preserving map between complete lattices is also called linear . The category CL of

complete lattices and linear maps is closed under all products, but not coproducts. It is

enriched over itself, as the point-wise join of linear maps is again linear.

Complete lattices as Eilenberg-Moore algebras

The covariant powerset functor P extends to a monad on Set where the unit is the singleton

operation and the multiplication is set union. Just as the finite powerset monad yields

posets with joins for all finite subsets, the full powerset monad (P, {−},
⋃
) yields complete

lattices.

Theorem 6.1.4. The Eilenberg-Moore category of the powerset monad on Set is equivalent

to the category CL of complete lattices and join-preserving maps.

Instead of constructing free complete lattices as powersets over sets, one can do the

same over posets.

Definition 6.1.10. Let (X,≤) be a poset. Define an operation on subsets of X as

|

◭Y = {x ∈ X | ∃y ∈ Y. x ≤ y} .

We abbreviate the set |

◭{x} by |

◭x . The set |

◭Y is called the lower closure or downward

closure of Y and the subsets of X which are their own lower closures are called the lower

sets of X. In particular the set |◭x is called the principal ideal generated by x. We denote

the set of lower sets of X, ordered by inclusion, by LoX. A monotone function f lifts to

lower sets as forward image followed by lower closure.

Dually one defines the upper closure operator |◮ and the poset UpX of upper closed

subsets of a poset. The action of Up on morphisms is forward image followed by upper

closure.

Evidently the operator |

◭ is a closure operator on the powerset of a poset, whence by

Proposition 6.1.3 the poset LoX is a complete lattice. In fact the lower sets share all

joins and meets with the powerset and the map Lo(f) derived from a monotone map

f preserves all unions, but not necessarily intersections. The operation Lo extends to

a monad on Poset, the lower set monad. Its unit is the principal ideal map |

◭ and the

multiplication is union of lower sets.
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Theorem 6.1.5. Algebras for the lower set monad are unique. The Eilenberg-Moore

category for the lower set monad on Poset is equivalent to the category CL of complete

lattices and join-preserving maps.

Remark. The preorder . we defined on the finite powerset of a poset in order to compute

the free join-semilattice over it can be characterised in terms of lower closure. One has

A . B precisely when |

◭A ⊆ |

◭B .

6.1.6 Directed complete partial orders

Definition 6.1.11. Let (X,≤) be a preordered set. A subset I ⊆ X is called an ideal if

it is

lower closed x ≤ y ∈ I implies x ∈ I,

directed Any finite subset of I has an upper bound in I.

An ideal of X∂ is called a filter . The set of ideals of X, ordered by inclusion, is denoted

by IdlX and called the ideal completion of X. One extends this operation to monotone

maps by letting Idl(f) send an ideal to the lower closure of the forward image under f .

Dually one defines FiltX as the set of filters of X under inclusion and the map Filt(f)

sending a filter to the upward closure of the forward image under f .

Notice that ideals are never empty, since directedness requires that the empty set has

an upper bound in any ideal. A crucial fact is that the directed union of ideals is again

an ideal.

Proposition 6.1.6. The assignment f 7→ Idl(f) constitutes a functor Preord → Poset

and restricts to a monad on Poset where the unit is the principal ideal map x 7→ |

◭x and

the multiplication is (directed) union of ideals.

Definition 6.1.12. A directed complete partial order or dcpo for short is a poset where

every ideal has a join. A monotone map between dcpos is called continuous if it preserves

joins of ideals. The category of dcpos and continuous maps is denoted by Dcpo.

Proposition 6.1.7. The category Dcpo is equivalent to the Eilenberg-Moore category of

the ideal completion monad on Poset. Consequently, the ideal completion is the free dcpo

over a poset.

Categorical properties

The category Dcpo has arbitrary products and coproducts which are computed as in the

category Poset. The category Dcpo is cartesian closed, as the point-wise join of a directed

set of continuous maps is continuous.
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6.1.7 Domains

Definition 6.1.13. A domain is a a directed complete partial order D with a left adjoint

։

: D → IdlD to the join operation on ideals. The interpolative relation ≪ induced by

this map as x ≪ y ⇔ x ∈

։

y is called the way-below relation. The category Dom is the

full subcategory of Dcpo where objects are domains and morphisms are continuous maps.

The way-below relation

Being the left adjoint to the join operation
∨
, we know that

∨
◦

։

is above the identity.

But as

։

⊣
∨

⊣ |

◭ we also know that
∨
◦

։

is below the identity, whence any element x of

a domain is the join of the ideal

։

x.

A very useful fact is that, being a left adjoint, the map

։

is a homomorphism of

Idl-algebras. We can write

։

z =
(⋃

◦ Idl(
։

) ◦

։ )
z

Which means that the ideal

։

z is the union of ideals
⋃
{

։

y | y ≪ z}. This shows:

Proposition 6.1.8. The way-below relation on a domain has the interpolation property,

meaning that whenever x≪ z then x≪ y ≪ z for some element y.

A less abstract definition of the way-below relation that applies to arbitrary posets is

the following. An element x is way below an element y if for all ideals I that possess a join

the implication y ⊑
⊔
I ⇒ x ∈ I holds. A poset where every element is the directed join

of elements way below it is called a continuous poset . The preceding proposition remains

true for continuous posets.

Proposition 6.1.9. For any domain D there is an order-isomorphism between the points

of D and ideals that are round with respect to the way-below relation.

Proof. Similar to the proof of Lemma 6.1.18.

Algebraic domains

Definition 6.1.14. An element x of a domain is called compact or finite if it is way

below itself. A domain is called algebraic if every element is the directed join of compact

elements. With Alg we denote the full subcategory of Dom whose objects are algebraic

domains.

Proposition 6.1.10. The class of algebraic domains is the image of the ideal completion

functor Idl : Poset → Dcpo. In other words, the algebraic domains are precisely the ideal

completions of posets.

Proof. Every algebraic domain is isomorphic to the ideal completion of the poset of com-

pact elements. Observe that the restriction of the way-below relation to the set of compact

elements of a domain is a partial order. Then apply Lemma 6.1.25.
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Categorical constructions

The category Dom has finite products and arbitrary coproducts, but an infinite product of

domains may fail to be a domain unless all but finitely many factors have a least element.

In contrast to general dcpos, domains are not closed under the function space construction.

The full subcategory of algebraic domains, however, is cartesian closed.

The Scott topology

Definition 6.1.15. A subset U ⊆ D of a dcpo is called Scott open if for all ideals I ∈ IdlD

the join of I is an element of U precisely when I intersects U . The set of Scott open subsets

of D, ordered by inclusion, is denoted by σD.

The following result justifies our name for the morphisms of Dcpo.

Proposition 6.1.11. The set of Scott open sets of any dcpo is a T0 topology. A monotone

map between dcpos preserves joins of ideals precisely when it is continuous with respect to

the Scott topologies on source and target.

For domains, we can say even more about the Scott topology:

Theorem 6.1.12. 1. For any domain D, the Scott topology has a basis consisting of

sets of the form ։x := {y ∈ D |x≪ y}.

2. For two subsets x, y of a domain, x ≪ y holds precisely when there exists a Scott

open set U containing y and having x as a lower bound.

3. The Scott topology of a domain is itself a domain, where U ′ ≪ U if there exists a

finite subset A ⊆ U such that U ′ is contained in the upper closure of A.

4. A morphism f between domains preserves the way-below relation if and only if the

operation Up(f), that is forward image followed by upper closure, maps Scott open

sets to Scott open sets.

For algebraic domains, the results above specialise further:

Theorem 6.1.13. If D is an algebraic domain and P is the poset of its compact elements

then the following hold:

1. The Scott topology of D is isomorphic to the frame UpP of upper sets of compact

elements.

2. x≪ y holds if and only if there exists some compact element k with x ⊑ k ⊑ y.

3. The morphisms between algebraic domains that preserve the way-below relation are

precisely the maps of the form Idl(f) for some monotone function between compact

elements.
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6.1.8 Lattices

Definition 6.1.16. A lattice is a poset with two semilattice operations ∨, ∧ such that

the partial order induced by ∨ is dual to the order induced by ∧. If both semilattice

operations have a neutral element then the lattice is called bounded.

In other words, a lattice is a poset that has meets and joins for all finite non-empty

subsets, and a bounded lattice is a poset with meets and joins for all finite subsets. The

order on a lattice (L,∨,∧) is typically the one induced by ∧, that is x ≤ y iff x ∧ y = x.

Clearly the order dual of a lattice is a lattice.

If (L,∨,∧) is a lattice then for any x ∈ L the maps y 7→ x ∨ y and y 7→ x ∧ y

are monotone, so in particular the inequality x ∧ (y ∨ y′) ≥ (x ∧ y) ∨ (x ∧ y′) holds for

all x, y, y′ ∈ L.

Definition 6.1.17. A lattice (L,∨,∧) is called distributive if for every x ∈ L the meet op-

eration y 7→ x∧y is a join-semilattice homomorphism, that is, the inequality x ∧ (y ∨ y′) ≤

(x ∧ y) ∨ (x ∧ y′) holds for all x, y, y′ ∈ L. The category of bounded distributive lattices

and lattice homomorphisms is denoted by Lat.

Categorical constructions

Products of lattices are computed as in the category Poset. Coproducts of lattices are

computed using the free lattice construction, see the following proposition.

Proposition 6.1.14. The free bounded lattice over a set is the free join-semilattice over

the free meet-semilattice over the set. The free bounded lattice is distributive, hence also

the free bounded distributive lattice.

6.1.9 Frames

Definition 6.1.18. A meet-semilattice (L,∧) is called meet-continuous if L is a dcpo in

the order induced by ∧ and moreover for every x ∈ L the meet operation y 7→ x ∧ y is

Scott continuous.

Definition 6.1.19. A frame is a bounded distributive, meet-continuous lattice. A frame

homomorphism is a Scott continuous lattice homomorphism. The category of frames and

frame homomorphism is denoted by Frm.

Alternatively one can describe frames as complete lattices where arbitrary joins dis-

tribute over finite meets. However, the distinction between finite and directed joins often

has to be made in proofs and so we prefer the characterisation in the definition above.

Proposition 6.1.15. 1. The ideal completion of a bounded distributive lattice is a

frame.

2. The join operation
∨

: IdlL→ L of a frame is a frame homomorphism.
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Proof. The ideal completion of any poset is a dcpo where directed joins are computed

as set union. The ideal completion of a bounded join-semilattice has finite joins where

the empty join of ideals is the ideal |◭0 (here 0 denotes the neutral element for ∨), and

binary joins are computed as the element-wise join of ideals followed by lower closure.

The ideal completion of a bounded meet-semilattice has finite meets that are computed

as set intersection. Clearly directed joins distribute over finite meets. In a distributive

lattice the binary meet of ideals can be computed as element-wise meet. Knowing this,

the finite distributive law for the ideal completion follows from the finite distributive law

of the lattice itself.

The join operation
∨

: IdlL → L on a frame, being left adjoint to the principal ideal

operation, preserves all existing joins. Meet-continuity of the frame implies that the join

of ideals preserves finite meets.

Heyting implication and pseudocomplements

If x ∈ L is an element of a frame, then y 7→ x ∧ y preserves all joins and therefore has a

right adjoint.

Definition 6.1.20. For elements x, y of a frame L the element x → y is defined as the

join of the set {z ∈ L |x ∧ y = x ∧ z}. The binary map → is called the Heyting arrow of

the frame L.

Definition 6.1.21. For any element x of a frame L the element x → 0 is abbreviated

as ¬x and called the pseudocomplement of x. The unary operation ¬ is called Heyting

negation.

Right adjoints and basis embeddings

Every frame homomorphism has a right adjoint, because it preserves all joins. The right

adjoint to a frame homomorphism h is commonly denoted by h∗. If h :M ։ L is a surjec-

tive frame homomorphism then the composite h∗ ◦ h is a closure operator that preserves

finite meets because h preserves finite meets and h∗ preserves all meets. Moreover, in that

situation h∗ is injective and h ◦ h∗ is the identity on L.

Lemma 6.1.16. If h : M ։ L is a surjective frame homomorphism, ≺M is a quasi-

proximity on M and the right adjoint h∗ is a basis embedding with respect to ≺M then the

relation on L defined as

x0 ≺L x1 :⇔ h∗(x0) ≺M h∗(x1)

is a quasi-proximity on L.

Proof. First we show that ≺L is interpolative whenever ≺M is. Suppose h∗(x0) ≺M h∗(x1).

Since h∗ is a basis embedding with respect to ≺M there exists some x ∈ L with h∗(x0) ≺M

h∗(x) ≺M h∗(x1) and thereby x0 ≺L x ≺L x1. The right adjoint h∗ is an order embedding
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into M because h ◦ h∗ is the identity on L. Since ≺M is stronger than the frame order,

so must be ≺L. Further it is obvious that ≺L is downward closed on the left and upward

closed on the right because h∗ is monotone and ≺M has the desired properties, which

makes ≺L an auxiliary relation. With these properties it is easy to show that ≺L is closed

under finite joins on the left and finite meets on the right.

Lemma 6.1.17. Let h : M ։ L be a surjective frame homomorphism such that h∗ is a

basis embedding with respect to ≪ (see Definition 6.1.25). The following are equivalent:

1. h∗(x0) ≪ h∗(x1).

2. There exist y0 ≪ y1 with x0 ≤ h(y0) and h(y1) ≤ x1.

Proof. For surjective frame homomorphisms h : M → L the composite h ◦ h∗ is the

identity on L. Therefore, if h∗(x0) ≪ h∗(x1) then one can choose y0 = h∗(x0) and

y1 = h∗(x1) and obtain the implication (1) ⇒ (2). For the reverse implication, suppose

that x0 ≤ h(y0),y0 ≪ y1 and h(y1) ≤ x1. Since h is dense, there exists some x ∈ L

with y0 ≪ h∗(x) ≪ y1. The way-below relation is contained in the order ≤ and h

preserves the order, whence x0 ≤ x ≤ x1. The right adjoint h∗ is monotone as well, so

h∗(x0) ≤ h∗(x). Now use the fact that h∗ is the right adjoint to h and deduce y1 ≤ h∗(x1).

Together we have h∗(x0) ≤ h∗(x) ≪ y1 ≤ h∗(x1) and thereby h∗(x0) ≪ h∗(x1).

6.1.10 Completely distributive frames

As we have seen above, the category of complete lattices and join-preserving maps can be

regarded as the Eilenberg-Moore category for the lower set monad on Poset. The lower

set monad Lo, just as the ideal completion monad Idl, has the special property that any

monad algebra map
∨

: LoP → P must be left adjoint to the unit |

◭ : P → LoP and

is therefore unique for any given poset. Just as domains among the dcpos play a special

role, those complete lattices which have a left adjoint for the algebra map take a special

place among the complete lattices.

We begin with an obvious counterpart for the way-below relation.

Definition 6.1.22. Let L be a complete lattice and x, y ∈ L. We say that x is completely

below y and write x ≪ y if for any lower set S ∈ LoL the relation y ≤
∨
S implies that

x ∈ S. An element x ∈ L which is completely below itself is called completely compact.

Just as the way-below relation on dcpos, the completely-below relation is an auxiliary

relation, meaning x ≪ y implies x ≤ y and x′ ≤ x ≪ y ≤ y′ implies x′ ≪ y′. In

contrast to the way-below relation, it is not closed under finite joins on the left in general2

In particular, the bottom element 0 of a complete lattice is never completely below itself,

because 0 =
∨
∅ and certainly 0 6∈ ∅.

2In fact, a poset where the way-below relation coincides with the completely-below relation must be a
chain.
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We call a subset S ∈ LoL a round lower set with respect to ≪ if s ∈ S implies that

there exists some s′ ∈ S with s≪ s′.

Lemma 6.1.18. In a complete lattice L, any round lower set S is of the form

։։

x =

{y ∈ L | y ≪ x} for some x ∈ L.

Proof. Suppose S is a round lower set. Define x =
∨
S. For any s ∈ S we have s≪ s′ ≤ x

for some s′ ∈ S whence all elements of S are completely below x. Now suppose y is

completely below x. Since x ≤
∨
S we must have y ∈ S.

Proposition 6.1.19. The following are equivalent for a complete lattice L.

1. The structure map
∨

: LoL→ L has a left adjoint.

2. Every element x ∈ L is the join of the set of elements completely below it.

3. The lattice L is order-isomorphic to the lattice of round lower sets with respect to ≪.

4. The lattice L satisfies the complete distributive law, meaning that arbitrary meets

distribute over arbitrary joins:

∧

S∈S

∨
S =

∨{∧

S∈S

λ(S)

∣∣∣∣∣λ : S →
⋃

S choice function

}

Remark. The equivalence of the above characterisations requires the Axiom of Choice,

guaranteeing a rich enough supply of choice functions λ : S →
⋃
S. However, in our work

we actually never make explicit use of the complete distributive law. The characterisation

using the left adjoint to
∨

is called constructive complete distributivity in [60].

If a complete lattice is completely distributive, then the left adjoint to the structure

map is

։։

, just as we expect. The complete distributive law subsumes the frame distribu-

tive law, whence we also refer to completely distributive complete lattices as completely

distributive frames and denote the category of completely distributive frames and join-

preserving maps by CDFrm.

At first glance, completely distributive frames seem rather exotic. But there are many

of them:

Proposition 6.1.20. 1. The free complete lattice LoP over any poset P is completely

distributive. Joins and meets are computed as set union and intersection, respec-

tively. The completely-below relation has the characterisation S′ ≪ S if and only if

there exists an element x ∈ S which is an upper bound for S′.

2. For any poset P the complete lattice of upper sets UpP is completely distributive

where U ′ ≪ U if and only if there exists some x ∈ U which is a lower bound for U ′.
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3. The Scott topology on any domain D is a completely distributive frame. Its completely-

below relation has the same characterisation as on UpD.

Recall that a subset U ⊆ L of a complete lattice is a completely prime upper set if for

any lower set S ∈ LoL ∨
S ∈ U ⇔ S ∩ U 6= ∅.

These sets are in bijective correspondence with the order dual of L, because the comple-

ment of a completely prime upper set has a largest element, and any set of the form L\ |◭x

is completely prime.

Theorem 6.1.21. Let L be a completely distributive frame.

1. The completely-below relation has the interpolation property.

2. An upper set U ⊆ L is completely prime if any only if it is round with respect to ≪,

meaning

x ∈ U ⇔ ∃u ∈ U. x≪ u.

3. The relation x ≪ y holds if and only if there is a completely prime upper set U

which contains y and has x as a lower bound.

4. The set of completely prime upper sets of L is again a completely distributive frame,

where joins are computed as set union and meets are computed as
∧
U =

⋃
u∈

⋂
U ։։u.

If h is a join-preserving map between completely distributive frames, then h−1 re-

stricts to a join-preserving map h! between completely prime upper sets. This yields

a contravariant involution (−)! on CDFrm.

5. The completely distributive frame L! is order-isomorphic to the order-dual L∂ via

the maps

L! ∋ U 7→
∨

(L \ U)

L ∋ x 7→ L \ |◭x

In this reading, the duality (−)! transforms a join-preserving map h to its right

adjoint.

Lemma 6.1.22. Let 2 = {0, 1} denote the two-chain object in CDFrm.

1. For any completely distributive frame L, the set L! of completely prime upper sets

is order-isomorphic to the hom-set CDFrm(L, 2) with the point-wise order. A set

U ∈ L! corresponds to its characteristic function χU (x) = 1 :⇔ x ∈ U .

2. For a homomorphism h ∈ CDFrm(L,M) and a completley prime upper set U ∈M!

represented by χU ∈ CDFrm(M, 2) we have U Ialg(h)x if and only if (χU ◦ h)(x) = 1.

This means that that Ialg is a contravariant functor CDFrm → Tok0 which is pre-

sented as CDFrm(−, 2).
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3. The interaction algebra Ialg 2 is isomorphic to 1, and Ω1 is isomorphic to 2.

Proof. Assertion (1) is true for every complete lattice L. For h : L → 2 and any lower

set S ⊆ L clearly h(
∨
S) = 1 is equivalent to S ∩ h−1(1) 6= ∅. This shows that h−1(1) is

completely prime. A characteristic map χU is join-preserving if and only if the set U is a

completely prime upper set.

(2) If one represents a completely prime upper set U ∈M! by its characteristic func-

tion, then it is immediate that U Ialg(h)x iff h(x) ∈ U iff χU (h(x)) = 1. Therefore Ialg acts

on characteristic functions by pre-composition with the homomorphism h. functoriality

of Ialg now follows from general categorical nonsense.

(3) We showed in Example 1 that Ialg 2 is isomorphic to the interaction algebra 1. Its

witness set {∗} has precisely two round lower sets, namely ∅ and {∗}. Clearly {∅, {∗}} ∼= 2.

Recall that the set of filters of a poset is a dcpo under inclusion. Theorem 6.1.21

above tells us that the set ptL of completely prime filters of a completely distributive

frame L is also a dcpo, and that the preimage of such a completely prime filter under a

join-preserving map is a completely prime upper set. Thus we get an interesting restriction

of the endofunctor (−)!:

Theorem 6.1.23. 1. The set ptL of completely prime filters of a completely distribu-

tive frame is a domain when ordered by inclusion. Its way-below relation is the

restriction of the completely-below relation on completely prime upper sets.

2. The set of completely prime upper sets of L is order-isomorphic to the set of Scott

closed subsets of ptL.

3. A join-preserving map h : L → M between completely distributive frames induces a

Scott continuous map h! from ptM into the Scott closed sets of ptL.

4. A completely distributive frame L is isomorphic to the Scott topology on ptL. Con-

cretely, any x ∈ L induces the Scott open set {φ ∈ ptL |x ∈ φ}.

In particular, the completely distributive frames are precisely the Scott topologies on

domains.

We conclude our account of completely distributive frames with homomorphisms pre-

serving the completely-below relation. Recall that the functor Up on the category of

partial orders and monotone maps transforms a map h to the operation Up(h)(U) =

{y | ∃x. f(x) ≤ y}. This map is the left adjoint to the preimage operation under h:

Up(h)(U) ⊆ V ⇔ U ⊆ f−1(V ).

Proposition 6.1.24. The following are equivalent for a homomorphism h : L → M in

the category CDFrm.
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1. h preserves the completely-below relation.

2. The map Up(h) restricts to a (join-preserving) map between completely prime upper

sets of L and M .

3. The right adjoint to h (which always exists) preserves all joins.

Proof. If h preserves the completely-below relation, then Up(h) restricts to completely

prime upper sets. Indeed, if U ⊆ L is a completely prime upper set and x ∈ U then

U ∋ y ≪ x for some y. Now h(y) ≪ h(x) and so Up(h)(U) is completely prime.

If Up(h) restricts to completely prime upper sets, then it is left adjoint to the map

h! : M! → L!. Therefore h ∼= (h!)! is left adjoint to (Up(h))! which is a join-

preserving map.

Suppose h ⊣ g and g : M → L preserves all joins. Let x0 ≪ x1 in L. We show

h(x0) ≪ h(x1). Suppose Y ⊆ M is a lower set and h(x1) ≤
∨
Y . Using the adjunction

we can express this as x1 ≤ g (
∨
Y ) and using the fact that g preserves joins we have

x1 ≤
∨
y∈Y g(y). Now use x0 ≪ x1 and deduce x0 ≤ g(y) for some y ∈ Y . Using the

adjunction once more we deduce h(x0) ≤ y which shows h(x0) ≪ h(x1).

6.1.11 Auxiliary relations and proximities

Definition 6.1.23. An auxiliary relation on a poset (L,⊑) is a relation ≺ satisfying the

axioms (i) and (ii) of Table 4.1. The relation is called

interpolative if it satisfies axiom (v),

approximating if it satisfies axiom (vi).

Any auxiliary relation is transitive. Important examples of interpolative auxiliary

relations are the way-below relation on domains and the completely-below relation on

completely distributive frames.

Definition 6.1.24. Let L be a set with a binary transitive relation ≺. A round ideal with

respect to ≺ is a subset I ⊆ L with the properties

1. x ≺ y ∈ I implies x ∈ I,

2. For every finite subset A ⊆ I there exists an element y ∈ I such that x ≺ y for every

x ∈ A.

The poset of round ideals of L, ordered by inclusion, is denoted by Idl≺ L.

Evidently the set of round ideals is a dcpo. Observe that in case ≺ is an auxiliary

relation on a poset L, the poset of round ideals is a sub-dcpo of the ideal completion.
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Basis embeddings

Definition 6.1.25. Let L be a poset with auxiliary relation ≺ on it. A map e : B → L

is called a basis embedding with respect to ≺ if x ≺ y in L implies that there exists some

b ∈ B with x ≺ e(b) ≺ y.

An important instance is the case when ≺ is approximating, B ⊆ L and e is the

inclusion map.

Lemma 6.1.25. Let D be a domain and e : B → D be a basis embedding with respect

to ≪. On B define a relation via b0 ≺ b1 iff e(b0) ≪ e(b1). then Idl≺B ∼= D.

Proof. From Proposition 6.1.9 we know that D ∼= Idl≪D. Given a round ideal I ∈ Idl≪D,

the preimage e−1(I) is a round ideal with respect to ≺. Since e is a basis embedding, the

set e(e−1(I)) is cofinal in I.

6.2 Information systems and abstract bases

6.2.1 Approximable mappings

Although the structural differences between information systems and abstract bases are

marginal, the interpretation of their tokens is literally dual. While a token of an abstract

basis is thought of as a basic point of a domain, a token of an information system is

thought of as a basic Scott open set. Therefore it is even more notable that the morphisms

in both categories, too, differ only in a seemingly insignificant detail. When looking at

the definitions in [60] and [1] it surprises that the definitions are both written with the

approximation relation in the “greater than”-style. In order to keep to the strict notation

in this work, we find it convenient to define the relations contravariantly. This underlines

our choice to present the morphisms of interaction algebras as dual to the maps in domain

theory.

Definition 6.2.1. [55, Definition 2.18] An information system is a set X together with

an idempotent binary relation < on it. The morphisms between information systems are

called approximable mappings and the category of information systems and approximable

mappings is denoted by Infosys. An approximable mapping (X,<) → (Y,<) is a relation

R : Y → X which satisfies

(AM1) R = R;<,

(AM2) <;R ⊆ R,

(AM3) For all x, x′ ∈ X and M ⊆ Y finite, (∀y ∈M.yRx < x′) ⇒ ∃y′.M < y′Rx′

where M < y′ is shorthand for ∀y ∈ M. y < y′. Composition of morphisms is usual

relational composition, where < is the identity morphism of each object.
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There are two important instances of the axiom (AM3) for approximable mappings.

The case M = ∅ tells us that every token x′ has a token y′ with y′Rx′. The case where

M is a singleton amounts to the inclusion R ⊆<;R. Just as for interaction algebras, the

round upper sets of tokens are those subsets U ⊆ X with x ∈ U ⇔ ∃x′ < x. x′ ∈ U and

the completely distributive frame of round upper sets is denoted by Up<X. The upper

closure of an arbitrary subset U is denoted by |◮U , and similarly for lower closures and

round lower sets. The set of all round ideals of tokens, ordered by inclusion, is written as

Idl<X.

Definition 6.2.2. [1, Definition 2.2.27] An abstract basis is a set X together with an

idempotent binary relation ≺ on it. The relation ≺ is directed on the left, meaning that

for any finite M ⊆ X and x ∈ X,

M ≺ x⇒ ∃x′.M ≺ x′ ≺ x

where M ≺ x is shorthand for ∀m ∈ M.m ≺ x. Abstract bases form the category Abs

where morphisms are approximable relations. A morphism (X,≺) → (Y,≺) is a relation

R : Y → X satisfying

(AR1) R = R;≺,

(AR2) ≺;R ⊆ R,

(AR3) For all x ∈ X and M ⊆ Y finite, (∀y ∈M.yRx) ⇒ ∃y′.M ≺ y′Rx

Composition of morphisms is usual relational composition, where ≺ is the identity mor-

phism of each object.

Notice that the axiom (AM1) is the same as (AR1) and (AM2) is the same as (AR2).

The requirement that ≺ is directed on the left can be seen as the manifestation of ≺ being

an approximable relation from (X,≺) to (X,≺).

Clearly every abstract basis is an information system, but not every information system

is an abstract basis, as Example 20 demonstrates. Every approximable relation is an

approximable mapping: If M ⊆ Y is a finite set and ∀y ∈M.yRx ≺ x′ then by (AR1) we

have ∀y ∈M.yRx′ and using (AR3) we getM ≺ y′Rx′ for some token y′. Hence R satisfies

axiom (AM3). Surprisingly, if R : (X,≺) → (Y,<) is an approximable mapping and (X,≺)

is an abstract basis, then R is an approximable relation. Indeed, if ∀y ∈ M.yRx′ then

using (AM1) we obtain for every y ∈ M a token xy ∈ X such that yRxy ≺ x′. Now use

the fact that ≺ is directed on the left and obtain {xy}y∈M ≺ x ≺ x′ for some token x.

Axiom (AM1) now yields ∀y ∈ M.yRx ≺ x′ which makes it possible to apply (AM3) and

get M ≺ y′Rx′.

We have shown

Proposition 6.2.1. The category Abs of abstract bases is a full subcategory of the category

Infosys.
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Despite one category being a proper subcategory of the other, they have the same

expressive power:

Theorem 6.2.2. Both the categories Infosys and Abs are equivalent to the category Dom

of domains and Scott continuous maps via round ideals of tokens. For an information

system (X,<) the set {|◮{x} |x ∈ X} is a basis for the Scott topology on Idl<X. For an

abstract basis (Y,≺) the set {|◭{y} | y ∈ Y } is a basis for the domain Idl≺ Y .

Example 20. Consider the information system N+{∞, x} depicted in the diagram below,

where filled circles symbolise tokens which are below themselves.

◦
∞

@@
@@

@@
@

2•

1

•
x

��
��
��
��
��
��

•

0•

The interpolation property of the relation < holds trivially because all but one token are

below themselves. But the round lower set of the token ∞ is N + {x} which is not an

ideal. Therefore this information system is not an abstract basis.

However, the token ∞ is not bounded whence one could omit it and obtain an iso-

morphic information system. In fact, the domain that is represented by this information

system has the same shape except that x is not below ∞.

6.3 Topology

Definition 6.3.1. A topological space is a pair (X,OX) where X is a set and OX is a

sub-frame of the powerset of X. The elements of OX are called open. We denote the

set of complements of open sets by ΛX and call these closed. The elements of OX ∩ ΛX

are called clopen. A function f : X → Y is called continuous if the preimage function

f−1 : PY → PX restricts to a frame homomorphism OY → OX. The category Top has

topological spaces as objects and continuous functions as morphisms.

We use the symbol O to denote the contravariant functor Top → Frm that maps a space

to its topology and a continuous function to the associated frame homomorphism f−1.

There is an obvious forgetful functor Top → Set whose left adjoint endows a set X with

the discrete topology PX.

Definition 6.3.2. A set B ⊆ OX is called a basis if every open is a union of elements

of B. If B ⊆ OX has the property that the set of finite intersections of elements of B is a

basis, then B is called a subbasis.
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Given any set B ⊆ PX there is a smallest topology which has B as a subbasis, which

we call the topology generated by B.

Definition 6.3.3. For any point x of a topological space X, the open sets containing

the point x are its open neighbourhoods. The collection of open neighbourhoods of x is

a completely prime filter in OX and commonly denoted by N (x). Likewise, the open

neighbourhoods of a set Y ⊆ X are the open sets containing Y .

6.3.1 The specialisation order

Definition 6.3.4. Let X be a topological space. Define the specialisation preorder on X

by

x ⊑ y :⇔ ∀U ∈ OX. (x ∈ U ⇒ y ∈ U).

If Y ⊆ X is a subset of X, then the saturation of Y is the set

{x ∈ X | ∃y ∈ Y. y ⊑ x}

The set Y is called saturated if Y is equal to its saturation.

Lemma 6.3.1. The specialization preorder on any space X is indeed a preorder. The

saturation operation is a closure operator on the powerset of X. The saturation of a

subset is the intersection of all open sets containing the subset. In particular, all open sets

are saturated.

Note that as all open sets are upper sets in the specialisation order, all closed sets

are lower sets. In particular, the closure of a point is the principal down-set |

◭x in the

specialisation preorder.

Proposition 6.3.2. Every continuous map between topological spaces is monotone with

respect to the specialisation preorders. Hence there is a forgetful functor Top → Preord.

Definition 6.3.5. Let X be a set with a preorder ⊑. The largest topology on X that has

⊑ as specialisation order is the (upper) Alexandrov topology consisting of all upper sets

with respect to ⊑. The smallest topology that has ⊑ as specialisation preorder is the weak

upper topology that has subbasic opens of the form X \ |◭x where x ranges over the points

of X.

6.3.2 Separation axioms

Definition 6.3.6. A topological space X is called

T0 if the specialisation preorder is antisymmetric, i.e. a partial order.

T1 if the specialisation preorder is equality.
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T2 or Hausdorff if any two distinct points can be separated by disjoint open neighbour-

hoods.

regular if every pair (x,A) where x 6∈ A ∈ ΛX can be separated by a pair of disjoint

open neighbourhoods.

T3 if it is T1 and regular.

completely regular if for any pair (x,A) as above there exists a continuous function

X → [0, 1] with f(x) = 0 and A ⊆ f−1({1}).

Tychonoff if it is T1 and completely regular.

normal if any pair of disjoint closed sets can be separated by disjoint open neighbour-

hoods.

T4 if it is T1 and normal.

Normal topological spaces

Notice that in the definition of normality no explicit reference to points is made, so it does

not surprise that one can formulate normality as a property of the lattice of open sets:

Definition 6.3.7. A bounded lattice (L,⊓,⊔, 0, 1) is normal if it obeys the following rule.

x ⊔ y = 1

∃x′, y′. x ⊔ y′ = 1, y′ ⊓ x′ = 0, x′ ⊔ y = 1

Lemma 6.3.3. The following are equivalent for a topological space X.

1. The space X is normal.

2. The lattice OX of open sets is normal.

3. The well-inside relation on the powerset of X is interpolative.

Proof. (1)⇔(2) Suppose A and B are closed sets of the topological space X. Let u = X \A

and v = X \B be their open complements. Then A is disjoint from B if and only if u and

v cover X. Hence normality of OX is equivalent to the assertion that there exist disjoint

opens u′ and v′ with A ⊆ v′ and B ⊆ u′.

(1)⇔(3) By definition a set A is well inside a set B if the closure of A is contained

in the interior of B. Equivalently, A is well inside B if the closure of A is disjoint from

the closed complement of the interior of B. With this we see that normality implies the

interpolation property of the well-inside relation. Conversely, two closed sets A and B are

disjoint if and only if the set A is well inside the open complement of B. The interpolation

property of the well-inside relation then yields normality.

Some important properties of normal spaces are:
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• Every compact Hausdorff space is normal.

• The Urysohn Lemma: A disjoint pair of closed subsets can be separated by a bounded

real-valued function, that is a function which is constant zero on one closed set and

constant one on the other.

• In contrast to weaker separation axioms Tn (n < 4) the subcategory of T4 spaces

is not a reflective subcategory of Top, that is, normal spaces are not closed under

products and subspaces.

The Urysohn Lemma

The Urysohn Lemma states that normality implies a fact analogous to complete regularity:

For any pair (A,B) of disjoint closed sets there exists a continuous function f : X → [0, 1]

with A ⊆ f−1({0}) and B ⊆ f−1({1}). The following is a sketch of the classical proof of

the equivalent formulation stated in Lemma 4.1.4.

Through successive application of the interpolation property one expands U0 ⊳ U1 to a

scale, that is a dyadic-indexed chain {Ud}d∈D where d < e implies that Ud is well inside Ue.

So far the conclusion is just that the well-inside relation on the topology of a normal space

is the same as the really-inside relation. In the next step, using the scale one constructs an

upper semicontinuous map f+ : X → [0, 1] separating U0 from U1. What is localic about

this step is that one actually constructs the frame homomorphism of this semicontinuous

map first: The topology of upper semicontinuity on the unit interval has a basis of opens

of the form [0, x) for x ∈ [0, 1]. For every such open, define its preimage under f+ to be

the set
⋃
d<x Ud. Likewise, one constructs a lower semicontinuous map f− : X → [0, 1]

separating U0 from U1, again via defining an appropriate frame homomorphism. In fact

it is easier to think of this step as specifying the preimages of basic closed sets. Indeed, a

basic closed set of the topology of lower semicontinuity is of the form [0, x] for x ∈ [0, 1].

Define the preimage of this closed set under f− to be
⋂
d>x Ud. Why is this a closed set?

Whenever a dyadic rational d is strictly greater than the real number x then there exists

some dyadic e with x < e < d. As Ue is well inside Ud the closure of Ue is contained in Ud.

Thus the intersection of opens is actually an intersection of closed sets, hence closed. The

final step is to show that f− and f+ are actually the same function on points, whereby

one obtains the continuous map with the desired properties.

Clearly, there is some bitopology lurking in the background, as one is dealing with a

pair of semicontinuous maps. The central idea of the proof is that the dyadic numbers

can be regarded as a basis of the topology of upper (or lower) semicontinuity on the

unit interval, and specifying a frame homomorphism on a basis determines the frame

homomorphism unambiguously.
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6.4 Notation

List of Categories

Abs Abstract bases and approximable relations

Alg Algebraic domains and Scott continuous maps

BiFrm Biframes and biframe homomorphisms

BiTop Bitopological spaces and bitontinuous maps

CCL Continuous lattices and join-preserving maps

CCSup Continuous complete sup-lattices and non-

emtpy join preserving maps

CFrm Continuous frames and frame homomorphisms

CDFrm Completely distributive frames and join-

preserving maps

CL Complete lattices and join-preserving maps

Coh Coherent spaces and perfect maps

CPreFrm Continuous preframes (also called continuous

semilattices) and preframe homomorphisms

Dcpo Dcpos and Scott continuous maps

dFrm d-Frames and d-frame homomorphisms

dLat d-Lattices and d-lattice homomorphisms

Dom Domains and Scott continuous maps

Frm Frames and frame homomorphisms

Infosys Information systems and approximable map-

pings

KHaus Compact Hausdorff spaces and continuous maps

KOrdHaus Compact ordered Hausdorff spaces and mono-

tone continuous maps

KRFrm Compact regular frames and frame homomor-

phisms

KRdFrm Compact regular d-frames and d-frame homo-

morphisms

Lat Bounded distributive lattices and lattice homo-

morphisms

lcSob Locally compact sober spaces and continuous

maps

Loc Locales and locale maps

NdFrm Normal d-frames and d-frame homomorphisms

Poset Posets and monotone maps

PreFrm Preframes and preframe homomorphisms
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Preord Preorders and monotone maps

Rel Sets and relations

SCFrm Stably continuous frames and frame homomor-

phisms

SCTop Stably compact spaces and perfect maps

Set Sets and functions

sLat (bounded) semilattices and semilattice homo-

morphisms

Sob Sober spaces and continuous maps

Tok Interaction algebras

Top Topological spaces and continuous maps
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List of Functors

Prefix notation

Filt Filter monad on Poset

Filt≺ Round filters with respect to relation ≺

Fin Finite powerset monad on Set

Flip Swap polarities in interaction algebras and d-

lattices

Ialg Interaction algebra derived from a domain, com-

pletely distributive frame or space

Idl Ideal monad on Poset

Idl◦ Open ideal completion on dLat, dFrm

Idl≺ Round ideals with respect to relation ≺

Lo Lower set monad on Poset

O Frame derived from a space, d-frame derived

from a bitopological space

Ω Round lower set functor Tok0 → CDFrm

P Powerset monad on Set

PH Hoare poweralgebra comonad on Tok1

PS Smyth poweralgebra comonad on Tok1

Patch Patch construction on d-lattices and d-frames

pt Domain derived from an interaction algebra,

space derived from a frame/d-frame

Sym Symmetric bitopological space over a space

Up Upper set monad on Poset

∨ Join topology functor on BiTop

Postfix notation

(−)∧ Scott open filters of a dcpo (Lawson dual); in-

volution on CPreFrm

(−)! Completely prime upper sets of a complete lat-

tice; involution on CDFrm

(−)∂ Order dual on Preord and dLat

(−)0 Normal coreflection on dLat, dFrm

(−)= Symmetric d-frame of a frame
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List of relations and arrows

Order relations and associated closures

≤,⊑ |

◭ , |

◮ Order on posets, specialisation order on spaces.

≪

։

, ։ Way-below relation on dcpos, see page 184.

≪

։։

Completely-below relation on complete lattices,

see page 188.

≺ ↓, ↑ Composite relation on tokens of an interaction

algebra, see pages 14,15.

4,< Order of lower equivalence on tokens/witnesses

of an interaction algebra, see page 30.

⊳

_

, _ Well-inside relation on a d-lattice, see page 97.

0 Really-inside relation on a d-lattice, see

page 106.

Other relations

con Consistency relation of a d-lattice, disjointness

of sets, see page 95.

tot Totality relation of a d-lattice, covering relation

of sets, see page 95.

⌢⌣ Consistency relation of an interaction algebra,

lower-bound-of relation between elements and

subsets, see pages 9,13.

⌢⌣ Totality relation (identity morphism) of an in-

teraction algebra, containment relation between

sets and elements, see pages 9,13.

≬ Intersection relation between subsets. A ≬ B if

and only if A ∩B 6= ∅.
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Stage 0, 23

Alexander Subbase Lemma, 138
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pairwise Hausdorff, 137

Stone dual of, 124
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Cocompact topology, 58, 143

Compact
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distributive law of, 49
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Continuous preframe, 41
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Continuous Sup-lattice, 45

has stably locally continuous Lawson dual,

49
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Cut rules
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category of, has normal coreflection, 125

compact, 138

compact regular, 140
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Stone-Čech compactification of, 159
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fundamental lemma of, 100
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order dual of, 97

symmetric, 95, 112

D-point, 123
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algebraic, 169, 184

compact element of, 184

with bottom, 44

Double negation, 129
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algebras are continuous frames, 87

is a monad, 83

Dyadic rationals, 106

d-lattice of, 152
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Egli-Milner lifting, 60
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Hofmann-Mislove Theorem, 5, 53
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fundamental lemma of, 18
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Stage 2b, 44
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table of axioms, 31
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Join-strength rule, 45, 47, 104, 111

KZ monad, 65

Lambda calculus, 4
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Lawson duality, 40
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Scott Open Filter Theorem, 140, 144
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Stone duality
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Stone-Čech compactification, 5
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Upper bound, 177

Upper closure, 15, 182
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Upper set

of a poset, 182

of tokens, 15

Urysohn Lemma, 197, 198

Urysohn Lemma for d-frames, 155

Vietoris topology, 6, 90

Way-below relation, 7, 183

preservation of, 38, 185

Weak lower topology, 90, 134, 167, 170
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Weakly below, 30
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preservation of, 98
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